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ABSTRACT

The electrocaloric effect has drawn much attention due to its potential application in cooling devices. A negative electrocaloric effect is
predicted to be induced in defect-doped ferroelectrics by computational results [A. Gr€unebohm and T. Nishimatsu, Phys. Rev. B 93, 134101
(2016) and Ma et al., Phys. Rev. B 94, 094113 (2016)], but it need to be confirmed by experimental results. In this work, we prepared a 1mol. %
Mn-doped Pb(Zr0.2,Ti0.8)O3 ceramics (Pb((Zr0.2,Ti0.8)0.99,Mn0.01)O3), and the electrocaloric effect of the defect-containing ferroelectric
ceramics has been investigated by both direct and indirect methods. The indirect method shows a similar negative electrocaloric effect signal
as the computational results predicted, while the direct method gives a positive electrocaloric effect. The absence of the negative electrocaloric
effect obtained by the direct method may originate from: (a) the unavailability and the improper prediction of the Maxwell relation, (b) an
improper assumption of fixed defects in the computational models, and (c) the offset of heat loss due to the application of a large electric field.
In addition, we find a giant positive electrocaloric effect of 0.55K at room temperature in the aged ceramics where no phase transition takes
place. We attribute this abnormal electrocaloric effect to the restoration force of the defect dipoles. Our results not only provide insights into
the origin of the negative electrocaloric effect, but also offer opportunities for the design of electrocaloric materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090183

Electrocaloric materials have attracted much attention in recent
decades due to their promising applications in solid-state cooling devi-
ces as well as the compatibility with integrated circuits.1–4 The electro-
caloric effect (ECE) describes the temperature change in the material
when applying or withdrawing an external electric field, and it is of
two types, that is, a positive ECE wherein applying the electric field
induces a temperature increase and a negative ECE wherein applying
the electric field induces a temperature drop.5–7 However, different
from the relatively simple positive ECE, the origin of negative ECE is
still unclear (or under debate). More understanding about the origin
of the negative ECE can help us to avoid the offset of the negative ECE
on the positive ECE when designing electrocaloric materials/devices.8

In addition, some researchers suggest that a combination of positive

and negative ECEs can enhance the overall temperature change, and
thus increase the cooling efficiency.8,9

Experimentally, negative ECE can be indirectly estimated based
on the Maxwell relation and also be directly measured by monitoring
the change in the temperature or heat flow of the materials. PbZrO3

and PbZrO3 based antiferroelectrics are mainly reported to be negative
ECE materials. The negative ECE in PbZrO3 ceramics is identified by
a direct measurement with a temperature change of �0.16K by using
a bead thermistor.10 Soon after, an enhanced negative ECE was indi-
rectly predicted in La-doped PbZrO3 thin films with a temperature
change of �5K11 and in Eu-doped PbZrO3 thin films with a tempera-
ture change of �6.6K,12 by using the Maxwell relation. Apart from
antiferroelectrics, the negative ECE was also directly measured in
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ferroelectrics with different ferroelectric phase transitions.9,13,14 In
addition, it is predicted that a negative ECE would exist in a ferroelec-
tric with polar defect dipoles, as calculated by Monte-Carlo simulation
and molecular dynamics simulation.15,16 However, these theoretic pre-
dictions need to be further confirmed by experimental results.

In this work, we studied the ECE in ferroelectric ceramics contain-
ing defect dipoles. A typical tetragonal ferroelectric Pb(Zr0.2,Ti0.8)O3

(PZT) was chosen as the matrix and 1mol. % Mn was doped into the B
site of Pb(Zr0.2,Ti0.8)O3 to introduce defects, forming Pb((Zr0.2,Ti0.8)0.99,
Mn0.01)O3, henceforth denoted as PZTM. The distribution of the
defects in PZTM ceramics was controlled in different stages, and the
corresponding ECEs were measured by both a direct method based
on modified differential scanning calorimetry (DSC) and an indirect
method based on the Maxwell relation. It was found that the indirect
method gives a negative ECE, while the direct method reports a posi-
tive ECE. In addition, in the aged PZTM ceramics, we report a large
temperature change of 0.55K with a composition far away from
phase transition. Our results may offer an additional approach for
choosing and designing electrocaloric materials.

The details about the materials preparation, characterization and
indirect and direct methods of ECE measurement can be found in sup-
plementary material.

