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Managing pathogen spillover at the wildlife–livestock interface is a key step

towards improving global animal health, food security and wildlife conserva-

tion. However, predicting the effectiveness of management actions across

host–pathogen systems with different life histories is an on-going challenge

since data on intervention effectiveness are expensive to collect and results

are system-specific. We developed a simulation model to explore how the effi-

cacies of different management strategies vary according to host movement

patterns and epidemic growth rates. The model suggested that fast-growing,

fast-moving epidemics like avian influenza were best-managed with actions

like biosecurity or containment, which limited and localized overall spillover

risk. For fast-growing, slower-moving diseases like foot-and-mouth disease,

depopulation or prophylactic vaccination were competitive management

options. Many actions performed competitively when epidemics grew slowly

and host movements were limited, and how management efficacy related to

epidemic growth rate or host movement propensity depended on what objec-

tive was used to evaluate management performance. This framework offers one

means of classifying and prioritizing responses to novel pathogen spillover

threats, and evaluating current management actions for pathogens emerging

at the wildlife–livestock interface.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.

1. Introduction
Cross-species spillover of pathogens occurs when a pathogen that is released

by a member of a reservoir host species goes on to establish and replicate in a

different (recipient) host species [1–3]. While mitigating pathogen spillover and

associated disease risk at the wildlife–livestock interface is a major goal for

both human and animal health agencies [4], spillover management decisions
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are often context-specific and based on expert opinion [5].

In particular, there is limited scientific knowledge to guide

management of spillover risk in understudied systems. Here,

we propose a modelling framework designed to fill that

gap by providing evidence-based guidance about optimal

management over a wide range of ecological contexts.

A pathogen’s spatial extent, and the spatial connectivity of

the host populations, are critical drivers of disease management

efficacy for many important wildlife–livestock [6] and wild-

life–human spillover systems [7–9], and management of

reservoir versus recipient hosts has been compared in some con-

texts [10]. However, spatially explicit two-host disease models

have received less attention, with most published models

describing management efficacy within a single-host species

[11]. Moreover, these single-host models are often not intended

to address spillover risk per se, but rather, to characterize

dynamics leading up to or trailing after a spillover event.

Another group of models builds on the idea that spillover

disease burdens depend on both the frequency and the conse-

quences of individual spillover events. These ‘multi-host’

models often compare within- and between-species trans-

mission rates to identify pathogens with a high risk of

generating problematic spillover events [12–14]. Multi-host

models have proven useful for characterising spillover rates,

especially when merged with phylogenetic information

specifically identifying the source of a given spillover event

[15]. However, they are rarely extended to account for changing

spillover risk as local reservoir prevalences vary through space

and time (but see [16]).

Here, we explore how best to manage pathogen spillover

and transmission in wildlife–livestock systems, using actions

that are spatially explicit and could be applied to either the

reservoiror the recipient host. Our model takes ideas previously

employed for forecasting management performance in specific

systems [17], but scales the approach up to apply across a wider

range of host movement and epidemic growth rates. We start by

justifying why a management-centred framework for wildlife–

livestock spillover should explicitly incorporate movement. We

then go on to describe a simple disease propagation model to

characterise spillover risk and onward transmission across a

wide range of hosts and pathogens. We next use the model to

explore spillover management efficacies, and describe the pat-

terns that the model produced. We end by discussing the

limitations of this approach, and outlining features that could

be added in the future.

2. Characterizing disease propagation in terms of
epidemic growth rates and host movements

Our model is structured around three initial conjectures. First,

we anticipate that the most efficient means of controlling

pathogen spillover often rests on the spatial dynamics of the

hosts. Hosts with high movement propensities can produce

widespread spatial synchrony in spillover risk, making the pre-

cise location of future spillover events hard to predict [18]. In

these cases, the best management option may be to target

cross-species (i.e. interspecific) contacts by applying biosecur-

ity measures or phytosanitary controls across a broad spatial

extent [19]. When reservoir hosts move shorter distances, how-

ever, spatial containment in either the reservoir or the recipient

host species (or both) may be possible.
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Figure 1. Hypothesized management efficacies across the pathogen propagation space. We partition pathogen propagation along two axes: epidemic growth rate and
movement propensity of the reservoir host (here, quantified as typical number of kilometres moved during the infectious period). Relative performance of various manage-
ment strategies is indicated with arrows outside the illustration’s margins. Management actions that might fall into the upper left quadrant include local depopulation of
either host at infected premises. Management in the upper right might include biosecurity measures targeting premises of either host, or prophylactic vaccination of the
reservoir host. Management in the lower right could include a wide range of actions. Many actions might perform well in the relatively easily managed lower left-hand
quadrant. System-specific values derived from a search of the empirical literature are indicated within the illustration. Values were left intentionally vague, and the values
corresponding with the quadrant lines are arbitrarily chosen, since they will vary with ecological context, and with the particular organisms involved. Spatial extents
indicated here are based on one important, current reservoir host listed beside each point. The upper bound of movement for avian influenza has been curtailed.
See electronic supplementary material, table S1 for system-specific estimates. CDV references canine distemper virus.
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Second, we anticipate that the relative efficacies of

various management actions will depend on how quickly

an epidemic grows. If epidemic growth is rapid in the

recipient host population, then depopulation or targeted

vaccination at the time of the outbreak (here referred to

as retroactive vaccination) may effectively limit post-

spillover epidemic size. If epidemics grow slowly, actions

like prophylactic vaccination or selective removal within

the reservoir population may lower reservoir prevalence

to the point where any cross-species spillover event

becomes vanishingly rare (figure 1). Lastly, we expect

that in some cases, many management actions will perform

comparably. In these situations, relative economic and

social costs of each action should factor heavily into

management decision-making.

Testing these conjectures requires us to explicitly incor-

porate epidemic growth rates and host movement

propensities into a model of epidemic spread. Like many

single-host models [7], our model considers management

in the context of a dynamic disease transmission process,

but we make that process spatially explicit and allow new

spillovers to emerge autonomously owing to underlying

infection dynamics in the reservoir host. Like many

multi-host models [13,14], magnitude of spillover risk is

central to our model structure. However, where those

models focus on the magnitude of risk in terms of force

of infection from the reservoir host, we additionally focus

on the spatial extent over which those events occur.

Spatially linking both hosts in one model allows us to com-

pare a wider range of management actions that span both

host species.

3. Spillover simulation model
Our model includes three elements: transmission of the patho-

gen within a host species, transmission of the disease between

species and movement of hosts across space. The model oper-

ates on a 50 � 50 grid of spatial cells. We assume that host

population sizes are fixed and identical in all occupied cells.

The model uses a deterministic SIR (susceptible–infected–

recovered) disease process model with stochastic cell-to-cell

host movements and between-species interactions to capture

the effects of both host movement and epidemic growth.

Epidemic dynamics within a spatial cell follow the classic

disease model of Kermack & McKendrick [20] without demo-

graphy, which assumes that each individual’s infection status

transitions from susceptible (S) to infectious (I ) to recovered

(R). By keeping population sizes constant in all grid cells,

we circumvent questions about whether within- and

between-host-species transmission should be frequency- or

density-dependent. During an epidemic’s early exponential

growth phase, the epidemic growth rate is equal to the differ-

ence between the transmission coefficient (b) and the recovery

rate (g) (electronic supplementary material, S2). We held recov-

ery rate constant across all simulations and systematically

altered epidemic growth rates by manipulating b alone

(electronic supplementary material, figure S1A).

The model’s spatial process starts with construction of an

occupancy map for each host species, based on a stochastic

selection of cells. The probability that a cell is occupied by a

particular host species is determined with a draw from a sym-

metric, bivariate Gaussian kernel centred on that host’s activity

centre (i.e. surrounding a spatial centroid) and with a variance

50
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Figure 2. Simulation protocol. (a) Simulations begin by defining the spatial extent of the reservoir (light grey) and recipient (dark grey) hosts. A single infected
individual is introduced into two reservoir host cells (b), with the structure of the subsequent epidemic determined by epidemic growth rate and host movement
propensities. (c) The pathogen can then stochastically spill over to the recipient host in cells occupied by both host species (reservoir shown in grey; recipient in
colour), at a rate determined by the interspecific contact rate and the pathogen’s prevalence in the local reservoir host population. Management (here, retroactive
vaccination of the recipient host) can alter the epidemic’s progression in both host species (d,e). Management actions are compared in terms of their ability to
minimize the epidemic’s spatial extent in the recipient or reservoir host, and minimize the total number of recipient or reservoir host cases. Variation generated by
manipulating spatial structure, local epidemic dynamics and management efficacy are shown in electronic supplementary material, figures S2 – S4, respectively.
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equal to 50 (figure 2a). If a previously drawn cell is chosen a

second time for the same species, we redraw from the same dis-

tribution until a set of 1000 unique cells is identified for each

host (though both hosts can occupy the same cell). Spatial

alignment between the host species is determined by the dis-

tance between host activity centres. This structure allows us

to capture a gradient of spatial overlap between host species,

from complete segregation to extensive spatial overlap

throughout their ranges (electronic supplementary material,

S4 and figure S2).

