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Abstract 
Contamination of groundwater from nitrogen fertilizers in agricultural lands is an 

important environmental and water quality management issue. It is well recognized 
that in agriculturally intensive areas, fertilizers and pesticides may leach through the 
vadose zone and eventually reach groundwater. While numerical models are commonly 
used to simulate fate and transport of agricultural contaminants, few models have con-
sidered a controlled field work to investigate the influence of soil heterogeneity and 
groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. 

In this work, a numerical model was developed to simulate nitrate-N transport and 
transformation beneath a center pivot-irrigated corn field on Nebraska Management 
System Evaluation area over a three-year period. The model was based on a realistic 
three-dimensional sediment lithology, as well as carefully controlled irrigation and fer-
tilizer application plans. In parallel, a homogeneous soil domain, containing the major 
sediment type of the site (i.e. sandy loam), was developed to conduct the same water 
flow and nitrate-N leaching simulations. 
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Simulated nitrate-N concentrations were compared with the monitored nitrate-N 
concentrations in 10 multilevel sampling wells over a three-year period. Although soil 
heterogeneity was mainly observed from top soil to 3m below the surface, heteroge-
neity controlled the spatial distribution of nitrate-N concentration. Soil heterogene-
ity, however, has minimal impact on the total mass of nitrate-N in the domain. In the 
deeper saturated zone, short-term variations of nitrate-N concentration correlated 
with the groundwater level fluctuations. 

1. Introduction 

Nitrate-N leaching due to excessive nitrogen application, irrigation, and 
inappropriate soil management practices, is a primary cause of ground-
water pollution in agricultural regions (Gärdenäs et al., 2005; Zhu et al., 
2005; Mitsch and Day, 2006). In areas of intense farming, nitrate-N con-
centrations in groundwater has been reported to exceed the maximum 
contaminant level (MCL) of 10 mg L−1 for drinking water established 
by the U.S. Environmental Protection Agency (USEPA) in many areas of 
the U.S. Elevated nitrate-N concentration in drinking water is harmful 
to pregnant women and elderly people, and may cause methemoglobin-
emia in infants under 6 months (Spalding and Exner, 1993; “Water Re-
search Center,” 2014). 

Numerical modeling is an efficient tool for understanding the phys-
ical, chemical and biological processes affecting nitrate-N transport, as 
well as in predicting and managing nitrate-N pollution (van der Laan 
et al., 2014). Numerous studies have been published to model the fate 
and transport of nitrogen in soils, focusing either on nitrogen leaching 
in the root zone (Nakamura et al., 2004; Skaggs et al., 2004; Gärdenäs et 
al., 2005; Hanson et al., 2006; Tafteh and Sepaskhah, 2012; Arbat et al., 
2013; Deb et al., 2015; Iqbal et al., 2016) or on nitrate-N transport and 
transformation in the saturated zone (MacQuarrie et al., 2001; Lee et al., 
2006). Various models have been applied to simulate soil water and ni-
trogen dynamics in soils, such as soil-crop model (STICS) (Ledoux et al., 
2007; Poch-Massegú et al., 2014; Plaza-bonilla et al., 2015), Root Zone 
Water Quality Model (RZWQM) (Ma et al., 1998), Agricultural Produc-
tion Systems SIMulator (APSIM) (Keating et al., 2003), Cropping System 
Simulation Model (CropSyst) (Stöckle et al., 2003), Soil Water Balance 
Model (SWB-Sci) (van der Laan et al., 2014), as well as simple models 
solving water and nitrate-N production functions (Cabon et al., 1991). 
These modeling efforts have determined the significant impact of various 
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parameters, such as fertilizer application rate, precipitation pattern, ir-
rigation strategies, and soil types on nitrate- N leaching in soils.  

Although these studies generally agree that field non-uniformity 
widely exists, however, most of them simulated fairly simplified sce-
narios in the models, assuming either one single soil type (Skaggs et al., 
2004; Gärdenäs et al., 2005; Hanson et al., 2006; Deb et al., 2015) or lay-
ered soil types (Hassan et al., 2008; Hu et al., 2008; Ramos et al., 2012; 
Tafteh and Sepaskhah, 2012; Poch-Massegú et al., 2014; Wang et al., 
2014; Iqbal et al., 2016; Baram et al., 2017) in a vertical 2D domain. In 
reality, soil properties varied spatially across the field, which can hardly 
be captured by point soil samplings. Soil type and grain size distribution 
strongly influence soil water content distribution. Different soil types 
typically correspond to different soil organic matter and moisture con-
tent, both of which could affect biodegradation rates. Furthermore, hor-
izontal soil texture variation and surface topography could also affect 
water content distribution and nutrient leaching pathways. For exam-
ple, surface topography can result in surface water ponding which can 
influence soil water content distribution as well as soil dissolved oxygen 
concentration. Heterogeneity may easily influence contaminant biodeg-
radation and leaching rate in the subsurface. 

