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A B S T R A C T

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by
incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to
determine the success of incorporating this information. The objectives of this research were to evaluate statistical
and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N re-
commendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator
(Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), deci-
sion tree, and random forest] were evaluated using a dataset containing measured soil and weather variables from a
regional database. The performance was evaluated based on how well these algorithms predicted corn economically
optimal N rates (EONR) from 49 sites in the U.S. Midwest. Multiple algorithm modeling scenarios were examined
with and without adjustment for multicollinearity and inclusion of two-way interaction terms to identify the soil and
weather variables that could improve three dissimilar N recommendation tools. Results showed the out-of-sample
root-mean-square error (RMSE) for the decision tree and some random forest modeling scenarios were better than
the stepwise or ridge regression, but not significantly different than any other algorithm. The best ML algorithm for
adjusting N recommendation tools was the random forest approach (r2 increased between 0.72 and 0.84 and the
RMSE decreased between 41 and 94 kgNha−1). However, the ML algorithm that best adjusted tools while using a
minimal amount of variables was the decision tree. This method was simple, needing only one or two variables
(regardless of modeling scenario) and provided moderate improvement as r2 values increased between 0.15 and 0.51
and RMSE decreased between 16 and 66 kgNha−1. Using ML algorithms to adjust N recommendation tools with soil
and weather information shows promising results for better N management in the U.S. Midwest.

1. Introduction

To maximize profits and minimize N related environmental issues, N
fertilizer recommendation decision tools are needed that closely match the

EONR for a given field (Bandura, 2017; Hong et al., 2007; Kyveryga et al.,
2009). The EONR for a given field and year is unknown at the time of N
application. Determining the EONR typically requires an elaborate process,
involving the establishment of on-farm research trials with varying N rates,
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measuring yield responses and finally an end of season calculation using
current grain and fertilizer prices. Furthermore, EONR varies considerably
from year-to-year and within a field, making it even more challenging to
estimate (Kyveryga et al., 2009; Scharf et al., 2005; Shanahan et al., 2008).
Both the temporal and spatial variability of EONR are driven by en-
vironmental, genetic, and management processes. More specifically, these
factors include: N form, placement, timing, rate, rainfall distribution, soil
texture, soil water-holding capacity, plant genetics, manure history, and
the previous crop (Dinnes et al., 2002; Kay et al., 2006; Schmidt et al.,
2009; Zhu et al., 2009; Tremblay et al., 2012; Morris et al., 2018).

Multiple corn N fertilizer rate decision tools have been developed over
the last five decades in an attempt to incorporate many of these factors to
help farmers make better N management decisions to optimize yield and/
or profit. Historically, this began with yield goal-based recommendation
approach (Stanford, 1973) which targeted plant N content at maturity
based on predicted yield times an N factor [2.1×10−2 kgN (kg
grain)−1] minus an estimate of the N contribution from the soil all di-
vided by an estimate of the efficiency of fertilizer N use. Later iterations of
this approach adjusted the soil N estimate by tillage, previous crop, and
other factors and/or subtracted measured levels of nitrate-N from the
targeted N rate (Morris et al., 2018). Many of the major corn producing
states no longer recommend using YG based tools, but this method un-
derpins many of the crop growth models addressed below. Alongside the
YG approach, soil nitrate tests have been utilized to measure the nitrate
concentration prior to an at-planting or in-season application. Corn N
recommendations based on soil nitrate measurements have been helpful
in reducing over-application of N fertilizers in fields with a large residual
nitrate concentration, such as manured fields or planting after alfalfa
(Bundy et al., 1999; Bundy and Andraski, 1995; Sawyer and Mallarino,
2017). Crop canopy reflectance sensing is a more recent approach that
assesses N stress based on the color and size of plants (Kitchen et al.,
2010). This approach accounts for differences in growing conditions
throughout a field by integrating the biotic and abiotic factors that affect
the crop positively or negatively into an N recommendation at a very
small spatial scale (1–5m resolution; Kitchen et al., 2010). Recently, crop
growth models (e.g., Encirca, Maize-N, Climate Fieldview, and Adapt-N)
have been used to incorporate environmental, genetic, and management
processes through mechanistic models to make an N recommendation
(Moebius-Clune et al., 2013; Puntel et al., 2018; Setiyono et al., 2011).
However, no one tool has consistently performed better than other tools
across the U.S. Midwest with some research showing promising results
(Scharf et al., 2006) and others showing poor performances for some of
these tools (Bean et al., 2018a; Ransom, 2018; Thompson et al., 2015).

One way to improve N recommendation tools is to incorporate soil
and weather information known to affect EONR into the N re-
commendation process. For example, the performance of a canopy re-
flectance sensing algorithm was improved when compared to EONR
after incorporating site-specific soil and weather information into the
algorithm (r2 increased from 0.13 to 0.40) (Bean et al., 2018b). How-
ever, determining which soil and weather variables to incorporate into
N recommendation tools requires filtering out the most useful variables
from a large dataset. While identifying applicable variables can be done
using any one of many mathematical and statistical procedures
(Table 1) it is not known which procedure is the best. Some statistical
approaches are computationally slow or result in adjustments that are
agronomically incomprehensible due to multicollinearity, multiple in-
teracting terms, and/or require many parameters inputs. Potential
statistical and ML approaches that may be helpful for adjusting N re-
commendation tools are briefly discussed in the next section.

2. Statistical and machine learning algorithms

2.1. Stepwise regression

A standard method used in agricultural research is the least squares
regression for estimating parameter coefficients. Stepwise regression is

an example of this method. The utility of stepwise regression is the
ability to add or remove variables from a model in controlled steps to
better determine which explanatory variables relate to a response
variable (Yamashita et al., 2007). However, stepwise regression pre-
dictions have been found to overestimate validation datasets as it puts a
high bias on each of the parameters and relies heavily on the assump-
tion of having a single best model (Thompson, 2001; Whittingham
et al., 2006; Zou, 2006).

2.2. Penalization regression

Instead of using stepwise regression, penalty-based regression pro-
cedures [i.e., ridge regression or Lasso algorithms] could be used
(Tibshirani, 1996; Zhao and Yu, 2006; McDonald, 2009). Ridge re-
gression works as a continual shrinkage method in which the residual
sum of squares is minimized as each parameter’s coefficient is adjusted
close to zero, thus reducing the importance or influence of any one
parameter (Hoerl and Kennard, 1970). In contrast, the Lasso regression
reduces coefficient parameters to zero, thus selecting essential variables
and shrinking the number of model parameters simultaneously
(Tibshirani, 1996). Lasso is particularly useful with large datasets as it
computes efficiently and quickly (Friedman et al., 2010). Lasso can fail
in the variable selection process when the number of observations is
less than the number of parameters in the model or when there are
many highly correlated variables (Zou and Hastie, 2005). To account
for this weakness, the elastic net algorithm has been suggested as a way
to determine the best combination of both the ridge regression and
Lasso (Zou and Hastie, 2005). The balance between the two algorithms
is accomplished by weighting the effects of ridge regression and Lasso.