Individual reservoir and recipient hosts move stochasti-

cally between occupied grid cells at discrete time steps

according to a tau-leap algorithm (electronic supplementary

materials, S2.1). We assume that these movements have a

negligible effect on cell population densities and hold popu-

lation sizes constant within each occupied cell throughout the

simulation. We only track the size of each disease compart-

ment (namely, proportion of susceptible, infected and

recovered individuals of each host species) within cells, not

the disease status of particular individuals. Stochastic move-

ment events by ‘individual’ infected animals spark dynamics

within newly contacted cells, without altering cell densities.

Movement rates are normalized so that the same number of

cell-to-cell movements is expected in all simulations, but the

structure of these movements varies controllably: movements

are drawn from a monotonically decreasing function of Eucli-

dean distance between cell centroids (i.e. a movement kernel;

electronic supplementary material, S2.2) and we control host

movement patterns by manipulating the distribution of

movement distances (which we refer to as the host’s ‘move-

ment propensity’). The probability that a dispersing host is

infected is proportional to the local prevalence in that host’s

population. Movement kernels with heavy tails correspond

to high-dispersal systems (high movement propensity),

while movement kernels with light tails correspond to low-

dispersal (low movement propensity) systems (electronic

supplementary material, figure S1B). Note that larger

values of c, the parameter controlling tail weight,

correspond to lighter tails (electronic supplementary

material, figure S1B). Epidemics simulated under high move-

ment propensities seed more new infections at a distance

than epidemics arising under lower movement propensities

[21], facilitating faster spatial spread. For simplicity, we

apply the same dispersal kernel to both host species in all

simulations presented here, and we do not allow colonization

of unoccupied cells. Arrival of a single infected host in an

uninfected host cell always and instantly sparks a local

epidemic in the newly contacted cell (figure 2b).

Contacts between reservoir and recipient hosts are also

treated as stochastic. The number of interspecific contacts is

based on a pre-specified interspecific contact rate, which is

held constant across all simulations. Contacts are then randomly

assigned across all cells occupied by both reservoir and recipient

hosts. The probability that an interspecific contact involves an

infected reservoir host is proportional to the current infection

prevalence in that cell’s reservoir host population. Though reser-

voir-to-recipient contacts are required to initiate epidemic

dynamics in the recipient host population, we assume that

recipient host populations experience no additional force of

infection from reservoir hosts in local or neighbouring cells

following the initial spillover event (figure 2c). Stochastic move-

ments between cells populated with recipient hosts can then

allow the epidemic to propagate throughout the entire recipient

host population.

(a) Management actions
Our investigation focused on six forms of management:

prophylactic vaccination applied across an entire population

regardless of current disease status, retroactive vaccination

applied to infected cells and their neighbours following

detection of disease, contact biosecurity, depopulation,

spatial containment and selective removal of infected reser-

voir hosts (figure 2d,e). Details on the implementation of all

management actions within the model are contained in

table 1 and electronic supplementary material, S2.3. In all

Table 1. Management implementation within the model. The user-specified prevalence at which management began was varied systematically to take on
values 0.001, 0.010, 0.100 and 1.00. SReserv and SRecip reference the proportion of susceptible reservoir and recipient hosts, respectively; and IReserv and IRecip

refer to the proportion of infected reservoir hosts and recipient hosts, respectively. b is the transmission coefficient. N is the number of reservoir hosts per
occupied cell and eij denotes the movement rate between the ith and jth cells. Throughout our simulations, we took a cell’s neighbourhood to consist of all
cells whose centroids were within three cell lengths of the target cell.

action
prevalence at
which action begins effect of action on system dynamics

action’s spatial
extent

biosecurity user-specified bIReservSRecip becomes dbIReservSRecip where d[(0, 1) is a multiplicative

factor reducing b

neighbourhood

of target cell

containment user-specified eij ¼ 1/10 000 when i and j are not on the same side of the

containment boundary

all cells

depopulation user-specified I reset to 0 when depopulation occurs neighbourhood

of target cell

prophylactic vaccination n.a. S reset to S(1 2 n), where n / N/cell, the host’s density within a cell all cells

retroactive vaccination user-specified S reset to S(1 2 n), where n ¼ 1/R0, the herd immunity rate neighbourhood

of target cell

selective removal user-specified IReserv is reset to 0, and SReserv is proportionally increased neighbourhood

of target cell
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cases except for prophylactic vaccination, management was

applied only to cells exceeding a specified threshold preva-

lence in the reservoir host (and to the direct neighbours of

those cells for retroactive vaccination and depopulation;

table 1).

This management structure leaves ample room for further

development, including exploration of cost constraints and

more complex management schemes. However, adding

more detail would require tailoring the model to a specific

system, so here we simply present the overarching structure

and leave further specification to future work.

(b) Model process and outputs
We initiated the simulation by introducing the pathogen into

two randomly chosen reservoir host cells at timestep 1, and

simulated the epidemic forward for 60 timesteps. We recorded

the time of first infection separately for reservoir and recipient

hosts at each cell. Once a cell was infected, future pathogen

introductions did not alter local epidemic dynamics. After

the simulation, we calculated the proportion of reservoir and

recipient host cells that became infected, along with the aggre-

gate prevalence (which we calculated as the sum of infections

in all cells at all timesteps) over the full simulation. These

metrics—spatial extent of the reservoir and recipient host epi-

demics, along with maximum epidemic size and total

disease-induced mortalities in both hosts—provided a basis

for comparing disease propagation dynamics under varying

rates of host movement and epidemic growth. The model

was implemented as a de novo simulation in R [22].

4. Identifying the most effective management
strategies

In order to identify which management action produced the

best results under particular conditions of host movement

propensities and epidemic growth, we ran simulations

across a gridded version of the parameter space (electronic

supplementary material, S3 and table S1). Parameters varied

along the following six dimensions: (i) epidemic growth

rate; (ii) variance and kurtosis of the hosts’ dispersal func-

tion (‘movement propensity’); (iii) prevalence at which

management began; (iv) host density within each cell;

(v) distance between reservoir and recipient host activity

centres; and (vi) management objective of interest. The objec-

tives we considered were minimizing spatial extent of the

epidemic in the recipient host; minimizing total number of

recipient host cases; minimizing spatial extent of the epi-

demic in the reservoir host; or minimizing total number of

reservoir host cases. We focus primarily on spillover man-

agement in the recipient host population, but include

results from objectives focused on the reservoir host in

electronic supplementary material, S5.4.

We first explored raw output values over the disease propa-

gation space (figure 3) and then tabulated which management

action performed ‘best’ (i.e. minimized epidemic size or
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Figure 3. Simulation output. Heat maps (a – c) show the aggregate recipient host prevalence under three different management actions along the dimensions of
epidemic growth rate (cases per timestep) and movement distance (movement propensity increases to the right): (a) depopulation of the reservoir host; (b) prophylactic
vaccination of the reservoir host; and (c) selective removal of the reservoir host. In cases where unmanaged epidemics were large, outcomes varied dramatically among
management actions and a clear ‘best action’ was identifiable (this is the case among the three sets of actions shown here, in which prophylactic vaccination of the
reservoir clearly outperforms the other two actions for the fastest-growing, fastest-spreading epidemics). However, in cases where unmanaged epidemics were small,
many actions performed comparably and the variance in recipient prevalence among actions was low (d ). Variance among management outcomes increased with both
movement and the number of cases per timestep. Simulations in (a – c) partition both epidemic growth rate and host movement propensity into 20 blocks, fix manage-
ment initiation prevalence to 0.01 and set the spatial divide between host centroids to 30 cells. (Online version in colour.)
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epidemic spatial extent in the reservoir or recipient host) at

every parameter combination (figure 4a–d). We then used

logistic regression to correlate when a management action

was ranked as the best (yes or no), with epidemic growth

rate and tail weight in the host’s dispersal kernel. All simu-

lations contributed to model fits, so that inferences were

balanced over a range of values for reservoir population

density, spatial divide between host activity centres and preva-

lence at which management began. Finally, we grouped

management actions according to their coefficient estimates

from the logistic regression (figure 4) and compared conditions

of strong relative performance for each group to our

expectations in figure 1.