A few three-dimensional (3D) models have been developed to ana-
lyze water flow and solute transport in a 3D heterogeneous vadose zone-
groundwater system (Russo et al., 2001, 2013; Botros et al., 2012). Russo 
et al. (2013) clearly demonstrated that simple point 1-D modeling could 
not accurately simulate the spatial pattern of water content and nitrate 
concentration produced by rather complicated soil-water-plant-atmo-
sphere flow system. As with many other studies, the model simulated 
nitrate concentration was not compared against field data (Russo et al., 
2013) due to the cost and the need for long-term monitoring. Botros et 
al. (2012) simulated nitrate transport and storage within a 3-D (6.1m by 
6.1m by 15.86 m) heterogeneous vadose zone generated by geostatisti-
cal methods and compared the simulated amount of nitrate stored in the 
vadose zone with field measurements based on seven years of field fer-
tilization data. Their modeling results suggested that numerical based 
modeling techniques overestimated the measured nitrogen mass in the 
deeper part of the vadose zone. Clearly, the effect of fate and transport 
processes, particularly in the deeper part of the vadose zone, is not yet 
adequately quantified. Most of the available 3D models studied water 
flow and nitrate-N leaching in relatively small field sites (< 20m in width) 
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and only focused on the unsaturated part. Typically, a constant pressure 
head boundary condition was imposed at the bottom of the simulation 
domain. Potential interactions of groundwater flux on the nitrate-N dis-
tribution in the deeper part of the vadose zone were rarely investigated. 

In this work, we take advantage of a highly dense data set from a field 
site in Nebraska Management Systems Evaluation Area (MSEA). The site 
was relatively well characterized so that a 3D lithologic model can be de-
veloped, which provides realistic spatially varied soil properties on the 
site. For comparison purpose, a homogenous soil domain (sandy-loam 
soil) was also simulated to compare and analyze the influences of soil 
heterogeneity. The site has shallow water table providing ideal condition 
to study the impact of groundwater flux on the distribution of nitrate-
N in the deeper part of the vadose zone. Controlled field implementa-
tion of irrigation and fertilizer application was conducted in the 1990s 
and corresponding groundwater level and nitrate-N concentration data 
were collected. These data include the detailed description of lithology 
at 70 wells and 11 test holes, annual irrigation water and fertilizer ap-
plication rates, and changing groundwater levels as well as the nitrate-
N concentration at 16 screening depths in 41 multilevel samplers three 
times a year (Spalding et al., 2001). This rich data set allowed us to com-
pare simulated and measured nitrate-N concentrations in 10 wells on the 
site for a three-year period strictly following well-controlled irrigation 
and fertilization strategies. The goal of this work is to better evaluate 
the impacts of soil heterogeneity, as well as the interactions of ground-
water flux, on the transport of nitrate-N in both root zone and vadose 
zone down to the water table. 

2. Site description 

The study area was part of the Nebraska MSEA site, which is located 
within the Central Platte Natural Resources District (CPNRD) of the 
Platte River Valley (Fig. 1a) (Schepers et al., 1995; Spalding et al., 2001). 
The 2.27 km2 MSEA site is in the southeastern Buffalo County, between 
Shelton and Gibbon, Nebraska, U.S.A. The climate of the study area is con-
tinental and temperate, with an annual mean temperature and precipi-
tation of 10 °C and 623 mm, respectively (Mcguire and Kilpatrick, 1998). 
The MSEA site consists of a buffer area in the upgradient, a component 
research site, and a demonstration site (Spalding et al., 2001). During 
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1993–1995, the demonstration site (914m long and 823m wide) was 
divided into four fields to implement and evaluate various agriculture 
management practices: (1) a conventional furrow-irrigated corn field; 
(2) a surge irrigated corn field (with 60% less water and 31% less N fer-
tilizer application than the conventional field); (3) a center pivot-irri-
gated corn field (with 66% less water and 37% less N fertilizer applica-
tion than the conventional field); and (4) a center pivot-irrigated alfalfa 
(Mcguire and Kilpatrick, 1998; Spalding et al., 2001). During this period, 
the irrigation and N fertilizer application amounts were controlled and 
documented. Changing groundwater levels and nitrate-N concentrations 
were monitored at 41 multilevel samplers (Fig. 1b) in the demonstra-
tion site three times a year. Fig. 2 presents the monthly precipitation, ir-
rigation, and average groundwater elevation measured from February 
1993 to December 1995. 

Fig. 1. Case study location and soil lithology model, (a) The location of the MSEA site, 
(b) 3D lithology model of demonstration site (ML means multilevel samplers), (c) Soil 
lithology plan view of the simulation domain. The blue points with numbers represent 
the location of the multilevel samplers.
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With average nitrate-N concentrations between 30 and 32 mg L−1 

(Mcguire and Kilpatrick, 1998), the shallow and rapidly recharged High 
Plains alluvial aquifer is mainly used for irrigation. Nitrate-N concentra-
tions in the deeper confined Cenozoic Ogallala Formation aquifer, are <1 
mg L−1 (Exner and Spalding, 1990; Spalding et al., 2001), however, con-
tinued development of this resource will likely lead to impaired water 
quality as it has in the southernmost extent of this aquifer (McMahon 
et al., 2006; Chaudhuri and Ale, 2014). In this work, nitrate-N transport 
modeling was focused on transport beneath the center pivot-irrigated 
corn field (highlighted in Fig. 1b). Details on N applications in the cen-
ter pivot-irrigated corn field, including pre-plant, starter, and side-dress 
(fertilizer applied to the soil on or around the sides of the plant) or fer-
tigation (injected urea-ammonium-nitrate solution into the irrigation 
water) during 1993–1995 are provided in Table 1. 