2.3. Principal component regression and partial least squares regression

Apart from the penalization methods just described, other ML al-
gorithms can account for the weakness associated with regression
analysis. The PCR can overcome issues related to multicollinearity by
transforming groups of explanatory variables into orthogonal basis
vectors or principal components. Principal components are determined
by iteratively finding linear combinations of input vectors that best
capture the quantity and direction of the variance. Multiple approaches
to this are available. The number of principal components extracted is
limited to the number of explanatory variables. However, typically only
the principal components that explain the most variance are retained
for regression, resulting in a reduced number of new orthogonal ex-
planatory variables. However, there is no guarantee that the newly
devised principal components will be related to the response variable
(Abdi and Williams, 2010; Jagadamma et al., 2008). A similar tech-
nique to the PCR is the PLSR. This method works by iteratively finding
projected vectors with a minimum variance between the dependent and
independent variables. The resulting set of vectors are the best re-
lationship between the explanatory and response variables that explains
the basic structure of the data. Relationships are established using
linear regression models to fit pairs of explanatory and response vari-
ables. The best prediction functions are then regressed against the ex-
planatory variable (Geladi and Kowalski, 1986). Both PCR and PLSR
methods work well when the number of observations is less than the
number of explanatory variables in the model.

2.4. Decision trees and random forests

Other ML algorithms that have the potential to identify and in-
corporate soil and weather data into N recommendation tools are de-
cision tree based algorithms. Decision trees function by continually
splitting a dataset based on some statistic from explanatory variables
thereby creating a flowchart of decisions to predict a response variable
(Quinlan, 1986). While the method is straightforward and easy to in-
terpret, it often performs poorly on independent datasets as it overfits
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the training datasets used to create the model. There are multiple ways
to minimize overfitting, one of which is to resample the data to fit
hundreds or thousands of decision trees. The average or the majority
response from all the trees is then used as a robust production of the
response variable. The random forest algorithm is an example of this
approach; however, for each split in the dataset, it only uses a random
subset of the explanatory variables to determine the split, thereby im-
proving the diversity of tree types (Breiman, 2001; Grömping, 2009).

2.5. Improving nitrogen recommendation tools

Prior efforts showed promising results using ML algorithms to di-
rectly predict EONR using soil and weather information (Qin et al.,
2018). However, these efforts did not utilize existing N recommenda-
tion methods which are already familiar to farmers. As such, a similar
comparison of ML algorithms could also be employed to incorporate
soil and weather information in an attempt to improve already existing
N recommendation tools. The primary objective of this investigation
was to expand the comparison of statistical and ML algorithms for in-
corporating soil and weather information into N recommendation tools.
A secondary objective was to determine how well these ML algorithms
performed with and without multicollinearity and two-way interaction
terms.

3. Materials and methods

Data were obtained through a research collaboration between
Corteva Agrisciences and eight U.S. Midwest universities (Iowa State
University, University of Illinois Urbana-Champaign, University of
Minnesota, University of Missouri, North Dakota State University,
Purdue University, University of Nebraska-Lincoln, and University of
Wisconsin-Madison). Each state conducted research on two sites each
year from 2014 to 2016, with a third site in Missouri in 2016, totaling
49 site-years. About half the sites were on farmers’ fields and the other
half on University research stations. All states followed a similar pro-
tocol for plot research implementation including site selection, weather
data collection, soil and plant sample timing and collection metho-
dology, N application timing, N source, and N rates, with specific de-
tails described in Kitchen et al. (2017). Treatments included four re-
plications of N fertilizer rates between 0 and 315 kg N ha−1 applied
either all at-planting or split where 45 kg N ha−1 was applied at-
planting and the remaining fertilizer N applied at the V9 ± 1 corn
developmental stage (Abendroth et al., 2011).

3.1. Nitrogen recommendation tools and EONR

Three unique N recommendation tools were selected for this eva-
luation that ranged in their ability to predict EONR across a range of
environmental and soil conditions (Ransom, 2018). They were: (1)
farmer’s N recommendation (Farmer’s NR), (2) yield goal (YG), and (3)
proximal active-optical canopy reflectance sensing. The farmer’s NR
was the rate the farmer or research station manager typically applied to
the field site under ideal corn growing conditions. The information or
recommendation system the farmer/station manager used to base the N
rate was not recorded, but it was assumed to be based on crop response
to N of the site over multiple years, and not necessarily on any parti-
cular decision tool.

The YG tool tested was previously promoted in the state of Indiana,
Ohio, and Michigan (Tri-State YG; Vitosh et al., 1995), and was cal-
culated as follows:

= + ×Tri State YG YG N[ 30 0.025 ]credit (1)

where YG was the expected yield in kg ha−1 and Ncredit = 34 kg N ha−1

for corn following soybean. The YG for each site was determined using
the average of the previous five-year county corn yields for the county
where the site was located. The five-year average was then locally

adjusted based on the soil productivity of the predominantly mapped
soil of each site, similar to the approach of Laboski and Peters (2012).
This soil adjustment classifies soil productivity as either low, medium,
or high using soil texture, drainage class, depth to bedrock, available
water capacity in the upper 150 cm of soil, average growing degree
days, irrigation, and artificial tile drainage. The YG of a site was then
adjusted by increasing the five-year average yield for low, medium, and
high soil productivity by 10, 20, and 30%, respectively.

