## University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Physics and Astronomy

Research Papers in Physics and Astronomy

2017

# Magnetocrystalline anisotropy of #-Fe2O3

Imran Ahamed

Rohit Pathak

Ralph Skomski

Arti Kashyap

Follow this and additional works at: https://digitalcommons.unl.edu/physicsfacpub

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

## Magnetocrystalline anisotropy of #-Fe<sub>2</sub>O<sub>3</sub>

Cite as: AIP Advances **8**, 055815 (2018); https://doi.org/10.1063/1.5007659 Submitted: 02 October 2017 . Accepted: 03 November 2017 . Published Online: 28 December 2017

Imran Ahamed, Rohit Pathak ២, Ralph Skomski, and Arti Kashyap





### ARTICLES YOU MAY BE INTERESTED IN

Magnetoelectric ∈-Fe<sub>2</sub>O<sub>3</sub>: DFT study of a potential candidate for electrode material in photoelectrochemical cells The Journal of Chemical Physics **148**, 214707 (2018); https://doi.org/10.1063/1.5025779

Simple ALD process for ε-Fe<sub>2</sub>O<sub>3</sub> thin films APL Materials **5**, 056104 (2017); https://doi.org/10.1063/1.4983038

Size effects in the magnetic properties of *e*-Fe<sub>2</sub>O<sub>3</sub> nanoparticles Journal of Applied Physics **118**, 213901 (2015); https://doi.org/10.1063/1.4936838





AIP Advances **8**, 055815 (2018); https://doi.org/10.1063/1.5007659 © 2017 Author(s).



## Magnetocrystalline anisotropy of $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>

Imran Ahamed,<sup>1</sup> Rohit Pathak,<sup>1</sup> Ralph Skomski,<sup>2</sup> and Arti Kashyap<sup>1,a</sup> <sup>1</sup>School of Basic Sciences, Indian Institute of Technology, Mandi 175001, HP, India <sup>2</sup>Nebraska Center for Materials and Nanoscience and Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA

(Presented 9 November 2017; received 2 October 2017; accepted 3 November 2017; published online 28 December 2017)

The epsilon Fe<sub>2</sub>O<sub>3</sub> phase of iron oxide has been studied to understand the spin structure and the magnetocrystalline anisotropy in the bulk and in thin films of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> and Co-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. The preferential magnetization direction in the nanoparticles of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is along the *a*-axis [M. Gich *et al.*, Chem. Mater. **18**, 3889 (2006)]. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial Co substitution. The easy magnetization direction of the bulk and Co-free  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is along the *c*-axis, but it switches to the *a*-axis on Co substitution. All three systems exhibit in-plane anisotropies associated with the orthorhombic crystal structure of the oxide. © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5007659

#### I. INTRODUCTION

The metastable oxide  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, a rare polymorph of Fe<sub>2</sub>O<sub>3</sub>, has recently attracted interest as a material for photoelectrochemistry and as the only magnetoelectric Fe<sub>2</sub>O<sub>3</sub> phase.<sup>1</sup> The oxide was first identified by Forestier and Guiot-Guillain in 1934 but has actually been an ingredient of Tenmoku glaze on Chinese pottery for about a thousand years.<sup>2</sup> This rare phase of Fe<sub>2</sub>O<sub>3</sub> is orthorhombic and has the space-group Pna<sub>21</sub>.<sup>1</sup> Figure 1 shows the bulk crystal structure of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. The unit cell contains 8 formula units of Fe<sub>2</sub>O<sub>3</sub>, thus having a total of 40 atoms. The experimental lattice parameters are a = 5.095 Å, b = 8.789 Å and c = 9.437 Å.<sup>3</sup>

The interatomic exchange coupling is A-type antiferromagnetic, characterized by the spin directions ( $\beta$ ,  $\alpha$ ,  $\alpha$ ,  $\beta$ ) for the (Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub>, Fe<sub>D</sub>) atoms. Fe<sub>A</sub> and Fe<sub>B</sub> are coordinated by distorted octahedrals, Fe<sub>C</sub> exhibits a regular octahedral coordination, and Fe<sub>D</sub> is tetrahedrally coordinated. Since the four Fe atoms are nonequivalent, the spin structure is ferrimagnetic, with a magnetization of about 0.1 T and a Curie temperature of 510 K. However, it is only partially clear whether the spin structure is collinear or noncollinear.<sup>1,3,4</sup> Recent in-field Mössbauer experiments<sup>5</sup> indicate collinear ferrimagnetism.

Coercivities  $H_c$  as high as 20 kOe [2 T] have been reported for  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles,<sup>4</sup> but these high coercivities may reflect the small spontaneous magnetization  $M_s$  rather than a particularly high anisotropy constant  $K_1$ ,<sup>6</sup> since  $H_c \sim 2K_1/M_s$ . The coercivity of 20 kOe of nanoparticles of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is reduced to an in-plane coercivity of 8 kOe<sup>7</sup> in epitaxially stabilized (001) thin films on SrTiO<sub>3</sub> (111). Tanskanen *et al.*<sup>8</sup> reported coercivity of 1.6 kOe for thin films grown by atomic layer deposition. Namai *et al.*<sup>9</sup> enhanced the coercivity of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanomagnets by the substitution of rhodium. To understand the coercive behavior of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, it is necessary to explain and describe the magnetocrystalline anisotropy of the oxide.

