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ABSTRACT

Single-stranded RNAs (ssRNAs) are ubiquitous RNA
elements that serve diverse functional roles. Much
of our understanding of ssRNA conformational
behavior is limited to structures in which ssRNA
directly engages in tertiary interactions or is recogn-
ized by proteins. Little is known about the structural
and dynamic behavior of free ssRNAs at atomic
resolution. Here, we report the collaborative appli-
cation of nuclear magnetic resonance (NMR) and
replica exchange molecular dynamics (REMD) simu-
lations to characterize the 12 nt ssRNA tail derived
from the prequeuosine riboswitch. NMR carbon spin
relaxation data and residual dipolar coupling meas-
urements reveal a flexible yet stacked core adopting
an A-form-like conformation, with the level of order
decreasing toward the terminal ends. An A-to-C
mutation within the polyadenine tract alters the
observed dynamics consistent with the introduction
of a dynamic kink. Pre-ordering of the tail may in-
crease the efficacy of ligand binding above that
achieved by a random-coil ssRNA. The REMD simu-
lations recapitulate important trends in the NMR
data, but suggest more internal motions than in-
ferred from the NMR analysis. Our study unmasks
a previously unappreciated level of complexity in
ssRNA, which we believe will also serve as an ex-
cellent model system for testing and developing
computational force fields.

INTRODUCTION

Single-stranded RNAs (ssRNAs), typically located at the
ends of RNA hairpins and consisting of more than three
unpaired residues, serve diverse structural and functional
roles. They can fold onto neighboring RNA hairpins to
form pseudoknots, essential architectural RNA elements
involved in ribosomal frameshifting (1,2), hepatitis C
internal ribosomal entry site (IRES) recognition (3,4)
and telomerase activity (5). Messenger RNA (mRNA)
degradation is prevented or promoted by 30 addition of
a polyadenylated tail, which recruits essential protein co-
factors (6). Cleavage of the 50 transfer RNA (tRNA)
leader by RNase P is a key step in tRNA maturation
(7). In riboswitches, ssRNA links the ligand-binding
aptamer domain to the expression platform, providing the
basis for communication between the two (8–10).
Much of our understanding of the conformational be-

havior of ssRNA comes from high-resolution NMR and
X-ray structures of RNA, in which ssRNA directly en-
gages in tertiary or RNA–protein interactions. However,
the atomic-level structural and dynamic behavior of these
elements in the absence of these interactions remains
unclear, in large part due to their high degree of flexibility.
Several studies suggest that ssRNA polynucleotides adopt
stacked and partially helical conformations, particularly
adenine-rich sequences; however, the biological relevance
of these structures is unclear (11–17). Atomic-resolution
studies of ssRNA are scarce: at present only one iso-
sequential ssRNA and ssDNA sequence has been char-
acterized by homonuclear NMR methods and shown to
possess properties reminiscent of A-form and B-form
helices, respectively (18). Few MD studies have been
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performed on ssRNA, the majority of which use the
AMBER force field (19,20) to explore the impact of
chemical modifications such as peptide nucleic acids
(PNA) and O20-methylation (21–24).
The class I prequeuosine riboswitch (queC), typically

found in firmicute bacterial species, is commonly located
in the 50-untranslated region (UTR) of the queCDEF
operon, which expresses proteins directly involved in the
queuosine biosynthetic pathway (25). The aptamer binds
preQ1, an intermediate in queuosine synthesis, with high
affinity to attenuate protein expression at either the tran-
scription or translation level (25). This class has the
smallest minimal aptamer domain (34 nucleotides, nt) dis-
covered to date, consisting of a small hairpin followed by
a 12 nt ssRNA tail (Figure 1A). Upon ligand recognition,
the highly conserved adenine-rich tail condenses into a
pseudoknot, forming a host of interactions to both the
hairpin and ligand, including A-minor ‘kissing’ inter-
actions between the ssRNA polyadenine tract and the
minor groove (26–30). The activity of transcription-
regulating riboswitches, such as the Bacillus subtilis queC
riboswitch, has been shown to depend on the kinetics of
ligand binding as well as the rate of transcription (8).
Notably, the very small size of the queC riboswitch
leaves very little time, in comparison to other switches,
for ligand binding to take place prior to formation of
the anti-terminator helix which, when formed, prevents
terminator helix formation, thereby allowing gene expres-
sion to continue. For example, the B. subtilis FMN
riboswitch, which is highly dependent upon the rate of
polymerase and contains sites that locally pause polymer-
ase to lengthen the ligand-binding window, has �70 nt
between the minimal aptamer sequence and complete for-
mation of the anti-terminator helix (8). In comparison, the
ligand-binding window for the queC riboswitch is �20 nt
(26,27). How efficient ligand binding is achieved is unclear
given that the ssRNA tail is thought to be highly dis-
ordered, and therefore capable of sampling a wide range
of competing conformations.
Here, we use NMR chemical shifts, spin relaxation,

and residual dipolar couplings (RDCs) in conjunction
with REMD simulations using the recently updated
CHARMM27 nucleic acid force field (31,32) to explore
the conformational properties of the 12 nt ssRNA tail
from the queC aptamer domain and the impact of a
single A-to-C mutation targeting the polyadenine tract.
Our study unmasks a previously unappreciated level of
complexity in ssRNA and suggests that these structures
can serve as excellent model systems for testing and de-
veloping computational force fields.