For canopy reflectance sensing, measurements were obtained using
the RapidSCAN CS-45 (Holland Scientific, Lincoln NE, USA) at the same
time as the split N application (i.e., generally ± 2 d of sensing). For
most sites, this was done at the ~V8–V10 corn development stage.
Measurement details are described in Kitchen et al. (2017). The Holland
and Schepers algorithm (HS; Holland and Schepers, 2010) was used to
calculate an N fertilizer recommendation derived from these reflectance
measurements. This algorithm is based on a sufficiency index calculated
using measurements from both well-fertilized corn (“N-Rich”) and
minimally-fertilized corn that is referred to here as the “target” corn:

=SI
VI

VI
Target

N Rich (2)

where SI is the sufficiency index; VITarget is the vegetative index ob-
tained by averaging measurements from all plots that received
45 kg N ha−1 at-planting and where top-dress N fertilizer was to be
applied, and VIN-Rich is the vegetative index obtained by averaging all
plots of two high N treatments (225 and 270 kg N ha−1 applied all at-
planting). The NDRE vegetative index was calculated using the red-
edge (730 nm; RE) and near-infrared (780 nm; NIR) wavelengths as
shown:

=
+

NIR RE
NIR RE

NDRE (3)

Fertilizer N recommendations were then calculated as described in
Holland and Schepers (2010) as follows:

= +N MZ N N N N SI
SI

( * )* (1 )
Rec i Opt PreFert CRD Comp (4)

where NRec is the calculated N fertilizer recommendation; MZi is a
scaling value (0≥MZi≤ 2) used to adjust the N recommendation
based on areas of high or low yield performance; NOpt the base N rate,
which is determined by the farmer; NPreFert is the amount of N already
applied prior to sensing; NCRD is N credits associated with the previous
crop, NO3–N in irrigation water, manure, or residual NO3–N; NComp is
an optional compensation factor for growth limiting conditions; SI is
the sufficiency index, and ΔSI is a value to define the response range.
For this analysis, MZi was left as the default value of 1.0, Nopt was set as
the recorded farmer's N rate for each site, and NPreFert = 45 kg N ha−1.
With no supportive information relative to NCRD and NComp, these two
parameters were set to zero for all sites. The recommended value of
0.30 was used for ΔSI, which provides a response range between the
measured vegetative index value between 0.70 and 1.00.

Grain yield in response to N fertilizer rate treatments was used to
calculate the EONR on a site level by modeling all four replicates as
described in Kitchen et al. (2017), using proven quadratic or quadratic-
plateau modeling methods (Cerrato and Blackmer, 1990; Scharf et al.,
2005). Economic optimal N rate values were calculated for all N ferti-
lizer applied at-planting, and N split applied between planting and the
single top-dress. For this study, the prices of N and grain were set at
$0.88 kg N−1 and $0.158 kg grain−1 (equivalent to $0.40 lb N−1 and
$4.00 bu−1). The EONR was set to not exceed the maximum N rate
(315 kg N ha−1). Seven irrigated sites had additional N applied through
irrigation between 1 and 53 kg N ha−1 which was included in models
for determining the EONR of these sites. The EONR results were used as
the standard for evaluating N recommendations developed from sta-
tistical and ML approaches.
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3.2. Modeling scenarios

Ninety modeling scenarios [8 statistical and ML algorithms× 2 data
processing scenarios (complete vs. a reduced number of soil and
weather variables; explained below)×2 interaction types (without vs.
with interactions; described below)× 3N recommendation tools (de-
scribed above)] were considered. Six scenarios were excluded from
these 90 scenarios as explained below. The essence of these analyses
was to model the difference between a tool’s N recommendation and
the actual EONR as a function of soil and weather information using
statistical and ML methods. Eight statistical and ML algorithms (here-
after all algorithms will be referred to as “ML algorithms” for simpli-
city) that were evaluated included: (1) stepwise regression using
Akaike’s information criteria, (2) ridge regression, (3) Lasso, (4) elastic
net regression, (5) PCR, (6) PLSR, (7) recursive partitioning decision
tree, and (8) random forest. Each of the ML algorithms was evaluated
using a complete and reduced dataset. The complete dataset contained
all available soil and weather variables (Table 2), while the reduced
dataset excluded variables with a high pair-wise correlation
(|r| > 0.85) (Table 3, Figs. 1 and 2). Correlated variables with the
highest mean absolute correlation were removed from the dataset as
identified with the findCorrelation function from the R ‘caret’ package
(Kuhn, 2017). Additionally, for both the complete and reduced datasets
the ML algorithms were evaluated with and without 2-way-interactions
among all possible pairs of predictors. Lastly, six modeling scenarios (3
tools× 2 complete/reduced datasets) associated with using the step-
wise regression with two-way interaction terms were excluded because
of the process being computationally slow.

3.3. Statistical and machine learning parameters

All ML algorithms were fit using the ‘caret’ package in R Statistical
Software (R Core Team, 2016). Seven of the eight ML algorithms re-
quired specific internal parameters to be tuned for optimal perfor-
mance. A range of tuning parameter values was evaluated to ensure
each ML algorithm was optimized (Table 4). Parameter tuning was
accomplished by fitting each ML algorithm with a tenfold cross-vali-
dation repeated five times. Algorithms were trained on nine of the ten
folds, and the accuracy was tested by calculating a RMSE by comparing
predicted values to actual values on the tenth fold. The best tuning
parameters were selected as the ones that produced the lowest average
RMSE across all of the 50 cross-validation folds.

All explanatory variables were normalized for all ML algorithms
except for the decision tree and random forest. Normalization was done
by subtracting the mean and dividing by the standard deviation of each
variable. After finding the optimal tuning parameter, all variable
coefficients were “de-normalized” to their original scale.

For each modeling scenario, the response variable was the differ-
ence between each tool’s N recommendation and the EONR value for
each site. Where the EONR was calculated using N treatments applied
all at-planting (for the Farmer’s NR and Tri-State YG) or with split N
treatments (for canopy reflectance sensing). Explanatory variables in-
cluded measured physical and chemical soil properties and weather
information. Soil properties were collected by sampling 1.2 m soil cores
from each of the sites and analyzing each pedological soil horizon for
texture, bulk density, pH salt, pH water, CEC, total N, total carbon,
inorganic carbon, organic carbon, and organic matter as (Table 2). Soil

Table 2
Weather and soil variables used in the complete dataset with calculations, methods, and corresponding citations.

Complete Dataset

Variables Calculations and Sample Depths Method References

Weather
Precipitation (PPT) Sum of daily rainfall, mm. Tipping bucket†

Corn heat units (CHU) Σ(Ymax+Ymin)/2; Ymax and Ymin are the daily maximum and minimum
temperatures, oC.

Temperature sensor†

Growing degree day (GDD) Σ((Ymax+Ymin)/2)-Tbase; Ymax, Ymin, Tbase are the daily maximum,
minimum, and base temperatures, respectively. Tbase= 10 °C.

Temperature sensor

Shannon diversity index (SDI) [−Σpi ln(pi)]/ln(n); where pi=Rain/PPT (daily rainfall relative to total
rainfall in a given time; n= total number of days.