The effect of defect doping on the structure of PZTM ceramics is
characterized on different scales, and the results are shown in Fig. 1. In
the X-ray diffraction (XRD) pattern, all peaks are found to be indexed,
which indicates a pure perovskite structure without any second phase.
The scanning electron microscopy image and energy dispersive X-ray
spectroscopy mapping show an average grain size of about 20lm and
a homogenous distribution of Mn in the PZTM ceramics, as seen in
Fig. S1 in supplementary material. The bright field transmission elec-
tron microscopy image in Fig. 1(b) shows a typical stripe domain
with a size of hundreds of nanometers, which is widely observed in
tetragonal phased ferroelectric ceramics.17 To check the influence of
Mn doping on the local structure of the PZTM ceramic, one of the

[110] oriented crystals was chosen and an atomic resolution high angle
annular dark field (HAADF) image from a scanning transmission
electron microscope (STEM) was captured, as shown in Fig. 1(c). In
such a Z-Contrast image, the much brighter contrast represents the Pb
positions, while the much fainter features in-between represent Zr/Ti
atom columns.18 Clearly, doping 1mol. % Mn neither affects the
microstructure nor destroys the local lattice of the PZTM ceramics.

The ferroelectric-paraelectric phase transition of PZTM ceramics
was confirmed by the abnormal peak at 457 �C (that is, the Curie
point) in the temperature dependence of dielectric constant. It is
because of such high Curie temperature that we can observe the
pinched hysteresis loops at room temperature in the as-prepared
defect-doped PZTM ceramics, as shown in Fig. 2(b). The substitution
of Ti4þ/Zr4þ by Mn2þ induces oxygen vacancies for charge neutrality.
The negatively charged Mn2þ defects and the positively charged
oxygen vacancies tend to form defect dipoles, and the configura-
tion of defect dipoles follows the domain pattern of the ferroelec-
tric polarization [as shown in Fig. 3(a)] to lower the total energy
of the system.19 This process is called the aging effect.19 In this
case, due to the high Curie temperature of the PZTM ceramics, a
very fast aging process appears during the furnace cooling process
after sintering the ceramics. Similar fast aging phenomena can
also be seen in (K, Na)NbO3-based ceramics.20,21

The response of defect dipoles to the electric field is much slower
than the switching of polarization by the electric field.22,23 To detect
the effect of defect dipoles on the switching of polarization, the fre-
quency dependence of hysteresis loops is measured, and the results are
shown in Fig. 2(c). The polarization switching is slightly enhanced
when the frequency decreases from 50Hz to 10Hz. With a further
decrease of the frequency to 1Hz, a significant increase in polarization
is observed, which indicates the reduced pinning effect of the defects
on the polarization switching. To further observe the switching of
defect dipoles at the low-frequency electric field, the hysteresis loops
are tested at elevated temperatures, that is, 90 �C, to enhance the diffu-
sion of defects. The evolution of hysteresis loops under the application

FIG. 1. Macro-, micro-, and local-structures of the PZTM ceramics characterized by
(a) XRD, (b) bright field transmission electron microscopy and (c) HAADF STEM,
viewed along the [1�10] zone axis.

FIG. 2. (a) Temperature dependence of dielectric constant. Hysteresis loops mea-
sured at (b) 10 Hz with different electric fields and (c) 140 kV/cm at different fre-
quencies. (d) Hysteresis loop evolution under a 1 Hz electric field at 90 �C.
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of the electric field at a frequency of 1Hz is shown in Fig. 2(d). From
the first to fourth round application of the electric field, the pinched
double loop changes into a single loop.

Thus, the ECEs of the PZTM ceramics are studied with the
defects distributed in two states, that is, in an aging state and after pol-
ing. The distribution of the defects as well as its effect on the switching
of the ferroelectric polarization is schematically shown in Fig. 3.

The ECE of the PZTM ceramics is firstly investigated by both the
indirect method and the direct method when the defect dipoles are in
the aging state. The configuration of defect dipoles follows the ferro-
electric domain structure in the aging state and exhibits zero remanent
polarization without the application of the electric field, as shown in
Fig. 3(a). When applying the electric field, the defect dipoles remain
unswitchable, while the polarization switches. Figure 4(a) shows the
polarization-temperature (P-T) curves, where a gradually increased
polarization with elevated temperatures is observed. Correspondingly,

the temperature change estimated by Maxwell’s relation shows a nega-
tive ECE in the whole temperature range at every applied electric field.
In contrast, as shown in Fig. 4(d), the DSC heat flow shows an exo-
thermic peak with the applied electric field of 60 kV and an endother-
mic peak on removal of the electric field, indicating a positive ECE.9 It
is found that the exothermic peaks are slightly bigger than the endo-
thermic peaks. As suggested by Weyland et al.,24 this phenomenon
may be induced by hysteresis loss. The endothermic peaks are used to
calculate the ECE as it is most relevant for most applications. As com-
pared in the inset of Fig. 4(d), the direct method measures a positive
ECE of 0.55K under the electric field of 60 kV/cm at 40 �C, while the
indirect method predicts a negative ECE of �0.1K under the same
conditions, and a further enhanced negative ECE up to�1.22K is pre-
dicted by the indirect method when the electric field is increased to
120 kV/cm.

