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Summary

The bacterial plant pathogen 

 

Pseudomonas syringae

 

possesses a type III protein secretion system that
delivers many virulence proteins into plant cells. A
subset of these proteins (called Avr proteins) is rec-
ognized by the plant’s innate immune system and
triggers defences. One defence-associated response
is the hypersensitive response (HR), a programmed
cell death (PCD) of plant tissue. We have previously
identified HopPtoD2 as a type III secreted protein from

 

P. s.

 

 pv. 

 

tomato

 

 DC3000. Sequence analysis revealed
that an N-terminal domain shared homology with Avr-
PphD and a C-terminal domain was similar to protein
tyrosine phosphatases (PTPs). We demonstrated that
purified HopPtoD2 possessed PTP activity and this
activity required a conserved catalytic Cys residue
(Cys

 

378

 

). Interestingly, HopPtoD2 was capable of sup-
pressing the HR elicited by an avirulent 

 

P. syringae

 

strain on 

 

Nicotiana benthamiana

 

. HopPtoD2 deriva-
tives that lacked Cys

 

378

 

 no longer suppressed the
HR indicating that HR suppression required PTP
activity. A constitutively active MAPK kinase, called
NtMEK2

 

DD

 

, is capable of eliciting an HR-like cell death
when transiently expressed in tobacco. When
NtMEK2

 

DD

 

 and HopPtoD2 were co-delivered into
plant cells, the HR was suppressed indicating that
HopPtoD2 acts downstream of NtMEK2

 

DD

 

. DC3000

 

hopPtoD2

 

 mutants were slightly reduced in their abil-
ity to multiply 

 

in planta

 

 and displayed an enhanced
ability to elicit an HR. The identification of HopPtoD2
as a PTP and a PCD suppressor suggests that the
inactivation of MAPK pathways is a virulence strategy
utilized by bacterial plant pathogens.

Introduction

 

The Gram-negative bacterial plant pathogen 

 

Pseudomo-
nas syringae

 

 pv. 

 

tomato

 

 DC3000 has become an
important model system in molecular plant pathology, in
part, because it infects both tomato and the genetically
amenable model plant 

 

Arabidopsis

 

 and because its type
III protein secretion system (TTSS) and the effector
proteins it delivers to plant cells are relatively well charac-
terized (Alfano and Collmer, 1997; Galán and Collmer,
1999). The availability of the DC3000 draft nucleotide
sequence has resulted in a substantial increase in the
size of the Hrp regulon (Boch 

 

et al

 

., 2002; Fouts 

 

et al

 

.,
2002; Zwiesler-Vollick 

 

et al

 

., 2002) and has led to the
identification of many type III effectors (Guttman 

 

et al

 

.,
2002; Petnicki-Ocwieja 

 

et al

 

., 2002). The current inventory
of DC3000 type III secreted proteins now stands at 36
with several other candidate effectors that await con-
firmation (Collmer 

 

et al

 

., 2002). Generally, mutants defec-
tive in individual effector proteins have subtle virulence
phenotypes (Chen 

 

et al

 

., 2000; Shan 

 

et al

 

., 2000). How-
ever, the TTSS is essential for 

 

P. syringae

 

 pathogenesis
because mutants defective in the TTSS are not patho-
genic suggesting that collectively these effectors must be
required and that many of them are likely functionally
redundant.

Several type III effectors were originally named aviru-
lence (Avr) proteins because they were recognized by
components of the defence system of plants called resis-
tance (R) proteins (Keen, 1990). In these cases, the effec-
tors are not acting as virulence proteins, but instead
betray the pathogen by triggering plant defence
responses. These defence responses include an oxidative
burst, production of pathogen-related proteins, phytoal-
exin production and elicitation of the hypersensitive
response (HR) (Somssich and Hahlbrock, 1998; Cohn

 

et al

 

., 2001). The HR is an example of a programmed cell
death (PCD) pathway in plants and has long been asso-
ciated with defence to viral, fungal and bacterial patho-
gens (Goodman and Novacky, 1994; Heath, 2000a).
Because of its connection to the HR and pathogenicity,
TTSSs in bacterial plant pathogens are also referred
to as Hrp systems (for Hypersensitive Response and
Pathogenicity).
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The actions and targets of 

 

P. syringae

 

 effectors that
promote pathogenicity remain elusive (Staskawicz 

 

et al

 

.,
2001). However, there were early indications that 

 

P. syrin-
gae

 

 could suppress the induction of defence related tran-
scripts during infections on host plants (Jakobek 

 

et al

 

.,
1993). Recent studies show that several 

 

P. syringae

 

 effec-
tors contain biologically active cysteine protease catalytic
triads similar to those found in YopJ and YopT from animal
pathogenic 

 

Yersinia

 

 species (Orth 

 

et al

 

., 2000; Shao 

 

et al

 

.,
2002). The plant targets for these proteins are currently
unknown. The effector proteins AvrB and AvrRpm1 inter-
act with the plant protein RIN4, which appears to act as
a negative regulator of plant defences (Mackey 

 

et al

 

.,
2002). In an important conceptual advance, two papers
established genetically that the presence of the effectors
VirPphA, AvrPphF and AvrPphC individually in 

 

P. s.
phaseolicola

 

 were capable of blocking the HR on specific
cultivars of bean (Jackson 

 

et al

 

., 1999; Tsiamis 

 

et al

 

.,
2000). It was hypothesized that the HR blocking activity
of the effectors could be due to the following: blockage of
Avr secretion from bacterial cells and/or translocation into
plant cells; modulation of signal transduction pathways
within plant cells; or interference between Avr proteins
once inside plant cells preventing their recognition by the
surveillance system of the plant. Indeed, earlier reports
seemed to support the last hypothesis because the pres-
ence of an Avr protein prevented the recognition of
another Avr protein by the plant immune system (Reuber
and Ausubel, 1996; Ritter and Dangl, 1996).