Tipping bucket (Tremblay et al., 2012)

Abundant and well-distributed
rainfall (AWDR)

SDI× PPT Tipping bucket (Tremblay et al., 2012)

Soil
Clay 0–30, 0–60, 0–90 cm Pipette Soil Survey Staff (2014)

3A1‡

Sand 0–30, 0–60, 0–90 cm Pipette Soil Survey Staff (2014)
3A1‡

Silt 0–30, 0–60, 0–90 cm Pipette Soil Survey Staff (2014)
3A1‡

Cation exchange capacity 0–30, 0–60, 0–90 cm Ammonium acetate Soil Survey Staff (2014)
4B1a1a1a1a-b1‡

Total N 0–30, 0–60, 0–90 cm Dry combustion Soil Survey Staff (2014)
4H2a1‡

Total carbon (C) 0–30, 0–60, 0–90 cm Dry combustion Soil Survey Staff (2014)
4H2a1‡

Total organic C 0–30, 0–60, 0–90 cm Dry combustion Nelson and Sommers (1996)
Total inorganic C 0–30, 0–60, 0–90 cm Difference between Total C

and total organic C
Organic matter 0–30, 0–60, 0–90 cm Loss-on-ignition Soil Survey Staff (2014) 5A‡

pH (Salt) 0–30, 0–60, 0–90 cm pH meter using CaCl2 (0.01M) Soil Survey Staff (2014)
4C1a2a2‡

pH (Water) 0–30, 0–60, 0–90 cm pH meter Soil Survey Staff (2014)
4C1a2a1‡

Bulk Density 0–30, 0–60, 0–90 cm Core Soil Survey Staff (2014)
3B6a‡

† Daily temperature and precipitation measured using HOBO weather stations instrumentation (Onset Computer Corporation, Bourne, MA).
‡ Indicates the method code associated with the Kellogg Soil Survey Laboratory Methods Manual (Soil Survey Staff, 2014).
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properties were then depth weighted across three different depths of
0–0.30, 0–0.60, and 0–0.90m. Weather data were collected using on-
site weather stations (HOBO U30 Automatic Weather Station; Onset
Computer Corporation, Bourne, MA). Daily values were calculated for
the maximum and minimum temperature and precipitation. These va-
lues were then used to calculate total precipitation, growing degree
days, corn heat units, Shannon diversity index of precipitation (SDI),
and abundantly and well-distributed rainfall (SDI multiplied by total
precipitation) as described by Tremblay et al. (2012), in increments of
either 30 days before planting to the time of planting or from the date of
planting to the time of sensing (Table 2).

3.4. Evaluating statistical and machine learning algorithms

Each ML algorithm was evaluated using three metrics: (1) the out-
of-sample RMSE, (2) the performance of each N recommendation tool
after incorporating soil and weather information, and (3) an assessment
of tool improvement relative to the number of variables used in the
model.

To calculate the first metric, a total of 50 RMSE values were com-
puted using the optimized tuning parameters on the 50 testing datasets
created with the previously mentioned cross-validation process. The
same cross-validation folds were used for all modeling scenarios to
compare across all of the ML algorithms’ performance. To determine

significant differences between ML algorithms, an analysis of variance
was conducted using the 50 RMSE values as the response variable and
the ML algorithm and N recommendation tool (Farmer’s NR, Tri-State
YG, canopy reflectance sensing) as the explanatory variables.
Significant means separation between ML algorithms was determined
using a Tukey Honest Significant Difference test (α=0.05).

For the second evaluation metric, a newly adjusted N re-
commendation was created by taking the original tool’s recommenda-
tion and subtracting the predicted values generated using the final
model’s parameters. For each tool, adjustments were repeated for each
modeling scenario resulting in 30 newly adjusted N recommendation
tools [8 ML algorithms×2 data processing scenarios× 2 interaction
types (excluding 2 interaction scenarios)]. Performance of unadjusted
and adjusted tools was evaluated by examining their accuracy for
predicting EONR. Accuracy was measured using both the coefficient of
determination and RMSE. The coefficient of determination was calcu-
lated using a simple linear regression model based on the observed
(measured EONR) and predicted (adjusted tools).

=r
y y
y y

1
( )
( ¯)

i i i

i i

2
2

2 (5)

where yi was the observed EONR value, ŷi was the adjusted tool’s pre-
dicted value, and ȳ was the mean of EONR values. The RMSE was
calculated based on the difference between the adjusted tool’s re-
commendations rates and EONR values.

=
=n

y yRMSE 1 ( )
i

n

i i
1

2

(6)

For the third metric, to compare the performance of each ML al-
gorithm for optimizing the three N recommendation tools while also
maintaining a simple model, a RMSE Improvement Index was calcu-
lated.

=
RMSE RMSE

k
RMSE Improvement Index unadjusted adjusted

(7)

where the RMSEunadjusted was derived from the unadjusted N re-
commendation tool’s performance, the RMSEadjusted was derived from
the adjusted N recommendation tool’s performance, and k was the
number of important variables in the final model used to adjust the N
recommendation tool. Important variables were identified using the
varImp function in the R ‘caret’ package. The methods used to de-
termine which variables were important varied for each ML algorithm.
For regression-based algorithms (stepwise, Lasso, ridge regression, and
elastic net) the varImp function calculates the absolute value of the t-
statistic for each parameter in the model, with higher t-statistic values
indicating greater importance. For the PCR a loess smoother was fit for
each predictor and the outcome, and an r2 was calculated from this
model compared to the intercept (i.e., the null model) with higher r2

values indicating greater importance. While for PLSR, the varImp
function is based on the weighted sums of the absolute regression
coefficients. The decision tree used a reduction in the loss function
[e.g., mean square error], which was calculated for each variable at
each split and summed. Variables with the least mean square error were
the most important and were used in the final model. The random forest
used the mean square error for both the “out-of-bag” prediction accu-
racy for each tree constructed and the “out-of-bag” prediction accuracy
for each predictor variable permuted. The differences between the tree
and predictor variable out-of-bag mean square errors were averaged
and normalized using the standard error. Additional details can be
found in the caret vignette under “15.1 Model Specific Metrics” (Kuhn,
2017). A discussion of which variables were most important was not
included in this manuscript but is addressed in another manuscript
(Ransom, 2018).

Table 3
Variable inputs for all algorithm models to modify three N recommendation
tools. Within the table, ✓ indicates parameters used for modeling
and X indicates parameters that were removed due to multicollinearity issues,
and NA indicates not applicable.

