
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications from the Center for Plant
Science Innovation Plant Science Innovation, Center for

6-5-2012

The Pseudomonas syringae HrpJ protein controls
the secretion of type III translocator proteins and
has a virulence role inside plant cells
Emerson Crabill

Andrew Karpisek

James R. Alfano

Follow this and additional works at: https://digitalcommons.unl.edu/plantscifacpub
Part of the Plant Biology Commons, Plant Breeding and Genetics Commons, and the Plant

Pathology Commons

This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/232336005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/plantscifacpub?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/plantscifacpub?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/plantsciinnovctr?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/plantscifacpub?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/108?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fplantscifacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages


The Pseudomonas syringae HrpJ protein controls the
secretion of type III translocator proteins and has a virulence
role inside plant cellsmmi_8097 225..238

Emerson Crabill,1,2† Andrew Karpisek1,3†‡ and
James R. Alfano1,3*
1Center for Plant Science Innovation, University of
Nebraska, Lincoln, NE 68588-0660, USA.
2School of Biological Sciences, University of Nebraska,
Lincoln, NE 68588-0118, USA.
3Department of Plant Pathology, University of Nebraska,
Lincoln, NE 68588-0722, USA.

Summary

The bacterial plant pathogen Pseudomonas syringae
injects effector proteins into plant cells via a type III
secretion system (T3SS), which is required for patho-
genesis. The protein HrpJ is secreted by P. syringae
and is required for a fully functional T3SS. A hrpJ
mutant is non-pathogenic and cannot inject effectors
into plant cells or secrete the harpin HrpZ1. Here we
show that the hrpJ mutant also cannot secrete the
harpins HrpW1 and HopAK1 or the translocator HrpK1,
suggesting that these proteins are required in the
translocation (injection) of effectors into plant cells.
Complementation of the hrpJ mutant with secretion
incompetent HrpJ derivatives restores the secretion of
HrpZ1 and HrpW1 and the ability to elicit a hypersen-
sitive response, a measure of translocation. However,
growth in planta and disease symptom production is
only partially restored, suggesting that secreted HrpJ
may have a direct role in virulence. Transgenic Arabi-
dopsis plants expressing HrpJ-HA complemented the
virulence phenotype of the hrpJ mutant expressing
a secretion incompetent HrpJ derivative and were
reduced in their immune responses. Collectively,
these data indicate that HrpJ has a dual role in P. sy-
ringae: inside bacterial cells HrpJ controls the secre-
tion of translocator proteins and inside plant cells it
suppresses plant immunity.

Introduction

Numerous Gram-negative bacterial pathogens and
eukaryote-associated bacteria use type III protein secre-
tion systems (T3SSs) to inject or translocate effector pro-
teins into animal or plant cells (Galán and Collmer, 1999;
Cornelis, 2010). There are several prerequisites before a
bacterium possessing a T3SS can successfully inject
effectors into host cells: (i) the basal body of the T3SS
apparatus, which spans both bacterial membranes needs
to be assembled, (ii) the proteins that make up the extra-
cellular conduit (a long pilus in plant-associated bacteria
and a short needle in animal pathogens) are secreted and
assembled, (iii) translocator proteins are secreted and
these somehow aid in the formation of a pore in the
eukaryotic plasma membrane and finally (iv) type III effec-
tors are delivered across the host’s plasma membrane
gaining entrance into the eukaryotic cell (Cornelis, 2006;
Galán and Wolf-Watz, 2006).These prerequisites neces-
sitate that the construction of a type III apparatus and type
III secretion is a highly regulated and ordered process.
For example, it is logical to expect that the pilus or needle
proteins would be secreted prior to translocators or type III
effectors. There appear to be multiple strategies used by
bacteria to insure that type III secretion is carried out in a
temporal and hierarchical manner (Deane et al., 2010;
Osborne and Coombes, 2011).

One protein family that plays an important role in type III
secretion control and hierarchy is the YopN-TyeA/InvE/
SepL family (Pallen et al., 2005; Botteaux et al., 2009). The
prototype for this family is from Yersinia spp. where it is
actually two different proteins, YopN and TyeA, which
interact with each other in a complex to regulate the
secretion of Yop proteins, which include effectors and other
type III-secreted substrates such as translocators (Pallen
et al., 2005; Joseph and Plano, 2007). In most other bac-
teria YopN and TyeA homologues are fused and are
encoded by one gene (Pallen et al., 2005). Yersinia spp.
mutants of either yopN or tyeA constitutively secrete Yop
proteins in the presence of calcium and prior to host cell
contact, conditions that normally inhibit their secretion
(Forsberg et al., 1991; Boland et al., 1996; Iriarte et al.,
1998). The TyeA protein has been implicated in the
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translocation of effectors (Iriarte et al., 1998; Day et al.,
2003). Salmonella enterica mutants lacking InvE or SsaL,
YopN-TyeA/InvE/SepL family members of the two T3SSs
of S. enterica, do not secrete type III translocator proteins
(Kubori and Galán, 2002; Coombes et al., 2004). SepL
from enteropathogenic Escherichia coli is required for
secretion of translocator proteins in culture and the trans-
location of type III effectors (O’Connell et al., 2004). Shi-
gella flexneri mutants lacking MxiC, another YopN-TyeA/
InvE/SepL family member, exhibit increased secretion of
type III effectors (Botteaux et al., 2009) but also secrete
reduced amounts of translocators (Martinez-Argudo and
Blocker, 2010). Most of the proteins belonging to this family
are themselves type III-secreted proteins. The exception
seems to be InvE, which has been reported to remain
inside the bacterial cell (Kubori and Galán, 2002) and TyeA
is not secreted (Cheng and Schneewind, 2000; Ferracci
et al., 2004). Thus, the picture that has emerged from
studies on members of this protein family from animal
pathogens is that they control the secretion of type III-
secreted substrates and are often associated with control-
ling the secretion of type III translocators.