The DC3000 genome contains two ORFs whose pre-
dicted products share homology with AvrPphD, a well-
distributed Avr protein originally identified from 

 

P. s.
phaseolicola

 

 (Arnold 

 

et al

 

., 2001). Both of these ORFs,
initially designated 

 

avrPphD1

 

Pto

 

 and 

 

avrPphD2

 

Pto

 

, have
Hrp promoters upstream and are expressed in a Hrp-
dependent manner (Fouts 

 

et al

 

., 2002). Subsequently,
both AvrPphD1

 

Pto

 

 and AvrPphD2

 

Pto

 

 were identified as type
III secreted proteins and renamed HopPtoD1 and
HopPtoD2 (Petnicki-Ocwieja 

 

et al

 

., 2002). 

 

hopPtoD2

 

 is
located within the chromosome in a cluster of 

 

hrp

 

-related
genes in an apparent pathogenicity island (Pai) not linked
to the Hrp Pai that encodes the TTSS apparatus (Alfano

 

et al

 

., 2000; Badel 

 

et al

 

., 2002). In this report we show
that HopPtoD2 possesses a C-terminal domain that
shares similarity with protein tyrosine phosphatases
(PTPs). We demonstrate that HopPtoD2 is an active PTP
capable of suppressing the HR elicited by an avirulent

 

P. syringae

 

 strain. Moreover, HopPtoD2 transiently
expressed 

 

in planta

 

 was capable of suppressing the HR-
like response elicited by a mitogen-activated protein
kinase (MAPK) pathway. Our research suggests that inac-
tivation of MAPK pathways are a pathogenic strategy
employed by bacterial plant pathogens to circumvent the
innate immune system of the plant.

 

Results

 

HopPtoD2 has an N-terminal domain that possesses 
amino acid similarity with the avirulence protein AvrPphD 
and a C-terminal domain similar to protein tyrosine 
phosphatases

 

We reported that HopPtoD2 was secreted in culture by
the TTSS of 

 

P.

 

 s

 

. tomato

 

 strain DC3000 (Petnicki-Ocwieja

 

et al

 

., 2002). HopPtoD2 is 468 amino acids in length with
a predicted molecular mass of 51.4 kDa. Based on com-
parisons with proteins in the databases, HopPtoD2
appears to have a modular organization (Fig. S1A in 

 

Sup-
plementary material

 

). 

 

BLASTP

 

 searches (Altschul 

 

et al

 

.,
1997) revealed that the amino terminal 200 amino acids
share high similarity with several AvrPphD homologues
present in other 

 

P. syringae

 

 pathovars as well as other
plant pathogens (Fig. S1B, see 

 

Supplementary material

 

).
It is important to note that all of the other AvrPphD homo-
logues share similarity throughout their entire sequence,
whereas the similarity with HopPtoD2 is limited to the
amino terminus of these proteins.

Our initial 

 

BLASTP

 

 searches showed that a C-terminal
domain of HopPtoD2 shared sequence identity with an
ORF (CAP0014) from 

 

Clostridium acetobutylicum

 

 (

 

E

 

-
value 4e-26), which is predicted to encode a protein
tyrosine phosphatase (PTP) as well as other PTPs includ-
ing 

 

avrBs1

 

-associated ORF1 from 

 

X. c. vesicatoria

 

(Ronald and Staskawicz, 1988). The 

 

BLASTP

 

 searches
also showed that the region of PTP similarity within
HopPtoD2 contains a conserved catalytic domain of PTPs
(pfam00102). 

 

PSI

 

-

 

BLAST

 

 searches further confirmed this
similarity. Several of the PTPs showing similarity with
HopPtoD2 are shown in Fig. S1C (see 

 

Supplementary
material

 

). HopPtoD2 has the invariant residues
(HCxxGxxRS/T) present in the catalytic domains of func-
tional PTPs (Denu 

 

et al

 

., 1996). Another indication that
HopPtoD2 contained a PTP domain was that the thread-
ing program 3

 

D

 

-

 

PSSM

 

 predicted that the C-terminal region
of HopPtoD2 folds similar to several known PTP protein
structures present in the structural classification of pro-
teins database (Kelley 

 

et al

 

., 2000). Thus, HopPtoD2
appears to be a modular protein that contains an amino
terminal domain homologous to AvrPphD and a carboxy
terminal domain that has similarity with PTPs.

 

The AvrPphD domain of HopPtoD2 is widely distributed 
among 

 

P. syringae

 

 pathovars, whereas the PTP domain 
appears to be less common

 

Because of the modular nature of HopPtoD2 and consid-
ering that all of the other known homologues of AvrPphD
do not contain a PTP domain, we sought to determine
how prevalent this allele was in other 

 

P. syringae

 

 patho-
vars as well as other bacterial plant pathogens. DNA gel
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blots probed with a DNA fragment corresponding to the
AvrPphD domain showed that this domain is widely
present in other 

 

P. syringae

 

 strains (Fig. 1A). This is con-
sistent with another report indicating that 

 

avrPphD

 

 alleles
are distributed through many 

 

P. syringae

 

 strains (Arnold

 

et al

 

., 2001). We did not detect any hybridization of this
fragment with total DNA from the other bacterial plant
pathogens tested (Fig. 1A). However, 

 

avrPphD

 

 homo-
logues have been identified in several other bacterial plant
pathogens by sequencing, but their limited similarity to

 

hopPtoD2

 

 would prevent their detection with DNA gel
blots (Noel 

 

et al

 

., 2001; Guo 

 

et al

 

., 2002; Salanoubat

 

et al

 

., 2002). We found that fewer 

 

P. syringae

 

 strains con-
tained DNA that could hybridize to a fragment correspond-
ing to the PTP domain of HopPtoD2, and interestingly,
other than DC3000 only 

 

P. s. maculicola

 

 strains hybridized
(Fig. 1B). Thus, in our survey, the nucleotide sequence
corresponding to the PTP domain was not broadly distrib-
uted in 

 

P. syringae

 

.

