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ABSTRACT

Realizing the essentials of bipedal walking balance is one of the core studies in both

robotics and biomechanics. Although the recent developments of walking control on

bipedal robots have brought the humanoid automation to a different level, the walking

performance is still limited compared to human walking, which also restricts the related

applications in biomechanics and rehabilitation.

To mitigate the discrepancy between robotic walking and human walking, this disser-

tation is broken into three parts to develop the control methods to improve three important

perspectives: predictive walking behavior, gait optimization, and stepping strategy. To

improve the predictive walking behavior captured by the model predictive control (MPC)

which is transitionally applied with the nonlinear tracking control in sequence, a quadratic

program (QP)-based controller is proposed to unify center of mass (COM) planning using

MPC and a nonlinear torque control with control Lyapunov function (CLF). For the gait

optimization, we focus on the algorithms of trajectory optimization with direct colloca-

tion framework. We propose a robust trajectory optimization using step-time sampling

for a simple walker under terrain uncertainties. Towards generating human-like walking

gait with multi-domain (phases), we improve the optimization through contact with more

accurate transcription method for level walking, and generalize the hybrid zero dynamics

(HZD) gait optimization with modified contact conditions for walking on various terrains.

The results are compared with human walking gaits, where the similar trends and the

sources of discrepancies are identified. In the third part for stepping strategy, we perform

step estimation based on capture point (CP) for different human movements, including

single-step (balance) recovery, walking and walking with slip. The analysis provides the

insights of the efficacy and limitation of CP-based step estimation for human gait.
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1. INTRODUCTION

Robots have become more and more common in our daily life. It is not surprised

to see robots can vacuum and mop our floors, the drones can follow us and take aerial

videos and photos from the location or perspective that we cannot easily reach. For the

automobiles, the driving-automation reaches to the level that seems so futuristic that the

automated systems can take control of accelerating, braking, and steering so that the driver

can let off the steering wheel on high way – at least for a short while.

Except wheeled and flying robots, legged robot is another form of robotic locomo-

tion that has greater adaptiveness to human-living environment. Compared to the wheeled

robots, legged robot can traverse along unstructured terrain without the need of the con-

tinuous pathway, therefore can move or interact in the human environment (such as stair

walking or ladder climbing). Legged robots in general also have larger payload than the

flying robots. Among legged robots, bipedal robots and humanoids are suitable to perform

human-robot collaboration and human services, as they possess the same locomotion type

of humans’. However, those advantages come with their cost: as a highly articulated sys-

tem, a bipedal robot’s floating base limits the force and torque it can exert to maintain the

balance, the energetically efficient gait can be the mixture of different actuation conditions,

and fast reactions are required when robot’s balance cannot be recovered via the original

motion reference. Those challenges – although have been actively studying and exploring

– make bipedal robots’ performance still not close enough to their biological counterparts.

As part of our daily life, we use our vision to identify the path in front of us, and use

it to guide our walking direction so that we will not stray out of the road. With years of

learning and practice, we developed our walking gait such that we utilize heel-off (trailing

leg) and knee-stretching to extend our step length, and handling the impact force with the
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foot moving downward after heel-strike. When we accidentally lose our balance, even

without too many practices, we will try our best to make a step after a step till we do not

feel the risk of fall any more.

This dissertation focuses on developing model-based methods in bipedal robotics to

get more understanding about those features which can be observed in human gait: 1)

predictive behavior, 2) gait optimization, and 3) the stepping strategy. By exploiting dy-

namics, planning and control, studying bipedal robots is also beneficial to the development

of lower-limb wearable and rehabilitation devices for humans, which can potentially re-

place the wheel chair and walker, or help users to restore their mobility.

In the following sections, first the big picture of bipedal robot automation will be pre-

sented, and then the approaches which nicely capture those three features in the filed of

the bipedal robotics will be introduced. The research objectives, the main topics of the dis-

sertation, and the dissertation overview as well as the contributions will also be presented.

1.1 Bipedal Robot Automation as a Hierarchical Control System

For a bipedal robot to navigate in an environment autonomously, its control system

can be illustrated as shown in Fig. 1.1. As the entire task is too complex to be handled

within a single framework, the navigation task is usually broken down into three main

components: 1) High-level motion planning, 2) Low-level tracking control, and 3) Model

predictive control (MPC) to bridge the other two.

High-level motion planning. When an environment is given or is being perceived, the

high-level motion planning is deployed to determine the sequence of the foot placement.