There are three conserved proteins that are involved in
the translocation of type III effectors into animal cells
(Cornelis, 2006). In the prototypical Yersinia spp. T3SS,
these are YopB, YopD and LcrV. YopB and YopD are
translocator proteins and they can form pores in the host
plasma membrane (Hakansson et al., 1996; Neyt and
Cornelis, 1999; Montagner et al., 2011). These proteins
are thought to be situated at the tip of the type III needle by
the LcrV tip protein (Mueller et al., 2005). In plant patho-
gens the proteins involved in type III translocation appear
quite different perhaps because they have to deliver pro-
teins across the plant cell wall as well as the eukaryotic
plasma membrane (Buttner and Bonas, 2002). The
Pseudomonas syringae HrpK1 protein, Xanthomonas
campestris HrpF, and Ralstonia solanacearum PopF1 and
PopF2 share similarity with each other and share bio-
chemical characteristics with the YopB family of transloca-
tors from animal pathogens (Buttner et al., 2002; Petnicki-
Ocwieja et al., 2005; Meyer et al., 2006). However, plant
pathogens have not been reported to possess the YopD
translocator or the LcrV tip protein family members. Instead
another family of proteins called harpins, which are unique
to plant-associated bacteria, have long been implicated in
type III translocation (Alfano and Collmer, 1997). Harpins
were originally identified because when purified and infil-
trated into plant tissue they can elicit an immunity-
associated programmed cell death response in plants
called the hypersensitive response (HR) (Wei et al., 1992;
He et al., 1993). They share common biochemical charac-
teristics including being glycine-rich and lacking in cys-
teines. The genome of P. syringae pv. tomato DC3000
encodes four harpins, hrpZ1, hrpW1, hopAK1 and hopP1

and all except hopP1 encode proteins that appear to
contribute to translocation (Kvitko et al., 2007). However, it
is currently unknown how harpins interact with HrpK1/HrpF
family members to translocate type III effectors into plant
cells.

Pseudomonas syringae is a phytopathogen that uses
its T3SS to inject type III effectors into host plant cells to
subvert plant immunity (Block et al., 2008; Zhou and Chai,
2008). Its T3SS is encoded by the hrp-hrc (HR and patho-
genicity and HR conserved) gene cluster. One gene
(hrpJ) carried within the P. syringae hrp-hrc cluster
encodes HrpJ, a member of the YopN-TyeA/InvE/SepL
protein family (Alfano and Collmer, 1997; Pallen et al.,
2005; Fu et al., 2006). A P. syringae pv. tomato DC3000
hrpJ mutant cannot secrete the HrpZ1 harpin in culture
and is greatly reduced in virulence and in its ability to
translocate effectors into plant cells (Fu et al., 2006).
Similar phenotypes are also associated with an Erwinia
amylovora hrpJ mutant (Nissinen et al., 2007). The impli-
cation from these results is that HrpZ1 is a translocator
that cannot participate in translocation in the absence of
HrpJ because it is not secreted. However, the severity of
the phenotypes associated with the P. syringae hrpJ
mutant suggests that it controls the secretion of a large
suite of proteins in addition to HrpZ1 because P. syringae
hrpZ1 mutants exhibit only subtle phenotypes (Alfano
et al., 1996). Coupled with the observation that many
other members of the YopN-TyeA/InvE/SepL protein
family are unable to secrete translocators these data
imply that HrpZ1 is a translocator. Identifying the complete
inventory of proteins that are dependent on HrpJ for their
secretion may be a viable strategy to better define the
P. syringae translocator class.

Here, we show that HrpJ is required for the secretion of
the HrpK1 translocator and the HrpZ1, HrpW1 and
HopAK1 harpins, but not the HopP1 harpin or other classes
of type III-secreted substrates. Interestingly, elevated
amounts of HrpA1, the major component of the type III
pilus, were secreted by the hrpJ mutant. Secretion incom-
petent HrpJ derivatives can restore the ability of a hrpJ
mutant to secrete HrpZ1 and HrpW1 in culture indicating
that HrpJ controls their secretion from within the bacterial
cell. Additionally, we show that a C-terminal HrpZ1 deletion
derivative can be secreted in the absence of HrpJ suggest-
ing that HrpJ exerts its secretion control by interacting
either directly or indirectly with this region of HrpZ1. HrpJ is
itself translocated into plant cells and in planta expression
of HrpJ can partially restore virulence to a hrpJ mutant
expressing a secretion incompetent HrpJ derivative and
results in reduced plant immune responses. Taken
together, these data indicate that HrpJ acts inside the
bacterial cell as a control protein that regulates the tempo-
ral secretion of translocators and it also acts inside the
plant cell to suppress plant immunity.
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Results

The hrpJ mutant is unable to secrete harpins and
HrpK1 but retains the ability to secrete HrpA1 (the Hrp
pilus), effector proteins, and other type III-secreted
proteins encoded by the hrp/hrc cluster

We reported earlier that the P. syringae pv. tomato
DC3000 hrpJ mutant was unable to secrete HrpZ1 in
culture (Fu et al., 2006). DC3000 hrpZ1 mutants have a
subtler virulence phenotype than the DC3000 hrpJ mutant
(Alfano et al., 1996), which suggests that other proteins
cannot be secreted from the hrpJ mutant in addition to
HrpZ1. Because HrpZ1 is a candidate translocator, the
hrpJ mutant may be defective in the secretion of translo-
cators and by identifying proteins that are not secreted
from the hrpJ mutant we may better define the group of
proteins that make up the DC3000 translocon. To test this,
we first determined the extent that the HrpW1 harpin was
secreted from the hrpJ mutant. We performed in culture
secretion assays by growing DC3000 cultures in a
medium that induces the T3SS and separated the cultures
into cell-bound and supernatant fractions. HrpW1 was
found in the supernatant fraction from wild-type DC3000
but only in the cell fraction of the hrpJ mutant (Fig. 1A)
indicating that HrpW1 cannot be secreted from cells
lacking HrpJ. The ability to secrete HrpW1 was restored to
the hrpJ mutant when hrpJ was provided in trans
(Fig. 1A). The inability of the hrpJ mutant to secrete
HrpW1 further suggests that HrpJ may be required for the
secretion of a larger group of proteins that need to be
secreted early in the type III secretion hierarchy.