 

Affinity-purified HopPtoD2 possesses tyrosine 
phosphatase activity

 

An affinity-purified GST-HopPtoD2 fusion protein encoded
by pLN173 was used to determine if HopPtoD2 had PTP
enzymatic activity. This fusion protein formed aggregates
in 

 

E. coli

 

. Thus, in order to extract GST-HopPtoD2 from
inclusion bodies, it was solubilized with detergents
and renatured (see 

 

Experimental procedures

 

). GST-
HopPtoD2 was subsequently tested for its ability to
dephosphorylate phosphotyrosine-containing peptides
derived from either the insulin receptor (residues 1142–
1024) or EGF receptor (residues 1014–1024). GST-
HopPtoD2 was active on both peptides and the results
observed using the insulin receptor peptide are shown
(Fig. 2). We also tested a GST-HopPtoD2 protein that
contained a Ser in the place of Cys

 

378

 

 (GST-
HopPtoD2

 

C378S

 

) encoded by pLN234. Several studies have
shown that this conserved Cys is required for PTP activity
(Zhang and Dixon, 1994). When GST-HopPtoD2

 

C378S

 

 was
used in this assay, near background levels of PTP activity
were detected indicating that HopPtoD2 had a similar
catalytic mechanism as other characterized PTPs (Fig. 2).
To determine whether HopPtoD2 was a dual-specificity
phosphatase (DSP) that possessed Ser/Thr phosphatase
activity we tested if GST-HopPtoD2 could dephosphory-
late 

 

32

 

P-labelled Ser/Thr residues of the myelin basic pro-
tein. Under the conditions used, we were unable to detect
any liberated inorganic phosphate indicative of Ser/Thr
phosphatase activity (data not shown). Thus, it appears
that HopPtoD2 is a PTP not a DSP.

 

Fig. 1.

 

 DNA gel blot analysis of the distribution of the AvrPphD and 
PTP domains of HopPtoD2 in 

 

P. syringae

 

 strains and other plant 
pathogens. DNA from different bacteria was digested with 

 

Bam

 

HI and 

 

Bgl

 

II restriction enzymes and transferred to a nylon membrane and 
probed with either a fragment corresponding to the AvrPphD domain 
(A) or the PTP domain (B). Numbered lanes correspond to the fol-
lowing bacteria: 1, 

 

P. s. tomato

 

 DC3000; 2, 

 

P. s

 

. 

 

tomato

 

 Pt23; 3, 

 

P. s

 

. 
tomato 3357; 4, P. s. tomato 133; 5, P. s. maculicola 84–67; 6, P. s. 
maculicola 84–59; 7, P. s. maculicola NCPPB1886; 8, P. s. maculicola 
438; 9, P. s. glycinea race 4; 10, P. s. phaseolicola HB10Y; 11, P. s. 
phaseolicola 343; 12, P. s. pisi 11; 13, P. s. syringae 61; 14, P. s. 
syringae B728A; 15, P. s. tabaci 11528; 16, E. chrysanthemi 
3937; 17, X. c. vesicatoria 82–8. Molecular mass markers are 
indicated.

Fig. 2. Tyrosine phosphatase activity of purified GST-HopPtoD2. The 
PTP activity of purified fusion proteins GST-HopPtoD2 and GST-
HopPtoD2C378S was measured using a colorimetric PTP assay (see 
Experimental procedures). Results are shown from experiments that 
used a Tyr-phosphorylated peptide from the insulin receptor as the 
substrate. Reactions were performed at room temperature for 10 min 
with the indicated amounts of fusion proteins. The vector alone, which 
produced GST, was used as a negative control. Protein tyrosine 
phosphatase 1b (PTP-1b) was used as a positive control at a 1/20 
dilution. These experiments were repeated at least three times with 
similar results.
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HopPtoD2 suppresses the hypersensitive response 
elicited by an avirulent P. syringae pathovar

Ectopic expression of hopPtoD2 in P. s. phaseolicola
NPS3121 (Pph) did not lead to a detectable increase in
virulence of Pph on A. thaliana (data not shown). We
next tested whether Pph(pLN56) could alter the ability of
this pathogen to elicit a defence-associated HR on N.
benthamiana. To do so, we infiltrated Pph(pLN56) into
leaves of N. benthamiana alongside Pph containing the
control vector. Pph produced an HR on N. benthamiana
within approximately 12 h. Interestingly, Pph(pLN56)
expressing HopPtoD2 did not elicit an HR during this
same time period (Fig. 3A). However, an HR was elicited
by Pph(pLN56) about 24 h after the onset of the HR
induced by Pph (data not shown). This delayed HR phe-
notype appeared to be dependent on which test plant
was used because the delay in the onset of the HR was
much shorter when Pph(pLN56) was infiltrated into
tobacco (N. tabacum cv. Xanthi)(data not shown). To
determine if the HR suppression phenotype that occurred
when hopPtoD2 was provided in trans was due to PTP
activity, we cloned an inactive allele of hopPtoD2
(hopPtoD2C378S) into the same broad-host-range vector.
Bacteria carrying this construct, pLN214, produced simi-

