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IDEALWISE ALGEBRAIC INDEPENDENCE FOR
ELEMENTS OF THE COMPLETION OF A LOCAL DOMAIN

WILLIAM HEINZER, CHRISTEL ROTTHAUS AND SYLVIA WIEGAND

1. Introduction

Over the past forty years many examples in commutative algebra have been con-
structed using the following principle: Let k be a field, let S = k[x1, . . ., Xn]x,, o x0)
be a localized polynomial ring over k, and let a be an ideal in the completion S of
S such that the associated primes of a are in the generic formal fiber of S; that is,
pNS = (0)foreachp € Ass(S /a). Then § embeds in S /a, the fraction field Q(S)
of § embeds in the fraction ring of S, /a, and for certain choices of a, the intersection
D=0WN (S /a) is a local Noetherian domain with completion D=7 ja.

Examples constructed by this method include Nagata’s first examples of non-
excellent rings [N], Ogoma’s celebrated counterexample to Nagata’s catenary con-
jecture [O1], [02], examples of Rotthaus and Brodmann [R1], [R2], [BR1], [BR2],
and examples of Nishimura and Weston [Ni], [W]. In fact all examples we know of
local Noetherian reduced rings which contain and are of finite transcendence degree
over a coefficient field may be realized using this principle.!

The key to these examples is usually the behavior of the formal fibers of the domain
D. A major problem in this setting is to identify and classify ideals in the formal
fiber of S according to the properties of the intersection domain D = Q(S) N (S /a)
The goal of this paper is to study the significance of the choice of the ideal a in this
construction. _

In many of the examples mentioned above, the expression D = Q(S) N (S/a) may
be interpreted so that D is an intersection of the completion of a local Noetherian
domain R with a subfield. In this paper we consider this latter form. More precisely
we use the following setting throughout this paper.
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Setting. Let (R, m) be an excellent normal local domain with field of fractions

K and completion (R m). Suppose that 1y, ..., T, are elements of M which are
algebraically independent over R and that ¢, . . ., t, are indeterminates over K. For
S = R[t1, ..., Wlm.,..z,) and L the fraction ﬁeld of S, we consider in this paper

intermediate nngs of the form A = L N R. It is immediate that:

(1) The completion of R[71, ..., Talan.z....s, is isomorphic to RI[r1, .. ., ta]].
2) liOra =Mt -1, — T2l — T,) in R[[#;,...,t,], RNa=0.
3) RIlty,...,t,]}/a=R

Thus, with S, = R[t,..., e,y anda = (h — 7,02 — T2, .. In — Tn) in
RI[[t, ..., t,]1], we have Q(S,) N (S,/a) =;L N R. That is, the expression from the
above paragraphs now has the form L N R, where L is a field between K and the
fraction field of R.

Before we proceed with our summary of this paper, we give questions, motivation
and background information on the study of LN R, where L is a field between K and
the fraction field of R.

Background. Suppose A is a local Noetherian intermediate ring dominating R
(in the sense that the maximal ideal n of A intersects R in m) and dominated by R.
The local injective morphisms R < A < R imply the existence of a canonical
surjection 7: A — R, where A is the n-adic completion of A. In this setting it is
well known that A is a topological subspace of R; i.e., 7 is an isomorphism, if and
only if every ideal of A is closed in the topology on A defined by the powers of m.
Since A is assumed to be Noetherian, 7 an isomorphism implies Ris faithfully flat
over A, and hence aR N A = aA for each principal ideal aA of A, s0 A =L N R
where L is the field of fractions of A. Thus A = R implies A = LN R and there can
be at most one Noetherlan2 A with A = R for each intermediate field L between K
and the fraction field K of R.

On the other hand, if L is any intermediate field between K and K, then the ring
A=LNRisa quasilocal domain dominating R and dominated by R. Itis easily seen
that such a ring A is Hausdorff in the topology defined by the powers of its maximal
ideal, and again the injective local morphisms R <~ A — R imply the existence of
a canonical surjection 7: A —» R, where A is the completion of A. This leads us to
the question:

What subdomains A o£ R have the form LN R, , where L is an intermediate
field between K and K?

In considering this question, we have come to realize that it is quite broad, and that
the explicit determination of L N R is computationally challenging even for relatively

2Without the assumption that A is Noetherian there are examples where A = Rand A is non-Noetherian
with the same fraction field as R, see for example B, [Chap. III, pages 119-120, Ex. 14].
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simple examples of R and L. We have also discovered that for many excellent normal
local iiomains R of dimensiAon at least two, there exist j\ntennediate fields L between K
and K such that A = L N R fails to be a subspace of R. It can happenthat A = LNR
is an excellent normal local domain of dimension greater than that of R, or even that
A fails to be Noetherian. In order to exhibit such examples we concentrate in this
paper on elements ay, ...a, € m which are algebraically independent over K and
satisfy certain additional independence conditions. We plan to continue the study of
domains of the form L N R in [HRW].

Here are some specific results related to the general question of the structure of
LNR.

(1.1 F()I ay, .. .ay, arbitrary elements of Rand L = K(a,...,ay,),the subdomain
A = LN R is a normal quasilocal birational extension of R[ay, ..., a,]. If the g; are
algebraic over R, then the structure of A is well understood; A is an étale extension
of R with completion A=R (see [R4]). But if the a; are not algebraic over R, the
situation is more complicated and the structure of A depends on the residual behavior
of the a; modulo various prime ideals of R.

(1.2) For a specific example of an excellent normal local domain to illustrate these
ideas, we refer to R = k[x, yl(x,y), the localization of the polynomial ring over
a field £ at the maximal ideal generated by the indeterminates x and y. For this
example R = k[[x, y1l. A result of Valabrega [V, Proposition 3] implies that, for
R =k[x, y](x,y),if Lisa ﬁeld between K and the fraction field F of k[x][[y]] or if
L is a field between F and K, then A = L N R is a two-dimensional regular local
domain with completion R.

(1.3) On the other hand, again considering R = k[x, y](x,y), it is well known that,
for each positive integer n, the formal power series ring in n variables over k can be
embedded in R = k[[x, y1]; in fact k[[x, y]] contains infinitely many analytically
independent elements [A], [AM], [AHW]. However, if a formal power series ring S,
in n variables over k is embedded in R = k[[x, y]], and if R C S (so, in particular,
if S = LN R for some field L between K and K) then S n = R so that n = 2.
More generally, if A is a local Noetherian ring with completion A and B is a complete
local ring such that B dominates A and A dominates B, then a well-known theorem
of Cohen (cf. [M1, (8.4)]) implies that B = A

(1.4) An example of Nagata shows the existence of a 3-dimensional regular lo-
cal domain D with completion D a formal power series ring in 3 variables over a
field k of characteristic p > O for which there exists an intermediate field L be-
tween the fraction fields of D and D such that A = D N L is non-Noetherian.
In this example, D is not excellent and L is a finite purely inseparable extension
of the fraction field of D. A discussion of this example is given on pages 31-32
of [HRS].

(1.5) An example of Ogoma shows the existence of a four-dimensional excellent
regular local domain, indeed a domain D obtained as a localization of a polynomial
ring in 4 variables over a countable field, for which there exists a field L contained
in the fraction field of D and generated by two elements over the fraction field of D
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such that A = D N L is not Noetherian. A discussion of this example is given on
pages 32-34 of [HRS].

(1.6) In [HR], an excellent normal local domain R is said to have the Noetherian
intermediate rings property, (NIR), if for each subfield L of K containing K, the
quasilocal ring L N R is Noetherian and has completion R Interesting examples of
excellent regular local rings satisfying (NIR) are constructed in [R3] and by Shelburne
in [S].3

(1.7) For a subfield L of K containing K, the following construction considered
in [HRS] is sometimes useful for obtaining information about A = L N R. Suppose
(S, n) is an excellent normal local domain dominating R and q is a prime ideal of
S such that S, /q = R and ¢ N S = (0). Then L, the fraction field of S, embeds in
the fraction field of S/q and with this identification, A = LN (S/q) = LN R is a
quasilocal domain birationally dominating S. In §3 we present examples of this type
where A = S.

(1.8) Recent work of Heitmann in [H1] and [H2] and Loepp in [L] shows the
richness of the structure of the local domains with a given completion. In [H1],
Heitmann shows that a complete local ring T is the completion of a local unique
factorization domain (UFD) if (i) T has deRth atleast 2, and (ii) no nonzero element of
the prime subring of T isazerodivisor of T. In [H2], Heitmann proves that very often
a complete local ring is the completion of a local ring having an isolated singularity.
In particular, for T satisfying (i) and (ii) he shows the existence of a local UFD all
of whose proper localizations are regular that has completion T. His construction is
adopted by his student Loepp to obtain more examples of strange phenomena which
can occur in passing from a local (Noetherian) ring to its completion. A central step
in Heitmann’s construction involves passing from a subring D of Ttwa bigger ring
D’ by adjoining a kind of independent element, similar to the residually algebraically
independent elements defined below and studied in §4 of this article. These residually
algebraically independent elements play an important role in his construction. Certain
relations from T become satisfied in D’ (defined as a limit), but by using the residually
algebraically independent elements, he is able to control the correspondence between
the height-one prime ideals of D and those of D’.

‘We now summarize the results of the present paper.

Summary of this paper. In this paper we consider three concepts of independence
over R for elements 1y, ..., 7, of h which are algebraically independent over K (as
in the setting above). We relate these three concepts of independence to flatness con-
ditions of extensions of Krull domains, establish implications among them, and draw
some conclusions concerning their existence and equivalence in special situations.

3We remark that Shelburne in [S] has provided examples answering Question 2.8 of [HR]. He shows
existence for each positive integer d > 3 of an excellent local domain R containing a field of characteristic
p > 0 such that dim(R) = d, the dimension of the generic formal fiber of R is 0, and R is properly
contained in its completion R. In his examples, R has, in fact, infinite transcendence degree over R.
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We also investigate their stability under change of base ring.

We begin our analysis in §2 with the definition of the first independence condition:
the elements ty, ..., T, are idealwise independent if K(ty,...,1,) N R equals thg
localized polynomial ring R[zy, ..., Tulm,1,...,7,). We observe thatty,..., T, € mR
are idealwise independent over R if and only if the extension R[t,...,t,] — R
is weakly flat in the sense of the definition given in §2. We also show in §2 that
a sufficient condition for Tty oos Tn tO be idealwise independent over R is that the
extension R[1y,..., T,] < R satisfies PDE (“pas d’éclatement”, or in English “no
blowing up”). At the end of §2 we display in a schematic diagram the relationships
between these concepts and some others, for extensions of Krull domains.