In order to identify other proteins that cannot be
secreted by the hrpJ mutant and therefore, possibly linked
in function to HrpZ1 and HrpW1 we screened a wide array
of type III-secreted substrates for their inability to be
secreted by the hrpJ mutant. Included in these experi-
ments were HrpA1 (the major protein component of the
pilus), type III effectors, other harpin proteins and other

type III-secreted proteins encoded by the hrp-hrc cluster.
Because the overexpression of harpins can have aberrant
effects on type III secretion (Alfano and Collmer, 1996;
Charkowski et al., 1997), harpin and hrpK1 genes were
expressed from a type III promoter using a Tn7 expres-
sion system (see Experimental procedures). DC3000 and

Fig. 1. The hrpJ mutant is impaired in its ability to secrete HrpW1,
HrpK1 and HopAK1, but not HopP1, HrpF, HrpA1, HopO1-1 or
AvrPto1.
A. Wild-type DC3000, a type III defective mutant hrcC, and a hrpJ
mutant were grown in type III-inducing conditions and then
separated into cell (C) and supernatant (S) fractions by
centrifugation. Proteins were resolved with SDS-PAGE and
immuno-stained with anti-HrpW1 antibodies.
B. Wild-type DC3000 and a hrpJ mutant carrying a plasmid that
encoded one of several type III-secreted substrates fused at their
C-termini to an HA or FLAG epitope were grown in type III-inducing
conditions and separated into cell and supernatant fractions. Type
III-secreted proteins were detected with anti-HA antibodies.
A and B. Bacteria also expressed NPTII or b-lactamase as negative
controls because these remain cell-bound unless non-specific cell
leakage occurred. All experiments were repeated at least three
times with similar results.
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hrpJ mutant strains containing different genes that
encoded type III-secreted substrates fused to a haemag-
glutinin (HA) or a FLAG epitope were grown in type III-
inducible medium and separated into cell and supernatant
fractions. Interestingly, the two additional putative translo-
cator proteins, the HopAK1 harpin and HrpK1, were not
detectable in the supernatant fraction of the mutant indi-
cating that HrpJ is required for their secretion (Fig. 1B).
The HopP1 harpin was secreted by the hrpJ mutant
(Fig. 1B) indicating that it likely has a different role in the
T3SS than the other harpins tested. The secretion of both
HopAK1 and HrpK1 was restored when hrpJ was pro-
vided in trans to the hrpJ mutant (Fig. 1B). The type III
effectors AvrPto1 and HopO1-1, the HrpA1 pilus protein,
and HrpF, a type III-secreted protein encoded by the hrp-
hrc cluster (Ramos et al., 2007), were all secreted by the
hrpJ mutant (Fig. 1B). We reported previously that HrpA1
was secreted by the hrpJ mutant (Fu et al., 2006). Further
experimentation suggests that HrpA1 is actually secreted
in higher amounts by the hrpJ mutant as shown in Fig. 1B.
Thus, the harpins HrpZ1, HrpW1 and HopAK1, and the
translocator HrpK1 all require HrpJ to be secreted via the
T3SS. This result suggests that the type III secretion of
these proteins is coordinated by the HrpJ control protein
and that they likely all perform related translocation
functions. Furthermore, the increased secretion of HrpA1
by the hrpJ mutant suggests that HrpJ may aid in the
transition from production of the pilus to the translocon.

Cell-bound HrpJ restores HrpZ1 and HrpW1 secretion
from the hrpJ mutant

HrpJ is a type III-secreted protein (Fu et al., 2006).
Because a DC3000 mutant lacking HrpJ does not secrete
HrpZ1, we wanted to determine whether HrpJ secretion
was needed for the secretion of HrpZ1 or HrpW1 or
whether their secretion required HrpJ to be present inside
the bacterial cell. The type III secretion signal for HrpJ is
present on its N-terminus (Fu et al., 2006). N-terminal
GST fusions have been made with type III-secreted sub-
strates to render them impassable to the T3SS (Riordan
et al., 2008). We made a hrpJ construct that produces a
HrpJ derivative containing GST fused to the N-terminus of
HrpJ. This HrpJ derivative was not secreted by the hrpJ
mutant (Fig. 2). We carried out in culture secretion assays
to determine the extent that HrpZ1, HrpW1 and HrpA1
could be secreted from the hrpJ mutant complemented
with the secretion incompetent derivative of HrpJ. Both
HrpZ1 and HrpW1 were secreted from the hrpJ mutant
producing the secretion incompetent HrpJ derivative
(Fig. 2). We also found that the enhanced secretion of
HrpA1 by the hrpJ mutant was reduced back to wild-type
levels when GST-HrpJ was introduced into the hrpJ
mutant (Fig. 2). These results suggest that HrpJ is needed

inside the bacterial cell in order to allow for the secretion
of HrpZ1 and HrpW1 and likely the other translocators
and, perhaps, to act as a substrate switch from the secre-
tion of HrpA1 pilus protein to translocator secretion. Fur-
thermore, the purpose of HrpJ’s own secretion appears to
be independent of its function in controlling the secretion
of HrpZ1 and other translocators.

Expression of a secretion incompetent HrpJ derivative
in the hrpJ mutant complements HrpZ1 secretion,
elicitation of an HR in tobacco, and partially restores
virulence in Arabidopsis

In order to confirm that cell-bound HrpJ is sufficient to
restore the secretion of DC3000 translocators to the hrpJ
mutant, several additional hrpJ constructs were made
that produced HrpJ derivatives lacking either its type III
secretion signal (HrpJD2–75), an N-terminal half region
(HrpJD2–185), or a large C-terminal region (HrpJD161–368), each
fused to an HA epitope. These constructs were confirmed