lar amounts of HopPtoD2 as produced by pLN56 (data
not shown). When Pph(pLN214) was infiltrated into N.
benthamiana an HR occurred within 12 h similar to the
response observed with the Pph control (Fig. 3A). This
indicated that HopPtoD2 was capable of HR suppression
and this suppression was dependent on its PTP activity.
We hypothesized that HR suppression was due to
HopPtoD2 acting within the plant cell to suppress a sig-
nal transduction pathway activated by the avirulent Pph.
However, these results could also be explained by over-
expression of HopPtoD2, a known type III substrate,
which may alter the ability of Pph to elicit an HR by
simply affecting the flow of protein traffic through the
TTSS. To eliminate this possibility, we performed bacte-
rial mixing experiments of Pph and Pph producing
HopPtoD2. When the HopPtoD2-containing Pph strain
was infiltrated into N. benthamiana 4 h before the Pph
strain lacking HopPtoD2, the HR was suppressed for
48 h after infiltration of the second strain (Fig. 3B).
Because this HR suppression occurred when HopPtoD2
was produced by only a subset of infiltrated bacterial
cells, HopPtoD2 can suppress an HR elicited by indepen-
dent bacterial cells. Moreover, the HR suppression activ-
ity of HopPtoD2 was not due to blockage of the type III
apparatus.

Fig. 3. Programmed cell death elicited by an avirulent P. syringae or 
an activated MAPKK can be suppressed by HopPtoD2 in a PTP-
dependent manner.
A. N. benthamiana leaves were infiltrated with P. s. phaseolicola (Pph) 
carrying either pML122 (vector control); pLN56 (phopPtoD2), a 
HopPtoD2 encoding construct; or pLN214 (phopPtoD2C378S). The mid-
dle panel shows that HopPtoD2 suppressed the HR, whereas 
HopPtoD2C378S had no effect on HR elicitation (right panel).
B. In bacterial mixing experiments, Pph carrying either pML122 (vec-
tor control), pLN56 (phopPtoD2), or pLN214 (phopPtoD2C378S) were 
co-infiltrated into N. benthamiana leaf tissue with Pph(pML122). Each 
infiltrated strain was at an OD600 of 0.1, which is a sufficient cell 
density to elicit an HR. Only in treatments that produced HopPtoD2 
was the HR suppressed (middle panel).
C. Agrobacterium-mediated transient expression of HopPtoD2 
suppresses the cell death induce by the NtMEK2 MAPKK. N. 
tabacum cv. Xanthi leaves were infiltrated with A. tumefaciens 
MOG101 carrying either pPZP212 (empty vector), pLN592, 
a vector expressing HopPtoD2, or pLN628, a vector expressing 
the inactive HopPtoD2C378S. Leaf panels were infiltrated with 
MOG101(pTA7002::ntmek2DD), which expressed active 
NtMEK2DD Also, included was an agroinfiltration with 
MOG101(pTA7002::ntmek2R), which expressed an inactive 
NtMEK2R. The NtMEK2DD-HR-like response was only suppressed 
when HopPtoD2 was present. The fraction underneath each 
picture in (A–C) indicates the number of times the results shown 
were observed over the number of times the experiment was 
performed.
D. Immunoblot of tobacco tissue infiltrated with the agroinfiltrations in 
(C). One cm diameter leaf disks were sampled from infiltrated tissue, 
crushed in liquid nitrogen, resuspended in 100 ml 1¥ SDS tracking 
buffer, and 20 ml of each sample was separated and analysed with 
SDS-PAGE and immunoblots. The NtMEK2 proteins were fused to a 
FLAG epitope and the HopPtoD2 proteins were fused to the haemag-
glutinin epitope (HA), which allowed detection in tissue with commer-
cially available antibodies.
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HopPtoD2 suppresses the NtMEK2-dependent HR-like 
response indicating that its substrate is downstream of 
this MAPK kinase

It seemed likely that HopPtoD2 was acting on a signal
transduction pathway inside plant cells to suppress the
HR. A good candidate pathway to test was the MAPK
pathway in tobacco that utilizes the SIPK and WIPK
MAPKs, which are known to activate plant defences in
response to abiotic and biotic stresses (Nurnberger and
Scheel, 2001; Zhang and Klessig, 2001). The upstream
MAPK kinase (MAPKK) for both of these MAPKs is
NtMEK2 (Yang et al., 2001). We tested whether co-
expression of NtMEK2 and HopPtoD2 in plant cells
would suppress the HR-like response induced by
NtMEK2 alone. To eliminate the requirement of activa-
tion of NtMEK2, we used an ntmek2 allele that encodes
an altered NtMEK2 protein, NtMEK2DD, which has its Ser
and Thr residues within the phosphorylation motif
replaced with Asp residues making the protein constitu-
tively active (Yang et al., 2001). We infiltrated into
tobacco (N. tabacum cv. Xanthi) an Agrobacterium strain
carrying hopPtoD2 on a binary vector 4 h before infiltra-
tion of a second Agrobacterium strain carrying
ntmek2DD. Approximately 24 h after induction, a visible
HR was observed in plant tissue infiltrated with
ntmek2DD-containing Agrobacterium and a control strain,
whereas, in leaf panels that expressed both HopPtoD2
and NtMEK2DD, the HR-like response caused by
NtMEK2DD was suppressed (Fig. 3C). Control agroinfil-
trations lacking either HopPtoD2 or an inactive NtMEK2
confirmed that the HR-like response was dependent on
NtMEK2 and that the HR suppression required
HopPtoD2 (Fig. 3C). Based on immunoblots, both
HopPtoD2 and NtMEK2 proteins were made in planta in
similar amounts (Fig. 3D). Similar results were observed
when identical experiments were carried out with N.
benthamiana (Fig. S2 in Supplementary material). More-
over, we co-infiltrated purified HopPtoD2 into tobacco
with ntmek2DD-containing Agrobacterium strains and
these retained the ability to elicit an HR-like response
suggesting that HopPtoD2 needs to be inside plant cells
to function (data not shown). The HR suppression activ-
ity of HopPtoD2 was dependent on an active PTP
domain indicated by the fact that HopPtoD2C378S was
unable to suppress the HR (Fig. 3C). Similar results
were obtained with agroinfiltration co-delivery experi-
ments using N. benthamiana (data not shown). Given
that MAPKs are activated, in part, by Tyr phosphoryla-
tion (Luan, 2000), SIPK and/or WIPK represent potential
HopPtoD2 targets. However, thus far, we have been
unable to show a direct interaction between HopPtoD2
and either SIPK or WIPK in standard yeast two hybrid
interaction assays (data not shown).