Reduced Dataset

Parameter Farmer’s NR Tri-State YG Canopy
Reflectance
Sensing

Weather
Total precipitation
(Planting)†

X X X

Total precipitation (SD)‡ NA NA ✓
Corn heat units (Planting) X X X
Corn heat units (SD) NA NA ✓
Growing degree days
(Planting)

✓ ✓ ✓

Growing degree days (SD) NA NA X
Shannon Diversity Index
(Planting)

✓ ✓ ✓

Shannon Diversity Index
(SD)

NA NA ✓

Abundant and Well
Distributed Rainfall
(Planting)

✓ ✓ ✓

Abundant and Well
Distributed Rainfall (SD)

NA NA X

Soil
Clay ✓ (0–90 cm) ✓ (0–90 cm) ✓ (0–90 cm)
Sand ✓ (0–90 cm) ✓ (0–90 cm) X
Silt X X ✓ (0–60 cm)
Cation exchange capacity X X X
Total N X X X
Total carbon (C) ✓ (0–90 cm) ✓ (0–90 cm) ✓ (0–90 cm)
Total organic C X X X
Total inorganic C ✓ (0–30 cm) ✓ (0–30 cm) ✓ (0–30 cm)
Organic matter ✓ (0–30 cm) ✓ (0–30 cm) ✓ (0–90 cm)
pH (Salt) X X X
pH (Water) ✓ (0–30 cm) ✓ (0–30 cm) ✓ (0–30 cm)
Bulk density ✓ (0–30 cm) ✓ (0–30 cm) ✓ (0–30 cm)

† Planting indicates data used 30 days prior to planting up to the date of
planting.

‡ SD indicates data used from the date of planting up to the date of sidedress
N application.
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4. Results and discussion

4.1. How well did the statistical and machine learning algorithms perform?

The first step in answering this question was to determine if there
was a significant statistical difference between ML algorithms and tool
type. An analysis of variance using the out-of-sample errors as a func-
tion of the ML algorithm and tool types resulted in a significant two-
way interaction (Pr < 0.001). As such, each of the three tools is dis-
played separately in Figs. 3–5. Of note, the stepwise regression using
the complete dataset resulted in out-of-sample RMSE values as much as
18 times greater than any other ML modeling scenario. As such, this
model was not included in the analysis of variance in order to better
determine significance between all other ML algorithm types and
modeling scenarios. For the Farmer’s NR, only the decision tree using
the reduced dataset was found to have significantly lower out-of-sample
RMSE values than the stepwise regression (Fig. 3). All other ML algo-
rithm types and modeling scenarios for the Farmer’s NR were not

significantly different from each other. For the Tri-State YG, the biggest
differences observed were that the decision tree and random forest
resulted in some modeling scenarios with significantly lower out-of-
sample RMSE values than the stepwise and some of the ridge regression
scenarios (Fig. 4). Apart from these differences all other ML algorithm
type and modeling scenarios did not have significantly different values.
For the canopy reflectance sensing, there were no significant differences
in the out-of-sample RMSE values between any of the ML algorithms
(Fig. 5).

4.2. Tool improvement

Based on the out-of-sample RMSE values, one would expect that any
one of the ML algorithms (except stepwise using the complete dataset)
could satisfactorily improve any of the N recommendation tools.
However, when evaluating these ML algorithms on the merit of im-
proving the N recommendation tools’ performance, there was a range in
how well the ML algorithms performed. The random forest model

Fig. 1. Correlation matrix of variables used by algorithms to adjust tools used for the at-planting N fertilizer recommendation. The size and color of the circle indicate
the sign and magnitude of the correlation between variables. Weather variables calculated from 30 days prior to planting up to the date of planting included
cumulative precipitation (PPT), corn heat units (CHU), growing degree days (GDD), Shannon diversity index of precipitation (SDI), and abundant and well-dis-
tributed rainfall (AWDR). Soil variables included texture, cation exchange capacity (CEC), total nitrogen (N), total carbon (TC), total organic carbon (TOC), total
inorganic carbon (TIC), organic matter (OM), pH in water and in salt (0.01M CaCl2), and bulk density (BD). Each soil measurement was averaged over three separate
depth increments of 0–30, 0–60, and 0–90 cm as indicated by the numbers (30, 60, and 90) following the soil variable name. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Correlation matrix of variables used by algorithms to adjust tools used for the split N fertilizer application. The size and color of the circle indicate the sign and
magnitude of the correlation between variables. Weather variables calculated from 30 days prior to planting up to the date of planting (planting) and from the date of
planting to the date of a sidedress N fertilizer application (SD). They included cumulative precipitation (PPT), corn heat units (CHU), growing degree days (GDD),
Shannon diversity index of precipitation (SDI), and abundant and well-distributed rainfall (AWDR). Soil variables included texture, cation exchange capacity (CEC),
total nitrogen (N), total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), organic matter (OM), pH in water and in salt (0.01M CaCl2), and bulk
density (BD). Each soil measurement was averaged over three separate depth increments of 0–30, 0–60, and 0–90 cm as indicated by the numbers (30, 60, and 90)
following the soil variable name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
The type and range of tuning parameters used for optimizing each algorithm. Where ‘ncomp’ is the
number of components, ‘complexity parameter’ is a pruning parameter, ‘mtry’ is the number of variables
randomly sampled as candidates at each split, and ‘tune length’ is the number of levels used by each tuning
parameter.

Algorithm Tuning Parameters

Stepwise None
Ridge Regression Lambda=0.001–25 (in increments of 0.25)

Alpha= 0
Lasso Lambda=0.001–25 (in increments of 0.25)

Alpha= 1
Elastic Net Lambda=0.001–25 (in increments of 0.25)

Alpha= 0.1–1 (in increments of 0.009)
Principal Component Regression (PCR) ncomp (tune length= 15)
Partial Least Squares Regression (PLSR) ncomp (tune length= 15)
Decision Tree Complexity parameter (tune length= 10)
Random Forest mtry (tune length= 15)
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showed the most improvement for predicting EONR, regardless of the
modeling scenario. Adjusting tools with the random forest improved the
relationship with EONR; resulting in r2 values≥ 0.82 for all N re-
commendation tools—an increase in r2 values≥ 0.72 when compared

to the unadjusted tools (Table 5). The RMSE values were also some of
the lowest, ranging between 33 and 43 kg N ha−1, which was a decrease
of ≥41 kg N ha−1 compared to the unadjusted tools. The stepwise re-
gression (using the complete dataset only) was the only other ML al-
gorithm that was able to adjust all N recommendation tools similar to
the random forest (r2 value≥0.86 and RMSE between 21 and
41 kg N ha−1). Under conditions where multicollinearity was removed,
the stepwise regression performance was similar to most other ML al-
gorithms. The large discrepancy of results between the stepwise using
the complete and reduced dataset proved unreliable and over-fit the
data; indicating that it would also perform poorly when validated on
independent datasets.

The overall performance of tools being adjusted using each of the
ML algorithms depends on how well the unadjusted tool was initially
related to EONR. For example, in the case of the Farmer’s NR, where
unadjusted estimates were not related to EONR but on average slightly
overestimated EONR by 24 kg N ha−1 (Fig. 6), it showed greater im-
provement when soil and weather variables were incorporated with
many of the ML algorithm types compared to the Tri-State YG. Still, not
all ML algorithms were able to adequately improve the Farmer’s NR
relationship with EONR (e.g., Lasso regression showed no improve-
ment). The ML algorithms that did positively affect the Farmer’s NR
performance (besides stepwise and random forest) still had a weak to a
moderate association with EONR (r2≤ 0.55) and a high RMSE
value≥ 55 kg N ha−1.