5. Results
Our simulator produced a wide range of spatio-temporal

spillover and transmission dynamics (figure 3; electronic

supplementary material, figures S3 and S4) and these

dynamics generally responded as expected to the various

management interventions (figure 3; electronic supplemen-

tary material, figure S5). While the results presented here

focus on one objective, limiting the total number of infected

cells in the recipient host population, similar patterns were

observed for limiting the total number of recipient hosts

infected (electronic supplementary material, S5.3). Unsurpris-

ingly, we saw some deviations from these patterns when

objectives were centred on the reservoir host. For instance,

we allowed biosecurity to only target interspecific contacts,

so it had no bearing on disease dynamics in the reservoir

host. Most of the observed deviations between the reser-

voir and recipient host objectives could be readily explained

with similar logic.

Action performances typically fell into two groups when

aggregated across the entire parameter space, but which

actions fell into which group depended on objective (electronic

supplementary material, table S3). When the objective was

minimizing the epidemic’s spatial extent in the recipient host

population, the better-performing group consisted of bio-

security, prophylactic vaccination of the reservoir host, and

retroactive vaccination of either host (electronic supplementary

material, table S3). Epidemics tended to be easily controlled by

many management strategies when movements were mostly

local and epidemic growth rates were low (figure 3; see elec-

tronic supplementary material, S5.2 and S5.3 for statistical

results, and S5.4 for results under other objectives).

Actions could be grouped according to how their relative

performance related to epidemic growth rate and host move-

ment propensities (figure 4). Biosecurity, containment and

retroactive vaccination of the local reservoir host (Group 1),

which all aim to limit spillover effects by controlling inter-

specific contact or spatial propagation, performed best

for fast-growing epidemics in hosts with high movement

propensities (the upper right-hand corner of figure 1).

Depopulation of both hosts, along with prophylactic vacci-

nation of the recipient host (Group 2) had the strongest
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Figure 4. Comparison of management actions over the disease propagation space. (a – d) Relative performances of four representative management actions at
controlling spillover (measured here in terms of the total number of recipient host patches infected) across the parameter space. Pixel colours represent the
raw proportion of times that the action performed better than all other actions at that particular combination of epidemic growth rate and movement propensity.
(e) Coefficient estimates for the relationship between epidemic growth rate (b; thickest lines), movement propensity (c; medium-width lines) and the b-by-c
interaction (finest lines) from logistic regression models describing when each management action performed best. Positive coefficient estimates for b indicate
that the action’s performance improved relative to other actions as epidemic growth rate increased. Positive coefficient estimates for (c) indicate that the action’s
performance improved relative to other actions as host movement propensity declined. Positive coefficient estimates for the b-by-c interaction indicate that the
action’s relative performance improved when epidemic growth rates were high, but host movement propensities were low. Lines show 95% confidence intervals
around each point estimate. Parallel results for the other three objectives are shown in electronic supplementary material, figures S6 – S8, and additional details on
the underlying simulations are included in electronic supplementary material, S5.1 and S5.3. (Online version in colour.)
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relative performance in scenarios where epidemics grew

quickly, but host movement propensities were low. The rela-

tive performance of selective removal and prophylactic

vaccination of the reservoir (Group 3), both of which target

prevalence and epidemic growth rates in the reservoir popu-

lation, did not change substantially with changes in

epidemic growth rate or host movement propensities. The

groupings of management actions that performed similarly

depended on the objective function, and this was particu-

larly true when the measured objective focused on a

different host. For instance, when the objective was to mini-

mize infected reservoir (as opposed to recipient) patches,

selective removal performed best when epidemics grew

slowly, whereas prophylactic vaccination of the reservoir

was best when epidemic growth rates were high, even

though these actions were grouped together when the objec-

tive was to minimize epidemic size or extent in the recipient

host (electronic supplementary material, figure S7).

6. Discussion
Pathogen spillover at the wildlife–livestock interface is a per-

sistent and expensive problem for food security and wildlife

conservation alike. While pathogen spillover dynamics have

been explicitly studied in many wildlife–livestock systems, dis-

ease ecologists lack a general framework for considering the

context in which each management action should perform

best. Here, we presented a framework for forecasting manage-

ment performance of spatiotemporally explicit spillover

events.

Our simulation results usually agreed with our a priori
intuition about how management would interact with spatially

explicit epidemic propagation. Epidemic growth rate and host

movement propensity interacted to generate variation in

epidemic size and spatial extent (figure 4; electronic sup-

plementary material, figures S6–S8) and epidemic growth

rate was generally the most powerful determinant of which

management action performed ‘best’ (figure 4e; see electronic

supplementary material, S5.4 for additional results). While

our findings are likely sensitive to the range of parameter

values explored (epidemics sometimes failed to propagate

in one or both hosts in a substantial region of the para-

meter space), they were nevertheless consistent with the

basic categorization proposed in figure 1. In fast-growing,

high-movement-propensity systems, limiting and localizing

recipient host interactions with infected reservoir hosts—

whether by reducing reservoir prevalence through

vaccination, or by reducing interspecific contact rates through

biosecurity—was the best strategy for recipient-focused objec-

tives. Containment of the reservoir host also performed

relatively well in these scenarios, except in cases where host

movements consistently exceeded the size of the containment

region (though the implications of varying containment

region size were not explored here). Actions like depopulation

of either host species or prophylactic vaccination of the reci-

pient host, which limit epidemic growth by controlling the

size of the susceptible pool without targeting movement,

performed relatively better when epidemic growth rates were

high and movement propensities were low. These actions

might be favoured for fast-growing, low-movement-propensity

epidemics, and may be competitive in higher-movement-

propensity scenarios, depending on cost. Performance of actions

that controlled local prevalence in reservoir host populations

through prophylactic vaccination or selective removal within

the reservoir population did not exhibit strong patterns with

epidemic growth rate or host movement propensities. However,

retroactive vaccination of the reservoir host performed compar-

ably in the same ecological scenarios, and may be more

politically and socially palatable when feasible (electronic

supplementary material, table S3; [23]).

All management actions were competitive with one

another when epidemic growth rates were slow, clearing a

path for cost to play a larger role in decision-making

(figure 3d ). This partially held for fast-growing epidemics

with low host movement propensities as well, and has been

demonstrated in detail in several wildlife–livestock spillover

systems. For instance, management models of foot-and-

mouth disease (which we might categorize as a fast-growing

disease with a lower host movement propensity) have investi-

gated a wide range of different management strategies and

found that a variety of actions might be deemed appropriate,

depending on the specific objective, the action’s cost and the

prevalence at which management begins [24,25].

Contrary to our initial expectations, the tail weight of the

dispersal kernel did not play a particularly powerful role in

shaping management efficacy throughout our simulations

(figure 4e). This could be because we held the total number

of cell-to-cell movements constant throughout the simulations.

In reality, host species vary in both the number and the dis-

tance of moves they make, as well as their local densities,

and this has been shown to have substantial impacts on local

epidemic growth in some cases (e.g. [26]). We anticipate that

movement may thus play a more powerful role than these

results suggest, but this question merits additional follow-up.

We elected to emphasize epidemic growth rate instead of

the pathogen’s basic reproductive ratio (R0) because disease

management depends on calendar time rather than the

pathogen’s generational timespan. Management requiring

construction of fencing for biosecurity, or depopulation of

infected premises, would be much more effective in a system

with a slow epidemic growth rate than a rapid one, even if

the epidemics were identical in terms of R0. This could play

out empirically, for example, in bovine tuberculosis (bTB) man-

agement in Michigan, USA, where models suggest that a

relatively constant, but low level of spillover pressure from

wildlife could be successfully mitigated through fencing [27].

It is the slow growth rate, and not that the basic reproductive

ratio, that renders fencing feasible for Michigan bTB. Similarly,

slow measures would be less effective for a pathogen with a

comparable R0 (estimated to be around 1.5 for Michigan

bTB), but a shorter infectious period.

(a) Framework limitations
This model was designed around the assumptions most rel-

evant to our particular question of interest, namely, how

allocation of disease management effort should vary along

a two-dimensional continuum of epidemic growth rate and

host movement propensity. Many other facets of the patho-

gen spillover and management decision-making process

were simplified to isolate this question. In particular, the dis-

ease process model is subject to the same constraints facing

many SIR models: we assumed that immunity is lifelong;

that disease does not induce mortality; that host densities

are constant through space and time; and that disease-related

rates like recovery and transmission are effectively constant
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across all individuals. Additionally, our selection of timescale

and epidemic duration was arbitrary. We assumed that

host movements were random and independent, and that

both host species moved according to the same movement

kernels. All of these assumptions are unrealistic in some

scenarios, and we discuss each in greater depth in electronic

supplementary materials, S6.