In §3 and §4 we present two methods for obtaining idealwise independent ele-
ments over a countable rmg R. The method in §3 is to find elements 7y, ..., T, € M,
the maximal ideal of R so that (1) 7y, ..., T, are algebraically independent over the
fraction field of R, and (2) for every pnme ideal P of § = R[t,..., Tulm,ny,...720)
with dim(S/P) = n, the ideal PR is m-primary. If (1) and (2) hold, we say that
7, ..., T, are primarily independent over R; we show in (3.4) that primarily inde-
pendent elements are idealwise independent. If R is countable and dim(R) > 2, we
show in (4.5) the existence over R of idealwise independent elements that fail to be
primarily independent.

For every countable excellent normal local domain R of dimension at least two,
we prove in Theorem 3.9 the existence of an infinite sequence ti, 12, . . . of elements
of R which are primarily independent over R. It follows that A = K (71, 72,...)NR
is an infinite-dimensional non-Noetherian quasilocal domain. Thus, for the example
R = k[x, y](x,y) with k a countable ﬁelg, and for every positive integer n or n = oo,
there exists an extension A, = L, N R of R such that dim(A,) = dim(R) + n. In
particular, the canonical surjection A — R has a nonzero kernel.

In §4 we define 7 € mR to be residually algebraically independent over R if T is
algebraically independent over the fraction field of R and for each height-one prime
ideal P of R such that PN R # 0, the image of 7 in R / P is algebraically independent
over R/(P N R). We extend the concept of residual algebraic independence to a
finite or infinite number of elements 7y, ..., 7, € mR and observe the equivalence of
residual algebraic independence to the extens1on Rlty, ..., Th] — R satisfying PDE.

We show that primary independence = residual algebraic independence =—>
idealwise independence. For R of dimension two, we show that primary indepen-
dence is equivalent to residual algebraic independence, but as remarked above, if R
has dimension greater than two, then primary independence is stronger than resid-
ual algebraic independence. We show in (4.7) and (4.9) the existence of idealwise
independent elements that fail to be residually algebraically independent.

In §5 we describe the three concepts of idealwise independence, residual alge-
braic independence, and primary independence in terms of certain flatness condi-
tions on the embedding ¢: R[t,..., Wlm,..t.) <> R. In §6 we investigate
the stability of these independence concepts under base change, composition and
polynomial extension. We prove in (6.10) the existence of uncountable excellent
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R Henselian

VAVAY

T primarily ind.

T resid. ind.

T idealwise ind.

Figure 1

normal local domains R such that R contains infinite sets of primarily independent
elements.

We show in §7 that both residual algebraic independence and primary inde-
pendence hold for elements over the original ring R exactly when they hold over
the Henselization R" of R (7.2). Also idealwise independence descends from the
Henselization to the ring R. If R is Henselian of dimension two, then all three
concepts of independence are equivalent for one element T € m (Corollary 7.6).

Fig. 1 summarizes some relationships between the independence concepts for one
element 7 of M, over a local normal excellent domain (R, m). In the diagram we use
“ind.” and “resid.” to abbreviate “independent” and “residually algebraic”.

In §8 we include a diagram which displays many more relationships among the
independence concepts and other related properties.

2. Idealwise independence, weakly flat and PDE extensions

First we describe the setting of the idealwise independent concept and we establish
notation to be used throughout the paper.
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2.1. Setting and notation. Let (R, m) be an excellent normal local domain
of dimension d with field of fractions K and completion (R m= mR) and let
ti, ..., ty, ... be indeterminates over R. Suppose that 7, = 7,73, ..., Ty, ... € m
are algebraically independent over K. For each n > 0, we consider the following
localized polynomial rings:

Sy = Rlt, ..., tadamr,....0)»

R, = Rl[t1,..., Twlmz,...,00)»

So = Rlt1,.. s tny - Jmn,...t,...) and
R = Rlty, ..., Ty iy,

Of course, S, is R-isomorphic to R, and Sy, is R-isomorphic to R, with respect
to the R-algebra homomorphism taking #; — t; for each i. When working with a
particular n or oo, we's sometlmes define Stobe R, or Ry.. Ifn = 0,take R, = R = S,,.

The completion S of S, is R[[tl, ..., 1,11, and we have the following commutative
diagram:
c ~ =~
Sy =RI[t1, ..., tWlmty,ty ——> Su=RIlt, ..., 1]]
gl xl
< ¢ ~
R— §= Rn = R[TIv ey tn](m,t.,...,r,.) _— R.

Here the first vertical isomorphism is the R-algebra map taking #; — 1:, , the restriction
of the R- algebra surjection A: S — R where kerMD) =1 —711, ..., 8, — t,,)S =D;
note that p N S, = (0).

The central definition of this paper is the following:

2.2. Definition. Let(R,m)and ty,...,7, € Mbeasin the setting of (2.1). We
say that 1y, ..., T, are idealwise independent over R provided RN K (ty,...,T,) =
R,. S1m11arly, an infinite sequence {7;}{2; of algebraically independent elements
of mR is idealwise independent over R 1f R NK({7:}2) = Reo-

2.3. Remarks. (1) A subset of an idealwise independent set {y, ..., 7,} over R is
also idealwise independent over R. For example, to see that 7y, . . ., 7, are idealwise
independent over R for m < n, let K denote the quotient field of R and observe that

RNK(y,...,tw) =RNK@,...,t) NK(t1s ..., Tm)
= Rlt, ..., twlmry,nt) VK@, oo T) = Rt o0 Tz ) -
(2) Idealwise independence is a strong property of the elements 7y, ..., 7, and of

the embedding morphism ¢: R, < R. As we stated in the 1ntroduct10n it is often
difficult to compute RN L when L is an intermediate field between the quotient fields
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of R and R. In order for RN L to be an intermediate localized polynomial ring R,,
there can be no new quotients in R other than those in ¢(R,); that s, if f/g € R and
/s & € R,, then f/g € R,. This does not happen, for example, if one of the t; is in
the completion of R with respect to a principal ideal; in particular, if dim(R) = 1,
then there do not exist idealwise independent elements over R.

The following example illustrates Remark 2.3.2:

2.4 Example. Let R = Q[x, yl,y), the localized ring of polynomials in two
variables over the ratjgnal numbers. Theelements 1, = e* —1, 1, =e’—1,and p =
e* —e’= 11 — 12 of R = Q[[x, y]] belong to completions of R with respect to princi-
pal ideals (and so are not idealwise independent). If S = R, = Q[x, y, t1, 2], y,71,10)
and L is the quotient field of S, then the elements
(e —1)/x,( —1)/y, and (e* — €”)/(x — y) are certamll in L N R but not in
S. A result of Valabrega [V, Proposition 3] implies that L N R is a two-dimensional
regular local ring with completion R.

In the remainder of this section we discuss some properties of extensions of Krull
domains related to idealwise independence. (A diagram near the end of this section
displays the relationships among these properties.) We start by defining a property
which we prove in (2.7) is satisfied by the extension ¢: R, — R:

2.5. Definition. Let A — B be an extension of Krull domains. We say that B
is a height-one preserving extension of A if for every height-one prime ideal P of A
with P B # B there exists a height-one prime ideal Q of B with PB C Q.

2.6. Remark. If A — B is an extension of Krull domains, and if A is factorial,
or more generally, if every height-one prime ideal of A is the radical of a principal
ideal, then B is a height-one preserving extension of A. This is clear from the fact

that every minimal prime divisor of a principal ideal in a Krull domain is of height
one.

2.7. PROPOSITION. Let (R,m) and 7y, ..., T, € M be as in the setting of (2.1).
Then the embedding
¢: R, =Ry, ..., tn](m,tl,...,r,.) . ﬁ

is a height-one preserving extension.

Proof. Consider the commutative diagram of (2.1):

[

Se=Rlti, ...ty ——> Sn=Rlt1,..., 011

| |

< 4 -~
R —— S=R,=R[t,..., Wlmz,t) — R.



280 W. HEINZER, C. ROTTHAUS AND S. WIEGAND

Let P C R, be a prime ideal of height one. Under the above isomorphism of R, with

Su, P correponds to a height-one prime ideal Py of S,. The extended ideal PO:S':, is
reduced and each of its minimal Rrime divisors is of height one.

The minimal prime divisors Q in R of the ideal PR are in 1-1 correspondence
with the minimal prime divisors Qo in S of the ideal

=(P0’tl_tlv"~st _tn)S =(P01A)§

via Qo/ P = Q Since p = ker()\) is a pnme ideal of height n with p N S, = = (0),
each Qo is of height n + 1 and each Q is of height one. Therefore R, — Risa
height-one preserving extension. [

The concept of idealwise independence is naturally related to other ideal-theoretic
properties. If A < B is an extension of domains and F is the fraction field of A,
then it is well known and easily seen that A = BN F <= each principal ideal of A
is contracted from B. For an extension A < B of Krull domains, the condition that
A = BN F, where F is the fraction field of A, is related to the following concepts.

2.8. Definition. Let A — B be an extension of Krull domains.

(a) We say that B is weakly flat over A if every height-one prime ideal P of A with
PB +# B satisfies PBN A = P.

(b) The extension A <— B is said to satisfy PDE ( “pas d’éclatement”, or “no
blowing up”) if for every height-one prime ideal Q in B, the height of O N A is at
most one (cf. [F, page 30]).

2.9. Remarks. Let A — B be an extension of Krull domains and let F be the
fraction field of A.

(a) Wehave BN F = A <= each height-one prime of A is the contraction of a
height-one prime of B. If this holds, then B is height-one preserving and weakly flat
over A (cf. [N, (33.5) and (33.6)]).

(b) If A — B is flat, then A — B is height-one preserving, weakly flat and
satisfies PDE (cf. [B, Chapitre 7, Proposition 15, page 19]).

(c) If S is a multiplicative system in A consisting of units of B, then A < B is
height-one preserving (respectively weakly flat, respectively satisfies PDE) <=

S~1'A < B is height-one preserving (respectively weakly flat, respectively satisfies
PDE).

2.10. PROPOSITION. If ¢: A — B is a weakly flat extension of Krull domains,
then ¢ is height-one preserving. Moreover, for every height-one prime ideal P of A
with PB # B there is a height-one prime ideal Q¢ of B with QoN A = P.

Proof. Let P € Spec(A) with ht(P) = 1. By assumption PBN A = P.
Therefore the ideal PB of B is contained in an ideal Q of B that is maximal with
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respect to not meeting the multiplicative system A — P. It follows that Q is a prime
idealof Band QN A = P. Leta € P — (0) and let Q9 € Q be a minimal prime
divisor of aB. Then Qg has height one and (0) # Qo N A € P;thus QoNA = P.

a

2.11. PROPOSITION. Let A <> B be an extension of Krull domains which is
height-one preserving and satisfies PDE. Then B is weakly flat over A.

Proof. Let P € Spec(A) with ht(P) = 1. Then P B is contained in a prime ideal
Q of B of height one. The PDE hypothesis on A — B implies that 0 N A has height
one. It followsthat QN A = Pandthus PBNA=P. O

2.12. COROLLARY. Let (R, m)and T,..., T € mR be as in the setting of (2.1).

Let S = Rlty, ..., Tlmx,...t)- If S <> R satisfies PDE, then R is weakly flat over
S.