This can be derived by the searching the environment as a grid-map using path-searching

algorithms like A* with the collection of possible foot placements [7, 8], or the gait library

solved by trajectory optimization [9, 10]. Usually this component take the longest com-

putation time as the configuration space for a bipedal robot moving in an environment can
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Figure 1.1: Controller overview as a hierarchical control system.

be really complex, and the task potentially can be achieved in numerous ways. As a result,

either the simplest model is adopted, or this component is running in an off-line manner.

Low-level tracking control. When the desired trajectory is planned, the low-level con-

troller tracks the desired trajectory to achieve the walking motion. This needs to be

achieved by continuously sensing the system’s states and making the corresponding cor-

rection via control inputs. To control the robot to follow a trajectory precisely, it requires

reliable software and hardware, and the precise model description (therefore Rigid Body

Dynamics (RBD) is commonly used with the nonlinear controller design [11]). The sam-

pling time is also crucial for the tracking performance (in general ranged in milliseconds).

Model predictive control. As the bipedal system is with the floating base, even with

the good low-level controller and nice hardware, the tracking result can still deviate from

the original plan, since the contact condition can be easily perturbed by stepping impact

or slippage due to small obstacles on the terrain, or even vibrations from the joint con-

trol. This deviation can be accumulated step by step and cause the system reaches the

infeasible states or loses the balance, therefore limits the reliability of the walking control
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performance. In this case, model predictive control with moderate re-planning speed can

be a powerful tool to correct the system’s behavior as the control input is derived from

the best control sequence over a finite horizon, rather than just considering the state at the

current time step. To solve the optimization with predicted states over the horizon on the

flight, MPC is usually used with the model simpler than RBD.

With those building blocks, next we introduce several approaches of bipedal robot

walking control studied in this dissertation, include the robot models, and how those ap-

proaches achieve bipedal walking.

1.2 Approaches of Bipedal Robot Walking Control

To utilize the hierarchical control system introduced in the previous section, a method

of walking control basically determines how the walking motion is generated, based on

the selected model. With different perspectives to reason walking balance and stability,

each walking control method has its own benefits and limitations, which will be briefly

introduced in this section.

1.2.1 Bipedal Robot Models

There are various bipedal robot models that can be used to describe the dynamics of a

bipedal robot system. The main differences between these models are the dimensions of

the state, the type of control inputs, and the required assumptions (usually for simplifica-

tion) so that a model can represent a bipedal walking system.

Linear Inverted Pendulum Model (LIPM). Linear inverted pendulum model (Fig. 1.2) is

one of the classical simplified model that has been well-studied in bipedal robotics because

of its simplicity, and its effectiveness to generate 3D walking motion. LIPM in general has

the following assumptions:

• The dynamics only considers the motion of center of mass (COM) and the effect

from the ground reaction force (GRF).
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• The COM height is constant. This is also the key assumption as it decouples the

dynamics of the COM horizontal motion from the COM vertical motion.

• In general it is assumed the LIPM has a perfect surface contact to the ground, thus

there is no rotation in the COM motion. This is also an important assumption for the

walking control using zero-moment point (which will be introduced in Chapter 2).

Figure 1.2: Schematic of the linear inverted pendulum model.

Though those assumptions help to greatly simplify the model and make it a lot easier

to generate stable walking motion, it also make the system can only perform locomotion

in a really restricted way. In addition, the generated walking using the LIPM may looks

more unnatural, because the locomotion of humans and animals in general does not require

those assumptions to be always hold.

Rigid Body Dynamics (RBD). Different from the LIPM, the rigid body dynamics aims to

fully described the mechanical system with the very basic component – rigid body. RBD

assumes each link of the robot model as a rigid body and is connected to other links with

joints. In this way, a more complicated yet more accurate model can be derived to depict

the system dynamics (as shown in Fig. 1.3).

Full-actuation vs. under-actuation. On one hand, when a system’s degrees of freedom

are equal to its actuated joint number, the system is called full-actuated as the entire con-

figuration of the robot can be fully controlled. LIPM in Fig. 1.2 is an example of the
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Figure 1.3: Schematic of the rigid body dynamics. The black circular arrows indicate the
robot joints, and the yellow circular arrows indicate the actuators (motors) on the model.

full-actuated systems. On the other hand, when a system’s degrees of freedom are more

than its actuated joint number, the system is under-actuated. Take Fig. 1.3 for example,

the system can not control the angle between the ground and the foot pad of the trailing

leg since there is no actuator at the toe, therefore it can only affect that angle indirectly

through the motors on other joints. Unlike LIPM, RBD can be used to describe different

contact conditions including point and surface contacts, therefore is suitable to describe

both full-actuated and under-actuated systems.