Fig. 2. A secretion incompetent HrpJ fusion protein restores the
ability to secrete HrpZ1 and HrpW1 to a hrpJ mutant. The DC3000
hrpJ mutant carrying a construct that encoded HrpJ-HA, GST or a
GST-HrpJ N-terminal fusion were grown in type III-inducing
conditions and separated into cell and supernatant fractions by
centrifugation. Proteins were resolved with SDS-PAGE and
immuno-stained with anti-HrpZ1, anti-HrpW1, anti-HrpA1, anti-GST,
anti-HA or anti-NPTII antibodies. NPTII was used as a lysis control.
The experiment was repeated two times with similar results.
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by sequencing and produced stable HrpJ derivatives
(data not shown). The HrpJD2–75 and HrpJD2–185 derivatives
could not be detectably secreted or translocated in culture
secretion assays and translocation assays respectively,
whereas the HrpJD161–368 derivative was detectably
secreted and translocated (data not shown). In culture
secretion assays were performed with hrpJ strains sepa-
rately containing these constructs to determine if any could
restore HrpZ1 secretion. The HrpJD2–75 derivative restored
the secretion of HrpZ1 from the hrpJ mutant (Fig. 3A). Both
HrpJD2–185 and HrpJD161–368 did not restore HrpZ1 secretion
(Fig. 3A). We performed similar experiments with the YopN
and TyeA moieties of HrpJ and found that neither could
restore the secretion of HrpZ1, and, therefore, HrpJ’s
function in translocator secretion requires both (Fig. S1).
Our results confirm the data shown in Fig. 2 indicating that
secretion incompetent HrpJ is sufficient to restore the
secretion of HrpZ1 to the hrpJ mutant. Additionally, it also
suggests that the amino acids deleted from HrpJD2–185 and
HrpJD161–368 derivatives are required for HrpJ’s ability to
control HrpZ1 secretion.

The ability of DC3000 to elicit an HR in tobacco is
dependent upon its ability to inject type III effectors into
the plant cells. Therefore, the HR is a measure of
translocation. In order for type III effectors to be injected,
HrpJ must be present to allow for the secretion of HrpK1
and the harpin proteins (Fig. 1), which collectively are
necessary for translocation (Petnicki-Ocwieja et al., 2005;
Kvitko et al., 2007). The hrpJ mutant cannot elicit an HR in
tobacco because it cannot inject type III effectors, but this
phenotype was complemented by expression of hrpJ in
trans (Fu et al., 2006; Fig. 3B). The secretion incompetent
HrpJD2–75 was also capable of restoring HR elicitation
while the other HrpJ deletions tested did not restore the
ability to elicit an HR to the hrpJ mutant (Fig. 3B). These
results support the hypothesis that cell-bound HrpJ is
required for the secretion of translocators.

As has previously been shown (Fu et al., 2006), a hrpJ
mutant was severely reduced in its ability to grow in planta
and cause disease symptoms in Arabidopsis (Fig. 3C and
D). The production of HrpJD2–185 and HrpJD161–368 was
unable to complement the virulence phenotype exhibited
by the hrpJ mutant (Fig. 3C and D). It is important to note
that full-length HrpJ was unable to fully complement the
virulence phenotype of the hrpJ mutant (Fig. 3C and D).
HrpJD2–75 was able to partially restore virulence to the hrpJ
mutant, but could not restore virulence to levels exhibited
by the hrpJ mutant complemented with full-length HrpJ
(Fig. 3C and D). Because HrpJD2–75 was able to fully
restore secretion of HrpZ1 and HR elicitation, the differ-
ence in growth of the hrpJ mutant complemented with
full-length hrpJ or hrpJD2–75 may be attributable to the
function of secreted HrpJ rather than the function of its
cell-bound form.

A HrpZ1 C-terminal deletion derivative can be secreted
in culture by the hrpJ mutant

The requirement of cell-bound HrpJ for HrpZ1 secretion
suggests that HrpZ1 may interact with HrpJ or a HrpJ
complex near the pore of the T3SS apparatus. However,
we were unable to demonstrate an interaction between
HrpJ and HrpZ1 in yeast two hybrid interaction assays or in
GST-HrpJ pull-down assays (data not shown). We also
included HrpK1, HrpW1 and HopAK1 in these yeast two
hybrid experiments and were unable to detect any interac-
tions with these proteins and HrpJ (data not shown). In
spite of this apparent lack of interaction experimentally
between these proteins, which may be due to the transient
nature of these interactions or that these interactions may
require a protein complex, we wanted to test the extent that
any HrpZ1 deletion derivatives could be secreted by the
hrpJ mutant. The rationale for this experiment was that if a
region within the HrpZ1 protein was required to interact
with HrpJ or a HrpJ complex in order for it to be secreted,
then it is possible that the hrpJ mutant may be able to
secrete a HrpZ1 deletion derivative lacking this region. To
test this, a series of hrpZ1 gene constructs were made that
when introduced into DC3000 produced HrpZ1 deletion
derivatives lacking 50 amino acid portions in different
regions of this protein. Interestingly, the HrpZ1D271–320-HA
derivative, which lacked amino acids 271–320 was
secreted in culture from the hrpJ mutant (Fig. 4A). Only low
amounts of HrpZ1D271–320-HA were secreted; however, this
experiment was repeated several times with similar results.
All of the other HrpZ1 derivatives were not secreted from
the hrpJ mutant. Each hrpZ1 gene construct produced a
stable HrpZ1 derivative and all except for the most
N-terminal deletion derivative (HrpZ1D21–70-HA), which
likely lacked part of the type III secretion signal, were
detectably secreted from the hrpJ mutant expressing hrpJ
in trans (Fig. 4B). The implication of this result is that
a C-terminal region of HrpZ1 is required for HrpJ-
dependency, and therefore, may interact with HrpJ allow-
ing HrpJ to control the secretion of HrpZ1.

The reduced virulence phenotype exhibited by the hrpJ
mutant expressing the cell-bound HrpJ is complemented
by in planta-expressed HrpJ-HA

The hrpJ mutant complemented with a secretion incompe-
tent HrpJ derivative was less virulent than when it was
complemented with full-length HrpJ (Fig. 3C). Because
HrpJ is itself a secreted protein we determined the extent
that in planta-expressed HrpJ could complement the
observed reduced virulence phenotype. To test this we
made transgenic Arabidopsis plants that constitutively
expressed HrpJ-HA and performed pathogenicity assays
using these plants. The transgenic Arabidopsis plants were
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confirmed to constitutively express HrpJ-HA (Fig. 5A).
Consistent with the results presented in Fig. 3C, the hrpJ
mutant grew poorly likely due to the failure of this mutant to
inject type III effectors because it cannot secrete translo-

cators (Fig. 5C). However, the hrpJ mutant expressing the
secretion incompetent HrpJ (HrpJD2–75) grew similarly and
caused similar disease symptoms in transgenic Arabidop-
sis plants expressing HrpJ-HA to the hrpJ mutant express-