Proof. This is immediate from (2.7) and (2.11). O

2.13. Example. Without assuming that the extension is height-one preserving,
it can happen that an extension A — B of Krull domains satisfies PDE and yet B
fails to be weakly flat over A. This is the case, for example, if A = k[x, y, z, w] =
k[X,Y,Z,W1/(XY — ZW), where k is a field and X, Y, Z, W are indeterminates
over k, and B = A[x/z]. Since x/z = w/y, B = kly, z, x/z] is a polynomial ring
in three variables over k and the height-one prime ideal P = (y, z)A extends in B
to a prime ideal of height two. Another way to describe this example is to let r, s, ¢
be indeterminates over a field k, and let A = k[r, s, rt, st] C k[r,s,t] = B. Then
A —> B satisfies PDE since B is an intersection of localizations of A,but P = (r, s)A

is a height-one prime of A such that P B is a height-two prime of B, so B is not weakly
flat over A.

2.14. PROPOSITION. Let A <> B be an extension of Krull domains with PB # B
for every height-one prime ideal P of A and let F denote the fraction field of A. Then
B is weakly flat over A <= A = F N B. Moreover, in this setting, these equivalent
conditions imply that A < B is height-one preserving.

Proof. The assertion that A = F N B implies B is weakly flat over A is Remark
(2.9)(a). A direct proof of this assertion involving primary decomposition of principal
ideals goes as follows: Let P be a height-one prime ideal of A, leta € P — (0), and
consider an irredundent primary decomposition

aB=Q;N---NQs

of the principal ideal a B in the Krull domain B. Since B is a Krull domain, each Q;
is primary for a height-one prime ideal P; of B. The fact that A = F N B implies
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(2.95) l

A < B ht-1 pres. (2.5),
PDE (2.8b) and PB # B,YP

(2.11)

[[A= Bwf. (2.82)
and PB # B,VP
A — B ht-1 pres. (2.5),

and PDE (2.8b) a0 |

% . [VP3QIQnA=P
(2.9.;)1 l
A= Bwf (283)] % [PB#£B = PBNA=P)|

A1)

A< B PDE (2.8b) e |
(2.10) IPB;&B=> 3Q[QnA=Pl
(2.8b) l
VQ,ht(QN A) < 1 [A < Bht-1pres. (25)] 23, [PB#B = 3QIPBC Q|

Figure 2. The relationships between properties for extensions of Krull domains

that aA = F N aB. Thus, after renumbering, there is an integer ¢ € {1, ..., s} such
that the ideal

on---NENA

is the P-primary component of the ideal aA. Hence for at least one integer i €
{1,...,t} we must have P; N A = P. Therefore B is weakly flat over A.
Conversely, if B is weakly flat over A, then since PB # B, wehave PBNA = P
for each height-one prime ideal P of A. It follows that A < D = F N B and
PDNA=P,s0Ap =(A— P)"'D,and D C Ap for each height-one prime ideal
P of A. Since A = ({Ap: P is aheight-one prime of A}, we have A = D.
The last assertion follows by (2.9a) or (2.10). 0O

Let A — B be an extension of Krull domains, F the quotient field of A, Q €
Spec(B), ht(Q) = 1, P € Spec(A), ht(P) = 1. Fig. 2 illustrates (2.5)—(2.14):

2.15. Remark. The condition in (2.14) that PB # B for all height-one prime
ideals P of A holds if A <> B are quasilocal Krull domains with B dominating 4,
and so it holds for R, < R asin (2.1).

Summarizing from (2.12) and (2.14), we have the following implications among
the concepts of weakly flat, PDE and idealwise independence in the setting of (2.1):
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2.16. THEOREM. Let (R,m) and 11, ..., T, € mR be as in the setting of (2.1).
Then:

(1) 7y,..., 1, are idealwise independent over R < R[7},...,T,] — R is
weakly flat.

) Rlty,...,1,] — R satisfies PDE = R[ty, ..., T,] <> Ris weakly flat.

Moreover, in view of part (c) of (2.9), these assertions also hold with R[ty, ..., t,]
replaced by its localization R(ty, ..., Tylm,,..,50)-

In order to demonstrate idealwise independence we develop in the next two sections

the concepts of primary independence and residual algebraic independence, each of
which implies idealwise independence.

3. Primary independence

In this section we introduce primary independence, a concept we show to be
stronger than idealwise independence (in (3.4) and (4.5)). We construct infinitely
many primarily independent elements over any countable excellent normal local do-
main of dimension at least two (in (3.9)).

3.1. Definition. Let (R, m) be an excellent normal local domain. We say that
71,..., T, € MR, which are algebraically independent over the fraction field of
R, are primarily independent over R, provided that, for every prime ideal P of
S = R[t,..., twlm,x,...,z,) such that dim(S/P) < n, the ideal PR is mR-pnmary
A countably mﬁmte sequence {7;};2, of elements of mR is primarily independent
over R if, for each n; 7y, . . ., 7, are primarily independent over R.

3.2. Remarks. (1)Referring to the diagram, notation and setting of (2.1), primary
independence of 7y, ..., T, as defined in (3.1) is equivalent to the statement that for
every prime ideal P of S with dim(S/P) < n, the ideal A~ 1(PR) PS + ker(A) is
primary for the maximal ideal of S

(2) A subset of a primarily independent set is again primarily independent. For
example, if 7y, ..., 7, are primarily independent over R, to see that 7y, ..., 7,—| are
primarily independent, let P be a prime ideal of R,_; with dim(R,,;l /P)<n-—1.
Then PR, is a prime igeal of R, with dim(R,/PR,) < n, and so PR is primary for
the maximal ideal of R.

3.3. LEMMA. Let (R, m) be an excellent normal local domain of dimension at
least 2, let n be a positive integer, and let S = R, = R[t1, ..., Tylm1,....,)» Where
T, ..., Tn are primarily independent over R. Let P be a prime ideal of S such that
dlm(S/P) >n+ 1. Then (1) PR is not mR-przmary, and (2) PRNS=P.
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Proof.  For the first statement, suppose that dim(S/P) > n + 1 and that PR is
primary for mR. Then, referring to the diagram in (2.1), A~ l(P R = PS + ker(2)
is primary for the maximal ideal of S and hence the maximal ideal of S /PS is the
radical of an n-generated ideal, a contradiction because S / PS,, = (S//?) is the
completion of S/ P, and dim(S/P) > n + 1 implies that dlm(S/P) >n+1

For the second assertion, note that if dim(S/P) =n+1, and P < (PR N S), then
dlm(S/(PR N §)) < n, which implies that PR = (PR N S)R is pnmary for mR
a contradiction to the first assertion of the lemma. Thus we have PRN S = P for
each P such that dim(S/P) =n + 1.

If dim(S/P) > n + 1, then P is an intersection of prime ideals P’ of S such that
dim(S/P’) =n + 1, say P = Npcz P'. Using the result for P/, we have

PC PRNS=(NpezP)RNS S Npez(P'RNS) = NpegP' = P. O

3.4. PROPOSITION. Let (R, m) be an excellent normal local domain of dimension
at least 2, let n be a positive integer, and let S = R[ty,..., 1.',,](m ..., Where
Ty, ..., T, are primarily independent over R. Then S = L N R where L is the
fraction field of S. Thus 1y, ..., T, are idealwise independent elements of R over R.
If {t;}2, is a countably mﬁntte sequence of primarily independent elements of mR
over R then {7;}2, are idealwise independent over R.

Proof. Let P be aheight-one prime of S. Since S is catenary, dim(S/P) > n+1.
By (3.3.2), PRN S = P. Therefore R is weakly flat over S and by (2.16) we have
S=LNR. O

3.5. PROPOSITION. Let (R,m) and 1y, ..., 7, € mR be as in (2.1). Let R, =
Rlt, ... tlmr,.n) = Sn = Rlt1, ..., thlam,,...r)> Where ty, ..., t, are indeter-
minates over R. Then 1y, ..., T, are primarily independent over R if and only if one
of the equivalent statements (1), (2) or (3) holds:

(1) For each prime ideal P of Sn such that dim(S,/P) > n and each prime ideal
P of S minimal over PS,,, theimages ofti — 1, ..., ta — Ty in S,, / P generate
an ideal of height n in S / P.

(2) For each prime ideal P of S, with @m(Sn /P) = n and each nonnegative
integer i < n, every prime ideal Q of S, minimal over (P, t; — Ty, ..., ti—1 —
T;-1)S, fails to contain t; — ;.

(3) For eaﬁh ideal P of S, suchthatdim(S,/P) = n, the images oft —T eyt
T, in S,/ P S, generate an ideal primary for the maximal ideal of S,/ P S,,.

Proof. 1t is clear that (1) and (2) are equivalent, that (1) and (2) imply (3) and
that (3) is equivalent to the primary independence of 1y, ..., 7, over R. It remains
to observe that (3) implies (1). For this, let P be a prime ideal of S, such that
dim(S,/P) = n + h, where h > 0. There exist s;,...,5, € S, such that if
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I = (P,sy,...,Sh)Sy, then for each minimal prime Q of 1 wel have dim(S,/Q) = n.
Item (3) implies that the i imagesof | — 71, ..., I —Tn in S / QS,, generate an ideal pri-
marAy for the maximal ideal of S / QS It follows thatthe i images of N=Tl, ... ln—Tn
in S,/1 S,, generate an ideal primary for the maximal ideal of S /1 S,,, and therefore
that the images of sy, ..., sn, 1 —171, . . yIn—Tyin S /PS are a system ofparameters
for the (n + h)-dimensional local nng S / PS Let P be a minimal prime of PS
Then d1m(S,,/P) =n+h, and the images of sy, ..., S, 11 — T, ..., — Ty in the
complete local domain S, /P are a system of parameters. It follgwsA that the images
ofty — 11,...,t, — T, in S,/ P generate an ideal of height nin S,/P. O

3.6. COROLLARY. With the notation of (2.1) and (3.5) assume that ty, . .., T, are
primarily independent over R.

(1) Let I be an ideal of S, such that diim(S/I) = n. Then the ideal (1,t, —

Ty - .-y by — Ty)Sy is primary to the maximal ideal of S,,.
2) Let P € Spec(S,) be a prime | ideal with dlm(S /P) > n. Then the ideal
=(P,t1 = T1y..usly —t,,)S hasht(W) ht(P)+nandWﬂS = P.

Proof.  Part(1)is an immediate corollary of (3.5.3) and it follows from (3.5.1) that
ht(W) ht(P) + n. Let A, be the restncnon to S, of the canonical homomorphism

A S >R from (2.1) so that A,,: S, = R,. Then dim(R,/A\,(P)) > n, and so by
(3.3.2), A, (P)R N R, = A,(P). Now

WNS, = A7 M (P)R) NATI(R,)
AT A (P)RN Ry) = A7 (0 (P)) = P. O

il

To prove the existence of primarily independent elements, we use the follow-
ing prime avoidence lemma over a complete local ring (cf. [Bu, Lemma 3], [WW,
Lemma 10]). We also use this result in two constructions given in Section 4.