3. Methods 

3.1. Development of a 3-dimentional modeling domain 

A three-dimensional (3-D) model of the lithology beneath the demon-
stration site was created using Rockworks15 (“RockWare, Inc.”, 2016), 
a software widely used for subsurface data visualization. Rockworks in-
terpolated the historically available well logging information (University 
of Nebraska–Lincoln, 2000) at different locations, including coordinates, 

Fig. 2. Monthly plots of precipitation, irrigation, and average groundwater elevation.  
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surface elevations, total depths as well as lithology, and then generated 
a surface topography map and a continuous lithology model (Fig. 1b). 
Rockworks uses advanced geostatistical methods to perform three-di-
mensional interpolation of the borehole data. The horizontal lithoblend-
ing method (with both randomize blending and interpolate outliners 
options) was applied for this case to create the lithology solid model. 
The numerical modeling domain covers the center pivot-irrigated corn 
field, which is 458m long and 410m wide (Fig. 1c). In order to further 
confirm the actual soil properties, soil samples were collected on the 
site from the location of the wells. Soil particle size distribution analysis 
was conducted, providing the percentage of silt, sand, and clay. Soil cat-
egories from historical well log information were more closely matched 

Table 1. Modeling parameters.

Soil Properties

                                                                                                                                van Genuchten-Mualem Parameters

Soil type*    	 Organic matter 	 Bulk density1   	 θr    	 θs 	 α [m−1] 	 n 	 Ks [md−1] 	 l 
(from soil samples)  	 (%) 	 (kg m−3)

Loam 1 	 1.8 	 1300 	 0.049 	 0.402 	 0.7 	 1.58 	 0.25 	 0.5
Loam 2 	 1.4 	 1300 	 0.051 	 0.396 	 0.96 	 1.51 	 0.16 	 0.5
Sandy loam 	 0.3 	 1650 	 0.034 	 0.390 	 3.59 	 1.43 	 0.56 	 0.5
Loam 3 	 1.2 	 1300 	 0.058 	 0.398 	 1.29 	 1.46 	 0.12 	 0.5
Longitudinal dispersivity, DL [m] 	 1.16 	 Transverse dispersivity, DT [m] 			   0.2

Modeling parameters

Root dist. parameters [m] 		  Solute transport (nitrate-N)

Max. root depth 	 1 	 Urea to ammonium 1st order rate constant, μ [d−1] 	 0.38
Max. root intensity depth 	 0.3 	 Ammonium to nitrate 1st order rate constant, μ [d−1] 	 0.2
		  Ammonium adsorption coefficient, Kd [m3 kg−1] 	 3.5×10−3

Field data

Nitrogen application2
 [kg ha−1]

                       Residual        Irrigation           Starter+Side-dress/Fertigation               Pre-plant                   Irrigation [mm]

1993 	 21 	 24 	 90 	 68 	 79
1994 	 68 	 31 	 62 	 98 	 107
1995	  83 	 95	 188	  – 	 307

* The analysis of the soil samples collected from the center pivot-irrigated corn field demonstrated different soil types 
than the labeled soil categories on bore logs.
1. http://www.agriinfo.in/?page=topic&superid=4&topicid=271 
2. Spalding et al., 2001.

http://www.agriinfo.in/?page=topic&superid=4&topicid=271
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with recent field measurements and previously-described soil categories 
were corrected based on the measurements, and hydrological parame-
ters were estimated using measured soil properties (Table 1). According 
to the soil particle size distribution analysis, the deeper part of the sim-
ulation domain mainly consists of homogenous sandy loam, while closer 
to the ground surface it contains four different types of loam (Fig. 1b). 

A lithology model of the center pivot-irrigated corn field was then 
imported into Hydrus (2D/3D) (Šimůnek et al., 2016). Based on the li-
thology index of each node in the lithology model (in Rockworks), an 
index was assigned to the closest node in the Hydrus model. Corre-
sponding soil type labels were then applied to all nodes based on the 
assigned index. Covering the unsaturated zone and about half of the shal-
low groundwater thickness, the depth of the modeling domain varied 
between 8.99 and 9.48m due to the uneven surface topography. In the 
Hydrus 3D model, the horizontal mesh element size was 10 m, and 20 
vertical mesh layers were defined with gradually increased layer den-
sity from the surface to the bottom boundary. 