MATERIALS AND METHODS

Sample preparation

Uniformly 13C/15N-labeled queC36 and C14U/C17U
constructs were prepared by in vitro transcription as
described previously (33). Unlabeled wild-type (WT,
50-AUAAAAAACUAA-30) and A29C (50-AUAACAAA
CUAA-30) RNAs were purchased from Integrated DNA
Technologies (IDT) and purified using a C18 column

(Waters) followed by lyophilization and reconstitution in
NMR buffer (15mM sodium phosphate, pH 6.4; 25mM
sodium chloride, 0.1mM EDTA) containing 10% D2O by
volume. 100% D2O samples were prepared by repeatedly
lyophilizing the sample and replacing with 99.99% pure
D2O (Sigma) three times. RNA concentrations ranged
from 1.5 to 2.8mM. AMP, UMP and CMP (Sigma)
were directly dissolved into NMR buffer with no addition-
al purification to 5mM. For RDC measurements, samples
were dialyzed into Millipore-purified ddH2O using 1 kDa
dialysis tubing (Spectrum Labs), lyophilized, and re-
constituted into 52.4mg/ml Pf1 phage solution (34–36)
in NMR buffer with 100% D2O (Asla Biotech). RNA
concentrations in Pf1 phage ranged from 1.5 to 2mM.

UV/Vis melting

RNA samples (0.25–0.5 mM) were prepared in NMR
buffer and the melting profiles measured between 275K
and 368K using a Varian Bio 300 UV/Vis instrument
equipped with a Cary Temperature Controller. The ab-
sorbance at 260 nm was recorded every 0.5� with a ramp
rate of 0.5�/min. The two-state helix to coil melting tran-
sition was analyzed using

A ¼ AC+ ðAH � ACÞ
eð

�S
R �

�H
RTÞ

1+eð
�S
R �

�H
RTÞ

 !
,

where A is the absorbance value at a given temperature T,
AH is the absorbance of the fully helical ssRNA, AC is the
absorbance of the fully random coil ssRNA, �S and �H
are the entropy and enthalpy of the melting transition re-
spectively, and R is the gas constant (37,38). Absorbance
values were fitted to the above equation using the
non-linear least squares fitting function in Origin 7 to de-
termine thermodynamic parameters. The melting tempera-
ture (Tm) was determined by dividing the enthalpy by the
entropy.

NMR experiments

All NMR experiments were performed on a Avance
Bruker 600MHz NMR spectrometer equipped with a
triple-resonance 5-mm cryogenic probe. NOESY experi-
ments were performed at 277K and 298K using a
mixing time of 350ms (39). 13C spin relaxation experi-
ments were performed at natural abundance and 298K
(40). Relative order parameters were calculated by
normalizing (2R2–R1) to either A31 (C8) or C33 (C6).
Relaxation parameters were computed using
HydroNMR (41,42), assuming an idealized A-form struc-
ture, to obtain diffusion tensor parameters (tm and Dratio),
and in-house written software was used to compute R2/R1

values as previously reported (33,40). Motionally averaged
bond lengths of 1.104 Å were used for both C8 and C6
moieties as previously described (40,43). The following
experimentally derived CSAs (sxx, syy, szz) were used in
the analysis: (89, 15, �104); (80, 5, �85); and (98.4, 9.2,
�107.5) for C2, C8 and C6 moeties (43,44). IP-COSY ex-
periments were performed at 277K and 298K to observe
relative 3JH10–H20 scalar coupling crosspeak intensities (45).
Base and sugar 1H-13C splittings were measured from the
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difference between the upfield and downfield components
of the 1H-13C doublet along the 1H component using the
narrow transverse relaxation-optimized spectroscopy
(TROSY) component in the 13C dimension as imple-
mented in 2D 1H-13C S3CT-heteronuclear single
quantum correlation (HSQC) experiments (46). 2H
splittings were 71 and 69Hz for WT and A29C, respect-
ively. Idealized A-form structures were constructed using
Insight II (Molecular Simulations, Inc.) correcting the pro-
peller twist angles from+15� to �15� using an in-house
program, as previously described (47). The complemen-
tary strand was removed and the resulting ssRNA used
in NMR data analysis. B-form helices were constructed
using W3DNA (48).

Computational methods

Simulation. REMD simulations were performed with the
CHARMM simulation package (49) using the recently
updated CHARMM27 nucleic acid force field (31,32)
and the MMTSB (50) tool set. Each REMD simulation
comprised 40 replicas exponentially distributed over a
temperature range from 278K to 330K, resulting in an
average exchange acceptance ratio of 30%. Each replica
was first equilibrated for 0.5 ns, restraining nucleotide
heavy atoms, and subsequently run without any restraints
for 10 ns, with exchange moves attempted every 0.5 ps.