Feasible ground reaction force. For both surface and point contact, the resultant ground

reaction force can be expressed with a normal force fn and a tangential force ft on an

exertion point (e.g. in Fig. 1.2 fn = fy, and ft = fx). There are two important conditions

to make a ground reaction force physically valid:

• The normal force should be always positive (i.e. pointing out of the contact surface.)

• Based on the Coulomb friction model, for a non-sliding contact, the ground reac-

tion force should be inside the friction cone: |ft| ≤ µfn, where µ is the friction

coefficient.
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1.2.2 Bipedal Robot Walking Control Methods

In this subsection we briefly introduce the state-of-the-art methods for walking control

which are studied in this dissertation: zero-moment point, capture point, and hybrid zero

dynamics.

Zero-Moment Point (ZMP). ZMP [12] is an important milestone in the development

of bipedal robotics. The zero-moment point is the location where the ground reaction

force can be expressed with zero-torque. By leveraging the concept of resultant force, it

provides the dynamic balance criterion for the full-actuated legged system (e.g. system

with flat-foot contact): When the ZMP is inside the support polygon (the convex hull

of the foot contact area), the system will not tip over. With the LIPM, the momentum

equation can be expressed as a linear equation of COM and ZMP. With the ZMP reference

determined from the sequence of foot placement, the walking control problem becomes

the COM planning problem, where using model predictive control (MPC) with the LIPM

to plan the COM walking pattern is a classical method which has been widely used for

decades [13, 14, 15]. However, applying MPC and low-level control in sequence has its

own pitfall: the limitations of the over-simplified LIPM also limit the system’s walking

capability, therefore a lot of studies is also trying to generalize ZMP-based methods, such

as methods using centroidal dynamics [16], or study using nonlinear simplified model [17].

Nevertheless, the dynamic balance criterion is still useful to ensure the walking balance

while the system has surface contact to the ground.

Capture Point (CP). Extended from the ZMP-based method, capture point generalize it

through the step-planning. Capture point [18] is the stepping location where the legged

system can make a complete stop by stepping on it. Unlike the dynamic balance criterion

that only quantifies the balance condition for the current stepping location, capture point

can be generalized to N-step capture point for N = 0, 1, 2, . . . ,∞ (the step location which
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will need to take N steps to make the system into a complete stop.) Because the CP-

based methods focus on fast stepping and COM (re)planning, so in general it can used

for both full-actuated and under-actuated systems. Using capture point with the simplified

model (like LIPM) enables the legged system to have fast reactions (replanning) against

undesired disturbances, therefore it is well-known to handle push-recovery and walking

on uneven terrains[19, 20, 21]. To overcome the limitation from the oversimplified model,

there are more and more studies focus on generalizing CP-based method with the nonlinear

simplified model [17].

Hybrid Zero Dynamics (HZD). Compared to ZMP-based and CP-based methods, HZD-

based methods are on the other side of the spectrum [22, 23, 24]. Having the direct root in

the locomotion generation of the passive robots (e.g. compass gait), hybrid zero dynamics

aims to solve a dynamically feasible walking trajectory which can be executed periodically

for the system under the stepping impact – a typical example of a hybrid system (which

contains the continuous dynamics and discrete event). Because both passive and under-

actuated systems require to solve the walking trajectory which can fully/partially run with

its natural dynamics (i.e. the unactuated dynamics), one common approach to solve the

walking trajectory for passive or under-actuated robots is using trajectory optimization.

Trajectory optimization is a mathematical method to formulate a nonlinear program to

solve the walking trajectory which optimizes a target objective function while satisfying

a set of constraints such as the dynamical feasibility and the gait periodicity under the

stepping impact (the later is also termed hybrid invariant condition). By leveraging the

natural dynamics and imposing energy consumption or control effort into an objective

function, the generated gaits can be energetically efficient and usually look more natural.

However, since this method heavily relies on the accuracy of the dynamic model, and

lacks balancing mechanism for non-surface contact, it is more challenging for HZD-based

methods to achieve 3D walking motion.
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1.3 Research Objectives – The Big Picture

As we mentioned, the purpose of this dissertation is to get more understanding about

three important features of human gait: predictive walking behavior, gait optimization, and

stepping strategy. In this section, we will explain the big picture, including how these fea-

tures connect to i) control hierarchy, ii) related walking control methods, and iii) research

objectives (denoted as R#, e.g., R1, R2) to be investigated in this dissertation.

1.3.1 Predictive Walking Behavior

Both bipedal robotics [25, 13] and biomechanics studies [26, 27] have shown the sig-

nificance of predictive behavior for walking (e.g. watching over few steps ahead during

walking to make sure the walking motion can be executed properly). In the examples of

bipedal robotics [25, 13], the predictive behavior can be reasoned as a process using MPC

with low-level control in sequence – a classical example of ZMP-based walking control.