3.2. Governing equations for water flow 

Richards equation was solved to simulate isotropic water flow: 

∂θ  =   ∂ [K(h) ∂h] +  ∂ [K(h) ∂h] +  ∂ [ K(h) ∂h] + ∂K(h)  – S            (1)  
        ∂t      ∂x            ∂x      ∂y            ∂y     ∂z            ∂z         ∂z

where, θ is the volumetric water content [L3 L−3], h is the pressure head 
[L], t is time [T], x, y, and z are the spatial coordinates [L], S is a sink term 
[T−1] accounting for root water uptake, K(h) is the unsaturated hydrau-
lic conductivity [L T−1] which is the product of relative hydraulic con-
ductivity, Kr, and the saturated hydraulic conductivity Ks [L T−1]. Van Ge-
nuchten-Mualem (Mualem, 1976; van Genuchten, 1980) relationships 
were used to describe the relationship between unsaturated hydraulic 
conductivity and water saturation and pressure head: 

K (h) = Ks S
l
e [1 –(1 – Se

1/m)m]2                                         (2)

Se =
   θ (h) –  θr = [1 +  |αh|n ]–m

                                                        (3) 
                                                    θs – θr
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where, Se is effective water saturation [−], θr and θs are the residual and 
saturated water content [−], respectively, α [L−1], m, and n [−] are soil 
type dependent empirical parameters where m = 1 – 1/n and l is tortu-
osity coefficient [−] which is assumed to be 0.5 (Mualem, 1976). The val-
ues of these parameters (i.e. θs, θr, Ks, and empirical parameters) were 
estimated based on Rosetta (Schaap et al., 2001), a pedotransfer func-
tion model, and the measurements of the soil and sediment samples 
collected from MSEA site (Table 1). When the n parameter for soil sam-
ples is smaller than 2 and a considerable portion of the model domain 
is saturated, hydraulic conductivity values based on the van Genuchten-
Mualem model can be very sensitive to the shape of the soil water reten-
tion curve near saturation. For the purpose of confirmation, the model 
was also simulated using a modified van Genuchten model with an en-
try pressure specified (Ippisch et al., 2006), which provided< 1.5% dif-
ferences of the water pressure and nitrate-N concentration values across 
the simulation domain. 

The sink term, S, in eq. (1) represents the plant root water uptake 
which was defined based on a water stress response function (Feddes 
et al., 1978): 

S(h) = α (h)Sp  ,
       S =     1         St Tp

                                              (4) 
                                                             Lx Ly Lz

where, α(h) is a dimensionless function of the soil water pressure head 
(0 ≤ α ≤ 1) [−], and Sp is the potential water uptake rate [T−1], Tp is the 
potential transpiration rate [L T−1], Lz is the depth of the root zone [L] 
which is considered to be 1m (“Soil and Health Library,” 2016), Lx and 
Ly are the length and width of the root zone [L] which are assumed to 
be 0.3m for each crop, and St is the soil surface associated with transpi-
ration [L2] (Šimůnek et al., 2016). Water uptake is assumed to be zero 
when water content is close to saturation or pressure head is below the 
wilting point (Feddes et al., 1978). 

3.3. Governing equations for solute transport 

In the simulation, a mixture of urea-ammonium-nitrate was applied onto 
the center pivot-irrigated corn field as a fertilizer. The transport of the 
chemical species in a variably saturated porous media with a sequential 
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first-order decay chain can be simulated as: (Šimůnek et al., 2016) 

         ∂θc + ρ ∂Sk  =   ∂ (θDij,k 
 ∂ck ) – ∂qi ck  – μw,k θck – μs,k ρsk          ∂t          ∂t       ∂xi            ∂xj          ∂xi

                    + μw,k–1 θck–1 + μs,k–1 ρsk–1 – Scr,k  ,   k ε (2, ns)                  (5) 

where, c and s are liquid phase [M L−3] and solid phase [MM−1] concen-
trations, respectively, ρ is the soil bulk density [M L−3], x is spatial coor-
dinates [L] (i=x, y, z), Dij is the effective dispersion coefficient tensor [L2 

T−1] for the liquid phase estimated based on a scale-dependent empiri-
cal method proposed by (Neuman, 1990) (Table 1), q is the volumetric 
flux density [L T−1], μw and μs are first-order decay rate constants in liq-
uid and solid phases [T−1], respectively, which are the  connections be-
tween individual chain species, S is the sink term [L3 L−3 T−1] in the water 
flow equation (eq. 1), cr is the concentration of the N specie in the root 
zone [M L−3], subscript k is the kth chain number, and ns is the number 
of species in the reaction chain. 

Sequential first-order decay reactions (Tillotson, 1980), were consid-
ered for the transformation of nitrogen in this study. Correspondingly, 
c1 is urea, c2 is ammonium, and c3 is nitrate-N. Urea ((NH2)2CO) was as-
sumed to be rapidly hydrolyzed to ammonium (NH4