Both WT and A29C RNAs were initially built in an
ideal A-form helical configuration and served as the
starting conformation in every simulation of REMD.
The RNA was solvated in an 80-Å cubic box of
pre-equilibrated TIP3P water (approximately 50 000
atoms). Twelve pairs of sodium chloride with an addition-
al 11 sodium ions were added to the box, corresponding to
the experimental ionic concentration of 40mM.

Analysis. We utilized the last 5 ns of the REMD trajectory
at 298K for the following analysis. Base stacking energies
were defined as the electrostatic and van der Waals inter-
action energies between the adjacent bases. The molecular
orientation was expressed by the order parameters S2 of
the C–H bond vectors employing the model-free approach
of Lipari and Szabo (51). After a translational and rota-
tional fit of each RNA snapshot to the ideal A-form
helical structure, the order parameters were taken from
the plateau phase of the correlation function, given by
CðtÞ ¼ P2ð

�
�
*
ð0Þ � �

*
ðtÞÞ
E
, where P2 is the second order

Legendre polynomial and �
*

is the unit vector along the
C–H dipole. Additionally, from the atomic coordinates we
constructed the RDC values by first orienting an idealized
A-form ssRNA helix into the principal axis system
determined from the order tensor analysis of the experi-
mental RDCs. Each frame of the trajectory was
superimposed with this ideal helix followed by calculating

the average of , 3 cos2 ��1
2

D E
, where � is the angle between a

given bond vector (e.g. C10H10) and the z-axis. The RDC
values were then scaled by �82/r3, in which r is the C–H
bond length and a factor of �82 is applied to shift the
computed RDCs to the same scale as the NMR values.
The average structure of the ssRNA was calculated as the

structure with the minimal root-mean-square deviations

from all RNA conformations in the 5 ns REMD

trajectory.

RESULTS AND DISCUSSION

NMR chemical shift and NOE-based analysis of the
ssRNA tail conformation

Previous studies have shown that in the absence of ligand,
the queC aptamer domain folds into a non-native hairpin,
in which the 50-strand frame-shifts to allow the first two
guanine residues to base pair, with the 12 nt ssRNA
tail lacking any tertiary interactions (26). The 2D C–H
NMR spectra of the 36 nt queC minimal aptamer
domain (Figure 1A), in the absence of ligand, show severe
resonance overlap and large variations in resonance
intensities indicating a highly disordered conformation
(Figure 1B). Excess imino proton resonances as well as
1H-15N NOE data indicate that the unbound queC
aptamer domain is in equilibrium between native and
non-native hairpin conformations (data not shown), con-
sistent with previous NMR studies (26).
The NMR spectra suggest that the unbound 36 nt queC

minimal aptamer domain is highly disordered and that the
ssRNA tail is not involved significantly in any tertiary
interactions. To test this hypothesis further, we compared
NMR spectra of the isolated 12 nt ssRNA tail with the
corresponding spectra of the unbound queC aptamer.
Remarkably, NMR spectra of the isolated 12 nt ssRNA
tail overlay almost perfectly with the queC aptamer
domain and specifically onto the highly intense resonances
corresponding to highly disordered residues (Figure 1B).
The only significant deviations are observed for A25 and
U26, which are located at the junction site between the
hairpin and the tail (Figure 1B). This indicates that in the
absence of ligand, the ssRNA tail is not involved in any
significant tertiary interactions under the NMR conditions

Figure 1. (A) Sequence and secondary structure of the B. subtilis queC
riboswitch minimal aptamer with PreQ1 inset, (B) 2D C–H NMR
chemical shifts show near-identical agreement between single-stranded
tail (SS tail), shown in red, and unbound minimal aptamer (queC36),
(C) NOE crosspeaks at 277K enable resonance assignment and indicate
base stacking within single strand.

Nucleic Acids Research, 2012, Vol. 40, No. 3 1347



(1mM RNA, 25mM sodium chloride, 15mM sodium
phosphate, pH 6.4, 0.1mM EDTA, 298K).
Similarly to the Fusobacterium nucleatum queC

riboswitch, the B. subtilis queC aptamer forms kissing
dimers, as observed in non-denaturing polyacrylamide
gels (Supplementary Figure S1) (52). To ensure that the
dimer does not obstruct hairpin–tail interactions, we
compared a mutant C14U/C17U construct characterized
previously by Kang and coworkers to generate a ligand-
bound solution NMR structure (26) to the WT aptamer.
MFold predicts the C14U/C17U mutations will reduce the
dimer stability from �6.1 kcal/mol to �0.9 kcal/mol (53).
While we observe removal of the kissing dimer, chemical
shifts overall overlay extremely well between the WT queC
aptamer and the C14U/C17U mutant (Supplementary
Figure S1). Specifically, tail chemical shifts correspond ex-
tremely well to the 12 nt ssRNA, further suggesting that
the tail does not participate in tertiary interactions in the
absence of ligand under our NMR conditions.
Strikingly, the spectra of the 12 nt ssRNA are well