Traditionally, with given foot placements, the ZMP-based walker first runs MPC with the

LIPM to plan the COM trajectory, and then the planned COM trajectory along with the

trajectories of the other end effectors are tracked using the low-level controller. However,

there is one major pitfall for using those controller in sequence: the models used in MPC

(the simplified model) and the low-level controller (which is in general the RBD) are not

the same, which lead to inconsistency issue. Therefore the research objective is:

R1. Improving the model consistency between model-predictive control and low-level

control to enhance the predictive walking control.

1.3.2 Gait Optimization

Since optimizing a bipedal walking gait requires to exploit a bipedal robot’s dynam-

ics as accurate as possible, the gait optimization using trajectory optimization – as one

example of high-level motion planner – is usually performed in the offline manner. As
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we briefly mentioned, with an objective function, a trajectory optimization formulates a

the mathematical problem of walking trajectory generation as a nonlinear program to op-

timize the objective function while satisfying a set of constraints of dynamical feasibility

and periodicity of walking.

Among various methods of trajectory optimization in the literature, we mainly fo-

cus on the methods using direct collocation framework [28, 29, 30, 31]. Direct colloca-

tion method discretizes the trajectory of the system states and control inputs into discrete

(collocation) points as independent decision variables, and solves the open-loop optimal

control problem. The states and control inputs are related by the imposed constraints of

the dynamic equations and the collocation constraints (which transcribe the states at the

nearby collocation points as parameterized curves). Since most of the decision variables

are only related to the adjacent ones, the direct collocation method makes the entire op-

timization can be solved with sparse Jacobian matrices (of its constraints and objective

function). Therefore this method can efficiently generate complex walking behaviors for

complex robot systems (e.g. HZD-based walkers).

Form the control perspective, human walking is complex because the walking gait

contains both the full-actuated and under-actuated walking phases (domains), which is

an example of walking with multiple-domain. Our ultimate goal is to develop trajectory

optimization algorithms to generate robust, energetically efficient and adjustable walking

gaits so that the proposed algorithms can be used for lower-limb wearable robots, including

prosthesis and exoskeleton. For this purpose, we plan to generate energetically efficient

walking trajectories for a bipedal robot AMBER 3 (Fig. 1.4) with the following research

objectives:

R2. Improve the robustness of walking gait for uneven terrains.

R3. Improve the state-of-the-art of trajectory optimization algorithms to generate energet-

ically efficient walking gait with multi-domain.
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Figure 1.4: The human-sized planar bipedal robot AMBER 3. It is 148 cm tall, weights
33.4 kg, with actuated hip, knee, ankle joints and passive toe, heel joints. It is capable
of performing walking with multiple domains (e.g. walking with foot rolling motion). c©
2016 IEEE. Reprinted with permission from [1].

R4. Impose additional constraints and cost so that the gait can be adjustable (for cus-

tomization) and more human-like.

R5. Generate gaits for various terrains, including flat ground, slopes and stairs.

1.3.3 Stepping Strategy

The scope of the study for stepping strategy is slightly different from the other two. In

the control hierarchy, the stepping strategy can be treated as an emergent mode which will

only be triggered when the desired trajectory generated from the high-level planner and

MPC can no longer maintain the balance. Additionally, stepping strategy can also be used

as a regular walking control method which works with MPC and the low-level controller.

As Capture Point (CP)-based methods have already shown the capability in different stud-

ies [19, 20, 21], we focus on evaluating whether this method can be a potential tool for

biomechanics and human rehabilitation. The research objectives are:

R6. Evaluate CP-based step estimation for human step-recovery from standing.

R7. Evaluate CP-based step estimation for different robotic walkers and human walking
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to exploit its performance.

R8. Evaluate CP-based step estimation for human walking with slip in different slip sever-

ities.

1.4 Dissertation Overview

1.4.1 Main Parts of the Dissertation

In this dissertation, to present how we achieved those research objectives, we split

those studies into three main parts: i) Quadratic program-based walking controller de-

sign, ii) Trajectory optimization, and iii) Capture point-based method for human motion

analysis. The scopes and the capabilities of the algorithms developed in those parts are

summarized in Table 1.1.

Table 1.1: The summary of the scopes and capabilities of the algorithms developed in
different parts in this dissertation.