+) in water by hetero-
trophic bacteria and then nitrified to nitrite (NO2

−) and nitrate (NO3
−) by 

autotrophic bacteria. Because the transformation from nitrite to nitrate 
is much faster than the nitrification of ammonium to nitrite (Hanson et 
al., 2006), nitrite species was neglected in the simulation. Denitrification 
was not considered at this stage of modeling because previous isotope 
analysis of nitrate-N indicated that denitrification was not an important 
process affecting ground water nitrate-N at this location (Martin et al., 
1995; Spalding et al., 2001). Nitrate-N and urea concentrations were de-
fined in liquid phase only, while the sorption of ammonium onto soil was 
also considered. The first order reaction coefficient (μw) for urea to am-
monium and for ammonium to nitrate were defined as 0.38 (1/day) and 
0.2 (1/day), respectively, based on reported values in literature (Misra 
et al., 1974; Selim and Iskandar, 1981; Lotse et al., 1992; Ling and El-
Kadi, 1998; Hanson et al., 2006; Jansson and Karlberg, 2010). A linear 
sorption isotherm model was used to simulate the adsorption of ammo-
nium to solid phase (sk). Kd, is the distribution coefficient [L3M−1] which 
was determined to be 3.5×10−3m3 kg−1 according to the literature (Lotse 
et al., 1992; Ling and El-Kadi, 1998; Hanson et al., 2006). 
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Root uptake of nutrients, in forms of urea, ammonium, and nitrate- 
N, was simulated by multiplying root water uptake S to the dissolved 
nutrient concentration (cr,k), when cr,k is lower than the maximum root 
solute concentration cmax, or by multiplying S to cmax if c is larger than 
cmax,. cmax was estimated as 0.033 kg m−3 nitrogen based on the maximum 
corn grain yield (~14 Mg ha−1) in the demonstration site (Spalding et al., 
2001) and the reported nitrogen requirements of corn (“Nitrogen Effi-
ciency”, 2016). 

3.4. Initial conditions 

The initial pressure head at the bottom of the domain was obtained by 
interpolating the groundwater level on April 1st, 1993 in multilevel sam-
plers in the center pivot-irrigated corn field. The soil profile was consid-
ered to be in hydrostatic equilibrium with the local groundwater level 
and initial pressure head was obtained by linear interpolation of the 
top (surface) and bottom (bottom layer of the domain) pressure head 
values. The initial urea and ammonium concentration in the subsurface 
were considered as zero (no N carryover). The groundwater nitrate-N 
concentrations measured on April 1st, 1993 were used as the initial ni-
trate-N concentration in the saturated zone. In the previous field stud-
ies, the residual nitrate-N concentration was measured at each multi-
level sampler to a depth of 1.2m in each spring before planting (Klocke 
et al., 1999). The initial nitrate-N concentration of the domain was ob-
tained by interpolating the measured nitrate-N concentration at differ-
ent screening depths of each multilevel sampler. 

3.5. Boundary conditions 

An atmospheric boundary condition was implemented at the surface, 
which required daily precipitation, irrigation and potential evaporation 
and transpiration rates. Daily precipitation and potential evapotranspi-
ration data (ET for reference crop, alfalfa from 1993 to 1996) were col-
lected from Shelton weather station (“High Plains Regional Climate Cen-
ter website”, 2016) located about 2.8 km south from MSEA site, which 
is the closest weather station to the study site. The total yearly irriga-
tion amount (Table 1) was applied daily, on days with zero precipitation 
during the irrigation season (late June to end of September) (Spalding 
et al., 2001). The reference ET (adopted from Shelton weather station) 
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was calculated using the Penman-Monteith method. To separate the po-
tential evaporation and potential transpiration, Bear’s law was applied 
(Šimůnek et al., 2016). Surface cover fraction (SCF) was first calculated 
from leaf area index (LAI). LAI was obtained based on a report from the 
US-Ne2 site, which is another University of Nebraska research field with 
irrigated maize and soybean rotation (“AmeriFlux Site and Data Explo-
ration System”, 2016). A variable pressure head boundary condition was 
implemented at the bottom boundary to consider the groundwater ele-
vation fluctuations during the simulation. The daily rate of groundwater 
elevation change was obtained by linearly interpolating the groundwater 
level measurements at 14 different times after April 1st, 1993. For both 
water flow and solute transport, zero flux boundary condition was ap-
plied at the vertical boundaries, which is the HYDRUS 3D default bound-
ary condition and assumes that water and solute influx through side 
boundaries was compensated by outflux (symmetry domain) (Skaggs 
et al., 2004; Gärdenäs et al., 2005; Iqbal et al., 2016). 

For solute transport, the third type (Cauchy type) concentration flux 
boundary condition was specified along the surface boundary to pre-
scribe nitrogen application. Nitrogen was applied at various times dur-
ing 1993–1995 known as pre-plant-N, starter-N, side-dress/fertiga-
tion-N and irrigation-N (Table 1) (Spalding et al., 2001). Starter-N and 
side-dress/fertigation-N were assumed to be added during the irriga-
tion season (late June to end of September (Spalding et al., 2001)) and 
were mixed with nitrate-N in irrigation water (30 mg L−1). Pre-plant-N 
was assumed to be applied in late March (Spalding et al., 2001). Con-
centration flux boundary condition (third type) was also applied at the 
bottom of the domain to prescribe a concentration flux defined by the 
groundwater nitrate-N concentration (30 mg L−1) and groundwater flux 
along the bottom boundary. 