resolved, indicating that it does not adopt a completely
random conformation (Figure 1B and Supplementary
Figure S2). This stands in stark contrast to corresponding
spectra of a 12 nt polyuridine (polyU) ssRNA, well estab-
lished to have a random-coil conformation (16), which
exhibits severe spectral overlap indicative of a highly dis-
ordered conformation (Supplementary Figure S2). This
structural order is observed in the ssRNA despite the lack
of any observable imino protons and therefore any base
pairing or secondary structure (Supplementary Figure S3).
The 2D 1H–1H NOESY spectrum of the ssRNA shows

abundant nuclear Overhauser effect (NOE) connectivities
expected for a helical conformation, allowing the near
complete assignment of base and sugar (H10) protons at
298K (Supplementary Figure S3). Particularly note-
worthy are inter-base NOEs observed between adenine
H8 protons within the polyadenine tract and between
C33-U34 H6 protons, indicating significant base stacking
within the polyadenine core at 277K and decreased at
298K (Supplementary Figure S3) (54). Sequential NOEs
are only observed for A25, U26, A35, and A36 upon
decreasing the temperature from 298K to 277K,
indicating a higher level of disorder at the terminal ends
(Figure 1C and Supplementary Figure S3). Furthermore,
homonuclear three bond scalar couplings (3JH10–H20)
indicate that residues within the polyadenine core adopt
a C30-endo sugar pucker conformation, consistent with an
A-form-like geometry, with the tendency to adopt alter-
native sugar pucker conformations increasing towards
terminal residues (Supplementary Figure S2).
NMR chemical shifts are extremely sensitive probes of

the local electronic environment for a given bond vector
and can provide useful structural information (55–58).
Highly disordered residues are expected to have chemical
shifts similar to nucleotide monophosphates (NMPs).
While the chemical shifts of terminal residues are similar
to their NMP analogs, increasing differences are observed
when approaching the polyadenine core with the great-
est differences observed for A30–32 (Supplementary
Figure S2). The directionality of the chemical shifts is con-
sistent with increased formation of stacking interactions

towards the center of the tail (57). This is further sup-
ported by chemical shift perturbations in a trajectory
toward the NMPs with increasing temperature (data not
shown). Alternatively, addition of magnesium up to 4mM
results in slight chemical shift perturbations farther
from NMPs, consistent with previous studies suggesting
that increases in ionic strength stabilize ssRNA stack-
ing interactions (59) (data not shown). In contrast polyU
has near-identical (�0.1ppm) chemical shifts to UMP
(Supplementary Figure S2). Thus, consistent with NOE
data, the chemical shift data suggest a comparatively stacked
core with a growing level of disorder towards the terminal
ends. Normalized resonance intensities (33) further sup-
port these observations, which gradually increase
towards the terminal ends, consistent with a higher level of
pico- to nanosecond motions (Supplementary Figure S2).

Thermal stability by experiment and REMD computation

The abundance of NOEs indicates significant base
stacking interactions, which likely contribute to ordering
of the tail. To probe the thermodynamic stability of the
tail, we performed UV/Vis melting experiments to deter-
mine the melting temperature of the helix to coil transi-
tion. Consistent with previous studies of single-stranded
nucleic acids, the melting profile of the ssRNA is extreme-
ly broad, characteristic of a non-cooperative transition
(Figure 2A) (37). Previous studies of a 7 nt polyadenine
ssRNA in similar buffer conditions yield analogous
melting temperatures to those observed (�35�C
compared to 31.7±1.90�C) (37).

We then used our REMD simulations to explore the
temperature dependence of base stacking compared to
the described UV/Vis melting curves. Base stacking
energies from the REMD simulation between tempera-
tures 278–330K show a similar gradual decrease with
increasing temperature and a similar, although reduced,
Tm value (experimental 31.7±1.90�C compared

Figure 2. (A) UV melting profile (black) compared to base stacking
energy calculated from REMD simulations (gray), (B) NMR (closed)
and REMD (open) relative order parameters suggest central
polyadenine residues are more ordered with flexible terminal ends, (C)
NMR 13C spin relaxation R2/R1 values, with HYDRONMR-predicted
values assuming an order parameter (S2) of 0.45 shown as a gray bar,
(D) REMD-calculated order parameters.
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to computed 20–25�C, as estimating the T50 value from
melting curve, Figure 2A). However, the calculated base
stacking energy plateaus around 320K while the experi-
mental slope begins to plateau around 330K, indicating
that stacking energies may be under-estimated in the
REMD simulation or that additional unaccounted-for
factors contribute to the ssRNA stability. Nevertheless,
our data suggest that base stacking is the guiding force
behind ssRNA stability, consistent with previous studies.