Additionally, our results are driven in part by the assumed

efficacy of each management action. Efficacy values were gen-

erated from a set of preliminary simulations identifying

parameter values that generated similar effect sizes. A full sen-

sitivity analysis incorporating all model parameters is beyond

our current scope; however, we recognize that such a study is a

critical next-step. A simplified tactic, in which we sample

randomly over an ungridded (but uniform) parameter space

to assess output sensitivities of the various parameters, is

the subject of current investigation. At this time, we simply

emphasize that our objectives in querying this model are also

fundamentally different from those of a researcher aiming to

forecast management efficacy specific to a particular system.

A more detailed investigation of sensitivities to cost, efficacy,

etc. would be important when comparing management

options for specific systems where the general process

parameter space is already quite constrained.

We only allowed for a single management action to be

undertaken at a time, and we do not account for costs or

logistical constraints associated with those actions. Costs vary

dramatically across systems and contexts (see, for example,

the discussion in [28] surrounding the costs of brucellosis

management), and placing any specific cost on an action

quickly constrains the set of systems to which the results

extend. At the same time, cost–benefit trade-offs are already

being used to justify spillover disease management in reservoir

hosts. For example, Sterner et al. [29] argue that even though

oral rabies vaccination in the USA and Canada is quite

costly, those aggregate costs are lower than the costs

of post-exposure prophylaxis that would be required to

manage rabies in the spillover host (here, humans). Further

comparative inquiry into cost is increasingly necessary.

Beyond economic costs, disease management logistics

take time to coordinate, and this constrains how quickly

management follows detection and how many cells can be

managed at once. From a political stance, reservoir and reci-

pient host management decisions are often determined by

separate agencies with distinct, and sometimes discordant,

objectives. Being able to weigh disease management

actions against more complex objective functions that include

those different viewpoints is an important extension that

would allow managers, researchers, livestock producers

and conservationists to reach some common ground.

Finally, our model does not allow management actions

to fundamentally alter the system’s underlying ecology (i.e.

to pull ‘ecological levers’ [23]). In reality, some of these

actions—in particular, depopulation and selective removal—

have the potential to impose major and lasting alterations.

Allowing management to perturb underlying system ecology

is an important issue for future exploration.

(b) Framework extensions
The model’s simple structure means it can generate initial

expectations about epidemic progression in understudied sys-

tems, even before the specific epidemiological process is well

understood. Accounting for disease and movement dynamics

in both reservoir and recipient hosts allows us to compare a

broader suite of management actions available for constraining

emerging pathogens. Rapid parameterization of the model

may often be feasible, since both epidemic growth rate and

host movement structure can be inferred from data available

shortly after an epidemic’s inception. As system-specific infor-

mation accumulates, the modelling structure could be refined

to encapsulate emerging detail about how, when and where

to optimally manage the system [6,30].

If multiple management options are available, coupling

actions that tackle different aspects of transmission (e.g. actions

from contrasting groups in figure 4) may be beneficial. For

instance, reservoir-focused actions can reduce the overall spil-

lover risk by limiting the spatial extent and prevalence of the

pathogen in the reservoir. However, unless these actions com-

pletely eliminate spillover risk, they may be most effective

when coupled with targeted, responsive management in the

recipient host (e.g. depopulation or retroactive vaccination).

This both-hosts approach has already been used to manage

several slow-growing, low-movement-propensity pathogens

at the wildlife–livestock interface (e.g. brucellosis management

around the Greater Yellowstone Ecosystem [31], or bovine

tuberculosis management in Minnesota, USA white-tailed

deer [32]).

Lastly, the best-performing management in any context also

depended on the objective. This is consistent with a rich body of

work on adaptive management and structured decision-

making in a range of ecological contexts [33] including disease

dynamics [24,34]. In reality, objectives likely differ for the two

host species, with recipient management focusing around limit-

ing aggregate case load, and reservoir management

emphasizing detection and mitigation of prevalence pulses

[18]. Given the extensive discussion of objective functions

elsewhere, however, we do not dwell on them further here.

7. Conclusion
The risk and burden of pathogen spillover depends on a

spatially explicit disease propagation process that operates

in both reservoir and recipient host populations. Our model

provides a useful starting point for planning management

of disease at the wildlife–livestock interface based on general

epidemiological traits of the system. It underscores the critical

role that epidemic growth rate and spatial context play in

determining management efficacy, and could be tailored to

the specifics of a wide variety of pathogen spillover systems.
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1 Empirical estimates of epidemiological rates37

Disease Exponential growth
rate

β γ Potential movement
while infected (km)

Brucellosis 0.0006 [1] NA NA 3-8 km/y [2]

Bovine Tuberculosis 0.002 (R0 ≈ 2.59 [3]) NA NA 15 6km/y [4]

Rabies 0.152; R0 ≈ 2-2.44 [3, 5] 0.18 35 3km [6]

Avian influenza 0.18; R0 ≈ 2.24 [7, 8] 0.0078 [9] 7d [10] 584-712 km [11]

Canine distemper
(CDV)

0.42 0.16-0.30 [12] 15-23d acute;
67-74d persis-
tent [12,13]

17.3 km (based on a
mean pack range size of
300km2) [14]

Anthrax 0.46; R0 ≈ 2.98-5.97 [15] 22.5 7.5 d [16] 3 km/d

Table S1: Estimated epidemic growth rates and host movement potentials for systems shown in Figure 1 of the main
text. Undoubtedly, an SIR process model is insufficient for any one of these systems. However, SIR-based estimates
may still be sufficient for the coarse classification we aim to make on the simple basis of epidemic growth rate and
host movement.

2 Model structure38

The model begins with a spatial grid of 50x50 cells that could approximate counties in the U.S. (we envision 30mi x

30mi grid cells, but the exact spatial extent of the cells does not affect the simulations). The disease process within

each cell follows the model of Kermack and McKendrick (1927). This model rests on a set of three ordinary differential

equations (ODEs) describing how individuals within a population move from Susceptible (S) to Infected (I) to recovered
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(R) states.

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

The epidemic growth rate can be determined by using the Jacobian of the set of ODEs, solved at state values39

corresponding to the disease-free equilibrium. The Jacobian of the ODEs is simply the derivative of each equation in40

the set with respect to each variable. Here,41

J =


−βI∗ −βS∗ 0

βI∗ βS∗ − γ 0

0 γ 0

 (4)

Thus,

det(J − ΛI) =

∣∣∣∣∣∣∣∣∣∣
−βI∗ − Λ −βS∗ 0

βI∗ βS∗ − γ − Λ 0

0 γ 0 − Λ

∣∣∣∣∣∣∣∣∣∣
(5)

= (−βI∗ − Λ)

∣∣∣∣∣∣∣
βS∗ − γ − Λ 0

γ 0 − Λ

∣∣∣∣∣∣∣− (−βS∗)

∣∣∣∣∣∣∣
βI∗ 0

0 0 − Λ

∣∣∣∣∣∣∣+ 0

∣∣∣∣∣∣∣
βI∗ βS∗ − γ − Λ

0 γ

∣∣∣∣∣∣∣ (6)

= (−βI∗ − Λ)(βS∗ − γ − Λ)(−Λ) + βS∗βI∗(−Λ) (7)

Substituting in the S∗ and I∗ values for the disease-free equilibrium, S∗ = 1 and I∗ = 0, leaves:

(−β × 0 − Λ)(β × 1 − γ − Λ) + β(1)β(0)(−Λ) (8)

= −Λ(β − γ − Λ) (9)

Roots occur at Λ = 0 and Λ = β − γ. The latter solution is the epidemic growth rate.42

2.1 Tau-leap implementation of stochastic movement43

We use a tau-leap algorithm to simulate cell-to-cell movement by reservoir hosts. The tau-leap is a two-step approxi-

mation that extends the Gillespie algorithm to operate on discrete and systematic units of time, ∆t, while also allowing

3
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Figure S1: A) Disease dynamics under the range of epidemic growth rates explored here. B) Dispersal kernels under
the range of c-values explored here. Note that the tailweight declines as c increases.

updates to occur in blocks (this is a useful feature in our scenario, since we are interested in a timescale where waiting

times between moves are quite low, such that simulating waits between specific moves is computationally impractical).