DC3000 hopPtoD2 mutants display an enhanced ability 
to elicit the HR on non-host plants consistent with 
HopPtoD2 acting as a PCD suppressor

We sought to determine if mutants defective in HopPtoD2
production were altered in their ability to cause disease in
host plants. We hypothesized that interactions with a host
plant may not result in disease if the pathogen no longer
possessed the HopPtoD2 PCD suppressor. To test this,
we constructed two different types of DC3000 hopPtoD2
mutants: UNL105 contains a marked insertion mutation
and UNL112 contains an unmarked hopPtoD2 deletion.
We tested both of these hopPtoD2 mutants for their ability
to grow in planta and to cause disease symptoms on the
host plant tomato (Lycopersicon esculentum cv. money-
maker). Both mutants produced disease symptoms similar
to those caused by wild-type DC3000 (data not shown).
However, each mutant was slightly reduced in their ability
to grow in tomato and this reduction in in planta growth
was complemented when hopPtoD2 was supplied in trans
as shown for UNL112 (Fig. 4A). The reduced growth of
UNL112 in planta was not complemented by the
hopPtoD2C378S construct indicating that the PTP domain
was required (Fig. 4A). Similar results were seen when
pathogenicity assays with UNL112 and UNL105 were
done using A. thaliana Col-0 as the host plant (Fig. S3 in
the Supplementary material). These results suggest that
HopPtoD2 is a virulence factor.

Based on our findings we were cognizant of the possi-
bility that a pathogen may encode multiple PCD suppres-
sors, each contributing, perhaps incrementally, to the
suppression of plant defences. To test if we could observe
a difference between DC3000 and the hopPtoD2 mutants
in their ability to induce defence responses on non-host
plants we infiltrated into tobacco leaves different dilutions
of each and assayed for their ability to elicit an HR. Inter-
estingly, the hopPtoD2 mutants were consistently capable
of eliciting the HR at a 10-fold higher dilution (Fig. 4B).
Similar results were observed when these strains were
infiltrated into N. benthamiana (data not shown). It is
important to note that DC3000 produced a typical HR at
dilutions of 107 cells ml-1 or higher. This enhanced HR
phenotype produced by the hopPtoD2 mutants was due
to the absence of HopPtoD2 because when hopPtoD2
was supplied in trans the HR-eliciting ability was compa-
rable to an HR caused by the wild-type strain (Fig. 4B).
Moreover, the PTP domain of HopPtoD2 was required
because constructs that produced the inactive PTP,
HopPtoD2C378S, were unable to complement UNL105
(Fig. 4B). Thus, the phenotype of hopPtoD2 mutants on
non-host plants was consistent with HopPtoD2 acting as
a PCD suppressor and the HR titration assays used here
may be useful in the identification of other PCD suppres-
sors in bacterial plant pathogens.
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Discussion

We have shown that HopPtoD2 is a modular protein that
contains an N-terminal domain from AvrPphD, a well-
distributed Avr protein, and a C-terminal region that pos-
sesses PTP activity. The PTP domain appears to have a
more limited distribution in P. syringae strains (Fig. 1). The
modular nature of HopPtoD2 is reminiscent of several
type III effectors from animal pathogens (Kaniga et al.,
1996). One of these is the Salmonella effector SptP (Kan-
iga et al., 1996), which has an N-terminal domain that
possesses GTPase-activating protein activity and is sim-

ilar to N-terminal domains in the Yersinia spp. YopE effec-
tor (Cornelis, 2002) and the P. aeruginosa ExoS effector
(Pederson et al., 1999). Like HopPtoD2, the SptP C-
terminal domain is an active PTP as is the C-terminal
domain of the Yersinia YopH effector. (Kaniga et al., 1996).
Based on this precedent, it is plausible that the N-terminal
domain of HopPtoD2 includes another enzymatic activity
shared by the other AvrPphD homologues, whereas the
C-terminal domains of the AvrPphD homologues, which
are unrelated to HopPtoD2, may contain a different activ-
ity. Alternatively, the shared N-terminal domain of these
proteins may carry only information required for secretion,
translocation and targeting within host cells. Several ani-
mal cell targets for the SptP and YopH PTPs have been
identified and both effectors modulate actin polymeriza-
tion and pathogen uptake into host cells (Black and Bliska,
1997; Murli et al., 2001). Thus, the effects of these pro-
teins on host cells will likely be different from the effects
of HopPtoD2 on plants. However, the specific targets that
these proteins act on may share significant similarities.
For example, one function of SptP is to down-modulate
the MAPK Erk (Murli et al., 2001). It will be important to
compare and contrast these PTPs with HopPtoD2 to bet-
ter understand HopPtoD2¢s role in plants.