Picosecond to nanosecond dynamics by NMR spin
relaxation and comparison with REMD simulations

To gain further insights into the dynamic properties of
the ssRNA at pico- to nanosecond timescales, we mea-
sured longitudinal (R1) and transverse (R2) carbon relax-
ation data for the nucleobases (C2 C6 C8) using 2D 13C
relaxation R1 and R1r NMR experiments (40), where
R1 and R2 values are determined using in-house software
(Supplementary Figure S4). These measurements repre-
sent the first nucleobase 13C relaxation measurements
performed on a ssRNA. The measured R1 and R2 values
were used to compute order parameters (51) using
S2=(2R2–R1) (60), and normalized to yield a relative
order parameter (S2

rel) describing the relative degree of
order within a molecule ranging from 0 to 1, where 0
and 1 represent minimum and maximum order, respect-
ively. The S2

rel values were normalized against central
residues A31 (C8) and C33 (C6). Resonance overlap pre-
vented the normalization of C2 spins. Again, we observe a
gradual reduction in S2

rel indicating higher levels of
disorder moving from central polyadenine residues
(A28–C33) towards the terminal ends (Figure 2B).

We also computed the S2
rel values based on the REMD

simulation described above. The REMD simulations re-
produce the general trends observed in the experiments;
however, the simulations show significantly increased
dynamics at the terminal ends compared to experimental
values, with S2

rel values approaching the dynamic limit
(Figure 2B). Additionally, while experimental values
have similar relative order parameters from A28–C33,
large variations are observed in the REMD simulation,
with A29–A30 being more ordered and A32 less ordered
than experimentally observed (Figure 2B). These differ-
ences may reflect shortcomings in the force field and/or
mismatch in the experimental/computational timescales
since the REMD simulations likely probe fluctuations
that extend beyond the picosecond timescales sensed by
spin relaxation data.

The high level of disorder and motional coupling in the
ssRNA prevents quantitative analysis of relaxation data
using the model-free formalism, which assumes that
internal and overall motions are decoupled from one
another (51). This makes it difficult if not impossible to
assess the absolute level of disorder in the ssRNA; one can
only make qualitative assessments about the relative
disorder across different residues. However, it is note-
worthy that even the comparatively high R2/R1 values
measured in the rigid core (�2.9, Figure 2C) remain sig-
nificantly lower than values predicted for a perfectly rigid
helical ssRNA (�6.4, Supplementary Figure S4) as

estimated using the program HYDRONMR (41,42). If
we assume an overall diffusion tensor predicted by
HYDRONMR, we find that central polyadenine residues
are highly flexible with an estimated average NMR spin
relaxation order parameter S2 of �0.45 (Figure 2C and
Supplementary Figure S4). Interestingly, similar though
slightly smaller absolute S2 values are calculated from
the REMD simulations (on average S2

� 0.36 for core resi-
dues, Figure 2D). These data indicate that despite meas-
urable stacking interactions and a helical-like average
conformation, the polyadenine core is highly disordered
with residues experiencing fluctuations on the order of a
±40� cone angle (61) at pico- to nanosecond timescales.

Overall conformation and sub-millisecond dynamics by
NMR residual dipolar couplings and comparison with
REMD simulations

To further probe the conformation of the ssRNA and
extend the NMR timescale sensitivity to milliseconds, we
measured RDCs (62,63) using 52.4mg/ml Pf1 phage as an
ordering medium. While most RNAs align optimally in
�25mg/ml of phage, a much higher concentration of
phage was used for the ssRNA to ensure optimal align-
ment. To our knowledge, these are the first RDC meas-
urements reported on a single-stranded nucleic acid. The

RDCs measured between two nuclei depend on 3 cos2 ��1
2

D E
,

where � is the angle between the inter-nuclear vector and
the magnetic field and the angular bracket denotes a time-
average over all orientations sampled at sub-millisecond
timescales (62,63). RDCs were measured for base C5H5,
C6H6, C8H8, C2H2 and sugar C10H10 moieties (47).
In general, isotropic motions tend to reduce the

observed RDC value, approaching zero at the limit of
spatially unrestricted isotropic motions (61,64,65). In
the ssRNA, large base C–H RDCs are measured in the
polyadenine tract residues that gradually decrease at the
termini (Figure 3A). Although small RDC values can also
arise from static placement of the bond vector near the
magic angle relative to the principal direction of order, the
overall trends observed are consistent with NMR chemical
shift and S2

rel data suggesting that the RDCs indicate
increased dynamic averaging at the termini (Figure 3A).
Interestingly, the near-zero RDCs measured at terminal
residues (Figure 3A and Supplementary Figure S5) agree
more closely to the REMD simulations compared to the
S2