The Tri-State YG, which had a negative linear relationship with
EONR and on average overestimated EONR by 73 kg N ha−1 (Fig. 7),
showed minimal improvement for the majority of the ML algorithms
and modeling scenarios (Table 5). An observed improvement with the
Tri-State YG, when adjusted for soil and weather information, was that
the predicted N values were no longer negatively related to EONR but
in contrast, were also not significantly associated with EONR. When
evaluating the Tri-State YG without removing multicollinearity, the
ridge regression, decision tree, and random forest were the only ML
algorithms able to improve the Tri-State YG to where it had a significant

Fig. 3. The out-of-sample errors associated with each fold from 5×10 fold
cross-validation (totaling 50 RMSE values for each model). Each of the eight
models types was used with a complete and reduced dataset (multicollinearity
removed) with and without 2-way interactions. The eight models include (1)
stepwise linear regression, (2) Ridge regression parameter penalization, (3)
Least absolute shrinkage and selection operator (Lasso), (4) Elastic Net, (5)
Elastic Net and principal component regression (PCR), (6) partial least square
regression (PLSR), (7) decision tree, and (8) random forest. The RMSE values
were calculated for the Farmer’s N recommendation system. Limits of the box
indicate the 1st and 3rd quartile and whiskers indicate 1.5× IQR. The sig-
nificance between models is noted by lower case letters, using Tukey’s Honest
Significant Difference test (α= 0.05).

Fig. 4. The out-of-sample errors associated with each fold from 5×10 fold
cross-validation (totaling 50 RMSE values for each model). Each of the eight
models types was used with a complete and reduced dataset (multicollinearity
removed) with and without 2-way interactions. The eight models include (1)
stepwise linear regression, (2) Ridge regression parameter penalization, (3)
Least absolute shrinkage and selection operator (Lasso), (4) Elastic Net, (5)
Elastic Net and principal component regression (PCR), (6) partial least square
regression (PLSR), (7) decision tree, and (8) random forest. The RMSE values
were calculated for the Tri-State yield goal N recommendation tool. Limits of
the box indicate the 1st and 3rd quartile and whiskers indicate 1.5× IQR. The
significance between models is noted by lower case letters, using Tukey’s
Honest Significant Difference test (α=0.05).

Fig. 5. The out-of-sample errors associated with each fold from 5×10 fold
cross-validation (totaling 50 RMSE values for each model). Each of the eight
models types was used with a complete and reduced dataset (multicollinearity
removed) with and without 2-way interactions. The eight models include (1)
stepwise linear regression, (2) Ridge regression parameter penalization, (3)
least absolute shrinkage and selection operator (Lasso), (4) Elastic Net, (5)
Elastic Net and principal component regression (PCR), (6) partial least square
regression (PLSR), (7) decision tree, and (8) random forest. The RMSE values
were calculated for the canopy reflectance sensing N recommendation tool.
Limits of the box indicate the 1st and 3rd quartile and whiskers indicate
1.5× IQR. The significance between models is noted by lower case letters,
using Tukey’s Honest Significant Difference test (α=0.05).
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and positive linear relationship with EONR.
Unadjusted canopy reflectance sensing N recommendations had a

significant positive linear relationship with EONR but underestimated
EONR by 49 kg N ha−1 (Fig. 8). Nonetheless, this relationship was still
improved when using any of the ML algorithms to adjust estimates.
Apart from the random forest and stepwise regression, the ridge re-
gression showed the most improvement using the complete dataset
(Table 5). All other ML algorithms resulted in noticeable improvements,
with r2 values between 0.24 and 0.44 and RMSE values between 63 and
71 kg N ha−1. When removing multicollinearity, the decision tree was
able to improve the canopy reflectance sensing with r2 values of 0.57

and 0.64 and RMSE values of 54 and 50 kg N ha−1 without and with
interaction terms, respectively. These ML-based adjustments to the ca-
nopy reflectance sensing tool were some of the best when compared to
other analyses done with this dataset. Bean et al. (2018) used general
linear models to incorporate soil and weather information into three
canopy reflectance algorithms resulted in r2 values≤ 0.40. Qin et al.
(2018) reported that using a ridge regression with a range of weather
and soil variables to directly predict EONR resulted in r2 values≤ 0.46.
Comparably, using ridge regression to adjust the canopy reflectance
sensing algorithms to better predict EONR resulted in r2 values≤ 0.66
(Table 5). While Qin et al. (2018) did not use reflectance information

Table 5
The accuracy of each N recommendation tool compared to EONR that was unadjusted and adjusted with soil and weather variables as determined by each of the eight
statistical and machine learning algorithms. Models were evaluated using a complete dataset or reduced dataset (multicollinearity removed) with and without 2-way
interactions. The coefficient of determination was measured from a simple linear relationship between each tool and EONR with the corresponding relationship
marked in parenthesis: (+) positive linear relationship, (−) negative linear relationship, and no parenthesis after the r2 value is non-significant. The RMSE was
calculated from the difference between a tool’s N recommendation and EONR with units of kg N ha−1.

Complete Dataset Reduced Dataset

Farmer’s NR Tri-State YG Canopy Reflectance Sensing Farmer’s NR Tri-State YG Canopy Reflectance Sensing