3.7. LEMMA. Let (T, n) be a complete local ring of dimension at least 2, and let
t € n —n?. Assume that I is an ideal of T containing t, and that U is a countable set
of prime ideals of T each of which fails to contain 1. Then there exists an element
aelInn®suchthatt —a ¢ \J{Q: Q €eU).

Proof. Let {P;}{2, be an enumeration of the prime ideals of /. We may assume
that there are no containment relations between the primes of i{. Choose f; € n? N 1
sothatt — f; & P;. Then choose f, € P,Nn3N1sothatt — f; — f, ¢ P,. Note
that f, € P, implies t — f1 — f> ¢ Pj;. Successively, by induction, choose

fae ANPN---NP_NO"*INT
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sothatt— fi— - -+ — f, & Ui, P; foreach positive integer n. Then {fi+- - -+ f,}32,
is a Cauchy sequence in T which converges to an element a € n?. Now
t—a=(@—fi— = f)+ o+
where
C—fi—=f) ¢ P, (fp1+--) €P,

Therefore t —a ¢ P,,foralln,andt —ael. O

3.8. Remark. Let A — B be an extension of Krull domains. If « is a nonzero
nonunit of B and « is outside every height-one prime Q of B such that Q N A # (0),
then « B N A = (0). In particular, such an element o is algebraically independent
over the fraction field of A.

3.9. THEOREM. Let (R, m) be a countable excellent normal local domain of
dimension at least 2. Then:

(1) There exists T € mR which is primarily independent over R.

Q2) If 1y, 5Tl € mR are primarily independent over R, then there exists
T, € mR such that ty, . . ., t1,_1, T, are primarily indepengent over R.

(3) Thus there exists an infinite sequence Ty, ..., Ty, . .. € MR of elements which
are primarily independent over R.

Proof. The proof for part (2) also establishes part (1) and part (3). To prove (2),
let?y, ..., t, be indeterminates over R, and let the notation be as in the setting of (2.1).
Thus we have S,,_1 = R,_1, under the R-algebra isomorphism taking #; — 7;. Letn
denote the maximal ideal of S We show the existence of a € 12 suchthat, if denotes
the R- -algebra surjection S — R with kernel =Tty ooty — Tuels tn — a)S,,,
then 7y, ..., 7,_ together with the image 1, of ¢, under the map A are primarily
independent over R.

Since S, is countable and Noetherian we can enumerate as { P; } , the prime ideals
of S, such that dim(S, /P;) > n. Let I =t —T1y..estnoi t,,_l).ST:, and let U
be the set of all prime ideals of S = R[[t1 yeeestnll m1n1mal over ideals of the form
(P, 1) )Sn for some P;; then Uis countable and n ¢ U since (P, I )S is generated by
n — 1 elements over P;S, and dlm(S,,/P,S ) > n. By Lemma 3.7 with the ideal / of
that lemma taken to be n, there exists an element a € nZsothatt, —ais outside Q
for every prime ideal g €U. Lett, € R denote the image of ¢, under the R- -algebra
suqectlon A S — R with kernel (I t, — a)S The kernel of A is also generated
by (I t, — t,,)S Therefore the setting will be as in the diagram of (2.1) after we
establish Claim 1.

Claim1. (I,t, — t,)S, N S, = (0).
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Proof of Claim 1. Since 7y, ..., Tu—1 are primarily independent, 7 N S,_; = (0)
and IS, N S, = (0). Let R, = R,_1[tx)max(r,_,),))- Consider the diagram

C o~ —
= Sp1ltn)maxes,_ )y —— Sn = Su1ll£,1]

gl A.l
R, = Ru_iltalmax,.yy ——> Rl = Somy/Diltall,

where 1,;: S — S / (I S») is the canonical projection. _

For Q a prime ideal of S we have Q e = M(Q) P where P is a
prime ideal of R[[t,,]] = (S,, /1 )[[t,,]] minimal over A (P; )R[[t,,]] for some prlme
1deal P; of S, such that dim(S,/P;) < n. Since t, — a is outs1de every Q X U,

— Al(a) = Mty — a) is outside every prime ideal P of R[[t,,]] such that P is
mmlmal overAl(P,)R[[t,,]] Since S, is catenary and dim(S,,) = n+dim(R), aprime
ideal P; of S, is such that dlm(S /Pj) = n <= ht(P;) < dim(R). Suppose Pisa
helght-one pnme ideal of R[[t,,]] such that P N R), = P # (0). Then P is a minimal
prime ideal of PR[[t,,]] But also P = A1(Q), where Q is a height-one prime of S,
and dim(S,/Q) =n +dim(R) —1 > n. Therefore Q € {P }$2,- Hence by choice of
a, we have t, — A1(a) ¢ P. By Remark 3.8, (t, — A1(@)) R[[1,]]) N R, = (0). Hence
(I t, — t,,)S NS, = (0).

Clazm 2. Let P be a prime ideal of S, such that dim(S,/P) = n. Then the ideal
(P, I ty, — ‘L’,,)S is M-primary.

Proof of Claim?2. Let Q = P N S,—,. Either S, = P,or 0§, < P. If
QS, = P, thendim(S,—1/Q) = n — 1 and the primary ind}gendenceofn, cey Taml
1mphesthat(Q ns, llspnmaryforthemammal ideal of S,,_;. Therefore (Q, I t,—
)8, = (P, 1 t,,)S is n-pnmary in this case. On the other hand if 9S, < P,
then dim(sS, _I/Q) = n. Let Q’ be a m1n1ma1 prime of (Q, I)S,, 1. By (3.5),
dlm(S,, 1/ Q) =1, and hence dlm(S / Q S, n) = 2. The pnmary independence of
Ty, ... T,—1 implies that Q’ N Sp—1 = Q. Therefore Q’ ,,_1[[t,,]] ns,=0Ss, <P,
so P is not contained in Q S,, Therefore dlm(S J(P, I )S )) = 1 and our choice of
a implies that (P, I t, — ‘L',,)S is M-primary.

This completes the proof of Theorem 3.9. 0O

3.10. COROLLARY. Let (R, m) be a countable excellent normal local domain
of dimension at least 2, and let K denote the fraction field of R. Then there exist
TlyeeesTny.-. € mR such that A = K (t1, T2,...) N R is an infinite-dimensional
quasllocal (non-Noetherzan) domain. In partzcular, Jor k a countable field, the local-
ized polynomial ring R = k[x, y](x,y) has such extensions inside R= kl[x, y11.
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Proof. By (3.9.3), there exist 71,...,Ty,... € mli which are primarily inde-
pendent over R. It follows that A = K (ty, 72,...) N R is an infinite-dimensional
quasilocal domain. In particular, A is not Noetherian. O

4. Residual algebraic independence

We introduce in this section a third concept, that of residual algebraic indepen-
dence. Residual algebraic independence is a stronger notion than idealwise indepen-
dence, but is weaker than primary independence. In (4.5) we show that over every
countable normal excellent local domain (R, m) of dimension at least three there
exists an element residually algebraically independent over R, but not primarily in-
dependent over R. In (4.7) and (4.9) we show the existence of idealwise independent
elements that fail to be residually algebraically independent.

4.1. Definition. Let (R m) be a complete normal local domain and let A be a
Krull subdomain of R such that A < R satisfies PDE.

(1) Anelement T € M is residually algebraically independent with respect to R
over A provided that 7 is algebraically independent over the fraction field of
A and for each height-one prime P of Rsuchthat PN A # (0), the image of
Tin R / Pis algebraically independent over the fraction field of A/ (PN A).

(2) Elements 1y, ...1, € M are said to be residually algebraically independent
over A if foreach0 < i < n, t;4; is residually algebraically independent over
Alty, ..., 6l

(3) An infinite sequence {7;}32, of elements of M is residually algebraically in-
dependent over A, if 1y, ... 1, are residually algebraically independent over
A for each positive integer 7.

The following result shows the equivalence of residual algebraic independence for
T over A to the PDE property for A[t] < R.

4.2. PROPOSITION. Let (R, m),T € mR be as in the setting of (2.1) and let A
be a Krull subdomain of R such that A e R satisfies PDE. Then t is residually
algebraically independent with respect to Rover A > Alt] & R satisfies PDE.

_ Proof.  Assume A[t] — R does not satisfy PDE. Then there exists a prime ideal
P of R of helght one such that ht(P N A[‘L’]) > 2. Now ht(P nAa)=1, since PDE
holds for A < R. Thus, with p = PN A, we have pA[t] < Pn A[t]; that is,
there exists f(7) € Pn A[r] —pA[r], or equivalently there is a nonzero polynomial
f(x) € (A/(P N A))[x] so that f(f) = 0 in A[‘t]/(P N A[r]), where T denotes
the image of 7 in R / P. This means that  is algebraic over the quotient field of

A/ (P N A). Hence T is not residually algebraically independent with respect to R
over A.
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For the converse, assume t that A[t] — R satisfies PDE and let Pbea height-
one prime of Rsuchthat PN A = p # 0. Since A[t] < R satisfies PDE,
PﬂA[t] pA[r]and A[t]/(pA[r]) canonically embeds in R/ P. Since the image of
t in A[t]/pAlr] s algebraically independent over A/p, it follows that 7 is residually
algebraically independent with respect to R over A. O

4.3. THEOREM. Let (R,m)and ty,...,T, € mR be as in the setting of (2.1).
The following statements are equivalent:
(1) The elements Ty, .. ., T, are residually algebraically independent with respect
to R over R.

(2) Foreach 1 <i <n, if P is a height-one prime ideal of R such that P N
Ry, ..., 611 # 0, 0, then ht(P NR[ty, ..., D =1.

A3) Rlty,...,tn] — R satisfies PDE and is weakly flat.

@) Rlty,...,Tn] — R satisfies PDE.

Proof. The equivalence of (1) and (2) and of (1) and (4) follows from (4.2). By
(2.16) and part (c) of (2.9), (3) and (4) are equivalent. 0O

4.4. THEOREM. Let (R, m) and {v;}7, C M be as in the setting of (2.1), where
dim(R) > 2 and m is either a positive integer or m = 00.

(1) If {w)}ir, is primarily independent over R, then {t;}]., is residually alge-
braically independent over R.

(2) If{vi}[L, is residually algebraically independent over R, then {v;}].., is ideal-
wise mdependent over R.

(3) Ifdim(R) = 2, then {1;}]., is primarily independent over R if and only if it is
residually algebraically independent over R.

Proof. To prove (1), it suffices by (4.3) to show that for each positive intege;[
n < m,if t,..., 1, are primarily independent over R, then R[t;,...,7,] < R
satisfiesPDE. Let S = R[ty, ..., Tx)m,x,,...r,) and let the notation be as in the diagram
of (2.1).