The first step of the tau-leap is to draw the number of moves during ∆t, Nevents(∆t), from a Poisson distribution, such

that

Nevents(∆t) ∼ Poisson (λ) , (10)

λ =
∑
i,j

moveij (11)

The second step is to then draw the originating and terminal cells associated with each move, Connect(∆t), generated

by a draw of size Nevents(t) from a multinomial distribution with probabilities equal to pij .

Connect1(∆t) ∼ Multinom (Nevents(∆t), pij) (12)

(13)

Because this is a multinomial draw, several moves between the same pair of cells can occur within a single unit of time;

the frequency of moves remains in proportion to the pairwise distance between cells. We assume that pij = pji, though

this would not necessarily be the case. Thus, after drawing the pair of connected cells, we then assign a direction to

4



all moves using a single of draw of size Nevents(∆t), from a binomial distribution with success probability of .5.

Direction(∆t) ∼ Binomial (Nevents(∆t), .5) , (14)

Connect(∆t)[i] =


Connect1(∆t)[i] if Direction(∆t)[i] = 0,

rev(Connect1(∆t)) otherwise

(15)

Once the originating cells are determined, we then simulate the infection status of the moving host, which is determined44

by a Bernoulli trial associated with each move in Connect(∆t), with success probabilities defined by the current45

prevalence (number of infectious individuals) present in each connection’s originating cell. Prevalence is in turn46

determined by identifying the current “infection age” of the originating cell (that is, the difference between current47

time and time at which the cell was first infected), and solving for I in the equations 1-3 at that infection age.48

This progression of events produces a stochastically determined set of moves, with every move assigned a corre-49

sponding binary infection status (infectious or not). Any movement of an infectious host initiates the deterministic50

disease transmission process in the terminal cell. Throughout the simulation, we assume cell-specific population sizes51

remain constant, and we assume that cell-to-cell movement probabilities do not change throughout the simulation.52

2.2 Tail weight in the dispersal function53

In order to modulate the movement distribution, we used a family of dispersal kernel distributions that could range

from exponential to leptokurtic (i.e., fat-tailed [17,18]). This flexibility is important, since well-characterized dispersal

kernels for animal species vary, but are often heavy-tailed (e.g., [19, 20]). Let f (distij) be the dispersal probability

between two points at a fixed distance distij . Then

f (distij) =
1

N
exp

[
−
(

distij
α

)c]

In this formulation, α is a parameter describing the dispersal distance, c is a shape parameter controlling the

distribution’s kurtosis, and N is a normalization constant that can be written as

N =

2πα2Γ

(
2

c

)
c

where Γ(x) is the usual Γ function. For c ≤ 1, the distribution is fat-tailed; it is exponential at c = 1, and54

platykurtic at c > 1 (for reference, the Gaussian distribution has c = 2). Cell-to-cell movement probabilities, pij ,55

are proportional to distij , normalized across all potential moves. We rescale the weights of all distributions so that56

the total number of expected moves is held constant across all values of c. Dispersal is taken to be symmetric in all57

directions.58
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2.3 Implementation of management actions59

2.3.1 Prophylactic vaccination60

Both forms of vaccination work primarily on the deterministic side of the disease transmission model, by effectively61

lowering the disease’s R0 value (pc = 1 − 1

R0
) [3]. Prophylactic vaccination operates prior to spillover, and alters the62

proportion of susceptible hosts. We simulate prophylactic vaccination by shifting the initial conditions for the trans-63

mission process, so that some proportion of the host population starts in the “recovered”, as opposed to “susceptible”,64

state. Prophylactic vaccination is applied at a constant rate (equal to the proportion require to achieve herd immunity65

based on the system’s R0) across all occupied host cells over the entire spatial domain. This strategy is being used in66

an effort to manage spillover risk for avian influenza and rabies. We explore its implications when applied to either67

the reservoir or the recipient host species.68

2.3.2 Retroactive vaccination69

Retroactive vaccination consists of responsively vaccinating hosts in reaction to pathogen detection. In our simulation,70

this is mathematically identical to prophylactic vaccination (some proportion of the susceptible recipients are shifted71

to the recovered category), but instead of vaccinating all premises to the same level, we vaccinate only the patches in72

which the infection itself reaches a predetermined threshold, and those patches’ direct neighbors. Vaccination is applied73

at the proportion required to achieve herd immunity, as determined by R0. Retroactive vaccination can be applied to74

either the reservoir or the recipient host. Retroactive vaccination does not completely eliminate the pathogen.75

2.3.3 Contact biosecurity76

Contact biosecurity consists of actions like improving fencing and removing attractants, and aims to reduce the rate of77

direct contacts between the reservoir and the recipient hosts in the same patch. We simulate contact biosecurity actions78

by reducing the probability of interspecific contacts by a fixed constant in patches where “biosecurity” is applied. As79

with retroactive vaccination, biosecurity is applied when pathogen prevalence crosses a pre-specified threshold in the80

reservoir host. We take biosecurity to reduce the interspecific contact rate by 90% in all simulations here.81

2.3.4 Selective removal82

selective removal strategies alter disease transmission by reducing prevalence in the reservoir host population. This83

strategy has been tested, for example, to manage brucellosis in elk in parts of Wyoming (Scurlock report), and to84

improve bighorn sheep population growth rates following disease spillover events. We simulate selective removal by85

reducing reservoir host prevalence in targeted patches by a particular amount - that is, the proportion of reservoir86

hosts in the infected category is lowered. This affects the deterministic disease dynamics. Isolation and removal of87

symptomatic individuals is a special case of selective removal, with no testing cost. Here, we only apply selective88

removal to the reservoir host.89

6



2.3.5 Depopulation90

Depopulation consists of complete removal of all animals of the specified host species from a given cell and its neighbors91

within the management radius. Depopulation is followed by instantaneous restocking of all depopulated cells with92

susceptible hosts, so it has no effect on cell density. This is a reasonable assumption if spillover events do not lead to93

massive, species-wide reductions in host densities.94

2.3.6 Containment95

Under the containment strategy, we first identify all cells within a fixed distance of the epidemic’s starting point.96

Since disease is deterministic in this model, cells where the epidemic begins will always cross the prevalence detection97

threshold first, so the initiating cells are the same as the cells where infection is first detected. We then group the cells98

into a community of cells within the “containment” zone, and a community of cells outside that zone. We completely99

eliminated all moves between the two groups for both the recipient and the reservoir host populations.100

3 Parameters and parameter space explored101

The simulator has 17 parameters, six of which we varied systematically in our simulation study. A complete list of all102

parameters is included in Table S2. We systematically varied the six investigated parameters in a full-factorial design,103

and ran a replicate simulation at each combination.104
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Parameter Description # levels Values investigated

β Determines epidemic growth rate (expected
# new cases per day)

4 0.10, 0.34, 1.20, 4.14

c Dispersion parameter of movement kernel 4 0.20, 0.58, 1.71, 5.00
γ Recovery rate 1 1/7
Management Management action implemented 9 Depopulation of the reservoir

Depopulation of the recipient
Prophylactic vaccination of the reservoir
Prophylactic vaccination of the recipient
Biosecurity
Selective removal
Retroactive vaccination of the reservoir
Retroactive vaccination of the recipient
Containment
None

N Size of the reservoir host population within
each cell

4 10, 368, 13572, 500,000

τmax Number of timesteps simulation ran 1 60
Xin and Yin X− and Y− dimensions of the grid defining

the simulator’s spatial extent
1 50

ξ Spatial radius defining the neighborhood of
cells A within which management is applied

1 3

ψ Biosecurity efficacy from Table S2 above 1 0.1
ν Proportion of individuals in a cell who receive

prophylactic vaccination
1 1 − 1

R0

θ Prevalence that initiates management 4 0.001, 0.01, 0.10, 1.00
Spatial
divide

Distance (number of cells) between popula-
tion centroids of reservoir and recipient host
populations

4 0, 15, 30, 45

ι Containment distance 1 1/10,000
Interspecific
contact rate

Interspecific contact rate 1 Within-species contact rate between cells
2 units apart according to the specified
movement kernel

Premise size Number of animals of the recipient host
species per occupied cell

1 N

ρ Multiplicative constant adjusting the weight-
ing in the movement kernel to generate an
appropriate number of moves

1 10,000

α Term structuring the dispersal kernel 1 5

Table S2: Parameters that were systematically varied during the simulations, along with values investigated. Simula-
tions presented in main text figures were run on a finer grid of twenty partitions each along c and epidemic growth
rate.