Parts QP-based Trajectory Capture point

controller optimization -based analysis

Model RBD + LIPM RBD LIPM

Torque saturation 3 3 7

Balance criteria 3 7 3

Feedback control 3 7 7

Constrained optimal control 3 3 7

Foot-rolling motion 7 3 7

Step length estimation 7 7 3

Human motion analysis 7 7 3

Computation speed online offline online
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In the following subsections, we will introduce each of the three main parts in the dis-

sertation, including the corresponding chapters, their relations to each research objective

and our contributions.

1.4.2 Quadratic Program-based Walking Controller Design

The main purpose of this part is to achieve the research objective R1, which is de-

scribed in Chapter 2. There are several potential issues about the model mismatch when

applying MPC and the low-level control in sequence. First, for MPC with the LIPM (COM

planning), although the dynamic balance (i.e. ZMP constraints) over the horizon can be

imposed into the constrained MPC, the planned COM is based on simplified model there-

fore may not reflect the full dynamics of the bipedal robot. Second, for the nonlinear

low-level control, although one can adopt a constrained optimal control to track the de-

sired trajectory and impose the ZMP for the current time step, there is no guarantee that

the state won’t enter the region where the ZMP constraint in the next time step will be vi-

olated. To address those issues, by leveraging the fact that both the constrained MPC and

constrained nonlinear control can be expressed as quadratic programs (QPs), we propose a

QP-based controller design to combine both QPs into a single framework, with a synthesis

equality constraint to equal the COM accelerations derived from the LIPM and RBD. In

this way, the unified QP will simultaneously generate the COM motion (which satisfies

the ZMP constraint over the horizon, and is with the feedback from the nonlinear RBD)

and the control input (which can track alone the generated COM under torque saturation,

dynamic balance, and Lyapunov stability constraints for the current time step).

1.4.3 Trajectory Optimization

For achieving research objectives (R2 – R5), Chapters 3 to 5 are the studies to explore

different trajectory optimization algorithms with direct collocation framework.

To achieve objective R2 for the compass gait walker, we propose a robust trajectory
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optimization under terrain uncertainties, which is described in Chapter 3. In this work,

by utilizing the structure of direct collocation method, the last few collocation points are

used to sample the walking trajectory under terrain uncertainties – in this case, instead of

sampling the walking trajectory with different step height similar to the works in [32, 33]

(which complicate the trajectory optimization problem), we sample the walking trajectory

with different step-time and design a robust cost function to improve the gait robustness

without complicating the collocation framework.

To generate energetically efficient gait with multiple domains towards human-like mo-

tion, both Trajectory optimization through contact [30] and Hybrid Zero Dynamics (HZD)

gait optimization [24] are the main methods we use to develop our works further. In Chap-

ter 4, we modify the optimization through contact to generate human-like level walking for

objectives R3 – R4. With more accurate transcription (using Hermite-Simpson method),

we compared the generated level walking with different contact constraints, and we also

compared the optimization results to the human data. In Chapter 5, to reduce the sensi-

tivity of the optimization to the randomized initial guess, the HZD gait optimization is

implemented, which covers the objectives R3 – R5. With the modified contact constraints,

the optimization can be generally used on different terrains include flat ground, different

slopes and stairs. To analyze the sensitivity of the HZD gait optimization to the initial

guess, the optimization performance with the randomized initial guesses under different

terrain profiles are also evaluated and compared. The details of the trajectory optimization

algorithms developed in this dissertation are summarized in Table 1.2.

1.4.4 Capture Point-Based Method for Human Motion Analysis

The works of this part is described in Chapter 6. The CP-based step estimation for step-

recovery (objective R6) was studied by comparing the estimated step location to the human

experimental results from the literature [4, 6] and the estimation from the optimization

14



Table 1.2: The capabilities of the algorithms of trajectory optimization developed in this
dissertation. All the methods we developed use the Hermite-Simpson Method (HSM) as
the transcription method.

Topics Robust trajectory Trajectory optimization HZD gait
optimization through contact optimization

Model RBD RBD RBD
Transcription method HSM HSM HSM

Robustness under 3 7 7

terrain uncertainties
Multiple (contact) 7 3 3

domains
Contact sequence 7 3 7

generation
Sensitivity to initial guess medium high low

Level walking 7 3 3

Slope walking 3 7 3

Stair walking 7 7 3

using the simulation on a simplified model with MPC [5]. For the case of objectives R7

and R8, we compared the CP-based step estimation to the simulation data of robot walkers

and the experimental data of human subjects. The results indicate that capture point can

provide good estimations for human walking and walking with mild-slip (which is defined

as the peak heel velocity (PHV) is < 1.44m/s [34]).

1.5 Contributions

In this section, we summarize the contributions (denoted as C#, e.g., C1, C2) of all the

studies introduced in the previous section.