rel values, indicating that the discrepancy between the
measured and computed S2

rel values may be due to trun-
cation of the S2 sensitivity to motions faster than nano-
seconds. These results add to a growing number of NMR
studies on different types of RNA showing that RDC data
are capable of probing motions that are incompletely
sensed by spin relaxation due to truncation of the
time-sensitivity by overall correlation time of the
molecule (64,66–68). Unfortunately, severe spectral
overlap, particularly pronounced in the Pf1 phage
sample, prevented measurement of several C10H10 RDCs
for the polyadenine core.
We subjected the RDCs (excluding RDCs for the two

flexible residues from the terminal ends) to an order tensor
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analysis (47,69,70) assuming different input structures
including single strands derived from idealized A-form
and B-form helices, the REMD-averaged structure, and
available ligand-bound X-ray and NMR structures
(26,27). Despite the relatively small number of RDCs
used in this analysis, we clearly observe a better fit with
an A-form geometry (Q-factor 4.77%) as compared to all
other conformations (Q-factor� 16%) (Figure 3B). This is
consistent with independently observed 3JH10–H20 scalar
coupling crosspeaks, which indicate a C30-endo sugar con-
formation for core residues in the tail, suggesting an
A-form (and not B-form) helical geometry. The RDCs
are in strong disagreement with preQ1-bound X-ray and
NMR structures (PDBID: 3FU2 and 2L1V) indicating
that the tail must undergo a transition from an A-form
helical geometry towards the distinct helical conform-
ation observed in the X-ray and NMR structures in
which the A-form geometry is perturbed at the hairpin-tail
junction, likely due to torsional strain from the ssRNA
folding back upon the hairpin. The REMD-averaged
structure has a Q-factor of 30%, indicating a better fit
than ligand-bound structures, but is still outside the
range considered to represent a good fit. Together, these
data suggest that, on average, the ssRNA tail adopts an
A-form like conformation. The good RDC fit to the
A-form structure also suggests that averaging of the
RDCs due to internal motions is largely isotropic in
nature, causing a semi-uniform attenuation of the RDCs
relative to values expected for an A-form structure. The
dynamics could involve exchange between a stacked
ordered conformation and unstacked highly disordered
conformation, or local isotropic motions about the
average A-form conformation.
As a further check on the accuracy of the A-form struc-

ture, we compared the principal direction of alignment
(Szz) determined experimentally using RDCs assuming a
ssRNA A-form structure with the orientation predicted by
PALES (71) using a ssRNA A-form structure.
Surprisingly, we find that the experimentally determined
Szz deviates from the helix axis by �19.8� (Figure 3C).
Interestingly, PALES predicts a principal direction of
order that deviates from the helix axis by 14.4�; the Szz

orientation predicted using PALES is in good agreement
from that measured experimentally (deviation � 5�). The

deviation from the helix axis can be attributed to the
absence of the complementary strand, resulting in an
overall shape with a long axis that is not coincident with
the helical axis, as reported previously for a quadruplex
DNA topology (72).

To further test the conformational distribution from the
REMD simulations, we used a number of simplifying as-
sumptions to compute RDCs from the REMD trajectory.
Snapshots from the REMD simulations were super-
imposed onto an idealized A-form helix oriented in the
principal axis system determined using the experimental
RDCs and the order tensor fit. RDCs were then arbitrarily
scaled by �82/r3, in which r is the C–H bond length and
accounts for bond length variations during the dynamics.
We find excellent agreement between experimental and
computed nucleobase RDCs; however, computed C10H10

RDCs fail to reproduce observed RDCs, particularly for
A32: while the magnitude is similar (18Hz compared to
�30Hz) the sign differs, suggesting the orientation of the
C10H10 bond vector differs between experiment and simu-
lation (Supplementary Figure S5). C10H10 RDCs are gen-
erally opposite in sign to base RDCs in a double-stranded
A-form helix. However, back-calculated C10H10 RDCs
from the order tensor analysis assuming a ssRNA
A-form helix are positive in sign, suggesting the C10H10

orientation in the REMD simulations deviates from an
A-form structure (Supplementary Figure S5).

Impact of A-to-C mutation within polyadenine core

Taken together, the data show that the polyadenine tract
is relatively ordered at 298K, with a gradual reduction in
order approaching the termini and that the base stacking
interactions are the guiding force behind this order. To
determine whether disrupting the polyadenine tract will de-
stabilize the global structure, we substituted A29 within
the polyadenine tract with a cytosine residue (referred to
as A29C). Other types of mutations involving placements
of uridine were not explored as these were expected to
yield partially base paired conformations. As with the
WT construct, we observed no imino protons, indicating
the absence of any detectable base pairing and secondary
structure (Supplementary Figure S7).