4. Results and discussion 

4.1. Comparison between modeling results and field data 

Fig. 3 shows the comparison of simulated and measured vertical pro-
files of nitrate-N concentration on October 1st and April 1st of 1993 to 
1995 in ML1, ML5, ML7, and ML19. ML1, ML5, and ML7 are in the west-
ern part of the field and ML19 is in the eastern part of the field (Fig. 1). 
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The nitrate-N concentration was mostly high near the ground surface 
due to the application of fertilizer. Applied nitrate-N rapidly infiltrated 
into the subsurface due to both subsequent precipitation and irrigation, 
which was then sharply reduced from about 20–40 mg L−1 on the sur-
face to <10 mg L−1 at a depth of about 2–4m from the surface. Chang-
ing groundwater nitrate-N concentration measurements were based on 
multilevel samplers, however no comparable data was available to com-
pare with the simulated nitrate-N concentration in the unsaturated zone. 
In the saturated zone (about 3m below the ground), the measured ni-
trate-N concentrations in three multilevel sampler close to the western 
boundary of the field (i.e. ML1, ML5, and ML7) were closely matched 
with the simulated results at different screening depths across the whole 
investigation period, with the coefficient of determination (R2) ranged 

Fig. 3. Vertical profiles of nitrate-N concentration measured by four multilevel sam-
plers from October 1993 to October 1995. Values of coefficient of determination are 
shown on each concentration profile.  
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between 0.69 and 0.98. The good agreement indicated that the mathe-
matical model has accounted for the important processes controlling ni-
trate-N transport in the area including soil heterogeneity. Despite good 
agreement for ML1, 5, and 7, simulated nitrate-N concentrations in a 
multilevel sampler close to the eastern boundary of the domain (ML19) 
were about 1.2 to 3 times higher than the measured values (R2 between 
0.28 and 0.85). From October 1993 to October 1995, the nitrate-N con-
centration was measured eight times per year in 10 multilevel samplers 
(Fig. 1c) for evaluation of sampling bias each at five to seven screening 
depths (a total of 509 field measurements). The overall coefficient of de-
termination for all 509 field measurements is 0.6, with distinctly higher 
R2 values in the western part of the domain (ML1-7, average R2 of 0.87), 
and much lower R2 values in the eastern part of the domain (ML17-19, 
average R2 of 0.57). Possible reasons for this discrepancy could be due 
to preferential flow paths or local denitrification process in the unsat-
urated zone. For instance, there might be preferential or non-uniform 
flow paths in this region (i.e. 2 to 8m below the ground surface), which 
facilitated nitrate-N movement toward the groundwater and reduced the 
concentration. Based on uniform nitrogen isotope composition, denitri-
fication process was assumed to be limited in the groundwater because 
dissolved organic carbon (DOC) concentrations were too low (Spald-
ing et al., 2001). Based on the N2/Ar ratios measurements on this site, 
Martin et al. (1995) also demonstrated that N2 was not in excess of air-
saturated water values in most of the sampled cluster wells, indicating 
that denitrification was very limited in the shallow groundwater. How-
ever, this does not rule out the possibility of denitrification in local ar-
eas, particularly in stagnant zones of water flow. In a similar nitrate-N 
transport study by Botros et al. (2012), numerical models were found to 
overestimate the field measurement nitrate-N mass, which was partially 
attributed to spatially variable denitrification. More field data and mea-
surements are needed to incorporate a spatially variable denitrification 
process, despite the incorporated soil heterogeneity in the model. In this 
simulation, all parameters were either direct field measurements or es-
timated from measured soil properties. No parameter fitting was con-
ducted. Although the discrepancies exist for some parts of the domain, 
the overall agreement between the modeling and field measured data 
in most cases, on a realistic field site for a 3-year simulation period, in-
dicates that the model captured most important processes that control 
the transport of nitrate-N in the area. 
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4.2. Impact of groundwater fluctuation on nitrate-N in the domain 

Different from commonly reported profiles in literature where nitrate- 
N concentration continuously decreased with increasing depth, after 
reaching a minimum, the nitrate-N concentration gradually increased 
in the deeper part of the aquifer and reached a value of about 30 mg L−1 

at the bottom of the modeling domain. We hypothesize that the higher 
concentration of nitrate-N in the deeper part of the domain was due to 
the influence of groundwater flux. Groundwater in this area was con-
taminated with an average nitrate-N concentration of about 32 mg L−1, 
attributed to over 30 years of excess irrigation water and fertilizer ap-
plication in furrow irrigated corn up-gradient of the site (Spalding et al., 
2001). Nitrate-N in the groundwater was brought into the domain when 
groundwater elevation was increased. Previous  studies in the same field 
also hypothesized that induced flux led to seasonal changes of nitrate-
N concentration (Lasserre et al., 1999; Spalding et al., 2001; Stigter et 
al., 2011), which, however, was based on the average value of nitrate-N 
concentration at several locations beneath the whole center-pivot irri-
gated corn field. In this work, a variable pressure head boundary condi-
tion was implemented at the bottom boundary to consider the ground-
water elevation fluctuations during the simulation period. To testify the 
role of groundwater elevation fluctuation on the distribution of nitrate-
N in the deeper part of the modeling zone, we conducted another simu-
lation by applying a constant pressure head boundary condition at the 
bottom of the domain (Fig. 4). As illustrated in Fig. 4, a constant pres-
sure boundary condition predicted a very low nitrate-N concentration 