Fig. 3. A HrpJ derivative lacking its secretion signal restores secretion of HrpZ1 and the ability to elicit an HR to a hrpJ mutant but only
partially complements pathogenicity.
A. DC3000 strains were grown in type III-inducing conditions and separated into cell and supernatant fractions by centrifugation and assessed
for the secretion of HrpZ1 or AvrPto1 with immunoblot anaylses. NPTII was used as a cell lysis control. pML123 was used as an empty vector
(pEV) control. The experiment was repeated three times with similar results.
B. The DC3000 hrpJ mutant strains expressing either the full-length HrpJ or HrpJD2–75 were capable of eliciting an HR in tobacco indicating
that these strains were capable of injecting type III effectors. Bacteria were infiltrated at 1 ¥ 108 cells ml-1 and the HR was observed within
24 h after infiltration. The experiment was repeated four times with similar results.
C. Growth of the hrpJ mutant on Arabidopsis thaliana Col-0 was partially restored when full-length hrpJ or hrpJD2–75 was provided in trans.
Lower case letters indicate whether growth of the different strains were statistically different based on t-tests (P < 0.1) and error bars indicate
standard deviation.
D. Photos of disease symptoms on Arabidopsis leaves were taken 4 days after infection.
C and D. The experiments were repeated twice with similar results.
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ing full-length HrpJ (Fig. 5B and C). Thus, the growth
difference observed between these two strains in wild-type
Arabidopsis plants (Fig. 3C) was not detectable on trans-
genic Arabidopsis plants expressing HrpJ-HA indicating
that in planta-expressed HrpJ contributed to virulence by
acting inside plant cells.

Expression of hrpJ in transgenic plants suppresses
pathogen-associated molecular pattern-triggered
immunity

Because the primary role of type III effectors injected by
P. syringae appears to be to suppress the plant’s innate
immune system (Guo et al., 2009), we sought to determine
if Arabidopsis plants expressing HrpJ-HA were altered in
their innate immune responses relative to wild-type plants.
We made several independent lines of transgenic Arabi-
dopsis plants that constitutively expressed HrpJ-HA.
Pathogen-associated molecular patterns (PAMPs) can be
recognized by plants and animals resulting in the induction
of PAMP-triggered immunity (PTI) (Segonzac and Zipfel,
2011). We used two commonly used assays to evaluate
PTI in Arabidopsis plants expressing HrpJ-HA: The ability
of a type III defective P. syringae strain (hrcC), which is a de
facto-PTI inducing strain, to grow in Arabidopsis plants
expressing HrpJ-HA compared to wild-type plants and
callose (a b-1,3-glucan) deposition in the cell wall in

response to flg22, a peptide derived from the flagellin
PAMP. A DC3000 hrcC mutant, defective in the T3SS, was
spray-inoculated onto wild-type Arabidopsis and Arabidop-
sis plants expressing HrpJ-HA and bacterial cells were
enumerated at 0 and 4 days after infection. Interestingly,
the hrcC strain exhibited significantly better survival on
plants expressing HrpJ-HA compared to wild-type plants
(Fig. 6A). We next measured the ability of transgenic Ara-
bidopsis plants expressing HrpJ-HA to deposit callose
compared to wild-type plants in response to flg22. The
number of callose deposits was more than twofold higher in
wild-type plants than in plants expressing HrpJ-HA
(Fig. 6B) indicating that HrpJ-HA can suppress flg22-
induced callose deposition. We observed similar results
with other plant lines expressing HrpJ-HA (data not
shown). These results suggest that HrpJ-HA can suppress
PTI. Collectively, these experiments suggest that HrpJ acts
as a virulence factor inside plant cells and can suppress
PTI.

Discussion

The YopN-TyeA/InvE/SepL protein family members func-
tion as control proteins for type III-secreted substrates
and are particularly important for the secretion of translo-
cator proteins. In most T3SS-containing bacteria these
translocators are easily identified because they have high

Fig. 4. A C-terminal HrpZ1 deletion derivative can be secreted in culture by a hrpJ mutant.
A. Wild-type DC3000 (WT) and hrpJ mutant strains expressing HrpZ1 and HrpZ1 derivatives C-terminally fused to a haemagglutinin (HA) tag
were grown in type III-inducing conditions and separated into cell and supernatant fractions by centrifugation and assessed for HrpZ1
secretion by immunoblot analysis. The HrpZ1 derivatives were not secreted by the hrpJ mutant except for a HrpZ1 derivative that lacked
amino acids 271–320 (HrpZ1D271–320).
B. The hrpJ mutant strains expressing HrpZ1 and HrpZ1 derivatives and complemented with full-length hrpJ were grown in type III-inducing
conditions and separated into cell and supernatant fractions to determine the extent that the HrpZ1 derivatives could be secreted in the
presence of HrpJ. With the exception of hrpZ1D21–70, which lacks its secretion signal, all of the HrpZ1 derivatives were secreted from the hrpJ
mutant when hrpJ was provided in trans.
A and B. HrpZ1 and HrpZ1 derivatives were expressed from a type III promoter using a Tn7 expression system. HrpZ1-HA and derivatives
were detected with anti-HA antibodies. b-Lactamase was used as a lysis control and detected with anti-b-lactamase antibodies. These
experiments were done four times with similar results.
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sequence identity with the YopB and YopD translocators
and the LcrV tip protein from Yersinia spp. (Hueck, 1998).
Bacterial plant pathogens appear to have a substantially
different translocon than animal pathogens due probably

to the need for the T3SS apparatus to cross the plant cell
wall (Buttner and He, 2009). Putative tranlsocators in the
P. syringae T3SS are the HrpZ1 harpin and HrpK1 (Lee
et al., 2001; Petnicki-Ocwieja et al., 2005), but the rela-
tionship between these proteins is unclear. The observa-
tion that HrpZ1 was not secreted from a P. syringae hrpJ
mutant (Fu et al., 2006) revealed a strategy to better
identify the P. syringae translocator class by screening
type III-secreted substrates for HrpJ-dependent secretion.
Interestingly, we found that HrpK1 and the harpins HrpW1
and HopAK1, but not the HopP1 harpin, are required HrpJ
for their secretion into culture supernatants (Fig. 1). An
earlier study found these same proteins were capable of
restoring to differing degrees the ability to elicit an HR to
a P. syringae mutant lacking the harpins and HrpK1
(Kvitko et al., 2007). The fact that HrpZ1, HrpW1, HopAK1
and HrpK1 all require HrpJ for their secretion further links
these proteins in the translocation process and provides
an explanation for the greatly reduced virulence and HR
phenotypes exhibited by the hrpJ mutant (Fu et al., 2006;
Fig. 3).