Figure 3. RDCs and order tensor analysis of the 12 nt queC aptamer tail (A) Measured (closed) and computed (open) RDCs show reduced values at
the terminal ends, indicating increased dynamics, (B) Q-factor comparison indicates the ssRNA adopts an A-form conformation, (C)
Sauson-Flamsteed map shows good agreement between predicted (open) and experimental (closed) order tensors.
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The 2D C–H spectra for the A29C mutant remain
highly disperse, and the chemical shift perturbations
relative to WT are clustered around the site of mutation
(A28 and A30) (Figure 4A and Supplementary Figure S6).
However, small but significant chemical shift perturb-
ations relative to WT are also observed at more distant
residues, including A27, A31, C33 and U34. These per-
turbations diminish when moving away from the center
of the ssRNA and are basically absent in the highly
flexible terminal residues (Figure 4A and Supplementary
Figure S6). Such longer-range perturbations suggest that
the mutation may have a long-range effect possibly by
influencing the stacking interactions of several nucleo-
bases. A perturbation to stacking interactions is also sup-
ported by distinct NOE connectivities in A29C, which
show weakened cross peaks to C29, and new crosspeaks
between A28 (H2) and A30 (H10) that indicate C29 par-
tially loops out to allow A28 to stack onto A30
(Supplementary Figure S7). The melting temperature of
the mutant is reduced by �5�C, and the base stacking
energies are computed to be �2 kcal/mol lower compared
to WT, indicating that the mutation likely destabilizes the
stacking interactions (Supplementary Figure S6).

Interestingly, many of the residues that experience
chemical shift perturbations following the A29 to C29
mutation also exhibit a greater degree of dynamics
as assessed by normalized resonance peak intensities in
2D C–H HSQC spectra (Supplementary Figure S6)
and carbon relaxation data (R1 and R2) (Figure 4B and
Supplementary Figure S8). In particular, severe line broad-
ening consistent with a slow exchange process occurring
at micro- to millisecond timescales manifesting as reduced
resonance intensities in 2D spectra and higher R2 values

is observed for C29 in the A29C mutant (Supplementary
Figures S6 and S8). This is not observed for A29 in WT.
Smaller but significant line broadening is also ob-
served for residues A31, A32 and U34 (Supplementary
Figure S8). This line broadening across several residues
may reflect exchange between stacked and unstacked con-
formations. Higher intensities as well as reduced S2

rel

values are observed for residues A27 and A28, indicating
a greater degree of fast pico- to nanosecond dynamics
(Supplementary Figures S6 and S8). Note that the high
R2 and weak signal intensity leads to a higher error in the
R2/R1 measurements, particularly for C29.
Although the A29C RDCs are generally in good agree-

ment with the WT RDCs, variations are observed for
a number of residues (U26, A27, A31) that indicate dif-
ferences in conformation and/or dynamic behavior
(Figure 4C). Though an order tensor analysis of 13
RDCs shows best agreement with an A-form structure,
the quality of the fit is not as good as that observed for
WT (Q-factor=8.77%, Figure 4D). The Szz direction
measured for A29C when assuming an A-form structure
deviates substantially from that predicted using PALES
(�11�, Supplementary Figure S9). These data suggest
that A29C deviates from an idealized A-form structure
as compared to WT. These deviations may reflect static
and/or dynamic bending about the C29 pivot point,
possibly arising from looping out of this residue from
the helical stack. Such a conformation is observed in the
REMD simulations of A29C �1% but not in WT (data
not shown).
In general, the REMD simulations predict the NMR

data measured for A29C with reduced quality to that
noted for WT. Interestingly, the computed absolute S2

values indicate a global reduction in order for A29C, par-
ticularly for residues A27–C33 (Supplementary Figure
S8), whereas NMR relaxation parameters between WT
and A29C are more similar, suggesting comparable
global order parameters. The REMD simulations reveal
enhanced dynamics at C29 consistent with the NMR
chemical exchange data. The REMD simulation also
suggests increased dynamics at A32, which is not
observed experimentally: although slightly reduced, the
S2

rel is within error of A29–A31 values (S2
rel of 1)

(Supplementary Figure S8). Computed RDCs agree rea-
sonably with measured RDCs, although the C10H10 RDCs
are opposite in sign as observed in the comparison
between WT NMR and REMD-calculated RDCs. The
Q-factor comparing the average REMD structure to
measured RDCs is 70%; however, removal of A28
C8H8, A30 C2H2 and A30 C10H10 RDCs improves the
Q-factor significantly. This improvement is observed only
for the REMD structure (Figure 4D), indicating that these
residues, localized about the mutation site, adopt non-A-
form conformations and likely experience perturbations
from the increased dynamics at C29. The difference in
timescales between the REMD simulations and NMR
may be another factor leading to the observed dis-
crepancies. Nevertheless, MD and NMR data both indi-
cate significant dynamics at the mutation site with
perturbations extending toward the 30 end of the ssRNA.