Let P be a height-one pnme ideal of Rwith P = PNR # (0). Consider
the ideal W = (P H—Tlyeresty — t,,)S Usmg the diagram in (2. 1) we see that
)\(W) PR - P. By ( Corollary 3.6.2, ht(W) = ht(P) + n. But 14 c (P t —
Tl ...\t — T,) = A~1(P) and thus

14+n <ht(P) +n =ht(W) <htQW"'(P)) <ht(P) +n=1+n.

Therefore ht(P) = 1.

The proof of (2) follows from (4.3) and (2.16).

In view of (1), to prove (3), we assume that dim(R) = 2 and n < m is a positive
integer such that 1y, ..., 7, are residually algebraically independent over R. Let
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S =RIty,..., Wm0 By 4.2), S < R satisfies PDE. Let P be a prime ideal
of S such that dim(S/P) < n. Since dim(S) = n+2 and S is catenary, it follows that
ht(P) > > 2. To show 7y, ..., T, are primarily 1ndependent over R, it suffices to show
that PR is primary for the maximal ideal of R. Since d1m(R) 2, this is equivalent

to showing P is not contained in a height-one prime of R, and this last statement
holds since § < R satisfies PDE. O

4.5. PROPOSITION.  If (R, m) is a countable excellent normal local domain of
dimension at least 3, then there exists an element T € mR which is residually alge-
braically independent over R, but not primarily independent over R.

Proof We modify the proof of (3.9). Let t be an indeterminate over R and set

= R[t]m,) so that S1 R[[t]] Let Qo be a height-three prime of Sl that contams

t and is such that Qg = Qoﬂ Sy also has height three. Using Lemma 3.7 with I = Qo,

there exists a € Qo N1 2, where i) is the maximal ideal of S,L’ sothatt —a € Qo but

t — a is not in any of the other height-three prime ideals of S; that are minimal over

a height-three prime of Sl Let A be the surjectxon S, — R with kernel (t — a)S1

Then the image T € mR of t under A: 5} — R is not primarily independent because

the prime ideal A(Qo) inS = R[t](m 7 is of helght three and i is the contracuon to S

of the prime ideal A(Qo) of R. Since (t— t)S1 =(t— a)S, c Qo, A(Qo) is of height
two. Therefore t is not primarily independent.

We prove that 7 is residually algebraically independent over R: If Pisa height-one
prime ideal of Rwith PN R # 0, then the height of PN Ris1andsothe height of
P N S is at most 2. Also A~ l(P) Q in S} has height two—since it’s generated by
the inverse images of the generators of P and ker(A) = (¢t — a)S1

Suppose that the height of P N S = 2. Then under the R-isomorphism of S; to §
taking f to 7, Pns corresponds to a helgpt-two prime P of S;. Wehave P C Q ns;
and since S1 is flat over Sy, the height of QNS is at most two, so we have P = QN S;.
Let n; ¢ denote the maximal 1deal of Sl, and choose b €n; —(PUQp): and a prime
ideal QI in Sl minimal over (Q b)Sl Since b ¢ Q we see that ht(Ql) = 3 and
ht(Q, N S;) = 3, because it properly contains P = Q N S;. We have

mS:Q#0iNS M3 —— 01 = (5 08 (t.3)

U|T UIT
InS: P=0NnSht2) —> 0=2r"'(F) «—— (P, t —a)§ (1t 2)
;l |

InS: PAS®ht2) — P (ht 1in R).

But then Q 1 is minimal over a height-three prime (@1 NS)of S;andt —a € @1.
This implies that Q; = Qp, and so @y N S; = Qo N S1 = Qo, a contradiction since
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b ¢ Qo. We conclude that ht(P N S) = 1 and that 7 is residually algebraically
independent over R. [

4.6. Example. The following construction, similar to that in (4.5), shows that
condition (2) in Definition 4.1 is stronger than the following:
(2’) For each height-one prime ideal P of R with P N R # 0, the images of
Tlyeoos Ty iN R/ P are algebraically independent over R/ (P N R).

Construction. Let R be a countable excellent local unique factorization domain
(UFD) of dimension two, for example R = Q[x, ylx,). As in (3.9), construct
T € mR primarily independent over R (or equivalently, residually algebraically
independent in this context). Let t S2 = Rlt, 22](m,s,m). letn denote the maximal 1deal
of S, andlet!f = { prime ideals Q of Sz minimal over some ideal of form (P, t, —-rl)Sz
where P is a prime ideal of S, with dim(S,/P) > 2 and P # (11, 1,)5,}. Notg that all
the prime ideals in I/ have height at most 3 and the ideal I = (¢, 1, t; — 71) S, is not
contained in any prime ideal in /. By Lemma 3.7, we can choose a € n?N 1 so that
nh—at u{Q Q € U}. Let 7, be the image of #, under the R-algebra surjection
A S2 — R with kernel (¢; — 71,8 — a)Sz, then ker(A) has height two. As before,
set R; = R[ty, Tilm,z,z), fori =1, 2.

Claim 1. 14, 7 do not satisfy (2) of Definition 4.1.

Proof of Claim 1. Let Q be a prime ideal of Sz which is minimal over (¢, £2, 1 —
T, — a)S2 Then by the choice of a, Q is mlmmal over (t, , b, — ‘tl)Sz Therefore
ht(Q) <3and Q 2 ker(A). Let P= A(Q) in R; then ht(P) < 1. In fact ht(P) =1
since 0 # 71 = A(1) € P. Since 7, is residually algebraically independent over R,
ht(P NRy) < 1 Butt € PN 1\ Ry, s0 ht(P n Rl) =land PNR = (0). Now also

=A(R) € P thus 7y, 7o € PN Ry, so ht(P N Ry) > 2. Thus (2) fails by (4.2).

Claim2. 1, 1, satisfy (2') above.

Proof of Claim 2. Suppose | Pisa height-one prime ideal of Rwith PNR # (0)
and let Q A 1(P) Then ht(Q) = 3 and ht(P al R) = 1. By the res:dual algebraic
independence of t; over R, ht(P NR;) = 1,and so ht(PﬂRz) <2 1If ht(PﬂRz) =1,
we are done. Suppose ht(P N Ry) = 2. We have

onNns; — Q0NS —— Q=)»_1(P) e N

N

- <~ < -~ c c
PNR ——> PNRy —— PNRy —> P —> R.

Thus QﬂSz = P isaprime ideal of height 2, and ht(QﬂSl) =1. Aiso P #(t,0)%
because (¢, ) S2 N R = (0). But this means that Q € U since Q is minimal over
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(P,yy — rl)§2 where P is a prime of §; with dim(S2/P) = 2 and P # (11, 12)Ss.
This contradicts the choice of a and establishes that (2') holds. O

Following a suggestion of the referee, we present in (4.7) a method to obtain an
idealwise independent element that fails to be residually algebraically independent.

4.7. PROPOSITION. Let (R, m) be a countable excellent local UFD of dimension
at least two. Assume there exists a height-one prime P of R such that P is contained
in at least two distinct height-one primes P and Q of R. Also assume that P is not
the radical of a principal ideal in R. Then there exists t € mR that is idealwise
independent but not residually algebraically independent over R.

Proof Let ¢ be an indeterminate over R and set S; = R[¢](m,) so that §1 =R [[11.
Let in; denote the maximal ideal of S1 R

Using Lemma 3.7 with I = (P t)S1 and U = {p € Spec(Sy) |p # I, ht(p) <
2, and p minimal over p N Sl} there exists a € (P, t)S; N2, such that t — a ¢
U{plg €U}, butt —a € (P t)Sl That is, if t — a € p, for some prime ideal
p# (P, t)Sl of S1 with ht(g) < 2, then ht(p) > ht(p N §;). Let A be the surjection
S1 — R with kernel (r — a)S;. By construction, (¢t —a)S; N S; = (0). Therefore the
restrlctlon of A to S; maps S isomorphically onto S = R[t]m,r), where A(#) =7 €
mR is algebraically independent over the fraction field of R.

That t is not residually algebraically independent over R follows because the prime
ideal AP, 0)S) = (P, 1)S has height two a and is the contractlon to § of the prlme
ideal )\((P t)Sl) =P ofR Since (t — r)Sl =t - a)S, C (P t)Sl, A((P t)Sl)
has height one and equals P. Therefore 7 is not residually algebraically independent
over R.

Our choice of ¢ — a insures that each height-one prime q other than P of R has
the property that ht(q N S) < 1. We show that 7 is idealwise independent over R
by showing each height-one prime of S is the contraction of a height-one prime of
R. Let ¢ S1 — S denote the restriction of A. For q a height-one prime of S, let
q; := ¢~ !(q) denote the corresponding height-one prime of S1. Then (q;, ¢t — a)S1
is an ideal of height two. Let w; be a height-two prime of S1 containing (qi, t — a).
If q; is not contained in (P t)Sl, then by the choice of ¢ — a, w; N ] has height at
most one. Therefore w; N S; = q;. Let w = A(w;). Then w is a height-one prime
of Randwn S = q.

Therefore each height-one prime q of S such that q; := o ' (q is not contained
in (P, t)S; is the contraction of a height-one prime of R. Since A((P,#)S;))N S =
(P, 7)S$, it remains to consider height-one primes q of S such that q < (P, 7)S. By
construction we have PS = Q N S. Let q be a height-one prime of S such that

q# PSandq C (P, 7)S. Since RisaUFD, Sisa UFD and q = f S for an element
f € q. Since P is not the radical of a principal ideal, there exists a height-one prime
q # PofRsuchthatf €q. Since ht(N S) < 1, wehaveqN S = fS = q.
Therefore 7 is idealwise independent over R. [
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4.8. Remark. A specific example of a countable excellent local UFD having a
height-one prime P satisfying the conditions in (4.7) is R = k[x, y, z](x,y,z), Where k
is the algebraic closure of the field Q and z2 = x3 + y. That R is a UFD is shown in
[Sa, page 32]. Since z — xy is an irreducible element of R, the ideal P = (z —xy)R is
a height-one prime of R. It is observed in [HL, pages 300-301] that in the completion
R of R there exist distinct height-one primes P and Q lying over P. Moreover,
the blowup of Phasa unique exceptlonal prime divisor and this exceptional prime
divisor is not on the blowup of an m-primary ideal. Therefore P is not the radical of
a principal ideal of R.

In (4.9) we present an alternative method to obtain idealwise independent elements
that are not residually algebraically independent.

4.9. PROPOSITION. Let (R, m) be a countable excellent local UFD of dimension
at least two. Assume there exists a height-one prime Py of R such that Py is contained
in at least two distinct height-one primes P and Q of R. Also assume that the
Henselization (R", m") of R is a UFD. Then there exists T € mR that is idealwise
independent but not residually algebraically independent over R.