YopN-TyeA/InvE/SepL protein family members are con-
sidered ‘switch proteins’ because bacterial mutants lacking
them are generally defective in the secretion of transloca-
tors and secrete increased amounts of type III effectors
(Deng et al., 2005; Wang et al., 2008). Presently, there is
no evidence to suggest that HrpJ is acting as a switch
protein to shift from the secretion of translocators to effec-
tors because the P. syringae hrpJ mutant secretes similar
amounts of type III effectors as the wild-type strain (Fig. 1).
Interestingly, however, the hrpJ mutant did secrete
increased amounts of the HrpA1 pilus protein (Fig. 1)
suggesting that HrpJ negatively controls the secretion of
HrpA1, perhaps, acting as a switch protein between pilus
assembly and translocation. This result is in contrast to the
secretion phenotype exhibited by a Shigella mxiC mutant,
which secreted wild-type levels of the type III needle
protein (enhanced amounts of effectors, and delayed and
weak secretion of translocators) after induction with congo
red (Martinez-Argudo and Blocker, 2010). Another report
describing the phenotype of a Shigella mxiC mutant found
that it was enhanced for type III effector secretion but that
it secreted translocators at wild-type levels when grown in
cultures in the absence of any activation signal such as
congo red (Botteaux et al., 2009). This highlights an impor-
tant point to consider – comparisons between the pheno-
types exhibited by mutants defective in YopN-TyeA/InvE/
SepL family members can be problematic because
bacterial secretion and translocation assays are done dif-
ferently by different researchers and in different bacterial
systems. The involvement of HrpJ in the control of trans-
locator secretions appears undeniable because of its
strong virulence and translocation phenotypes (Fu et al.,
2006 and Fig. 2) and because of its inability to secrete the

Fig. 5. In planta HrpJ-HA expression complements the reduced
growth phenotype associated with the hrpJ mutant complemented
with cell-bound HrpJ.
A. Transgenic Arabidopsis plants express detectable amounts of
HrpJ-HA. Total protein extracts from wild-type A. thaliana Col-0
(right) and a representative HrpJ-HA transgenic plant that
constitutively expresses HrpJ-HA (left) were subjected to
immunoblot analysis using anti-HA antibodies.
B. Photos of disease symptoms on transgenic HrpJ-HA Arabidopsis
leaves were taken 4 days after infection with the Pseudomonas
syringae strains indicated. This experiment was done twice with
similar results.
C. Transgenic HrpJ-HA Arabidopsis plants were spray-inoculated
with 2 ¥ 108 cells ml-1 with wild-type DC3000, the type III defective
hrcC mutant, the hrpJ mutant, hrpJ mutant complemented with
full-length hrpJ, or the hrpJ mutant complemented with a hrpJ
derivative (hrpJ2–75) that encodes a secretion incompetent form of
HrpJ. Lower case letters indicate whether growth of the different
strains were statistically different based on t-tests (P < 0.05), and
error bars indicating standard deviation are shown.
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harpins and HrpK1 translocators. The extent that HrpJ acts
as a switch protein between the secretion of different
classes of type III-secreted substrates will be a focus of
future studies.

We found that a secretion incompetent HrpJ derivative
was able to restore in culture secretion of HrpZ1 and
HrpW1 to a P. syringae hrpJ mutant (Figs 2 and 3A). This is
consistent with similar experiments done with the Salmo-
nella invE, Yersinia pestis yopN and Shilgella mxiC
mutants (Kubori and Galán, 2002; Ferracci et al., 2005;
Botteaux et al., 2009), and also with the finding that the
Shigella MxiC interacts with the Spa47ATPase, anATPase
associated with the cytoplasmic side of the Shigella T3SS
(Botteaux et al., 2009). Interestingly, introduction of the
secretion incompetent GST-HrpJ fusion into the hrpJ
mutant also restored the reduced levels of HrpA1 secretion
observed from the wild-type strain consistent with HrpJ
acting as a substrate switch from pilus assembly and
translocation (Fig. 2). Thus, it is clear that HrpJ functions
inside the bacterial cell to control translocator secretion.
The model for HrpJ function is that it binds to the inner face
of the P. syringae T3SS and facilitates the secretion of
the HrpK1 and harpin translocators. Importantly, in the
absence of HrpJ, translocators are not secreted and
because a HrpZ1 C-terminal deletion derivative regained
its ability to be secreted from a hrpJ mutant (Fig. 4), it
appears that translocators may have domains that make
them dependent on HrpJ for their secretion. However, we
have thus far been unable to demonstrate interactions
between HrpJ and T3SS apparatus proteins or between

HrpJ and HrpK1 or the harpins using yeast two hybrid
screens and co-immunopreciptation experiments (A. Karp-
isek and J.R. Alfano, unpublished). In spite of this, it
remains likely that these interactions are occurring but may
be too transitory or weak to be detected, or require addi-
tional proteins.

What remains less clear is why the majority of YopN-
TyeA/InvE/SepL family members, including HrpJ, are
secreted. Do they function extracellularly or inside eukary-
otic cells? There are several plausible scenarios that are
not mutually exclusive, which could explain the need for
these proteins to be secreted. (i) To act as switch proteins
they need to be released from the cell. These proteins
may not have a function outside of the bacterial cell per
se, but in order to act as switch proteins they need to be
absent from the bacterial cell and this is facilitated by their
secretion. (ii) These proteins may have an extracellular
accessory function in the T3SS. While there is little evi-
dence to support this, it remains possible that these pro-
teins act in this manner. And finally, (iii) the secreted
YopN-TyeA/InvE/SepL family members are translocated
into eukaryotic cells where they function as effectors. Our
results with HrpJ are supportive of this last scenario in that
HrpJ is translocated into plant cells (Fu et al., 2006) and in
planta expressed HrpJ can suppress innate immune
responses (Fig. 6).