r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE

Unadjusted 0.01 88 0.10 (−) 127 0.13 (+) 85 0.01 88 0.10 (−) 127 0.13 (+) 85
Stepwise 0.94 (+) 21 0.86 (+) 31 0.95 (+) 41 0.30 (+) 68 0.03 90 0.41 (+) 63
Ridge 0.32 (+) 67 0.08 (+) 83 0.66 (+) 52 0.27 (+) 70 0.03 89 0.43 (+) 62
+ Interactions 0.47 (+) 60 0.14 (+) 78 0.58 (+) 56 0.23 (+) 71 0.01 91 0.38 (+) 64
Lasso 0.03 82 0.00 92 0.40 (+) 63 0.03 82 0.00 92 0.39 (+) 63
+ Interactions 0.06 (+) 80 0.00 91 0.32 (+) 66 0.04 81 0.00 93 0.44 (+) 61
Elastic Net 0.03 82 0.00 91 0.39 (+) 63 0.24 (+) 71 0.00 92 0.38 (+) 64
+ Interactions 0.06 (+) 80 0.00 91 0.34 (+) 65 0.04 81 0.00 93 0.43 (+) 62
PCR 0.17 (+) 76 0.01 94 0.29 (+) 66 0.20 (+) 74 0.01 95 0.31 (+) 66
+ Interactions 0.04 (+) 78 0.01 95 0.32 (+) 66 0.15 (+) 77 0.00 98 0.29 (+) 67
PLSR 0.19 (+) 74 0.02 93 0.32 (+) 65 0.22 (+) 73 0.02 92 0.38 (+) 63
+ Interactions 0.12 (+) 78 0.01 94 0.30 (+) 66 0.20 (+) 74 0.02 94 0.34 (+) 65
Decision Tree 0.49 (+) 58 0.25 (+) 73 0.57 (+) 54 0.49 (+) 58 0.17 (+) 79 0.57 (+) 54
+ Interactions 0.55 (+) 55 0.47 (+) 61 0.59 (+) 55 0.23 (+) 72 0.17 (+) 79 0.64 (+) 50
Random Forest 0.85 (+) 38 0.87 (+) 33 0.90 (+) 42 0.84 (+) 39 0.83 (+) 37 0.90 (+) 43
+ Interactions 0.82 (+) 40 0.86 (+) 35 0.91 (+) 44 0.83 (+) 41 0.82 (+) 38 0.91 (+) 43

Fig. 6. The unadjusted Farmer’s N rate and weather/soil adjusted Farmer’s N rate using the reduced dataset with either (1) Lasso regression, (2) decision tree, or (3)
random forest all compared to the measured economic optimal N rate (EONR).
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(i.e., red, near-infrared, and red-edge, or vegetative indicies) in their
ML models to directly predict EONR, efforts to do so did not lead to any
additional improvement (data not shown).

While only three tools were tested in this analysis, results indicate
that most ML algorithms would best improve tools that already have a
significant positive linear relationship with EONR. Nitrogen re-
commendation tools that are negatively or not linearly related to EONR
(e.g., Tri-State YG and Farmer’s NR) are only best improved by using
random forest or decision tree based approaches.

4.3. Reducing multicollinearity

Ideally, a ML algorithm that can select for variables using a dataset
with highly correlated variables, and multiple interaction terms, would
minimize the amount of data processing required. The ridge regression,
PCR, PLSR, and random forest algorithms have been identified as sui-
table algorithms when multicollinearity and interaction terms are in-
cluded in the model (Abdi and Williams, 2010; Geladi and Kowalski,
1986; Grömping, 2009; Lu and Petkova, 2014). However, these ML

Fig. 7. The unadjusted Tri-State YG’s N rate and weather/soil adjusted Tri-State YG’s N rate using the reduced dataset with either (1) Lasso regression, (2) decision
tree, or (3) random forest all compared to the measured economic optimal N rate (EONR).

Fig. 8. The unadjusted canopy reflectance N rate and weather/soil adjusted canopy reflectance N recommendation using the reduced dataset with either (1) Lasso
regression, (2) decision tree, or (3) random forest all compared to the measured economic optimal N rate (EONR).
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algorithms did not produce a parsimonious model for all three N re-
commendation tools. To improve parsimony for the above mentioned
ML algorithms, the number of variables can be prefiltered before
modeling. Lowering the number of variables for the ML algorithms to
use was successfully done when based on correlation tests. However,
while the results were promising, models still contained many more
variables than the elastic net and decision tree (Table 6).

When removing multicollinearity (i.e., reduced variables in the
dataset), there were some observed changes in performance (explained
as a change in r2≥ 0.10 and/or RMSE≥10 kg N ha−1) between the
complete and reduced dataset. This varied by ML algorithm and N re-
commendation tool. The stepwise (for all tools) and the ridge regression
(for canopy reflectance sensing) showed a decrease in performance
when using the reduced dataset (Table 5). This is to be expected, as
stepwise regression has been found to overestimate actual values and
does not perform well with multicollinearity (Whittingham et al., 2006;
Zou, 2006). In contrast, the elastic net (for the Farmer’s NR) was the
only ML algorithms that showed an improved tool performance (change
in r2≥ 0.10 and/or RMSE≥10 kg N ha−1) with the reduced dataset
(Table 6). For the remaining modeling scenarios, there was no observed
improvement by using a reduced dataset.

4.4. No interactions versus with interactions

There were a few modeling scenarios in which including the inter-
action terms improved a tool’s performance (r2 increased≥0.10 and/
or RMSE decreased≥ 10). Improvement occurred for the Farmer’s NR
using the ridge regression without removing multicollinearity and the
Tri-State YG using the decision tree with multicollinearity (Table 5).
However, there were four instances where including the interaction
terms decreased the tool performance (r2 decreased≥0.10 and/or
RMSE increased≥10), but only when first removing multicollinearity.
These instances occurred for the elastic net, PCR, and decision tree with
the Farmer’s NR and the PCR with the canopy reflectance sensing re-
commendation tool. For the remaining modeling scenarios, there was
no change in performance for adjusting N recommendation tools by
including the two-way interactions.

The observed decrease in performance with the decision tree is not
surprising, as slight changes in the training data often affect this ap-
proach, especially with the small number of observations used in this
study. The decrease in performance with the elastic net and PCR when
including interaction terms is contrary to what has been reported by

others (Wang et al., 2011; Wu et al., 2009). However, elastic net, si-
milar to Lasso, could be affected by having too many parameters in the
model which leads to including more two-way interactions and higher
penalization of more important main effects (Bien et al., 2013). Like-
wise, PCR has often been found to select variables that are poorly re-
lated to the response variable (Abdi and Williams, 2010). With in-
creased terms in the model, the propensity of PCR to select unimportant
variables increases.

4.5. Balancing complexity versus accuracy

Determining the ML algorithm that best incorporates soil and
weather information into an N recommendation tool depends on the
investigatory priority. Machine learning algorithms can be chosen
based on either optimizing accuracy and/or resulting in a parsimonious
model. Tools that select and utilize numerous variables could improve
the accuracy of the model, such as using the random forest. However,
from an agronomic management standpoint, ML algorithms that select
fewer variables have the advantage of being easier to interpret and
more practical to implement. Implementing a model that requires more
variables that are not readily available for farmers will increase costs
associated with measurement, sampling, and analysis. From this
standpoint, using the decision tree, Lasso, or elastic net under any
modeling scenario would be preferred due to simplicity and interpret-
ability of the parameters in the model (Table 6). However, as data
becomes more readily available to farmers, selecting complex multi-
variable models will be more feasible in the future.