4 Assessing model performance105

We assessed model performance visually under a wide range of parameter combinations to be sure the simulator106

performed as expected. We first evaluated whether our spatial configuration protocol worked properly by plotting107

occupancy patterns for the reservoir and recipient host under varying levels of spatial divide (Figure S2).108
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Figure S2: Spatial configurations of reservoir and recipient hosts under different values of “spread” and “spatial divide”.

We then plotted reservoir and recipient host epidemic dynamics across a systematic grid of the movement kernel109

and epidemic growth rate space to confirm that the simulator achieved a wide range of epidemic structures (Figure110

S3). As anticipated, epidemics spread to many cells, quickly, in unmanaged scenarios with high β-values. This growth111

occurred as a clear propagating process away from the location of the index cases when host movement propensities112

were low (which is to say, c-values in the dispersal kernel function were high), but spread rapidly throughout the entire113

simulation space when host movement propensities were high (which is to say, c-values were low).114
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Figure S3: Spatial maps of simulated pandemics in the reservoir host, in the absence of management. Dimensions
within individual plots are two-dimensional pictures of space (i.e., “latitude” and “longitude”). Cell colors reflect
the first timestep that cell was infected, with the center red point being the initiating cells, ranging through yellow
(earliest) to fuschia (last infected). .

We quantified the spatial configuration of each epidemic within the reservoir host more explicitly to be sure spatial115

propagation was operating as intended. At the end of the simulation, we categorized all cells as ever experiencing116

infection during the simulation (cells were assigned a 1 if they became infected at any time during the simulation, and117

0 otherwise). We then removed all uninfected cells, and constructed a spatial network of infected cells, in which cells118

were connected to their direct spatial neighbors. This gave us a transmission network (albeit an undirected one). We119

calculated the number of components (isolated groups of contiguous, infected cells) and the maximum component size120

in the transmission network to determine how many isolated patches became infected over the course of the epidemic.121

Number of components gave us a coarse metric of the epidemic’s fragmentation over the landscape. This same protocol122

was also adopted for recipient host cells. We then examined propagation dynamics in the reservoir to be sure that the123

epidemic was more likely to create a giant connected component when c was high (i.e., host movement propensities were124

low), but disaggregated into multiple small epicenters of infection when c was low (i.e., host movement propensities125
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were high; Figure S4).126

Figure S4: Phase transitions in wave dynamics. Transmission modulates between occurrence within a giant connected
component (blue) and occurrence across dispersed, spatially disjoint epidemics (red) over our two-dimensional param-
eter space in the reservoir host. Consistent with previous work [21], the patterns indicate that the threshold value for
widespread spatial transmission regularly exceeds the conventionally accepted R0 = 1 threshold. This is because con-
tact processes dominated by local contacts quickly become saturated, so that the assumption a “completely susceptible
population” is rapidly invalid [22].

We visually assessed the performance of each management action at a few cross-sections of the disease parameter127

space. An example containing the visualization for high-R0 (β = 4.825) and moderate c are shown in the Main128

Text (Figure 2), but we show dynamics under a more complete cross section of epidemic growth rates and movement129

propensities in Figure S3.130
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Figure S5: Different management actions simulated on a common disease propagation space.

5 Additional results131

5.1 Additional specifications for simulations in Figure 4132

All fits used for Figure 4 in the main text were generated from models that also included a term for spatial divide133

between reservoir and recipient host activity centers. Complete model results are included in the Supplementary134

Materials: Section 5.2. Simulations in panels A-D partition both epidemic growth rate and c into 20 blocks, fix135

management initiation prevalence to 0.01, and set the spatial divide between host activity centers to 30 cells.136

5.2 Aggregate performance of the management actions137

Table 3 shows aggregate performance of each management actions across the entire disease propagation space.138

12



Objective Action % ”best”

Minimise recipient patches Biosecurity 0.19
Depopulation of the Recipient 0.05
Depopulation of the Reservoir 0.07

Prophylactic Vaccination of the Recipient 0.06
Prophylactic Vaccination of the Reservoir 0.13
Retroactive vaccination of the Reservoir 0.19
Retroactive vaccination of the Recipient 0.19

Containment 0.06
Selective removal of the reservoir 0.05

Minimise recipient prevalence Biosecurity 0.18
Depopulation of the Recipient 0.07
Depopulation of the Reservoir 0.07

Prophylactic Vaccination of the Recipient 0.07
Prophylactic Vaccination of the Reservoir 0.14
Retroactive vaccination of the Reservoir 0.18
Retroactive vaccination of the Recipient 0.18

Containment 0.06
Selective removal of the reservoir 0.05

Minimise reservoir patches Biosecurity 0.01
Depopulation of the Recipientp 0.01
Depopulation of the Reservoir 0.05

Prophylactic Vaccination of the Recipient 0.02
Prophylactic Vaccination of the Reservoir 0.55
Retroactive vaccination of the Reservoir 0.26
Retroactive vaccination of the Recipient 0.01

Containment 0.01
Selective removal of the reservoir 0.09

Minimise reservoir prevalence Biosecurity 0.15
Depopulation of the Recipient 0.15
Depopulation of the Reservoir 0.06

Prophylactic Vaccination of the Recipient 0.17
Prophylactic Vaccination of the Reservoir 0.01
Retroactive vaccination of the Reservoir 0.02
Retroactive vaccination of the Recipient 0.13

Containment 0.15
Selective removal of the reservoir 0.15

Table S3: Proportion of time each management action performed ”best” under each objective, across the entire range
of epidemic growth rates and host movement propensities explored here.
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5.3 Logistic regression model fits139

Table S4: Coefficient estimates from logistic regression models describing scenarios where biosecurity outperformed
all other management actions (coded as 1) vs. scenarios where biosecurity was outperformed by other actions (coded
as 0). We show coefficient estimates associated with models fit to each of four measured objective metrics: minimum
recipient patches, minimum recipient prevalence, minimum reservoir patches, and minimum reservoir prevalence. In
all cases, the model was: (Y ) = β0 +β1 ln(β) +β2 ln(c) +β3 (ln(β) : ln(c)), where Y represents the particular objective
metric employed.

Dependent variable:

I(Biosecurity was most effective management action) for each of the following:

(Min. recip. patches) (Min. recip. prev.) (Min. reserv. patches) (Min. reserv. prev.)

ln(β) 0.133∗ 0.079 -0.116 -0.027
(0.074) (0.074) (0.624) (0.193)

ln(c) −0.209∗∗∗ −0.148∗∗ 0.065 0.234
(0.068) (0.067) (0.483) (0.180)

ln(β):ln(c) −0.171∗∗∗ −0.124∗∗ 0.315 0.095
(0.064) (0.063) (0.528) (0.157)

Constant −1.748∗∗∗ −1.821∗∗∗ −3.442∗∗∗ −2.001∗∗∗

(0.079) (0.078) (0.564) (0.218)

Observations 1,365 1,418 126 220
Log Likelihood -546.496 -558.162 -17.450 -80.997
Akaike Inf. Crit. 1,100.993 1,124.325 42.899 169.995

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S5: Coefficient estimates from logistic regression models describing scenarios where retroactive vaccination of
the reservoir host outperformed all other management actions (coded as 1) vs. scenarios where retroactive vaccination
of the reservoir host was outperformed by other actions (coded as 0). We show coefficient estimates associated with
models fit to each of four measured objective metrics: minimum recipient patches, minimum recipient prevalence,
minimum reservoir patches, and minimum reservoir prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) +
β2 ln(c) + β3 (ln(β) : ln(c)), where Y represents the particular objective metric employed.

Dependent variable:

I(Retroactive vaccination was most effective management action) for each of the following:

I(Biosecurity was most effective management action) for each of the following:

(Min. recip. patches) (Min. recip. prev.) (Min. reserv. patches) (Min. reserv. prev.)

ln(β) 0.129∗ 0.076 -0.645 −3.036∗∗

(0.074) (0.074) (0.543) (1.537)

ln(c) −0.216∗∗∗ −0.154∗∗ 0.126 -0.828
(0.068) (0.067) (0.359) (1.616)

ln(β):ln(c) −0.168∗∗∗ −0.121∗ 0.073 -0.791
(0.064) (0.063) (0.462) (1.177)

Constant −1.742∗∗∗ −1.816∗∗∗ −2.886∗∗∗ −6.310∗∗∗

(0.079) (0.078) (0.426) (2.108)

Observations 1,365 1,418 126 220
Log Likelihood -548.188 -559.934 -23.271 -31.717
Akaike Inf. Crit. 1,104.376 1,127.869 54.543 71.434

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S6: Coefficient estimates from logistic regression models describing scenarios where prophylactic vaccination of
the reservoir host outperformed all other management actions (coded as 1) vs. scenarios where prophylactic vaccination
of the reservoir host was outperformed by other actions (coded as 0). We show coefficient estimates associated with
models fit to each of four measured objective metrics: minimum recipient patches, minimum recipient prevalence,
minimum reservoir patches, and minimum reservoir prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) +
β2 ln(c) + β3 (ln(β) : ln(c)), where Y represents the particular objective metric employed.