Proof. Since R is excellent, P := P N R* ‘and Q = Q N R" are distinct height-
one primes of R" with PR = P, and QR 0. Letx € R" be such that xR" = P.
Theorem 3.9 implies there exists y € mR that is primarily independent and hence
residually algebraically independent over R*.

We show that T = xy is idealwise independent but not residually algebraically
independent over R. Since x is nonzero and algebraic over R, xy is algebraically
independent over R. Let § = R[xy](m xy). Then § is a UFD and PNS=xRNS o)
(Po, xy)S has height at least two in S. Therefore by (4.3), xy is not residually
algebraically independent over R.

Since y isidealwise independent over R*, every height-one prime of the polynomial
ring R*[y] contained in the maximal ideal n = (m", y) R"[y] is the contraction of a
height-one prime of R. To show xy is idealwise independent over R, it suffices to show
every prime element w € (m, xy)R[xy] is such that wR[xy] is the contraction of a
height-one prime of R”[y] contained in n. If w ¢ (P, xy) R"[xy], then the constant
term of w as a polynomial in R”[xy] isin m" — P. Thus w € nand w ¢ xR"[y].
Since R*[xy][1/x] = R*[yl[1/x] and x R*[y]N R"[xy] = (x, xy) R*[xY], it follows
that there is a prime factor u of w in R*[xy] such that u € n — x R"[y]. Then uR"[y]
is a height-one prime of R*[y] and uR"[x] N R"[xy] = uR"[xy]. Since R*[xy] is
faithfully flat over R[xy], it follows that u R*[y] N R[xy] = wR[xy].

We have QR"[xy] = QR"[y] N R*[xy] and QR"[xy] N R[xy] = PyR[xY].
Thus it remains to show, for a prime element w € (m, xy)R[xy] such that w €
(P, xy)R"[xy] and wR[xy] # PyR[xy], that wR[xy] is the contraction of a height-
one prime of R" contained in n. Since (P, xy)R*[xy] N R[xy] = (Po, xy)R[xy], it
follows that w is a nonconstant polynomial in R[xy] and the constant term wq of w
is in Py. In the polynomial ring R"[y] we have w = x"v, where v ¢ xRMy]. If vy
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denotes the constant term of v as a polynomial in R*[y], then x"vp = wo € Py C R
implies x"vp € Q € R*. Since x € R" — Q, we must have vy € Q and hence
v € n. Also v ¢ xR"[y] implies there is a height-one prime ideal v of R*[y] with
v e vand x ¢ v. Then, since R"[y}y is a localization of R¥[xy], v N R*[xy] is
a height-one prime of R*[xy] that is contained in (m"*, xy)R"[xy]. It follows that
v N R*[xy] = wR"[xy] which completes the proof of (4.9). O

4.10. Remark. For a specific example of (4.9), take R to be the localized poly-
nomial ring in two variables over a countable field k where k has characteristic not
equal to 2, say R = k[s, t]s,n. Then Py = (s> — 1> — t*) R is a height-one prime of
Rand PR = (s*> — t* — t3)kI[s, t]] is the product of two distinct height-one primes
of R.

5. Idealwise independence and flatness

This section contains more results relating idealwise independence, residual al-
gebraic independence, and primary independence. We describe all three notions
in terms of flatness of certain localizations of the canonical embedding ¢: R, =

Rlty, ..., wlma,.t) < R. We start with an easy characterization of weakly flat
and PDE morphisms.

5.1. PROPOSITION. Let ¢: A —> B be an injective morphism of Krull domains.

(1) ¢ is weakly flat if and only if for every height-one prime ideal P € Spec(A)
such that PB # B there is a height-one prime ideal Q € Spec(B) with
P C QN A such that the induced morphism on the localizations

¢QI AQOA —_ BQ

is faithfully flat.
(2) ¢ satisfies PDE if and only if for every Q € Spec(B) with ht(Q) = 1 the
induced morphism on the localizations

$o: Agna —> By
is faithfully flat.

Proof. In both (1) and (2) we use the fact that for each height-one prime P €
Spec(A) the induced morphism ¢p: Ap —> (A — P)~! B is flat (a domain extension
of aDVR is always flat); and ¢p is faithfully flat <= P(A—P)"'B # (A—-P)"'B
which is equivalent to the existence of a prime in B lying over P in A.

For the proof of (1), to see (<), we use the fact that ¢ a faithfully flat morphism
implies ¢ satisfies the going-down property (see (5.5.1)). Hence Q N A is of height
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one,so P = QN A, and thus PBN A = P. For (=), suppose P € Spec(A) has
height one and ¢ is weakly flat. Then (2.10) implies the existence of Q € Spec(B)
of height one such that Q N A = P. Since By is a localization of (A — P)"!'B, we
see that ¢ is faithfully flat.

For the proof of (2), (=) is clear by the remark above, and (<) follows from
the fact that a faithfully flat morphism satisfies the going-down property. O

5.2. COROLLARY. Let (R,m) and 14,..., Ty € m be as in the setting of (2.1),

and let ¢: R, = Rl[11, ..., Twlmy...,1,) <> R denote the canonical embedding.
Then:

(1) 7, ..., ta are idealwise independent over R if and only if for every height-one
prime ideal P of R, there is a prime ideal Q C R with Q N\ R, = P such that
the induced morphism of the localizations

¢5: (R)p — R5
is faithfully flat.

(2) 1, ..., Ta are residually algebraic independent over R if and only if for every
hezght-one prime ideal Q C R the induced morphism of the localizations

¢a: (R,,)aan —_ Ra

is faithfully flat.

In order to describe primary independence in terms of flatness of certain localiza-
tions of the embedding ¢: R, —> R, we introduce the following definition:

5.3. Definition. Let¢: A —> B be an injective morphism of commutative rings
and let k € N be an integer with 1 < k < d = dim(B) where d is an integer or
d = oo. Then ¢ is called locally flat in height k—L Fy, for short—if for every prime
ideal Q € Spec(B) with ht(Q) < k the induced morphism on the localizations

¢QZ AQn A —> BQ
is faithfully flat.
The following proposition is an immediate consequence of (5.1):

5.4. PROPOSITION. Let ¢: A —> B be an injective morphism of Krull domains.
Then ¢ satisfies PDE if and only if ¢ satisfies LF}.
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5.5. Remarks. We use the following results on flatness.

(1) Let¢: A —> B be an injective morphism of commutative rings. Suppose that
¢ satisfies L F. Then for every Q € Spec(B) with ht(Q) < k we have ht(Q N A) <
ht(Q) [M3, Theorem 4, page 33].

(2) Let A be aNoetherian ring, / an ideal in A, and M an I-adically ideal-separated
A-module. Then M is A-flat <= (i) M/IM is (A/I)flat,and (ii)) I @ q M = IM
[M1, part (1) <= (3) of Theorem 22.3].

5.6. THEOREM. Let (R,m) and ty,...,T, € M be as in the setting of (2.1).
Suppose that dim(R) = d. Then:

(1) Theelementst,, ..., T, areresidually q.l\gebraically independent over R <—
¢: R, = Rlt1, ..., Twlm,,..,r,) —> R satisfies LF;.

(2) The elements t, ..., 1, are primarily independent over R <= ¢: R, =
Rz, ..., tlm....t,) — R satisfies LF4_;.

Proof,_ For (1) apply (5.4) and (4.2). To prove (= ) in (2), let O € Spec(R)
withht(Q) <d—1.PutQ =QNR,and P = QN R = QN R. We show that the
induced morphism

¢5: (Ri)g — Ry
is faithfully flat. By (5.5.2), we have to verify two conditions:
(a) The morphism 4_):@: (R./PRy)g — (ﬁ / Pﬁ)@ is faithfully flat.
() P(Rw)o ®r,, RG = PR
Proof of (a). We observe that the ring (R,/P R,) is a localization of the poly-

nomial ring k(P)[Ty, ..., T,] where k(P) Rp/PRp. Hence the ring (R,/PR,)p
is regular and so is the ring (R / P R) since R is excellent. In particular, the ring

(R / PR)a is Cohen-Macaulay, and [Ml Theorem 23.1] applies. Therefore we only
need to show the following dimension formula:

dim(E/Pie‘)a = dim(R,/P Ry)g + dim(R/QR)5.
Since Qﬁ is contained in Q and ht(Q) < d — 1, primary independence implies that
dim(R,/Q) > n. (If dim(R,/Q) < n, then QR is mR-pnmaxZ)

By Corollary 3.6.2, every minimal prime divisor W € Spec(R) of QR has ht(W)
ht(Q). Let W e Spec(R) be a minimal prime divisor of QR contained in Q Then

dim(R/QR)5 = dim(Rz) — ht(QRp)
= dim(Rp) — ht(W)
= dim(Rp) — ht(Q(Rx)o)
= dim(Rp) — ht(PRp) — (ht(Q(Rx)0) — ht(P(R,)0))
= dim((R/PR)g) — dim((R./PRy)o).
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Proof of (b). Since Rp —> (R — P)!(R,) is a flat extension we have

P(R,)g = PRp ®g, (Rp)g-

Therefore

P(R)o ®k,)o Ry = (PRp ®r, (Rn)g) ®r,), Rg = PRp ®k, Ry = PRy

where the last isomorphism is implied by the flatness of the canonical morphism
Rp — Rz O

For ( <= ) of (2), let P € Spec(R,) be a prime ideal with dim(R,/P) < n.
Suppose that PR is not m-primary and let Q O PR be a minimal prime divisor of
PR. Then ht(Q) <d—1.PutQ = Q N R,. Then L F;_; implies that the morphism

dr@: (Rp)g — R’Q\

is faithfully flat. Hence by going-down (5.5.1), ht(Q) <d — 1. But P € Q and R,
is catenary, sod — 1 > ht(Q) > ht(P) > d, a contradiction. 0O

5.7. Remark. The results above yield a different proof of statements (1) and
(3) of Theorem 4.4, that primarily independent elements are residually algebraically
independent and that in dimension two, the two concepts are equivalent. Consid-
ering again our basic setting from (2.1), with d = dim(R), Theorem 5.6 equates
the LF;_; condition on the extension R, = Rl[t,..., wlmzy,.,z) — R, tO
the primary independence of the 7;. Also Proposition 5.4 and Theorem 4.3 yield
that residual algebraic independence of the 7; is equivalent to the extension R, =
RlT1, ..., tlmz,..,;,) — R satisfying LF;. Clearly LF; = LF;_;, fori > 1,
and ifd = dim(R) = 2,then LF;_; = LF).