Figure 4. Comparison of WT and A29C constructs (A) Chemical shift
perturbations between WT and A29C are largely localized about
mutation site, (B) NMR spin relaxation parameters between WT and
A29C are similar, with deviations occurring several residues from
mutation site, (C) Measured RDCs between WT and A29C values
show good agreement, (D) Q-factor indicates A29C adopts A-form
conformation. Gray circles indicate quality of fit upon removal of
A28 C8H8, A30 C10H10 and A30 C2H2 measured NMR values from
order tensor analysis.
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ssRNA tail conformation and dynamics optimized for
ligand docking in queC aptamer

One of the main questions we set out to explore during the
course of our studies was how the queC aptamer manages
to efficiently bind its cognate ligand despite the small com-
mitment time available in the kinetic switch and the large
conformational space that may be available to a highly
disordered ssRNA, which would have to search many
competing conformations before arriving at the ligand
bound pseudoknot conformation. Our study reveals that
the ssRNA is not entirely disordered, but rather, has the
character of a stacked A-form-like helical conformation
which may effectively reduce the conformational search
of the ssRNA, promoting efficient docking onto the
hairpin to form the pseudoknot. Moreover, our study
uncovers a greater degree of flexibility towards the
terminal ends, particularly the 50-end which forms
the pivot point for docking the ssRNA tail onto the
hairpin.
The NMR data clearly show the absence of any

pre-existing tertiary interactions involving the ssRNA
tail in the unbound queC aptamer domain. This together
with our findings regarding the conformational behavior
of the unbound ssRNA tail suggests the following model
for ligand binding (Figure 5). In the absence of ligand, the
ssRNA tail is disordered but on average forms an A-form
helix-like conformation, which can efficiently explore con-
formational space about a highly flexible junction. The
ligand may transiently form encounter complexes when
the tail is close in space to the P1 hairpin, and possibly
with the help of divalent ions such as calcium (27,73),
triggering the necessary conformational changes required
to form the pseudoknot and binding pocket. This finding
is consistent with computational modeling of the ligand
binding mechanism in which A-minor tertiary interactions
form first, followed by pseudoknot formation (30) and
may explain the fast ligand binding rate observed in the
related F. nucleatum queC riboswitch (52). Our results,
including the observation of greater dynamics in the
mutant, provide a framework for more rigorous testing
of this proposed model with future in vitro and in vivo
studies.

CONCLUSION

Our study shows that ssRNA can exhibit complex con-
formational behavior, including variable levels of stacking
and propensities to form an A-form helical conformation
across the polynucleotide chain, and also, the ability to
interrupt stacked residues by introducing sequence-specific
kinks and/or distortions. While it has been known for
some time that polyadenine stretches tend to stack and
form helical conformations (13,14,16,18,37), the details
of this helical geometry were difficult to decipher based
solely on NOE-based NMR data. Our RDC measure-
ments on the ssRNA, together with scalar coupling con-
stant measurements, strongly suggest that the polyadenine
tract forms an A-form-like conformation in the WT
ssRNA. Our results also unveil dynamic complexity in
ssRNA, including a gradual increase in disorder occurring
towards the terminal ends that is reminiscent of unfolded
polypeptide chains (74), and also, slower sequence-specific
dynamics occurring at micro- to millisecond time-
scales that may involve transient stacking/unstacking
motions that may result in kinking of the ssRNA.
Altogether, our studies show that ‘structured’ ssRNA
exhibits exquisite quality spectra and can be studied quan-
titatively using NMR-based structure and dynamics
measurements.

The REMD simulations recapitulate many of the key
features and trends observed based on the melting and
NMR data, including the existence of stacking inter-
actions that are weakened by the A29C mutation, the for-
mation of helical geometry that may be kinked in A29C at
the mutation site, and an increase in dynamic disorder
towards the terminal ends and localized about C29 in
the mutant. However, the REMD simulations showed
weaker agreement with sugar RDCs or sugar conform-
ation, particularly in the A29C mutant, and had increased
dynamics compared to the NMR data. Prior studies on
HIV-1 TAR RNA noted higher levels of dynamics in
CHARMM simulations compared to NMR measure-
ments (75). Our studies indicate that suboptimal base
stacking energies may be a source of these excess
dynamics. However, a quantitative assessment of the
simulations requires the application of domain-elongation
methods to rigorously decouple internal and overall
motions, and make it possible to quantitatively predict
NMR measurements (33,75–77). In addition, MD simula-
tions that retain aspects of time are required to compare
the rates of dynamics observed by relaxation and
exchange broadening type measurements. The simplicity
of ssRNA offers a much needed model system for such
studies directed at rigorously examining currently used
nucleic acid force fields.

Finally, our results suggest that the conformational
properties of the ssRNA tail are optimized to allow the
queC riboswitch to efficiently bind ligands within the short
commitment time available to this kinetic switch. In par-
ticular, the pre-stacked ssRNA tail can efficiently rotate
about a flexible hinge against the hairpin loop, and
explore conformational space efficiently for rapid ligand
binding. This pre-stacking about dynamic hinges may be a

Figure 5. A tentative model for queC riboswitch ligand recognition. In
the absence of ligand the ssRNA tail rotates freely about the helix-tail
pivot point in a stacked, A-form helical-like conformation. Upon
ligand recognition the pseudoknot is stabilized. A-minor tertiary
interactions are shown as open gray circles.
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general feature of many ssRNAs that can play different
architectural roles in a variety of RNA contexts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures S1–S9.
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