Dependent variable:

I(Prophylactic vaccination was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) −0.158∗∗ −0.133∗∗ 0.121 0.234∗

(0.066) (0.063) (0.208) (0.141)

ln(c) 0.071 0.048 0.026 0.098
(0.059) (0.056) (0.169) (0.131)

ln(β):ln(c) 0.066 0.044 -0.003 -0.008
(0.055) (0.053) (0.180) (0.116)

Constant −1.244∗∗∗ −1.215∗∗∗ -0.017 −1.086∗∗∗

(0.071) (0.066) (0.197) (0.159)

Observations 1,365 1,418 126 220
Log Likelihood -740.106 -771.601 -87.139 -120.961
Akaike Inf. Crit. 1,488.211 1,551.201 182.277 249.923

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S7: Coefficient estimates from logistic regression models describing scenarios where prophylactic vaccination
of the recipient host outperformed all other management actions (coded as 1) vs. scenarios where prophylactic
vaccination of the recipient host was outperformed by other actions (coded as 0). We show coefficient estimates
associated with models fit to each of four measured objective metrics: minimum recipient patches, minimum recipient
prevalence, minimum reservoir patches, and minimum reservoir prevalence. In all cases, the model was: (Y ) =
β0 + β1 ln(β) + β2 ln(c) + β3 (ln(β) : ln(c)), where Y represents the particular objective metric employed.

Dependent variable:

I(Prophylactic vaccination was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) −0.335∗∗∗ −0.215∗∗ -0.045 0.293∗

(0.103) (0.089) (0.498) (0.163)

ln(c) 0.239∗∗∗ 0.133∗ -0.235 0.007
(0.091) (0.079) (0.408) (0.152)

ln(β):ln(c) 0.211∗∗ 0.118 0.239 -0.047
(0.083) (0.074) (0.434) (0.134)

Constant −2.299∗∗∗ −2.161∗∗∗ −3.011∗∗∗ −1.598∗∗∗

(0.113) (0.095) (0.474) (0.184)

Observations 1,365 1,418 126 220
Log Likelihood -462.839 -493.635 -23.883 -96.354
Akaike Inf. Crit. 933.678 995.271 55.767 200.708

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S8: Coefficient estimates from logistic regression models describing scenarios where depopulation of the reservoir
host outperformed all other management actions (coded as 1) vs. scenarios where depopulation of the reservoir host
was outperformed by other actions (coded as 0). We show coefficient estimates associated with models fit to each of four
measured objective metrics: minimum recipient patches, minimum recipient prevalence, minimum reservoir patches,
and minimum reservoir prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) + β2 ln(c) + β3 (ln(β) : ln(c)),
where Y represents the particular objective metric employed.

Dependent variable:

I(Depopulation of the reservoir was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) 0.253∗∗ 0.273∗∗∗ 0.961∗∗∗ −0.497∗∗

(0.101) (0.096) (0.362) (0.249)

ln(c) 0.117 0.081 -0.222 -0.051
(0.092) (0.086) (0.345) (0.239)

ln(β):ln(c) 0.057 0.047 -0.228 0.013
(0.085) (0.080) (0.312) (0.205)

Constant −2.520∗∗∗ −2.470∗∗∗ −2.424∗∗∗ −2.485∗∗∗

(0.110) (0.103) (0.409) (0.287)

Observations 1,365 1,418 126 220
Log Likelihood -364.294 -388.340 -46.255 -66.922
Akaike Inf. Crit. 736.589 784.679 100.511 141.845

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S9: Coefficient estimates from logistic regression models describing scenarios where depopulation of the recipient
host outperformed all other management actions (coded as 1) vs. scenarios where depopulation of the recipient host
was outperformed by other actions (coded as 0). We show coefficient estimates associated with models fit to each of four
measured objective metrics: minimum recipient patches, minimum recipient prevalence, minimum reservoir patches,
and minimum reservoir prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) + β2 ln(c) + β3 (ln(β) : ln(c)),
where Y represents the particular objective metric employed.

Dependent variable:

I(Depopulation of the recipient was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) −0.318∗∗∗ −0.166∗ −0.932∗ 0.598∗∗∗

(0.101) (0.086) (0.495) (0.165)

ln(c) 0.217∗∗ 0.094 -0.045 0.061
(0.089) (0.076) (0.310) (0.154)

ln(β):ln(c) 0.203∗∗ 0.085 0.341 0.066
(0.082) (0.072) (0.416) (0.136)

Constant −2.261∗∗∗ −2.105∗∗∗ −2.487∗∗∗ −1.530∗∗∗

(0.110) (0.091) (0.370) (0.186)

Observations 1,365 1,418 126 220
Log Likelihood -469.663 -503.414 -29.918 -95.573
Akaike Inf. Crit. 947.325 1,014.828 67.835 199.146

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S10: Coefficient estimates from logistic regression models describing scenarios where selective removal of the
reservoir host outperformed all other management actions (coded as 1) vs. scenarios where selective removal of the
reservoir host was outperformed by other actions (coded as 0). We show coefficient estimates associated with models
fit to each of four measured objective metrics: minimum recipient patches, minimum recipient prevalence, minimum
reservoir patches, and minimum reservoir prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) + β2 ln(c) +
β3 (ln(β) : ln(c)), where Y represents the particular objective metric employed.

Dependent variable:

I(Selective removal was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) 0.231∗ 0.304∗∗∗ -23.835 −0.508∗∗

(0.125) (0.109) (3,550.751) (0.226)

ln(c) 0.234∗∗ 0.101 -10.241 0.070
(0.111) (0.099) (1,578.818) (0.216)

ln(β):ln(c) 0.085 0.025 -14.629 0.010
(0.102) (0.092) (2,206.206) (0.186)

Constant −2.940∗∗∗ −2.784∗∗∗ -19.767 −2.248∗∗∗

(0.135) (0.118) (2,541.010) (0.260)

Observations 1,365 1,418 126 220
Log Likelihood -283.922 -316.200 -11.636 -76.913
Akaike Inf. Crit. 575.845 640.401 31.273 161.827

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S11: Coefficient estimates from logistic regression models describing scenarios where no management outper-
formed all other management actions (coded as 1) vs. scenarios where no management was outperformed by other
actions (coded as 0). We show coefficient estimates associated with models fit to each of four measured objective met-
rics: minimum recipient patches, minimum recipient prevalence, minimum reservoir patches, and minimum reservoir
prevalence. In all cases, the model was: (Y ) = β0 + β1 ln(β) + β2 ln(c) + β3 (ln(β) : ln(c)), where Y represents the
particular objective metric employed.

Dependent variable:

I(No action was most effective management action) for each of the following:

(Min. recipient
patches)

(Min. recipient
prevalence)

(Min. reservoir
patches)

(Min. reservoir preva-
lence)

ln(β) −0.341∗∗∗ −0.274∗∗∗ -0.148 0.118
(0.104) (0.093) (0.518) (0.197)

ln(c) 0.249∗∗∗ 0.180∗∗ -0.034 −0.391∗∗

(0.092) (0.082) (0.401) (0.182)

ln(β):ln(c) 0.218∗∗∗ 0.164∗∗ 0.422 -0.151
(0.084) (0.076) (0.438) (0.159)

Constant −2.306∗∗∗ −2.214∗∗∗ −3.027∗∗∗ −1.993∗∗∗

(0.113) (0.100) (0.469) (0.222)

Observations 1,365 1,418 126 220
Log Likelihood -462.510 -487.198 -23.562 -80.613
Akaike Inf. Crit. 933.020 982.395 55.124 169.227

Note: Columns contain coefficient estimates (standard errors) for each coefficient in the
model corresponding to the column’s label.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.4 Fits under other objectives140

Figures S6 through S8 show results parallel to Figure 4 in the main text, but for the other three output metrics:141

recipient prevalence; reservoir patches infected, and reservoir prevalence.142

Biosecurity
(Group 1)

ne
w

 c
as

es
 p

er
 ti

m
es

te
p

5 2.5 1.1 0.5

0.1

0.3

0.7

1.9

4.1

Reservoir depopulation
(Group 2)