We have demonstrated that the PTP activity of
HopPtoD2 is required to suppress an HR that would nor-
mally occur in N. benthamiana in response to an avirulent
P. syringae pathovar (Fig. 3A). Bacterial mixing experi-
ments showed that this HR suppression phenotype was
not simply a consequence of blocking or altering secretion
of type III effectors from the bacterial cell as HR suppres-
sion still occurred when HopPtoD2 was present in only a
subpopulation of the cells infiltrated (Fig. 3B). The HR
suppression phenotype was also not an effect of interfer-
ence between Avr proteins as HopPtoD2 transiently
expressed in tobacco suppressed an HR-like response
induced by an activated MAPK pathway (Fig. 3C). Indeed,
these results suggest that HopPtoD2 functions inside
plant cells to cause HR suppression through down-mod-
ulation of a MAPK pathway. We also demonstrated that
DC3000 mutants defective in HopPtoD2 were reduced in
their ability to grow in planta (Fig. 4A) and exhibited an
enhanced ability to elicit an HR in HR titration assays
when compared to wild-type DC3000 (Fig. 4B). Taken
together, these phenotypes are also consistent with
HopPtoD2 acting as an HR suppressor.

How does the PCD suppression activity contribute to P.
syringae pathogenicity? It is possible that the role of
HopPtoD2 is to suppress general defence responses that
are activated when a resistant plant recognizes another
type III effector as an Avr protein. Indeed, independently,
another group has identified HopPtoD2 as a PTP and
found that it also suppresses the defence-associated oxi-
dative burst and induction of a pathogen-related protein

Fig. 4. DC3000 hopPtoD2 mutants are reduced in bacterial growth in 
host tomato and have an enhanced ability to elicit an HR on non-host 
tobacco.
A and B. DC3000, a DC3000 hrcC mutant defective in type III secre-
tion, and the hopPtoD2 mutant UNL112 were dip-inoculated into 
tomato (A). Samples were taken over a 5-day period and bacteria 
were enumerated. Bacterial growth was reduced for UNL112 in 
tomato and the reduction was complemented when hopPtoD2 was 
supplied in trans with pLN56, but not when pLN214 was used, which 
carries hopPtoD2C378S. Each assay was done at least three times and 
error bars indicate standard deviations.
B. N. tabacum cv. Xanthi leaves were infiltrated with P. syringae 
strains that were 10-fold serially diluted from 108 cells ml-1. The last 
dilution (106 cells ml-1) that resulted in an HR is shown. The following 
strains were infiltrated: DC3000; the hopPtoD2 mutant, UNL105; 
UNL105 complemented with pLN56, which encodes a functional 
HopPtoD2; UNL105 complemented with pLN214 (phopPtoD2C378S). 
The HR was scored for each sample. At 106 cells ml-1, DC3000 
produced a spotty HR (HR-), UNL105 and UNL105(phopPtoD2C378) 
produced a strong HR (HR +), and UNL105 (phopPtoD2) produced 
no visible HR (No HR). The fraction underneath each picture indicates 
the number of times the results shown were observed over the num-
ber of times the experiment was performed. The results indicated that 
UNL105 elicited an enhanced HR and complementation required an 
active HopPtoD2 PTP.
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(S. Hutcheson, pers. comm.). These results are consistent
with HopPtoD2 acting as a suppressor of Avr-induced
immunity.

However, another possibility is that HopPtoD2 is a more
general defence suppressor that inhibits other defence
responses induced by Avr proteins and pathogen-associ-
ated molecular patterns (PAMPs). Pathogen-associated
molecular patterns are molecules, such as LPS or flagel-
lin, which represent conserved molecular patterns that are
unique to microorganisms. Insects, mammals and plants
have receptor-based systems to recognize PAMPs (Boller,
1995; Medzhitov and Janeway, 2000). MAPK cascades
appear to be involved in each of these recognition sys-
tems (Aderem and Ulevitch, 2000; Asai et al., 2002;
Khush et al., 2002). In insects and mammals, the Toll or
Toll-like receptors that are utilized in their innate immune
systems have leucine rich repeat (LRR) domains. In
plants, the flagellin PAMP is recognized by the LRR-con-
taining receptor kinase FLS2, which resembles an R pro-
tein, Xa21, that recognizes a Xanthomonas Avr signal
(Song et al., 1995; Gomez-Gomez et al., 2001). Thus, the
innate immune systems that recognize PAMPs in plants
share similarities to the R proteins, which recognize
pathogen Avr proteins (Dangl and Jones, 2001). One dif-
ference between PAMP surveillance and Avr surveillance
is that the latter also induces the HR. It will be interesting
to determine whether HopPtoD2 can suppress the
defence response initiated in response to flagellin. If so,
it may indicate that HopPtoD2 can suppress defence
responses that plant pathologists have typically referred
to as non-host resistance (Heath, 2000b).