In this paper, we use *ab-initio* calculations to investigate the spin structure and magnetic anisotropy of bulk and thin-film  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Concerning the magnetic anisotropy, we reproduce the experimental findings and address the important point that orthorhombic crystals have two



<sup>&</sup>lt;sup>a</sup>Arti Kashyap. mailto:arti@iitmandi.ac.in



FIG. 1. Bulk crystal structure of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

lowest-order anisotropy constants, namely  $K_1$  and  $K_1'$ .<sup>10</sup> Finally, we outline the effects of Co substitution, which enhances the anisotropy by creating more than half-filled 3*d* shells, and of the surface contribution to the magnetic anisotropy of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

#### **II. METHOD**

We have used the Vienna *ab-initio* simulation package (VASP),<sup>11–13</sup> employing the generalized gradient approximation (GGA),<sup>14</sup> a Hubbard U,<sup>15</sup> and a projector-augmented wave (PAW)<sup>13</sup> potential. The magnetocrystalline anisotropy (Sect. III. C) was determined by evaluating the total energies for magnetization directions parallel to the *x*-, *y*-, and *z*-directions, using spin-orbit coupling as implemented in VASP by Kresse and Lebacq. An energy cutoff of 530 eV was used for representing the electronic wave functions.

Aside from bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (Fig. 1), we have investigated the thin-film structures shown in Fig. 2. The films of thickness 10.18 Å were constructed as supercells along the *z*-direction and a vacuum of



FIG. 2. Investigated thin-films structures: (a)  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> thin film in the *a-b* plane (*x-y* plane), and (b) Co-substituted oxide. (Red, orange, and blue colors are used to indicate O, Fe, and Co, respectively.)

055815-3 Ahamed et al.

20 Å inserted between the periodic images of the film to avoid interaction effects. The Co-substituted thin film was obtained by just replacing one of the two Fe<sub>D</sub> atoms by a Co atom in the top layer. The optimized lattice parameters for bulk are a = 5.125 Å, b = 8.854 Å and c = 9.563 Å.

#### **III. RESULTS AND DISCUSSION**

Among the possible spin structures ( $\beta$ ,  $\alpha$ ,  $\alpha$ ,  $\beta$ ), ( $\alpha$ ,  $\beta$ ,  $\alpha$ ,  $\beta$ ), ( $\alpha$ ,  $\alpha$ ,  $\beta$ ,  $\beta$ ), and ( $\alpha$ ,  $\alpha$ ,  $\alpha$ ,  $\alpha$ ), the configuration ( $\beta$ ,  $\alpha$ ,  $\alpha$ ,  $\beta$ ) has the lowest calculated energy in both bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> and in the Co-free and Co-substituted thins films. For this reason, the following subsections deal with ( $\beta$ ,  $\alpha$ ,  $\alpha$ ,  $\beta$ ) spin structures exclusively.

#### A. Bulk calculations

Volume optimization and ionic relaxation were performed for the bulk structure, and the electronic structure was calculated using a *k*-point grid of  $5 \times 3 \times 3$ . The *U-J* parameter used in the calculations is 4 eV. This value corresponds to the *U* of hematite ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>), since no information is available for  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Figure 3 shows the density of states for the bulk structure. The predicted band gap is 1.9 eV, in agreement with the *ab-initio* studies of Yoshikiyo *et al.*<sup>16</sup> The magnetic moment of 0.143  $\mu_{\rm B}$  per unit cell comes nearly exclusively from Fe atoms and indicates an A-type antiferromagnetic ordering resulting in a ferrimagnetic ground state.

#### **B.** Thin-film calculations

The electronic structure of the thin films was calculated after volume optimization and complete relaxation, using a *k*-point grid of  $5 \times 3 \times 1$ . The density of states of the thin film and Co-substituted thin film is shown in Fig. 4.

The  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> thin film shows a band gap of 1.3 eV in the spin-down channel, whereas the spin-up channel near the Fermi level is occupied by Fe surface states. For the Co-substituted thin film, there are surface states due to the Co atoms, but the band gap of about 0.732 eV is same for both spin channels.

#### C. Magnetocrystalline anisotropy

The magnetocrystalline anisotropies of bulk and thin-film  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> were calculated by including the spin-orbit coupling and evaluating the total magnetic energy as a function of the magnetization angle (Sect. II). The Brillouin-zone integration for the anisotropy calculations was performed



FIG. 3. The total density of states of bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> with partial density of states of Fe 3d and O 2p states.