5 2.5 1.1 0.5

0.1

0.3

0.7

1.9

4.1

Prophylactic vaccination
of reservoir (Group 3)

ne
w

 c
as

es
 p

er
 ti

m
es

te
p

5 2.5 1.1 0.5

0.1

0.3

0.7

1.9

4.1

c
(increasing movement

propensity)

Retroactive vaccination
of recipient (Group 4)

5 2.5 1.1 0.5

0.1

0.3

0.7

1.9

4.1

c
(increasing movement

propensity)

−1.0 −0.5 0.0 0.5 1.0

Coefficient estimate

Retroactive vacc −
recipient

Prophylactic vacc −
reservoir

Test−Cull

Depopulation −
reservoir

Prophylactic vacc−
recipient

Depopulation −
recipient

Containment

Retroactive vacc −
reservoir

Biosecurity
Group 1

Group 2

Group 3

Group 4

β c β x c

% Best action

0

25

50

75

100

Figure S6: Relative management performance and model coefficient estimates when the response metric was the
number of recipient patches infected.
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Figure S7: Management competition and model coefficient estimates when the response metric was total reservoir
patches infected.
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Figure S8: Management competition and model coefficient estimates when the response metric was aggregate preva-
lence in the reservoir host.
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5.5 Classification tree approach143

In addition to the logistic regression models, we also used a classification tree to to assess the role epidemic growth rate144

and host movement propensities played in shaping optimal management within a context where we also considered145

variation in spatial divide between host species, prevalence that triggered management to start, and reservoir host146

population densities. We fit four regression trees [23] with response values corresponding to each of our objectives (i.e.,147

total number of recipient patches infected; maximum recipient prevalence, total number of reservoir patches infected to148

identify the most effective management action according to information on all six covariates. Briefly, regression trees149

operate by assuming a constant response model within a specified partition of the covariate space. The objective of150

tree-based methods is to define a path of binary splits that optimises that minimises variation in the response variable151

within partitions, while maximising variance among partitions. In our case, this equated to identifying covariate values152

at which the objective function’s measured value changed substantially. The size of the trees — which is to say, the153

number of partitions — governs the model’s complexity. We followed standard protocols of growing a very large tree,154

and then pruning it back to include only splits up to and including the split that minimised cross-validation error.155

Tree partitioning was implemented using the rpart package in R [24].156

Recursive partitioning methods identify a progressive set of covariate values that best split a set of varying outcomes157

into groups. Once a partition is identified, subsequent partitions operate exclusively within existing groups (so that158

the second partitioning of one group might rely on a different covariate than the second partitioning of a different159

group). Once the outcomes are completely partitioned, the resulting binary tree is pruned back via cross-validation to160

appropriately avoid overfitting.161

We used the Gini impurity criterion for the classifier, with data weights proportional to the observed frequencies162

of each treatment combination (this was very nearly balanced in the dataset, since we controlled the simulation’s163

parameter space). Any risk within one standard error of the achieved minimum is marked as being equivalent to the164

minimum (i.e. considered to be part of the flat plateau). Then the simplest model, among all those “tied” on the165

plateau, is chosen.166

Classifier performance was evaluated through cross-validation and trees were pruned to the complexity level asso-167

ciate with the minimum cross-validation error. We fit separate trees for each of four objective functions (minimizing168

spatial extent or prevalence in the recipient or reservoir host). Pruned trees, along with variable importance estimates169

in each case, are shown in Figure S7.170

Variable importance from the four regression trees consistently indicated that epidemic growth rate and host171

movement propensities were the most important factors in determining epidemic size and spatial extent, especially172

when objective functions focused on the recipient host (Figure S8). Spatial separation of reservoir and recipient host173

activity centers and management actions were also important determinants of epidemic size and extent.174
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Figure S9: Regression trees showing process and management parameters associated with varying values of each of
four objective functions. Leaf colors represent epidemic size (in terms of patches or prevalence), with redder leaves
being larger epidemics in the specified metric. Leaf percentages reflect the total proportion of simulations landing in
each leaf.

6 Limitations associated with this framework175

6.1 SIR assumptions and limitations176

First, commensurate with our SIR modeling structure, we assumed that any pathogen infection provided hosts with177

complete immunity to that pathogen in the future. However, we know this assumption is violated in several key178

wildlife-livestock spillover diseases (including avian influenza, leptospirosis, and bighorn sheep pneumonia, to name179

a few). Accounting for partial or limited cross-strain immunity would likely have slowed reservoir fade-out in the180

fastest-growing cases (but probably would not have lower prevalence), since epidemics would have had a larger pool181

of susceptible hosts available. Thus our model probably underestimates reservoir prevalence and subsequent spillover182

burden for diseases with partial immunity.183

Second, we neglected disease-induced mortalities throughout this exploration. This might be a defensible assump-184

tion for diseases that we manage foremostly due to their downstream risks to human health (i.e., brucellosis; North185
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American rabies), and possibly also for diseases that pose limited consequences on reservoir host health (i.e., rabies in186

bats; M. ovi in domestic sheep). Limited disease induced mortality is inconsistent with many diseases of management187

concern at the wildlife-livestock interface. Disease-induced mortality would likely lower spillover risk in many systems188

for two reasons. First, mortalities curtail the duration of the infectious period, and may limit the movement potential189

of infected animals. Second, ill animals may be less-likely to move than their infected counterparts.190

Densities would also be altered by disease-induced mortalities, and even beyond disease-related changes, many — if191

not most— wildlife and livestock systems in temperate latitudes exhibit seasonally pulsed densities. Varying densities192

would introduce additional variation into transmission rates for pathogens with density-dependent transmission routes.193

Decreases, and even simply oscillations in densities are thought to to drive pathogens toward local extinction however194

(Peel et al. 2014), so our choice to create densities as constant likely biases our model toward over-estimating spillover195

frequencies.196

We took process parameters (per-susceptible transmission rate, recovery rate, movement rate) to be constant.197

but these could also feasibly change over the course of a spillover event. In the most basic case, some hosts have198

fundamentally different transmission parameters than others due to switches in mode of transmission that co-occur199

with host shifts (for instance, avian influenza’s switch from primarily gastrointestinal to primarily respiratory when it200

switches from wild to domestic fowl). Human-mediated movement dynamics (as is especially common in livestock hosts)201

almost certainly change once a spillover event is detected and reported, with strong consequences on post-spillover202

epidemic growth rates.203

6.2 Timescale and epidemic duration204

We chose 60 timesteps as the duration for all simulations. This, and any other, timescale choice is somewhat arbitrary,205

since both epidemic dynamics and spatial movements accumulate continuously in time (though we update movements206

in batches; see Supplementary Materials: tau-leap). However, the 60-timestep scale aligned with our transmission,207

recovery, and movement rates to provide a wide range of epidemic dynamics. Additionally, it seemed reasonable that208

management agencies might be able to categorize pathogens as expanding on a weekly (i.e., 1 timestep), seasonal (i.e.,209

12 timestep), or annual (i.e., 52 timestep) scale, and to implement some management responses at a weekly scale, but210

probably not much faster.211

6.3 Direction and independence of movements212

Our simulation landscape had no structure beyond cell-to-cell distance, so distance was the only determinant of where213

individuals moved. Also, since we held all within-cell populations constant, there was no ”crowding” effect. These214

assumptions are clearly violated at some level for most real-world animal systems. We also force animals to move as215

independent units, overlooking larger-scale migrations or group-level moves. This likely means that the number of216

independent movers is biased high in our simulations, but the capacity of those movers to spark an epidemic could be217
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biased low (since if individuals actually move in groups of 5, for example, any one of the five movers could be infected218

and spark an epidemic). However, without information specific to the behavioral ecology and spatial context of a given219

host system, we felt that adding additional detail here likely caused more problems than it alleviated.220

6.4 Common movement kernels for reservoir and recipient hosts221

In this simulation, we assumed that both reservoir and recipient host species moved according to identical movement222

kernels. This assumption was made for the purposes of simplicity, and is unlikely to hold in many wildlife-livestock223

situations. There are, however, a few places where it could be appropriate, and we highlight those instances here.224

One context where common kernels could be reasonable is for host species that are closely related or allometrically225

matched (for instance, a system in which both the reservoir and the recipient host species are ungulates; a system226

where both hosts are canids, etc.), and both experience largely uninhibited movements (on the livestock side, this227

could include livestock that are ranged on grazing allotments, or animals like free-ranging domestic cats and dogs228

living at the urban-wildland interface).229
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