The T3SSs of bacterial plant pathogens can be divided
into two groups based on the possession of similar genes,
operon structures, and regulatory systems. Group 1
includes the P. syringae T3SS and group 2 includes the

Fig. 6. Transgenic HrpJ-HA Arabidopsis plants exhibit reduced plant innate immune responses.
A. Bacterial growth assays of a type III defective hrcC mutant spray-inoculated at 2 ¥ 108 cells ml-1 onto wild-type Arabidopsis (Col-0) and
transgenic Arabidopsis plants expressing HrpJ-HA. The hrcC mutant persisted at higher numbers in HrpJ-HA plants than it did in wild-type
plants at 4 days post infection.
B. Wild-type and HrpJ-HA plants were infiltrated with 1 mM flg22 and after 16 h the leaves were stained with aniline blue and examined by
fluorescence microscopy for callose deposition. Arabidopsis plants expressing HrpJ-HA showed fewer callose foci than wild-type plants (bar
graph) as depicted in a representative micrographs (right panels). Numbers are the average of 120 images taken from 12 leaves of two
individual plants. Representative micrographs are shown in the panels on the right. These experiments were done at least twice with similar
results.
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well-studied T3SS of X. campestris (Alfano and Collmer,
1997; Cornelis, 2006). Group 2 T3SSs do not use a
YopN-TyeA/InvE/SepL family member. Instead, based on
research on the X. campestris T3SS, they use the HpaC
protein, which is not present in group 1 T3SSs and appears
to serve an analogous secretion control function as HrpJ.
HpaC is known to control the secretion of early and late
type III-secreted substrates from the X. campestris T3SS
(Buttner et al., 2006). A hpaC mutant is deficient in secre-
tion of several type III effectors as well as the translocators
HrpF and XopA but retains the ability to secrete the HrpE
pilus protein (Buttner et al., 2006; Schulz and Buttner,
2011). Additionally, HpaC interacts with and prevents the
secretion of HrpB2, which is secreted early and is known to
be essential for the assembly of the pilus (Lorenz et al.,
2008). Thus, it appears that HpaC is acting as a substrate
specificity switch protein in the X. campestris T3SS shifting
the secretion from HrpB2 to the secretion of translocators
and effector proteins. The differences in the secretion
control proteins used by groups 1 and 2 T3SSs illustrate
how plant pathogenic T3SSs apparently evolved different
strategies to control type III secretion hierarchy.

In our review of the literature, we were unable to find
many reports indicating that YopN-TyeA/InvE/SepL family
members were translocated into eukaryotic cells and/or
had effects in eukaryotic cells. There are differing reports
on whether the Yersinia YopN is translocated into animal
cells (Boland et al., 1996; Lee et al., 1998; Day et al.,
2003). Escherichia coli SepL is secreted in culture and,
even though it has not been reported to be translocated,
Younis et al. suggested that it resembles a type III effector
because it utilizes a class I type III chaperone, accessory
proteins required by many type III effectors for their secre-
tion (Page and Parsot, 2002; Younis et al., 2010). The only
published evidence that a YopN-TyeA/InvE/SepL family
member can act as an effector inside host cells is with the
Chlamydia pneumoniae CopN protein (Huang et al., 2008;
Archuleta et al., 2011). Expression of C. pneumoniae
CopN in yeast or animal cells caused cell cycle arrest and
disruption of microtubules (Huang et al., 2008). Further
studies found that CopN directly binds ab-tubulins and
inhibits tubulin polymerization (Archuleta et al., 2011).
Because genetic manipulations are not possible in
Chlamydia the contribution of CopN to virulence could not
be conventionally established using bacterial mutants.
However, Huang et al. identified small molecules that
inhibited CopN-induced growth inhibition in yeast and
found that these compounds reduced C. pneumoniae rep-
lication in animal cells consistent with CopN contributing to
virulence (Huang et al., 2008).

A P. syringae hrpJ mutant is severely debilitated in its
ability to infect plants (Fu et al., 2006; Fig. 3).A large part of
the observed reduction in virulence is due to the role HrpJ
plays inside bacterial cells in translocator secretion. We

know this because when the hrpJ mutant is complemented
with a construct that produces a secretion incompetent
HrpJ derivative virulence is substantially but not com-
pletely restored (Fig. 3C and D). However, we found that
the hrpJ mutant producing a secretion incompetent HrpJ
derivative could restore virulence to the same extent as a
hrpJ mutant producing full-length HrpJ if these strains were
inoculated into Arabidopsis plants expressing HrpJ-HA
(Fig. 5). This clearly shows that HrpJ can also contribute to
virulence by acting inside plant cells. Together with the
finding that a P. syringae type III defective mutant grows to
higher levels in Arabidopsis plants expressing HrpJ-HA
compared to wild-type Arabidopsis and that these plants
produce reduced amounts of callose deposition suggest
that HrpJ contributes to virulence by suppressing innate
immune responses. Our future experiments will seek to
determine the extent that HrpJ produces CopN-like phe-
notypes in eukaryotic cells and on the identification of
targets and activities of HrpJ inside plant cells.

Other future studies will be focused on the identification
of P. syringae proteins that interact with HrpJ. Even though
we have been unable to identify HrpJ interactors, there has
been some success at identifying interactors for other
TyeA/InvE/SepL family members (Kresse et al., 2000;
O’Connell et al., 2004; Yang et al., 2007; Wang et al.,
2008; Younis et al., 2010; Yu et al., 2010). The Salmonella
SsaL family member was relatively recently found to be
part of a pH-sensing complex that withholds effector secre-
tion in the low pH conditions found inside host vacuoles (Yu
et al., 2010). Interestingly, the plant apoplast has long been
known to be acidic and it is possible that HrpJ participates
in such a pH-sensing control mechanism. Elucidating the
molecular roles that HrpJ plays inside bacterial cells and
plant cells will likely shed light on both the timing and
hierarchy of type III secretion and strategies P. syringae
uses to disable the plant’s immune system.