Fig. 4. Comparison between the simulated NO3-N concentrations in ML1 with variable 
pressure head (groundwater elevation) boundary condition and a constant pressure 
head boundary condition at the bottom of the domain.  
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down to about 6m from the ground and then a sharp increase close to 
the bottom boundary. Furthermore, the nitrate-N concentration pro-
file predicted by a constant pressure head boundary condition does not 
change over time. A variable pressure head boundary condition was 
able to produce the gradual increase of the nitrate-N concentration with 
depth as well as the vertical distribution of concentration profile over 
time, which supports the hypothesis that groundwater elevation fluctu-
ations correspond to a flux of nitrate-N. 

Fig. 5 presents the simulated pressure head and nitrate-N concen-
tration distribution at the bottom layer of the domain (between 8.99 
and 9.48m below the ground surface based on surface topography) at 
six different time during 1993–1995. This layer was right at the bottom 
boundary of the modeling domain, and therefore, pressure head values 
were corresponding to the thickness of the groundwater in the domain. 
From October 1993 to October 1995, the groundwater thickness showed 
a trend of declining, with corresponding pressure head values ranged 
from 5.2 to 6.2m in Oct.1993, 4.5 to 5.5m in Oct. 1994, and 3.9 to 5m in 
Oct.1995. The pressure head was higher in the western part of the field 
than the eastern part, which resulted in a <1 m/year horizontal ground-
water flow from northwest toward southeast. 

At this layer, changing nitrate-N concentrations were also sensitive 
to changing groundwater levels. Nitrate-N concentrations were gener-
ally higher in the months with higher groundwater levels (Fig. 5). For ex-
ample, nitrate-N concentrations were higher in April of 1994 and 1995 
than October of 1994 and 1995, which was consistent with the observed 
higher pressure head in April of both years (Fig. 5). From April 1993 to 
October 1995, an overall decreasing trend in the nitrate-N concentration 
in the groundwater was observed, which can be attributed to the over-
all reduction of groundwater elevation in this period. In other words, a 
greater amount of nitrate-N mass left the domain and reduced the ni-
trate-N concentrations in the saturated part. Fig. 6 presents the bot-
tom layer water and solute flux over time. As clearly shown here, solute 

Fig. 5. Distribution of the (a) pressure head (m) and (b) NO3-N concentrations (mg 
L−1) at the bottom layer of the domain (between 8.99 and 9.48m below the ground sur-
face based on surface topography) on April 1st and October 1st of each year (1993 to 
1995). April 1st of 1993 was used as initial condition for pressure head and nitrate-
N concentration.  
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flux variations closely followed the trend of groundwater flux, so that 
nitrate-N flux at the bottom was correspondent to the groundwater el-
evation fluctuation during the simulation period. This observation sup-
ports our hypothesis that the concentration of nitrate-N in the deeper 
part of the domain was correlated to the groundwater flux. This finding 
demonstrates the importance of coupling of the unsaturated-zone and 
saturated-zone in investigating nitrate-N transport in the subsurface. 

4.3. Impacts of soil heterogeneity on the nitrate-N in the domain 

As shown in Fig. 7, four different types of loam were distributed in the 
top 3m of the simulation domain. Below 3 m, the domain was homoge-
neously composed of sandy loam. To evaluate the impacts of soil het-
erogeneity in the first 3m of the domain, a same simulation was con-
ducted in a homogeneous domain composed of only sandy loam across 
the whole domain. Fig. 8 highlights a comparison of pressure head and 
nitrate-N concentration between homogeneous and heterogeneous do-
main on Oct. 1st of 1995 at the depth of 2m from the ground surface. 

In the homogenous domain, water pressure head was higher in the 
eastern part of the domain than the western part despite the identical  
soil properties everywhere, which was due to uneven surface topography 

Fig. 6. Water flux (m/m2 surface area/month) and nitrate-N mass flux (kg/m2 surface 
area/month) at bottom of the domain. Positive flux means water/solute is removed 
from the system and negative flux means water/solute is added to the system.  
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where surface elevation in the eastern part was about 0.5m lower than 
in the western part. The minimum (in the west) and maximum (in the 
east) water content were about 0.18 and 0.21 in the homogenous do-
main and 0.11 and 0.31 in the heterogeneous domain, respectively. More-
over, the pressure head distribution in the homogenous soil domain was 
uniform. For the heterogeneous domain (Fig. 8), the spatial distribution 
of pressure head was correlated to the sediment distribution (Fig. 7). 
Particularly, loam 1 delineated a zone with varying soil moisture content 
in the heterogeneous domain with relatively lower pressure head (ca. 
−4.8 to −3.2 m) in the western part of the domain than the adjacent area 
(ca. −2.6 to −2.1 m). According to the soil particle size analysis (Table 
1), soil samples from loam 1, loam 2, and loam 3 have different hydrau-
lic parameters although they all belong to general loam category. Loam 
1 was majorly located between 1.17m and 3m from the surface, and be-
cause the water holding capacity of loam 1 was higher than the sandy 
loam in the surrounding area, water infiltration rate above loam 1 was 
reduced, which led to a decreased water pressure head at the 2m layer. 