From an evolutionary perspective, it would be logical for
the pathogen to evolve suppressors that act at conver-
gence points of many defence pathways. By doing this,
the pathogen would increase its likelihood of disabling a
pathway that could potentially result in a successful
defence response. Based on our findings that HopPtoD2
acts downstream of NtMEK2, this is a plausible mecha-
nism of action. NtMEK2 activates the MAPKs SIPK and
WIPK (Yang et al., 2001), which participate in the
responses to many different abiotic and biotic plant
stresses (Zhang and Klessig, 2001). It is not clear whether
the HR elicited by avirulent bacteria on plants is equivalent
to the HR-like response observed when NtMEK2DD is
expressed in tobacco. However, because HopPtoD2 sup-
presses both, our results support that they are related.
Orthologues of NtMEK2, SIPK and WIPK were recently
reported to be involved in the Arabidopsis FLS2-depen-
dent defence response to flagellin (Asai et al., 2002). We
are currently testing whether HopPtoD2 can act similarly
on these MAPK cascades. To our knowledge, with the
exception of MAPK activation, tyrosine kinases do not play
a central role in immunity in plants. Thus, SIPK and WIPK
constitute good candidate targets for HopPtoD2. More-

over, there have been reports implicating PTPs or DSPs
in the negative regulation of Arabidopsis MAPKs (Gupta
et al., 1998; Xu et al., 1998; Ulm et al., 2002). However, it
is possible that other hitherto unknown targets exist that
can be inactivated by PTPs. Future studies with
HopPtoD2 may elucidate the defence-related MAPK path-
ways that function in plant defences.

The pioneering studies by Jackson et al. (1999) and
Tsiamis et al. (2000) revealed that the P. s. phaseolicola
effector proteins VirPphA, AvrPphC and AvrPphF were
capable of blocking the HR. From our vantage point, it
appears likely that these proteins are functioning in plants
as suppressors of defence responses. Indeed, the VirP-
phA homologue in DC3000, AvrPtoB, was recently con-
firmed to act as a PCD suppressor (Abramovitch et al.,
2003). How many of the P. syringae type III effectors are
acting as PCD and/or general defence suppressors? The
availability of the DC3000 genome should help us answer
this question by facilitating the identification of PCD sup-
pressors using genome-wide approaches. HopPtoD2 and
other effectors that behave similarly will help us under-
stand how plant pathogenic bacteria evade host defences
and are likely to be important tools to dissect signal trans-
duction pathways that control plant innate immunity.

Experimental procedures

Bacterial strains and media

Escherichia coli strain DH5a was used for general cloning
and DNA manipulations. Pseudomonas s. pv. tomato
DC3000 and P. s. pv. phaseolicola NPS3121 strains were
grown in King’s B (KB) broth at 30∞C (King et al., 1954).
Escherichia coli and Agrobacterium tumefaciens MOG101
(Hood et al., 1993) were grown in LB broth at 37∞C or 30∞C
respectively. Antibiotics were used at the following concen-
trations (mg ml-1): rifampicin, 100; ampicillin, 100; gentamicin,
10; kanamycin, 50; and spectinomycin 50. The hopPtoD2
nucleotide sequence has been deposited in the GenBank
database under accession no. AY198373.

Construction of plasmids

hopPtoD2 was cloned into the HindIII and BamHI sites of
pML122 (Labes et al., 1990) using PCR with the primers
P423 and P374 resulting in pLN56. These primer sequences
and all others used in this manuscript are provided in
Table S1 in the Supplementary material. To construct
pML122 derivatives that contained hopPtoD2 with a mutation
that altered the catalytic Cys378 to Ser, we cloned hopPtoD2
into pBluescript KS using the above primers and site-directed
mutagenesis was performed on this construct, pLN349, using
the QuikTM Change Mutagenesis Kit (Stratagene, La Jolla,
CA) with the primers P538 and P539 according to the man-
ufacturer’s instructions. The hopPtoD2 allele containing the
mutation was cloned from pBluescript-KS into pML122 gen-
erating pLN214. pGEX-5X-1 (Amersham Pharmacia Biotech,
Piscataway, NJ) derivatives containing hopPtoD2 in frame
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with glutathione S-transferase (GST) were constructed as
follows. The coding region of hopPtoD2 was amplified by
PCR from DC3000 using primers P490 and P460. The ampli-
fied fragment was digested with EcoRI and XhoI and cloned
into pGEX-5X-1 resulting in pLN173. Site-directed mutagen-
esis was performed on pLN173 using the QuikTM Change Kit
(Stratagene) using the same primers as described above
resulting in pLN234. hopPtoD2 was PCR-cloned into the
pENTR/D-TOPO vector (Invitrogen) using the primers P957
and P958 resulting in pLN560. The hopPtoD2 insert in
pLN560 was transferred to pLN462 using Gateway Technol-
ogy (Invitrogen) resulting in pLN592. pLN462 is a modified
binary pPZP212 vector (Hajdukiewicz et al., 1994) compati-
ble with Gateway Technology, and also containing a 35S
promoter and a haemagglutinin epitope sequence flanking
one of the attR sites. A hopPtoD2 allele that possesses the
catalytic Cys378 to a Ser mutation was cloned into pLN462
using a similar strategy as described above resulting in
pLN628.