Quadratic program-based walking controller design:

C1. Design a unified Quadratic Program (QP)-based controller design to integrate the

elements from Model Predictive Control (MPC) for COM planning, and from rapidly ex-

ponentially stabilizing control Lyapunov function (RES-CLF) method. The resulting QP-
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based controller simultaneously solves for a COM trajectory that satisfies ZMP constraints

over a future horizon while also producing joint torques consistent with instantaneous ac-

celeration, torque, ZMP and RES-CLF constraints.

Trajectory optimization:

C2. Design a robust trajectory optimization using direct collocation with step-time sam-

pling for terrain uncertainties. By utilizing the structure of direct collocation framework,

the last few collocation points can be used to evaluate trajectory robustness and incorpo-

rated into the proposed robust cost function to improve the gait robustness.

C3. Improve the trajectory optimization through contact for bipedal robot AMBER 3

with more accurate transcription: Hermite-Simpson method. Compare the generated level

walking gaits with different contact constraints and human data.

C4. With modified contact constraints, extend the HZD gait optimization for bipedal robot

AMBER 3 to generate walking gaits on various terrains including flat ground and differ-

ent slopes and stairs. Compare the gait behavior to the human walking, and analyze the

optimization sensitivity to the randomized initial guesses for different walking tasks.

Capture point-based method for human motion analysis:

C5. Validate CP-based step estimation for human behaviors. Results suggest that it can

provide good step-estimation for human step-recovery from standing, walking, and walk-

ing with mild slip (peak heel velocity < 1.44m/s).

16



2. UNIFICATION OF LOCOMOTION PATTERN GENERATION AND CONTROL

LYAPUNOV FUNCTION-BASED QUADRATIC PROGRAMS∗

2.1 Introduction

Numerical optimization plays an important role in the development of numerous walk-

ing control approaches as the mathematics used to model bipedal robot control systems

are often constrained, nonlinear, high-dimensional and incorporate impulse effects due to

collisions between the robot and the ground. The usage of optimization in the control

of robot walking can be categorized into “offline” optimizations which solve for walking

gaits before the robot is turned on and “online” optimizations which are solved while the

robot is walking. Examples of successful usage of offline nonlinear optimization include

the efficient design of the Cornell Ranger [35], control output parameterization establish-

ing (hybrid) system stability through Hybrid Zero Dynamics (HZD) and Human-inspired

Control [23, 22], and direct state and input trajectory optimization [30].

On the other end of the spectrum, online numerical optimization – in the form of

Quadratic Programs – has become increasingly popular in the control of walking robots

due to the fact that some QP-based controllers with affine constraints can be solved in real-

time [36] and that the structure of a Quadratic Program is well suited to handle a diverse

set of problems in robotic walking. For example, in locomotion pattern generation appli-

cations, Quadratic Programs can be used to solve Model Predictive Control problems to

obtain center of mass (COM) trajectories consistent with Zero Moment Point constraints

over a future horizon, as in [37, 13, 14, 15]. In this setting, the QP cost function is of-

ten setup to minimize the error between future values of the COM and desired reference

∗This chapter is a slightly amended version of: c© 2016 IEEE. Reprinted, with permission, from Ken-
neth Y. Chao, Matthew J. Powell, Aaron D. Ames and Pilwon Hur, “Unification of Locomotion Pattern
Generation and Control Lyapunov Function-Based Quadratic Programs”, American Control Conference,
July 2016.
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Figure 2.1: The human-sized planar bipedal robot: AMBER 3.

values. On the other hand, in the context of nonlinear systems, QPs can be naturally cou-

pled with control Lyapunov functions (CLFs) to form an optimal controller guaranteed to

stabilize outputs corresponding to walking [38, 39]. In this setting, the quadratic cost func-

tion minimizes actuation effort and the constraints encode instantaneous ZMP and torque

limits on the full nonlinear system.

Inspired by optimization-based approaches to locomotion, the proposed method com-

bines two QPs: an adaptation of the MPC proposed in [14] for planning center of mass

trajectories with the Linear Inverted Pendulum (LIP) model and an adaptation of [40, 41]

for locally exponentially stabilizing a control Lyapunov function for the full nonlinear

dynamics of the robot. The connection point is an equality constraint imposed on the

dynamics of the center of mass which enforces that the instantaneous horizontal COM

acceleration is the same in both the nonlinear system and the LIP model. With this bridge

in place, the unified QP enjoys the advantages of both QPs: it resolves control actions

which locally stabilize nonlinear control system outputs while ensuring that these control
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actions are consistent with a forward horizon COM plan that satisfies ZMP constraints in

the simplified model.