Similar to the pressure head distributions, the nitrate-N distribution 
at the 2m soil layer was also impacted by the soil heterogeneity and 
surface topography (Fig. 8b). Due to the lower surface elevation in the 
eastern part of the domain, nitrate-N reached this level more rapidly, 

Fig. 7. Sediment type representing soil heterogeneity at different soil depth intervals 
(m).  
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therefore higher nitrate-N concentration was observed in the eastern 
part. Point-by-point comparisons showed that nitrate-N concentrations 
in the homogenous domain were either equal to or lower than that in 
the heterogeneous domain (Fig. 8b), with the same surface loading and 
simulation duration. Higher nitrate-N concentration in the heteroge-
neous domain could be partially attributed to the drier soil condition at 
the 2m soil layer (Fig. 8a), because the higher soil moisture content in 
the homogenous soil layer could result in the dilution of nitrate-N and 
reduced concentration. In addition, less nitrate-N was retained in this 
layer in the homogenous domain due to the promoted infiltration within 
the sandy loam soil type. In the heterogeneous domain, nitrate-N infil-
tration rates from high to low followed the order of Sandy loam > Loam 
1 > Loam 2 > Loam 3, which was the same order for the soil saturated 

Fig. 8. Distribution of the (a) pressure head (m) and (b) NO3-N concentrations (mg 
L−1) at 2m below the ground surface on April 1st, 1993 and October 1st, 1995 for the 
homogenous and heterogeneous soil domains. Values of pressure head and nitrate-N 
concentration on April 1st of 1993 were used as initial conditions for both homoge-
nous and heterogeneous soil domains.        
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hydraulic conductivity and inversely related to residual water content. 
Higher hydraulic conductivity and lower soil water holding capacity will 
lead to higher water flux in the soil and correspondingly increased the 
nitrate-N infiltration. Assuming a homogenous soil domain composed of 
sandy loam everywhere, the leaching rate of nitrate-N was higher across 
the domain compared to the heterogeneous domain and lower concen-
tration of nitrate-N was observed at 2m from top. This observation is 
consistent with a previous work (Russo et al., 2013), where the model-
ing results demonstrate that a heterogeneous model with realistic dis-
tribution of soil properties is necessary to provide the spatial variabil-
ity of nitrate-N in the field. Overall, the total amount of nitrate-N mass 
was not significantly different in the heterogeneous and homogeneous 
domains during the simulation period. In another study (Botros et al., 
2012), nitrate-N transport in a 3-D domain was simulated by consider-
ing various level of heterogeneities, all models resulted in very similar 
nitrate mass in the deep vadose zone. The minimal impact of heteroge-
neity on the total mass of nitrate-N in the domain was attributed to the 
repeated irrigation and fertilizer application, which could also be the 
case for this study site. 

5. Conclusion 

We investigated nitrate-N transport in a field site by integrating 3-D nu-
merical modeling with comprehensive field measurements. The work 
was based on a data dense site in Nebraska, where the shallow ground-
water beneath was contaminated with nitrate-N concentration (about 
32 mg L−1) primarily as a result of nitrate-N leaching from the root zone 
of Nebraska’s two million hectares of irrigated corn fields (Klocke et al., 
1999). Here, a realistic 3-D lithology model was first developed based 
on comprehensive well log information in the Nebraska MESA site. A 3-D 
hydrological model was then developed to simulate water flow and ni-
trate-N transport in the site. In parallel, a homogeneous soil domain, con-
taining the major sediment type of the site (i.e. sandy loam), was devel-
oped to compare the water flow and nitrate-N leaching in both domains. 

In this work, the 3-D soil and vadose zone lithology profile repre-
sented an unsaturated subsurface media combined with a saturated 
zone at the bottom. Short-term variations of nitrate-N concentration 
at the bottom of the domain (in the saturated part) are correlated to 
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groundwater elevation fluctuations. When groundwater level rose, 
greater mass of nitrate-N was added to the system and consequently 
increased the nitrate-N concentration. This work highlights the impor-
tance of considering groundwater level changes in simulating nitrate- 
N concentration in the deeper vadose zone. 

The soil heterogeneity on the site was mainly observed at the top soil 
down to 3m from the surface, and deeper parts were relatively homo-
geneous aquifer matrix. Heterogeneous soil properties has comprehen-
sively impacted the spatial distribution of nitrate-N concentration. 3-D 
modeling was helpful to visualize spatial variations of nitrate- N con-
centration at different screening depths and relate this variability to 
sediments distribution. Sediment types with higher saturated hydrau-
lic conductivity and lower residual water content had lower water hold-
ing capacity which increased water infiltration rate as well as nitrate-N 
leaching rates. Soil heterogeneity, however, has minimal impact on the 
total mass of nitrate-N in the domain.    
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