Construction of DC3000 hopPtoD2 mutants

We made two independent mutants defective in hopPtoD2
using different strategies. In the first, we cloned an internal
fragment of hopPtoD2 into XcmI digested pKnockout-W
(Windgassen et al., 2000) using the primer P162 and P163.
The resulting construct, pLN5, was conjugated into DC3000
by triparental mating using spectinomycin as selection for the
plasmid marker. The hopPtoD2 mutant UNL105 was con-
firmed with primers that flank the hopPtoD2 coding region.
In the second strategy, we constructed an unmarked
hopPtoD2 deletion mutation by using the suicide vector
pKNG101 (Kaniga et al., 1991), which contains the sacB
gene and allows selection for plasmid loss. Polymerase chain
reaction fragments representing upstream and downstream
regions of the hopPtoD2 coding region were amplified using
the following primer sets: P280 and P281, with SalI and SmaI
sites, respectively; and P282 and P283, with SmaI and XbaI
sites respectively. These fragments were separately cloned
into pKNG101 resulting in construct pLN357. pLN357 was
mobilized into DC3000 by triparental mating and recombina-
tion of the plasmid into the DC3000 genome was selected
for with streptomycin. Transconjugates were picked onto KB
plates containing 5% sucrose to select for plasmid eviction.
To identify the hopPtoD2 mutant UNL112, we used primers
that flank the hopPtoD2 coding region.

DNA gel blots

Total DNA was digested with restriction enzymes and sepa-
rated by electrophoresis and transferred to Immobilon-Ny+
membrane (Millipore, Bedford, MA). Hybridizations were car-
ried out at 55∞C in hybridization solution [7% sodium dodecyl
sulphate (SDS), 2 mM EDTA and 0.5 M Na2HPO4]. The probe
corresponding to the AvrPphD domain was PCR amplified
using the primers P437 and P425. The fragment containing
the PTP nucleotide sequence was PCR amplified with the
primers P406 and P438. Membranes were washed twice in
a solution containing 0.1% SDS and 1 ¥ SSC. Membranes
were exposed to film for approximately 12 h.

Affinity purification of recombinant HopPtoD2

To purify HopPtoD2 we made a construct that fused the 5¢
end of hopPtoD2 with the glutathione S-transferase (GST)
gene. Bacterial cultures expressing this construct were grown
to mid-log phase and induced with 0.1 mM isopropyl b-D-
thiogalactopyranoside at 37∞C overnight. Bacterial cells were
pelleted and resuspended in ice cold lysis buffer containing
50 mM Tris-HCl pH 8.0, 1 mM EDTA, a protease inhibitor
cocktail tablet (Roche, Indianapolis, IN) and 100 mM NaCl.
To renature GST-HopPtoD2 from inclusion bodies, we fol-
lowed a protocol described by Berndt and Cohen (1990). The
dialysate was aliquoted and stored at -20∞C until used. To
purify GST-HopPtoD2 from lysates by affinity chromatogra-
phy, we used Microspin GST Purification Module following
the instructions from the manufacturer (Amersham Pharma-
cia Biotech).

Phosphatase assays

To study the PTP activity of HopPtoD2, a non-radioactive
PTP assay kit was used (Cat. No. PTP101; Sigma, St Louis,
MO), following the manufacturer’s instructions. Briefly, the
assay is based on the liberation of phosphate from Tyr-phos-
phorylated peptide substrates from either the insulin receptor
or EGF receptor. The generated inorganic phosphate can be
quantified using spectrophotometry at 620 nm. As a positive
control, one unit of purified protein tyrosine phosphatase 1b
(Cat. No. P-7365; Sigma, St Louis, MO) was used. To deter-
mine whether GST-HopPtoD2 possessed Ser/Thr phos-
phatase activity, we used an assay kit from New England
Biolabs (Cat. No. P0780S; Beverly, MA). This assay is based
on the dephosphorylation of 32P-labelled myelin basic protein
(MBP), which is phosphorylated at multiple Ser and Thr res-
idues. Affinity-purified GST-HopPtoD2 samples were tested
for Ser/Thr phosphatase activity by mixing with 32P-MBP in
phosphatase buffer. Liberated 32P in the TCA supernatants
was measured using a liquid scintillation counter.

Plant bioassays

DC3000 strains were assessed for their ability to cause dis-
ease symptoms and multiply in planta by dipping tomato
(Lycopersicon esculentum cv. moneymaker) plants into bac-
terial suspensions that were adjusted to an OD600 of 0.2 in
10 mM MgCl2 containing 0.02% Silwet L-77 (Lehle Seeds,
Round Rock, TX) and enumerated as previously described
(Alfano et al., 2000). DC3000 strains were tested for their
ability to elicit an HR on Nicotiana tabacum cv. Xanthi by
infiltrating strains adjusted to an OD600 of 0.2 along with 10-
fold serially diluted samples with needleless syringe. Aviru-
lent P. s. phaseolicola NPS3121 (Pph) carrying either
hopPtoD2 alleles or vector controls were adjusted to an OD600

of 0.2 in 10 mM MgCl2 and infiltrated into N. benthamiana
leaves. For mixing experiments involving two different Pph
strains, Pph carrying hopPtoD2 in trans was infiltrated 4 h
before the Pph carrying the vector control. The leaves were
assessed for the development of an HR after 24 h. Agrobac-
terium-mediated transient expression experiments were
done by infiltrating A. tumefaciens MOG101 at an OD600 of
0.4 into N. benthamiana and N. tabacum cv. Xanthi plants
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using a needleless syringe as described (Van den Ack-
erveken et al., 1996). hopPtoD2 alleles were carried on the
binary vector pPZP212 (Hajdukiewicz et al., 1994) and
expressed from a constitutive 35S promoter. The ntmek2
alleles encoding the constitutively active NtMEK2DD were
expressed from a dexamethasone (DEX) inducible promoter
on pTA7002 (Yang et al., 2001) and were induced with DEX
as previously described (Aoyama and Chua, 1997). For co-
expression experiments, Agrobacterium strains carrying
hopPtoD2 were infiltrated 4 h before infiltration of the
NtMEK2 carrying strains.
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