5.8. Remark. In the setting of (2.1), if Ti, ..., Tpare primarily independent over
R and dim(R) = d, then ¢: R, —> R satisfies LF,_;, but not LFy; that is,
¢ fails to be faithfully flat. (Faithful flatness would imply going-down and hence
dim(R,) <d = dlm(R))

5.9. Remark. By a modification of Example 2.13, it is possible to obtain, for
each integer d > 2, a local injective morphism ¢: (A, m) — (B, n) of normal
local Noetherian domains with B essentially of finite type over A, ¢(m)B = n,
and dim(B) = d such that ¢ satisfies LF,_;, but fails to be faithfully flat over
A. Let k be a field and let xy,..., x4, y be indeterminates over k. Let A be
the localization of k[xj, ..., x4, X1y, ..., Xsy] at the maximal ideal generated by
(X15 ..., X4, X1y, ...,X3y), and let B be the localization of A[y] at the prime ideal
(x1,...,%q)A[y]. Then A is a (d 4+ 1)-dimensional normal local domain and B is a
d-dimensional regular local domain birationally dominating A. For any nonmaximal
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prime Q of B we have By = Agna. Hence ¢: A —> B satisfies LF,_;, but ¢ is
not faithfully flat since dim(B) < dim(A). However, this example of a local L Fj-
morphism which fails to be faithfully flat also fails to be height-one preserving. As
Proposition 2.7 shows the morphisms studied in this paper are automatically height-
one preserving, and we believe that this condition is central for our investigations. We
do not have an example of a local algebra extension essentially of finite type which
is both L Fy, and height-one preserving, but fails to be faithfully flat.

6. Composition, base change and polynomial extensions

In this section we investigate idealwise independence, residual algebraic indepen-
dence, and primary independence under polynomial ring extensions and localizations
of these polynomial extensions.

We start with a more general situation. Consider the following commutative
diagram of commutative rings and injective morphisms:

C

veé

¢

A— B

We see in (6.1) that many of the properties of injective morphisms we consider are
stable under composition of morphisms.

6.1. PROPOSITION. Let ¢: A —> B and . B —> C be injective morphisms
of commutative rings.

(1) If ¢ and  satisfy L Fy, then Y ¢ satisfies L Fy.

(2) If C is Noetherian, ¥ is faithfully flat and the composite map ¢ satisfies
L Fy, then ¢ satisfies L F.

(3) Let A, B and C be Krull domains. Assume that for each height-one prime Q
of B, QC # C. If ¢ and  are height-one preserving (respectively weakly
flat), then Y ¢ is height-one preserving (respectively weakly flat).

Proof. The first statement follows from the fact that a flat morphism satisfies
going-down [M3, Theorem 4, page 33]. For (2), since C is Noetherian and v is
faithfully flat, B is Noetherian. Let Q € Spec(B) with ht(Q) = d < k. We show
¢g: Agna —> By is faithfully flat. By localization of B and C at B — Q, we
may assume that B is local with maximal ideal Q. Since C is faithfully flat over B,
QC # C. Let Q' € Spec(C) be a minimal prime of QC. Since C is Noetherian and
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B is local with maximal ideal Q, we have ht(Q’) < d and Q' N B = Q. Since the
composite map ¥ ¢ satisfies L Fy, the composite map

AQ’nA = AQnA ﬂ) BQ = BQ’nB ‘II—QI) CQ,
is faithfully flat. This and the faithful flatness of ¥o:: Boing —> Cg implies that
¢ is faithfully flat [M3, (4.B) page 27].

For (3), let P be a height-one prime of A such that PC # C. Then PB # B so if
¢ and y are height-one preserving then there exists a height-one prime Q of B such
that PB C Q. By assumption, QC # C (and  is height-one preserving), so there
exists a height-one prime Q' of C such that QC € Q’. Hence PC C Q'.

Now if ¢ and y are weakly flat, by (2.10) there exists a height-one prime Q of B
such that Q N A = P. Again by assumption, QC # C, thus weakly flatness of
implies QC N B = Q. Now

PCPCNACQCNA=QCNBNA =QNA=P. O

6.2. Remark. If in (6.1.3) the Krull domains B and C are quasilocal and ¢ is a
local morphism, then clearly QC # C for each height-one prime Q of B.

If amorphism A of Krull domains is faithfully flat, then A is a height-one preserving,
weakly flat morphism which satisfies condition L Fy for every integer k € N. Thus
if ¢: A — B and y: B — C are injective morphisms of Krull domains, such
that one of ¢ or ¥ is faithfully flat and the other is weakly flat (respectively height-
one preserving or satisfies LF}), then the composition ¥ ¢ is again weakly flat
(respectively height-one preserving or satisfies L F;). Moreover, if the morphism ¢
is faithfully flat, we also obtain the following converse to (6.1.3):

6.3. PROPOSITION. Let ¢: A —> B and y: B —> C be injective morphisms
of Krull domains. Suppose that the morphism  is faithfully flat. If Y is height-one
preserving (respectively weakly flat), then ¢ is height-one preserving (respectively
weakly flat).

Proof. Suppose that P is a height-one prime ideal of A such that PB # B.
Since  is faithfully flat, PC # C, so if {r¢ is height-one preserving, then there
exists a height-one prime ideal Q' of C containing PC. Now Q = Q’N B has height
one by going-down for flat extensions, and PB € Q' N B = @, so ¢ is height-one
preserving. The proof of the weakly flat statement is similar, using (2.10). 0O

Next we consider a commutative square of commutative rings and injective mor-
phisms:

Al —— B
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6.4. PROPOSITION. In the diagram above, suppose that |1 and v are faithfully flat.
Let k € N. Then:

(1) (Ascent) Suppose B' = B ®4 A’, or a localization of B ®4 A’, and v is the
canonical morphism associated with this tensor product. If : A — B
satisfies LFy, then ¢': A’ —> B’ satisfies LF.

(2) (Descent) If B’ is Noetherian and ¢': A’ —> B’ satisfies LFy, then ¢: A —>
B satisfies L Fy,.

(3) (Descent) Suppose that the rings A, A’, B and B’ are Krull domains. If
¢': A’ —> B'isheight-one preserving (respectively weakly flat), then p: A —>
B is height-one preserving (respectively weakly flat).

Proof. For (1), assume that ¢ satisfies L F; let Q' € Spec(B’) with ht(Q’) < k.
Put 0 = (v)71(Q), P’ = (¢)7'(Q"), and P = p~!(P’) = $~'(Q) and consider
the commutative diagrams

¢’ ¢;Zr
A — B ' —— B,
A S S
b0
A——> B Ap — By.

The flatness of v implies that ht(Q) < k and so by assumption, ¢g is faithfully flat.
The ring By, is a localization of By ®4, A’ and By is faithfully flat over Ap implies
By, is faithfully flat over A’,.
For (2), by (6.1.1), ¢'u = v¢ satisfies L F;. Now by (6.1.2), ¢ satisfies L Fy.
Item (3) follows immediately from the assumption that u and v are faithfully flat
morphisms and hence going-down holds [M3, Theorem 4, page 33]. O

Next we examine the situation for polynomial extensions.

6.5. PROPOSITION. Let (R, m) and {v;}7., C M be as in the setting of (2.1),

where m is either an integer or m = oo, and the dimension of R is at least 2. Let z
be an indeterminate over R. Then:

(1) {w), is residually algebraically independent over R <= ({v;}]., is resid-
ually algebraically independent over R[z]m,z)-

(2) If {t}IL, is idealwise independent over R[Z](m,z), then {T;}[L, is idealwise
independent over R.

Proof. Letn € Nbe aninteger withn < mandput R, = R[7y, ..., Tum,1,...,50)-
Let¢: R, — Rand u: R, —> R,[z] be the inclusion maps. We have the following
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commutative diagram:

q

¢ ~
Rn[Z](max(R,,),z) — R = R[Z](a,z)

«] vl

o~

R,  — R.

The ring R’ is a localization of the tensor product R ®r, Rulz] and Proposition 6.4
applies. Thus, for (1), ¢ satisfies LF; if and only if ¢’ satisfies LF;. Since the
inclusion map ¢ of R’ = R[z](m o 10 its completion R[[z]] is faithfully flat, we
obtain equivalences

¢ satisfies LF, <= ¢’ satisfies LF; <= ¢’ satisfies LFj.

For (2), if the 7; are idealwise independence over R[z](m,), the morphism ¢’ is
weakly flat. Thus ¢’ is weakly flat and the statement follows by (6.1). O

We also obtain:

6.6. PROPOSITION. Let A <> B be an extension of Krull domains such that for
each height-one prime P € Spec(A) we have PB # B, and let Z be a (possibly
uncountable) set of indeterminates over A. Then A — B is weakly flat if and only if
A[Z] — B[Z] is weakly flat.

Proof. Let F denote the fraction field of A. By (2.14), the extension A — B
is weakly flat if and only if F N B = A. Thus the assertion follows from F N B =
A &< F(Z)NB[Z]=A[Z]. O

6.7. Remark. It would be interesting to know whether the converse of (6.5.2) is
true. It is unclear that a localization of a weakly flat morphism is again weakly flat. In
other words: Does there exist a weakly flat morphism ¢: A —> B of Krull domains
and a height-one prime P € Spec(A) such that P B has a minimal prime divisor Q
with ht(Q) > 1?

If so, the map A —> By, fails to be weakly flat. Note that if P is the radical of a
principal ideal, then each minimal prime divisor of P B is of height one.

6.8. Remark. Primary independence never lifts to polynomial rings. To see that
T € mR fails to be primarily independent over R[z](m 2)» observe that mR[z]m,)
is a dimension-one prime ideal tllgt extends to mR[[z]], which also has dimension
one and is not (m, z)-primary in R[[z]]. Alternatively, in the language of locally flat
morphisms, if the elements {z;}7, C i are primarily independent over R, then (6.1)
implies that the morphism

¢ Rulzlimaxg.) —> RII2]]
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satisfies condition L F;_;, whered = dim(R). For {1;}]_, to be primarily independent
over R{z](m,z), however, the morphism ¢’ has to ﬁatlsfy LFy, since dimR[z])m,;) =
d + 1. Using (6.1) again this forces ¢: R, —> R to satisfy condition L F; and thus
¢ is flat, which can happen only if n = 0. This is an interesting phenomenon; the
construction of primarily independent elements involves all parameters of the ring R.

In the remainder of this section we consider localizations of polynomial extensions
so that the dimension does not increase. Theorem 6.9 gives a method to obtain
residually algebraically independent and primarily independent elements over an
uncountable excellent local domain. In (6.9) we make use of the fact that if A is a
Noetherian ring and Z is a set of indeterminates over A, then the ring A(Z) obtained by
localizing the polynomial ring A[Z] at the multiplicative system of polynomials whose
coefficients generate the unit ideal of A is again a Noetherian ring [GH, Theorem 6].

6.9. THEOREM. Let (R, m) and {v;}]_, € M be as in the setting of (2.1), where
m is either an integer or m = 00, and dlm(R) =d > 2. Let Z be a set (possibly
uncountable) of indeterminates over R and let R(Z) = R[ZYmrizy. Then:

() {w}., isprimarily independentover R &= {1;}., is primarily independent
over R(Z).

(2) {m)[L, is residually algebraically independent over R <= {t;}]., is resid-
ually algebraically independent over R(Z).