The PZTM ceramics are also poled (at 90 �C for 10min under an
electric field of 90 kV/cm) to align the defect dipoles. The hysteresis
loops and the distribution of the defects in the PZTM ceramics are
schematically shown in Fig. 3(b). The orientation of defect dipoles fol-
lows the poling direction, and also, the defect dipoles cannot be rotated
by the high frequency electric field. The heat flow of the PZTM
ceramics during the poling process is shown in Figs. 5(d)–5(i). The
elevated baseline with the application of the electric field is due to the
Joule heat induced by the movement/redistribution of the charged
defects. Figure 5(c) shows the hysteresis loops of the poled PZTM
ceramic at 30 �C, 50 �C, 70 �C, and 90 �C under electric fields of
80 kV/cm and 120 kV/cm. From the hysteresis loops at 30 �C, the

FIG. 3. Schematic of the effect of defect distribution on polarization switching at
room temperature when the defects are (a) in the aging state and (b) after poling
by applying a unipolar positive field. The filled squares represent the defect dipoles
in a multi-domain configuration in the aging state and in a single domain configura-
tion after poling. The large unfilled and small filled rectangles with red arrows repre-
sent the direction of ferroelectric polarization and defect dipoles, respectively. The
length of the arrow represents the strength of the polarization.

FIG. 4. ECE of the PZTM ceramic with defects in the aging state. (a) P-T curves.
(b) Temperature change estimated by the indirect method based on Maxwell’s rela-
tion. (c) Representative hysteresis loops under application of an electric field of
120 kV/cm. (d) Directly measured heat flow (that is, the DSC signal curve) on the
application and removal of the electric field of 60 kV/cm at 40 �C. The inset shows
the comparison of the temperature change measured by both the direct method
and the indirect method.

FIG. 5. ECE of the PZTM ceramics with defects in the poled state. P-T curves as
well as the estimated temperature change from the (a) 1st and (b) 3rd quadrants
of the hysteresis loops. (c) Representative hysteresis loops at 80 kV/cm and
120 kV/cm at various temperatures. DSC heat flow of the PZTM ceramics with
application and removal of electric fields of 90 kV/cm at 90 �C (d-i) and at 80 kV/cm
and 40 �C with the electric field parallel (d-ii) and antiparallel (d-iii) to the defect
dipoles, respectively. (e) The comparison of the ECE determined by direct and indi-
rect methods when the applied electric field is parallel or antiparallel to the defect
dipoles.
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room temperature internal electric field (Ein) induced by the aligned
defect dipoles can be estimated as �18.5 kV/cm by the left coercive
field (Elc) of �73 kV/cm and the right coercive field (Erc) of 36 kV/cm
[Ein¼ (ElcþErc)/2]. The polarization extracted from the 1st (3rd)
quadrant represents the polarization induced by the electric field paral-
lel (antiparallel) to the internal electric field. The absolute values of
polarization (that is, jPj) in the 3rd quadrant are used for the indirect
calculation. The P-T curves extracted from the 1st and 3rd quadrants
of the hysteresis loop are shown in Figs. 5(a) and 5(b), and the corre-
sponding ECE estimated by the indirect method are also plotted. With
both parallel and antiparallel defect dipoles, the indirect method pre-
dicts a negative ECE, and the difference is negligible. The direct mea-
surements of heat flow with the applied electric field parallel and
antiparallel to the defect dipoles are shown in Figs. 5(d-ii) and 5(d-iii),
respectively. A very small exothermic and an endothermic peak can be
observed when the electric field of 80 kV/cm (parallel to the defect
dipole’s direction) is applied or removed, indicating a positive ECE sig-
nal, as shown in Fig. 5(d-ii). When the applied electric field is reversed,
(that is, antiparallel to the defect dipoles), a relatively bigger exother-
mic peak is observed first, followed by a negligible endothermic peak
[see Figs. 5(d-iii)]. The abnormal exothermic peak may be induced by
hysteresis loss during polarization switching. With further applying or
removing the electric field, the polarization shows the same direction
as the applied field. Therefore, the abnormal exothermic peak disap-
pears and the change of heat flow becomes very weak, but, showing
a positive ECE. The comparison of ECEs estimated by direct and
indirect methods is shown in Fig. 5(e). The direct method estimates a
positive ECE of 0.025K and 0.022K in parallel defect dipoles and anti-
parallel defect dipoles, respectively. But the indirect method predicts a
negative ECE of about�1.2K in both cases.