FIG. 4. The total densities of states in (a) pristine and (b) Co-substituted thin films of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

TABLE I. The anisotropy constants  $K_1$  and  $K_1'$  for bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, thin-film  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, and Co-substituted thin-film  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

| System                                                                  | $E_{\rm x}~({\rm eV})$         | $E_{\rm y}~({\rm eV})$         | $E_{\rm z}~({\rm eV})$         | $K_1$ (kJ/m <sup>3</sup> ) | $K_1'$ (kJ/m <sup>3</sup> ) |
|-------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------|-----------------------------|
| Bulk $\varepsilon$ -Fe <sub>2</sub> O <sub>3</sub><br>Co-free thin film | -273.63460089<br>-293.26412576 | -273.63460877<br>-293.26415896 | -273.63461010<br>-293.26417920 | 4.93<br>2.36               | 2.91                        |
| Co-substituted thin film                                                | -291.92083283                  | -291.92080945                  | -291.92080544                  | -0.47                      | -2.73                       |

using Monkhorst-Pack k-point meshes of  $11 \times 11 \times 11$  for the bulk and  $11 \times 11 \times 1$  for the thin films.

Due to the orthorhombic crystal structure it is sufficient to evaluate the energy for the three principal directions  $\mathbf{e}_x$ ,  $\mathbf{e}_y$ , and  $\mathbf{e}_z$  along the *a*-, *b*-, and *c*-axes, respectively. The definition<sup>10,17</sup>

$$\frac{E}{V} = K_1 \sin^2 \theta + K_1' \sin^2 \theta \cos 2\phi \tag{1}$$

yields  $K_1 = (E_y - E_z)/V$  and  $K_1' = (E_x - E_y)/V$ . In these equations, V is the volume of the unit-cell and  $E_x$ ,  $E_y$  and  $E_z$  are the energies when the spins are aligned in the x-, y- and z-directions, respectively. The calculated bulk and thin-film energies are listed in Table I.

Bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> behaves like a uniaxial easy-axis magnet ( $K_1 > 0$ ) with a preferred magnetization direction in the z-direction and in-plane anisotropy ( $K_1' \neq 0$ ), except that the in-plane anisotropy is very high (of second order), as contrasted to fourth-order in-plane anisotropy in tetragonal structures and the sixth-order in-plane anisotropy in hexagonal and trigonal (rhombohedral) structures. The same situation is found for the Co-free thin films, except the respective magnitudes of  $K_1$  is smaller and  $K_1'$  is larger than in the bulk. The Co addition yields a spin-reorientation transition, the easiest axis switching from the z-to the x-direction and relatively small 'in-plane' anisotropy in the y-z plane (b-c plane). The calculated anisotropies are all relatively small (several kJ/m<sup>3</sup>), but the small magnetization and the orthorhombic crystal structure helps to create high coercivity, because  $K_1'$  imposes additional restrictions on magnetization rotations.

#### **IV. CONCLUSIONS**

In summary, we have used the first-principle calculations to study the electronic structure of the bulk  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> as well as cobalt-free and cobalt containing thin films of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial Co substitution. The easy magnetization direction of the bulk and Co-free  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is along the *c*-axis, but it switches to the *a*-axis on Co substitution. All three systems exhibit substantial in-plane anisotropies associated with the orthorhombic crystal structure of the oxide. 055815-5 Ahamed et al.

#### ACKNOWLEDGMENTS

This work is supported by Nano Mission, DST, India (I. A., R. P., A. K). RS acknowledges partial support by DOE BES (04ER46152).

- <sup>1</sup> M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. Nogués, Chem. Mater. **18**, 3889 (2006).
- <sup>2</sup> C. Dejoie, P. Sciau, W. Li, L. Noé, A. Mehta, K. Chen, H. Luo, M. Kunz, N. Tamura, and Z. Liu, Sci. Rep. 4, 4941 (2014).
- <sup>3</sup> E. Tronc, C. Chanéac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998).
- <sup>4</sup> R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).
- <sup>5</sup> J. Tucek, S. Ohkoshi, and R. Zboril, Appl. Phys. Lett. **99**, 253108 (2011).
- <sup>6</sup> Y.-C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. van Veenendaal, and J. Nogués, Phys. Rev. B **79**, 094404 (2009).
- <sup>7</sup> M. Gich, J. Gazquez, A. Roig, A. Crespi, J. Fontcuberta, J. C. Idrobo, S. J. Pennycook, M. Varela, V. Skumryev, and M. Varela, Appl. Phys. Lett. 96, 112508 (2010).
- <sup>8</sup> A. Tanskanen, O. Mustonen, and M. Karppinen, APL Mater. 5, 056104 (2017).
- <sup>9</sup> A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, and S. Ohkoshi, Nat. Commun. **3**, ncomms2038 (2012).
- <sup>10</sup> R. Skomski, *Simple Models of Magnetism, Reprinted* (Oxford Univ. Press, Oxford, 2009).
- <sup>11</sup> G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
- <sup>12</sup> G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- <sup>13</sup> G. Kresse and D. Joubert, Phys Rev B **59**, 1758 (1999).
- <sup>14</sup> J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- <sup>15</sup> J. Hubbard, Proc R Soc Lond A **276**, 238 (1963).
- <sup>16</sup> M. Yoshikiyo, K. Yamada, A. Namai, and S. Ohkoshi, J. Phys. Chem. C 116, 8688 (2012).
- <sup>17</sup> R. Skomski, J. Phys. Condens. Matter 15, R841 (2003).