(3) If {zi}[L, is idealwise independent over R(Z), then {t;}[_, is idealwise inde-
pendent over R.

Proof. Letn € N be an integer with n < m, put R, = Rlt, ... wlma,....5)
and let n denote the maximal ideal of R,,. Let ¢: R, — R and u: R, — R,,(Z)
Ry[Z]ar,(z) be the inclusion maps. We have the following commutative diagram:

R.(Z) AN R(Z)

« «]

—~

R, -——4’—) R.

The ring R (Z) is a localization of the tensor product R ®r, R.[Z] and Proposition 6.4
applies. Thus, for (1), ¢ satisfies L F;_, if and only if ¢’ satisfies L F;_,. Similarly,
for (2), ¢ satisfies L F; if and only if ¢’ satisfies LFj.

Since the inclusion map  taking R(Z) to its completion is faithfully flat, we
obtain these equivalences:

¢ satisfies LF, <= ¢’ satisfies LF, <= ¢’ satisfies L Fy.

Since primary independence is equivalent to L F,;_; by (5.6) and residual algebraic
independence is equivalent to L F; by (5.4), statements (1) and (2) follow.

For (3), if the t; are idealwise independence over R(Z), the morphism ¥¢’ is
weakly flat. Thus ¢’ is weakly flat and the statement follows by (6.1). O
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6.10. COROLLARY. Letk be a countable field, let Z be an uncountable set of inde-
terminates over k and let x, y be additional indeterminates. Let R = k(Z)[x, yl,y).
Then R is an uncountable excellent normal local domain and, for m a positive integer
or m = 00, there exist m primarily independent elements (and hence also residually
algebraically and idealwise independent elements) over R.

Proof. Apply (3.9), (44)and (69). 0O

7. Passing to the Henselization

In this section we investigate idealwise independence, residual algebraic indepen-
dence, and primary independence as we pass from R to the Henselization R"of R. In
particular, we show in Proposition (7.5) that for a single element 7 € mR the notions
of idealwise independence and residual algebraic independence coincide if R = R".
This implies that for every excellent normal local Henselian domain of dimension 2
all three concepts coincide for an element 7 € mR; that is, 7 is idealwise independent
<= 1 is residually algebraically independent <= 7 is primarily independent.

We use the commutative square of (6.4) and obtain the following result for Henseliza-
tions.

7.1. PROPOSITION. Let ¢: (A,m) <> (B, n) be an injective local morphism
of normal local Noetherian domains, and let ¢*: A" —> B" denote the induced
morphism of the Henselizations. Then:

(1) ¢ satisfies LF, <=  ¢" satisfies LFy, for eachk with 1 < k < dim(B).
Thus, in particular, ¢ satisfies PDE <=  ¢" satisfies PDE.

(2) (Descent) If ¢" is height-one preserving (respectively weakly flat), then ¢ is
height-one preserving (respectively weakly flat).

Using shorthand and diagrams, we show (7.1) schematically:

(pisLFi |« [¢"isLF| ; [pisPDE| «——
<—|¢"ht—1pres| ; |¢w.f.| -— .

Proof of (7.1). Consider the commutative diagram

¢h
Ah N Bh
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where p and v are the faithfully flat canonical injections [N, (43.8), page 182]. Since
¢ is injective and A is normal, " is injective. By (6.4.2), (5.4) and (6.4.3) we need
only show (=) in (1).
Let Q' € Spec(B") with ht(Q’) < k. Put Q = Q'N B, P’ = Q' N A*, and
P = P’ N A. We consider the localized diagram
Sy
A};)/ _— B}é/

;I,P/T UQ/T

)
Ap _— BQ.

The faithful flatness of v implies ht(Q) < k.

In order to show that ¢”,: A’},, — B’é, is faithfully flat, we apply (5.5.2). First
note that P’ is a minimal prime divisor of P A" and that (A"/PA")p = (A"/P")p:
is a field [N, (43.20)]. Thus

o (A"/PAMp —> (B"/PBM),
is faithfully flat and it remains to show that
PA} ®, By = PBy,.
This can be seen as follows:

PAh, ®4, B!, = (P ®a, A%) B, B!, by flamessof u

= P ®a, By,

= (P ®a, Bg) ®s, Bly

= PBg ®s, B’é, by flatness of ¢g

= PB), by flatness of v. m]

7.2. COROLLARY. Let (R,m) and {t;}]L, be as in the setting of (2.1), where m
is either a positive integer or m = oo and dim(R) = d > 2. Then:

(1) {m}{~, isprimarily independentover R <= {v;}i., is primarily independent
over R".

(2) {u}iL, is residually algebraically independent over R <= {1;}i., is resid-
ually algebraically independent over R".

(3) (Descent) If {v;}/L, is idealwise independent over R" then {7; 7 is idealwise
independent over R.

Proof. For (1) and (2) it suffices to show the equivalence for every positive
integer n < m. Note that the local rings R, = R[ty,..., T lm,,..,,) and R, =
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Rz, ..., tlm,...5,) have the same Henselization which we denote R*. Also
R, € R,. By (5.6) and (7.1):

7, ..., Ty are primarily (respectively residually algebraically) independent over
R

& R, — R satisfies LF,_, (respectively L F})
& R" — R = R" satisfies LF,_, (respectively LF;)
& R, — R satisfies LF,_, (respectively L Fy).
The third statement on idealwise independence follows from (6.4.3) by considering

¢’ -~
—> R

N
s

kS
—

R.

¢
_

=
3

O

7.3. Remark. The examples given in (4.7) and (4.9) show the converse to part
(3) of (7.2) fails; weak flatness need not lift to the Henselization. With the notation
of (7.1), if ¢ is weakly flat, then for every P € Spec(A) of height one with PB # B
there exists by (2.10), Q € Spec(B) of height one such that P = Q N A. In the
Henselization A" of A, the ideal PA" is a finite intersection of height-one prime
ideals P/ of A" [N, (43.20)]. Only one of the P/ is contained in Q. Thus as in
(4.7) and (4.9), one of the minimal prime divisors P/ may fail the condition for weak
flatness.

Let R be an excellent normal local domain and let K, respectively K h_ denote the
fraction fields of R, respectively R". Let L bean intermediate fieldwith K € L € K k
It is shown in [R4] that the intersection ring T = L N R is an excellent local normal
domain with Henselization 7% = R". Excellent, Henselian, local, normal domains
are algebraically closed in their completion and we obtain the next result.

7.4. COROLLARY. Let (R, m) and {7;}]_, be as in the setting of (2.1), where m
denotes a positive integer or m = 00. Suppose that T is a local Noetherian domain
dominating and algebraic over R and dominated by Rwith R =T. Then:

(1) {n){L,isprimarilyindependentover R <= {t;}]-, is primarily independent
overT.

(2) {ni}iL, is residually algebraically independent over R <= {t;}., is resid-
ually algebraically independent over T .

(3) If{n}[L, isidealwise independent over T , then {t;}]_ | is idealwise independent
over R.

Proof. As mentioned above, R and T have a common Henselization and the
statement follows by (7.2). O
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We have seen in (4.4) that if T € mR is residually algebraically independent over
R, then 7 is idealwise independent over R. In Proposition 7.5 we show that if R
is Henselian or, more generally, if height-one prime ideals of R do not split in the
completion of R, then idealwise independence and residual algebraic independence
are equivalent for a single element t in R. There is an example in [AHW] of a normal
local domain R which is not Henselian but for each prime ideal P of R of height-one,
the domain R/ P is Henselian.

7.5. PROPOSITION. Let (R, m) and t € m be as in the setting of (2.1). Suppgse
R has the property that for each P € Spec(R) with ht(P) = 1, the ideal PR is
prime. Then t is residually algebraically independent over R <= 1 is idealwise
independent over R.

In particular, if R is Henselian or if R/ P is Henselian for each height-one prime
P of R, then t is residually algebraically independent over R <> Tt is idealwise
independent over R.

Proof. By (4.4)itis enough to show 7 idealwise independent =  is residually
algebraically independent. Let Pe Spec(R) such that ht(P) =1land PNR # 0.
Then ht(P NR) =1and (P N R)R; is annme ideal of Ri = Rlt] of height 1.
Idealw1se mdependence of T implies that wn R)R1 (P N R)RIR N Ry. Since
(P N R)R is nonzero and prime, we have P= (P N R)R and PN R, = (P N R)R;.
Therefore ht(P N R;) = 1 and Theorem 4.3.2 implies that 7 is residually algebraically
independent over R.

For the last statement, suppose that P is a height-one prime of R such that R/ P is
Henselian. Then the integral closure of the domain R/ P in its fraction field is again
local, in fact an excellent normal local domain and so analytically normal. But this
implies that the extended ideal PRis prime, because of the behavior of completions
of finite integral extensions [N, (17.7), (17.8)]. O

Apparently (7.5) cannot be extended to more than one algebraically independent
element T € mR, because even when R is Henselian, the localized polynomial ring
R[t](m,) fails to be Henselian.

7.6. COROLLARY. If R is an excellent Henselian normal local domain of dimen-
sion 2, then T is idealwise independent over R <= Tt is residually algebraically
independent over R <= Tt is primarily independent over R.

Proof. This follows from (7.5) and (4.4.3). O

8. Summary diagram for the independence concepts

With the notation of (2.1) for R, m, R,,, 7 ..., T,, letd = dim(R), L the quotient
field of R,, p € Spec(R,) such that dim(R,/p) < d — 1, P € Spec(R,) with
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R, < RLFs_ ,(5 3) — 58 |7 prim. ind. /R(3.1)] 1890 7, prim. ind. /R(Z) (3.1)|

ey T 7
(5.3) |Vp, pRis mﬁ-primary‘ PRNLLT BN l?.-prim. ind./T(a.l)l
(4a) | {
(B RLRGy] on, [re ind /RG] 022, [r e nd LI
(49 3 uy
[R. - R PDE (2.85) |13 _,{m(PnR)uvw.L_M_,m
(2.8b) I “3) I
@ ”’ J. (“442) L (“an L

R, R wf. (2 8a)| (181 I |dw ind. /R(z 2) (6.5.2) |r.~ idw. ind. /R[z}(m.s) (4.1)|
(2.80) 22 ]
PRA Ry, = P,YP 1699 [idw. ind. /R(Z) (4.0)]

Figure 3. Independence concepts and results

ht(P) =1, Pe Spec(ﬁ) with ht(ﬁ) =1, R" the Henselization of R in ﬁ Ta local
Noetherian domain dominating and algebraic over R and dominated by Rwith R = T
z an indeterminate over the quotient field of R and Z a possibly uncountable set of
set of indeterminates over the quotient field of R. Then we have the 1mphcat10ns in
Fig. 3. We use the abbreviations “prim. ind.”, “res. ind.” and “idw. ind” for “primarily
independent”, “residually independent” and “idealwise independent”.

Note. R, <> Ris always height-one preserving by (2.7).
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