Whether in the aging or the poled state, the direct method esti-
mates a positive ECE, while the indirect method predicts a negative
ECE. The results from the direct method are much more reliable since
it is calculated from the direct measurement of heat flow, and thus the
indirect method predicts a false negative ECE in the defect-doped PZT
ceramics. A false negative ECE may be induced by the unavailability of
Maxwell’s relation. The application of Maxwell’s relation requires fully
saturated polarization under application of the electric field,25 while in
this case the pining effect of defects results in unsaturated polarization
switching. Similar discrepancy has also been reported in (Bi, Na)TiO3

based ceramics.26 The defects induced by Mn doping pin the ferroelec-
tric domain, resulting in nearly non-switching of the ferroelectric
domain under a low electric field, as represented by the P-T curves
below 80 kV/cm in the aging state [Fig. 4(a)]. As the electric field is
increased further (above 80 kV/cm in the aging state), the domain
starts to switch and the pinning of the defects becomes loose at ele-
vated temperatures, resulting in increased polarization. The switching
is still unsaturated until the maximum electric field of 120 kV/cm is
applied, due to the large resistance of domain switching in the aging
state [the evaluation of P-T curves is shown in Fig. 4(a)]. The polariza-
tion starts to increase with increasing temperature under an electric
field of 60 kV/cm [Figs. 5(a) and 5(b)] and nearly saturates at an elec-
tric field of 120 kV/cm, as identified by the hysteresis loops shown in
Fig. 5(c). It is believed that with a further increase of the electric field,
e.g., 140 kV/cm, the P-T curves would show a decreased tendency, giv-
ing rise to a positive ECE. Unfortunately, the PZTM ceramics break
down at such a high electric field and temperature. In addition, since

the defects are more sensitive to the low-frequency electric field, the
possible re-distribution/diffusion of the defects under a direct-current
electric field during direct measurements may also lead to the discrep-
ancy of the ECE as estimated by the direct and indirect methods.

Previously, computational results predicted a negative ECE in
defect-doped BaTiO3 when the applied electric field is antiparallel to
the defect dipoles.15,16 However, only a positive ECE is observed in our
PZTM ceramics. This discrepancy may result from the following
aspects. Firstly, in the computational model, the defect dipoles are
assumed as fixed, and become neither switchable nor movable under
the application of the electric field. However, in the real case, the
switching and movement of defect dipoles are inevitable. Application
of the reversed electric field may also induce dissociation of the anti-
parallel defect dipoles.27 Besides, the application of a large electric field
would induce significant heat losses, which would offset the negative
ECE, as discussed by Ma et al.28 In fact, the inversed ECE has already
been observed in Fe-doped PZT ceramics with the application of a
smaller electric field.24 And, this negative ECE changed into positive
with a further increase of the electric field. We also tried to measure
the ECE under a smaller electric field by using the direct method, but
unfortunately the signal is too noisy to distinguish from the baseline.

In addition, it is surprising to obtain a giant temperature change
of 0.55K in the aged PZTM ceramic by using a direct method under
an electric field of 60 kV/cm. Such a giant value is commonly observed
in the temperature range that includes phase transitions29–31 or multi-
phase coexistence,32–34 while no phase transition is identified in the
temperature dependence of dielectric constant [Fig. 2(a)]. It is known
that when the electric field is applied for the first time, the polarization
is switched from zero, resulting in a giant exothermic peak. However,
the polarization cannot switch back to zero on removal of the electric
field, which induces a much smaller endothermic peak. However, the
defect dipoles in the PZTM ceramics impose a restoration force,
ensuring zero net remanent polarization on removal of the electric
field, as schematically shown in Fig. 3(a). Similarly, the restoration
force of the aged defect dipoles has also been used to enhance the
strain of the Fe-doped BaTiO3 single crystal.

19 Combined with compo-
sition designing and phase transition controlling, the restoration force
induced by the defect doping can further enhance the ECE of the
materials, and thus promote the application of ECE materials.

In conclusion, the ECE of Mn-doped PZT ceramics is esti-
mated by both direct and indirect methods. The direct method
reports a positive ECE, while the indirect method predicts a false
negative ECE. It is believed that the negative ECE is an artifact
induced by the unavailability of the Maxwell relation. Remarkably,
a giant temperature change of 0.55 K was measured in the aged
PZTM ceramics where no phase transition takes place. We attribute
this enhancement to a restoration force of the defect dipoles. Our
results show opportunities to regulate and enhance the ECE of
ferroelectrics without changing the phase structure or the phase
transition temperature, indicating a promising application in
designing ECE materials and devices.

See supplementary material for the SEM image, EDX results and
the experiment details.
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