Experimental procedures

Bacterial strains and media

Bacterial strains and plasmids used in this work are listed in
Supporting Information Table S1. Escherichia coli strain
DH5a was used for general cloning and was grown in Luria-
Bertani broth at 37°C. Pseudomonas syringae pv. tomato
DC3000 was grown in King’s B (KB) broth at 30°C or in type
III-inducing fructose minimal medium at 22°C (Huynh et al.,
1989). Antibiotics were used at the following concentrations
(micrograms per millilitre): ampicillin, 100; chloramphenicol,
20; gentamicin, 10; kanamycin, 50; rifampin, 100; spectino-
mycin, 50; and tetracycline, 20.

General DNA manipulation

Restriction enzymes, T4 ligase, and DNA polymerase were
purchased from New England Biolabs (Beverly, MA). Thermo-
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stable DNApolymerase used in the polymerase chain reaction
(PCR) was Pfu DNA polymerase (Stratagene, La Jolla, CA).
Primers were made by Integrated DNA Technologies
(Coralville, IA). A list of the primers, their oligonucleotide
sequences, and additional information are shown in Support-
ing Information Table S2. For cloning using Gateway technol-
ogy, we amplified genes with PCR and recombined them into
the pENTR/D TOPO. QuikChange Site-Directed Mutagenesis
Kit was used to make site-directed mutations in hrpJ or hrpZ1
following the manufacturer’s instructions (Stratagene, La
Jolla, CA). Constructs were introduced into P. syringae strains
by electroporation.

Type III secretion assays

Bacterial strains were grown on KB media with appropriate
antibiotics for 16 h in a 30°C incubator. Cells were harvested
from plates, resuspended in 100 ml of type III-inducing fruc-
tose minimal media, and adjusted to a concentration of
4 ¥ 108 cells ml-1 (OD600 = 0.4) with the appropriate antibiotics.
Cultures were incubated in a 22°C shaker at 220 r.p.m. for 6 h.
Cultures were then separated into cell and supernatant frac-
tions by centrifugation. Protein precipitation of the supernatant
fraction was performed by adding 25% trichloroacetic acid
(Sigma Aldrich, St Louis, MO) to the supernatant, mixing and
incubating at 4°C for 15 h. Supernatant fractions were centri-
fuged and excess supernatant was discarded. Precipitated
protein was washed briefly with acetone and air-dried. The
protein pellet was then resuspended in SDS buffer containing
dithiothreitol (DTT) (New England BioLabs). Cell pellets were
resuspended in type III-inducing fructose minimal media con-
taining SDS and DTT. Proteins were separated by 12% SDS-
PAGE and transferred to Immobilon-P membranes (Millipore,
Billerica, MA) for immunoblot analyses. b-Lactamase or NPTII
was used as lysis control.

Tn7 expression system

A transposon 7 (Tn7) expression system was used to express
certain genes in P. syringae (Choi et al., 2005). Briefly, a Tn7
Gateway compatible entry vector was made with left and right
flanking sequences, Tn7R and Tn7L, the transposase
complex, an avrPto1 promoter sequence, and a gentamycin
resistant FRT cassette. The final gene product contained an
in-frame 3′ HA tag. Genes of interest were amplified by PCR
using Pfu polymerase with Gateway compatible, gene specific
primers. Upon completion of Gateway cloning into the
pLN2992 destination vector, plasmids were confirmed by
PCR. The positively confirmed constructs were then trans-
formed by electroporation into wild-type or the P. syringae hrpJ
mutant. Transformants were checked for expression by
growing them in type III-inducing condition for 6 h at 22°C.
Proteins were detected with commercially available HA
(Roche Diagnostics, Basel, Switzerland) or CyaA antibodies
(Santa Cruz Biotechnology, Santa Cruz, CA).

Plant bioassays

Hypersensitive response assays were done in Nicotiana
tabacum cv. Xanthi. DC3000 and DC3000 mutant strains

were grown for 16 h on KB media with appropriate antibiotics
at 30°C. Bacteria were resuspended in 5 mM 2-(N-
morpholino)ethanesulfonic (pH 5.6) at a cell density of
1 ¥ 108 cells ml-1 and serially diluted. Leaves were infiltrated
with a blunt syringe and the HR was evaluated after 24 h. The
growth and disease symptoms caused by DC3000 and
mutant strains were assessed in Arabidopsis thaliana Col-0
plants or transgenic Col-0 plants constitutively expressing
HrpJ-HA. Transgenic Arabidopsis plants were made by intro-
ducing the hrpJ gene fused at its 3′ with nucleotides encoding
an HA tag into pLN462, a Gateway version of the binary
vector pPZP212, downstream of a CaMV 35S promoter. The
resulting construct (pLN4501) was electroporated into Agro-
bacterium and hrpJ-ha was introduced into the plant’s
genome using the Agrobacterium-mediated floral dip method
(Bechtold et al., 1993). T2 generation plants were confirmed
to express HrpJ-HA with immunoblots using anti-HA antibod-
ies prior to their use in experiments. To infect plants,
P. syringae strains were grown for 16 h on KB media with
antibiotics at 30°C. The strains were resuspended in 10 mM
MgCl2 containing 0.02% Silwet L-77 (Lehle Seeds, Round
Rock, TX) and spray-inoculated at a concentration of
2 ¥ 108 cells m-1. Four leaf discs were taken for each strain at
0 and 4 days with a 0.4 cm2 cork borer. The samples were
ground in 250 ml of autoclaved water and serially diluted
aliquots were grown on KB plates with the appropriate anti-
biotics and enumerated. Disease symptoms were assessed
and documented 4 days after inoculation.

Callose deposition assays

Callose deposits were measured in leaves of A. thaliana Col-0
or transgenic Col-0 plants constitutively expressing HrpJ-HA.
Callose depositions were induced by infiltration of 1 mM flg22.
Leaves were harvested 16 h after infiltration and evacuated
in alcoholic lactophenol (1:1:1:1:2 phenol : glycerol : lactic
acid : water : ethanol) for 15 m and then incubated in alcoholic
lactophenol at 65°C until cleared. Leaves were stained with
the fluorescent dye aniline blue (0.01%) in a solution of
150 mM K2HPO4 (pH 9.5) for 30 m as previously described
(Adam and Somerville, 1996) then mounted on slides in 50%
glycerol. The aniline blue-stained callose was visualized on a
fluorescence microscope (Zeiss Axionplan 2, Carl Zeiss,
Oberkochen, Germany), and the number of callose deposits
was quantified using Quantity One (Bio-Rad).
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