Evaluating the performance of the ML algorithms needs to take into
account both the overall improvement and the number of variables
used in the final model. Using the RMSE Improvement Index allows one
to evaluate the ML algorithms based on the greatest improvement to
accuracy (i.e., the greatest reduction to RMSE) with the fewest vari-
ables. Results showed the decision tree approach had the highest RMSE
Improvement Index values regardless of the tool be adjusted. Following
the decision tree, the random forest, Lasso, and elastic net regression
consistently had the next highest values across all three N re-
commendation tools (Fig. 9). In general, the RMSE Improvement Index
values were greater with algorithms using the reduced dataset, though
there are a few exceptions (e.g., the decision tree had higher values
using the complete dataset with the Farmer’s NR and Tri-State YG).

Another factor that needs to be taken into consideration is the dif-
ficulty of interpreting the variables used in the model. While regression

Table 6
The number of soil and weather variables identified as important for adjusting three different nitrogen recommendation tools from eight different statistical and
machine learning algorithms. Models were fit with and without two-way interactions, terms using either a complete dataset with all soil and weather variables or a
reduced dataset with highly correlated variables removed (r > 0.85).

Complete Dataset Reduced Dataset

Farmer’s NR Tri-State YG Canopy Reflectance Sensing Farmer’s NR Tri-State YG Canopy Reflectance Sensing

Number of Important Variables Number of Important Variables

Stepwise 39 39 44 9 9 12
Ridge 40 40 45 9 9 12
+ Interactions 860 860 1080 54 54 90
Lasso 2 4 7 1 2 5
+ Interactions 2 3 4 3 2 7
Elastic Net 2 7 15 9 2 8
+ Interactions 2 8 12 3 2 7
PCR 39 39 44 9 9 12
+ Interactions 39 39 44 9 9 12
PLSR 40 40 45 9 9 12
+ Interactions 860 860 1080 54 54 90
Decision Tree 2 1 2 2 1 2
+ Interactions 2 2 2 1 1 2
Random Forest 40 40 45 9 9 12
+ Interactions 860 860 1080 54 54 90
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and decision tree based algorithms can easily be interpreted, other ML
algorithms are more complicated and thus require additional steps. For
example, results from PCR and PLSR must be displayed in a figure in
order to interpret underlining relationships in the data (Mueller et al.,
2017; Zuber et al., 2017). Similarly, for the random forest, it is also
difficult to interpret which of the variables are the most important. The
random forest is able to incorporate complex interaction and highly
correlated variables since it uses non-parametric methods to identify
relationships between explanatory and response variables (Archer and
Kimes, 2008; Strobl et al., 2008). The ability to model complex inter-
actions could be helpful as soil and weather interaction terms have been
found to explain EONR or a yield response (Schrӧder et al., 2000;
Shahandeh et al., 2011, 2008; Tremblay et al., 2012; Qin et al., 2018).
However, like PCR the interpretability of the random forest is

complicated as it is the result of an ensemble of hundreds of decision
trees. The random forest can be interpreted by using the most important
explanatory variables identified to capture the most variability in the
response variable. However, determining the specific effects of each
parameter requires additional steps which include complex graphical
interpretations or producing and interpreting partial dependence plots
(Friedman, 2001; Meinshausen, 2011; Welling et al., 2016, 2015). An
easier first step is to filter out unimportant variables selected using
another technique (e.g., correlation tests or elastic net). Employing this
method did not penalize the accuracy of the random forest.

The focus of this manuscript was not to discuss which parameters
were selected by each algorithm and their agronomic importance in-
stead focus on determining the best ML algorithm for improving N re-
commendation tools. However, the most important variables for

Fig. 9. The RMSE Improvement Index calculated for each N recommendation tool, machine learning algorithm, and modeling scenario based on Eq. (7) calculated
using values from Tables 5 and 6.
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adjusting the tools are listed here with additional discussion found
elsewhere (Ransom, 2018). The most important variables varied by ML
algorithm and N recommendation tool type. For the majority of the ML
algorithms, the most influential variables used to adjust the Farmer’s
NR included (1) total carbon (0–90 cm), (2) pH (0–60 cm), (3) organic
matter (0–30 cm), and (4) the abundant and well-distributed rainfall
(AWDR) calculated 30 days prior to planting up to the date of planting.
For adjusting the Tri-State YG the most influential variables across all
ML algorithms included: (1) organic matter (0–30 cm), (2) pH
(0–60 cm), (3) total carbon (0–90 cm), and (4) the AWDR calculated
30 days prior to planting up to the date of planting. For adjusting the
canopy reflectance sensing, the most influential variables found to be
important across all ML algorithms included: (1) pH (0–60 cm), (2)
percent clay (0–90 cm), (3) interaction between pH and clay, (4) bulk
density (0–30 cm), (5) the interaction between bulk density and the
Shannon Diversity Index (SDI) calculated from the time of planting to
the time of sensing, and (6) the SDI calculated 30 days prior to planting
up to the time of planting. For each of the N recommendation tools and
ML modeling scenario, there were many more soil and weather vari-
ables and two-way interactions that helped to improve the models.

5. Conclusions

This study compared eight statistical and ML algorithms as a means
for incorporating soil and weather data into three different N re-
commendation tools. General results showed that the performance of
these ML algorithms could be improved slightly by removing multi-
collinearity. This was the case even for ML algorithms that were not
impacted by multicollinearity. However, including two-way interac-
tions in the models did not lead to further improvements. Not all ML
algorithms were able to improve all N recommendation tools.
Regression-based ML algorithms (e.g., Lasso, elastic net, PCR, and
PLSR) did not work well at adjusting tools that were negatively or not
significantly linearly related to EONR. The random forest models were
best able to improve all three N recommendation tools, however, at the
expense of including an extensive number of variables. Pre-filtering
variables based on collinearity helped minimize the number of vari-
ables in the final model and did not decrease the accuracy of the
random forest algorithm regardless of the N recommendation tool.
Improved accuracy is a tradeoff of interpretability. With the random
forest, one can only know which variables are the most important, not
how the variables are used for making a prediction.

On the other hand, a recursive partitioning decision tree is easier to
interpret than the random forest because it used only one or two vari-
ables in the final model. While it did not perform as well as the random
forest it had some of the better adjustments to all three tools compared to
other methods. From an agronomic standpoint, the decision tree ap-
proach appears to be best suited for improving N recommendation tools
with soil and weather information. The ease of computing, interpreting,
and performance observed from decision trees in all modeling scenarios
demonstrates that researchers should consider utilizing this algorithm, in
addition to traditional methods they already use.

There were some promising adjustments made to the studied N re-
commendation tools but further improvement could be observed by
including additional factors known to impact N cycling and EONR such
as management decisions, plant genetics, and finer detailed weather
and soil information. However, additional site-years of N response trials
are required that measure these factors. With larger datasets, other ML
algorithms like neural networks could be utilized which allow for more
modeling options.
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