It is important to note that similar combinations of walking pattern generation methods

and constrained, local nonlinear control have been proposed before. For example, in [42],

the authors propose a similar QP which regulates the ZMP to zero over an infinite horizon

using an optimal cost-to-go. In the present paper, however, the proposed controller solves

a finite-time horizon MPC problem on the COM trajectory, which allows for both ZMP

regulation and the enforcement of constraints on the evolution of the COM.

2.2 Controlling Robot Locomotion under ZMP Constraints

The Zero Moment Point (ZMP) is an important concept in the study of balance in

robotic [12] and human locomotion [43]. For a legged robot with feet, the condition for

dynamic balance (i.e. the robot not tipping over) is that the robot’s ZMP lies inside the

robot’s support polygon. This section describes control methods for walking with ZMP

constraints.

2.2.1 ZMP Constraints

As shown in Fig. 2.2, the ZMP position xz in the sagittal plane can be expressed with

the ground reaction normal force Fz and moment τy , e.g. xz = − τy
Fz

in single support.

The ZMP constraints for dynamic balance can be described as:

a� ≤ −τy/Fz ≤ b� (2.1)

where a� ∈ {aSS, aDS} and b� ∈ {bSS, bDS} encode the largest moment arms of the

support polygon in single support or in double support, as shown in Fig. 2.2. To satisfy

instantaneous dynamic balance during walking, the inequality Eq. (2.1) on the ground

reaction forces (GRFs) needs to be satisfied.

19



Figure 2.2: The ZMP position xz, ground reaction forces, and the corresponding ZMP
boundaries a and b in single support (SS) and double support (DS) are shown. Reprinted
with permission from [1].

2.2.2 Nonlinear Robot Control System with ZMP Constraints

To achieve walking control with ZMP constraints and minimum control effort, a QP-

based nonlinear controller with a Rapidly Exponentially Stabilizing Control Lyapunov

Function (RES-CLF) [40] and force-based task [41] is adopted. This controller requires

the full constrained dynamics described as the following form:

D(q)q̈ + C(q, q̇)q̇ +G(q) =

[
B JTh

]u
F

 , B̄(q)ū (2.2)

where q is the generalized coordinate, D(q) is inertia matrix, C(q, q̇) is Coriolis matrix,

G(q) is gravity vector, Jh is Jacobian matrix of the contact constraint h(q), B is the torque

distribution matrix, F is the GRF vector (F = [Fx, Fz, τy]
T in the sagittal plane) and u is

a set of actuator torques. Based on the extended input ū which includes joint torques and

GRFs, instantaneous dynamic balance can be satisfied by solving the following quadratic
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program:

ū∗ = argmin
u

ūTHCLF ū+ fTCLF ū (CLF-QP)

s.t. V̇ε(x) ≤ −εVε(x)

− bFz ≤ τy ≤ −aFz (2.3)

where x = [q, q̇]T , HCLF and fCLF are the quadratic and linear objective function respec-

tively. The first constraint establishes the exponential stability of output tracking where

Vε(x) is a RES-CLF. The second inequality ensures that the instantaneous ZMP lies within

the support polygon.

However, the second inequality Eq. (2.3) is not guaranteed to be solvable, i.e. the robot

can enter states for which there is no feasible solution to the ZMP constraints Eq. (2.3).

This limitation is one of the primary motivators for combining local QPs with COM tra-

jectory planning methods. In the following section, we show how to pose a Quadratic

Program which solves for COM trajectories that satisfies ZMP constraints in the linear

inverted pendulum model.

2.2.3 Linear Inverted Pendulum Model for COM Trajectory Generation

To simplify the ZMP tracking problem, one common approach is to generate a COM

trajectory with the linear inverted pendulum model which tracks a desired ZMP trajectory.

Model Predictive Control (MPC) is one method which has been employed in the literature

for pattern generation with the Linear Inverted Pendulum Model (LIP model) [14, 15, 44].

The LIP model assumes a constant center of mass height. The resulting equation of motion

forms a simple expression relating the ZMP and the horizontal COM, xc,

ẍc =
g

z0

(xc − xz) , ω2(xc − xz) (2.4)
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where z0 is the constant COM height and g is the gravitational acceleration. To implement

MPC with the LIP model in Eq. (2.4), the discretized state space form of LIP can be

derived as shown:

xt+1 =


1 ∆T 0

ω2∆T 1 −ω2∆T

0 0 1

xt +


0

0

∆T

ut (2.5)

where xt =

[
xct ẋct xzt

]T
, ut = żt, and ∆T is the sampling time. With a given initial

state xt0 and a sequence of control inputs Ū , the predicted sequence of states X̄ for the

next N time-steps can be expressed as X̄ = Ā X̄t0 + B̄ Ū and Ā and B̄ can be derived

recursively from Eq. (2.5). The predicted states then can be used to formulate an MPC-

based quadratic program for COM trajectory generation:

Ū∗ = argmin
Ū

ŪTHpŪ + fTp Ū (MPC-QP)

s.t. Aiq,pŪ ≤ biq,p, (2.6)

where Aiq,p and biq,p include constraints on the evolution of the COM and ZMP over an

N time-step forward horizon. The advantage of COM generation with MPC is that it

can be easily implemented in real-time. However, due to the simplification, there are some

potential issues considering the implementation in full nonlinear dynamics, such as the fact

that the control sequence Ū may not be feasible, or the generated COM trajectory for the

simplified LIP model may not result in a feasible ZMP trajectory. These potential issues

motivate a combined control method which takes advantage of the rapid pattern generation

capabilities of the MPC-QP and ensures that the actual nonlinear control system satisfies

instantaneous balance constraints.
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2.3 Unification of Local Nonlinear Control and Walking Pattern Generation

In this section, we present the main formulation of the paper: a process for combining

the nonlinear CLF-QP with the MPC-QP in a single control framework. Before the unifica-

tion process is introduced, the setup of the CLF-QP and the MPC-QP, i.e. the construction

of objective functions and constraints, will each be explained.

2.3.1 Control Lyapunov Functions

To realize ZMP-based locomotion, a local nonlinear controller in the form of the CLF-

QP is used for tracking a set of control objectives [41]. For the controller construction,

the rigid body equations of motion Eq. (2.2) can be expressed in the following general

nonlinear control system form:

ẋ = f(x) + g(x)ū, (2.7)

where x = [q, q̇]T . Input/output linearization [45] can be used to drive a set of control

outputs y(q) , ya(q)− yd(t) toward zero (where ya(q) are actual outputs, yd(t) are time-

based desired outputs). Here, the input/output relation for the (relative degree two) outputs

y(q) is

ÿ = L2
fy(x) + LfLgy(x)ū+ ÿd , Lf + Āū+ ÿd, (2.8)

where “L” is the Lie derivative operator and Ā denotes the decoupling matrix. Given a

desired output dynamics ÿ = µ, a corresponding vector of joint torques and GRFs, ū,

can be obtained through Eq. (2.8). In standard input/output linearization, this requires the

inversion of Ā, however, as mentioned in [41], Eq. (2.8) can be resolved implicitly via

quadratic programming.
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The goal in the design of µ is to drive y → 0. This motivates consideration of a

linearized system with coordinates η = [y, ẏ]T which can be expressed as η̇ = Fη + Gµ.

To exponentially stabilize η to zero with a convergence rate ε > 0, µ is designed to satisfy

the following condition:

V̇ε(η) = LfVε(η) + LgVε(η)µ ≤ −εVε(η), (2.9)

where Vε(η) = ηTPεη is a RES-CLF, Pε is obtained by solving equation (47) in [38],

and LfVε(η) = ηT (F TPε + PεF )η, LgVε(η) = 2ηTPεG. A CLF-based Quadratic Pro-

gram (CLF-QP) of the form Eq. (2.3) is implemented to find the minimum control input

µ that guarantees Lyapunov stability through the satisfaction of Eq. (2.9) and additional

constraints.

2.3.2 CLF-QP Setup

This section describes the construction of the specific constraints and cost function

considered for the local nonlinear CLF-QP of interest in this paper; for more details, see

[41].

2.3.2.1 CLF-QP Constraints

The final form of the set of constraints to be used in the proposed CLF-QP variant is

Aiq,CLF ū ≤ biq,CLF , (2.10)

Aeq,CLF ū = beq,CLF , (2.11)

where Aiq,CLF and Aeq,CLF are matrices and biq,CLF and beq,CLF are vectors of appropriate

dimension. The subscripts iq and eq denote inequality and equality, respectively.

As discussed in the previous section, ZMP constraints Eq. (2.1) are included in the
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(CLF-QP) optimization to ensure that the robot maintains dynamic balance. An additional

constraint is included to ensure that the normal force applied to support foot is positive,

i.e. Fz ≥ 0. Note that the ZMP constraints Eq. (2.1) and the normal force constraint

can be written as inequality constraints on ū using the equations of motion Eq. (2.2), and

thus be included in Eq. (2.10). Actuator saturation limits are likewise incorporated in

Eq. (2.10) via the inequalities −umax ≤ u ≤ umax, where umax is a vector of maximum

allowable torques. Finally, a CLF constraint is to used to drive the control objectives

η → 0. However, as aggressive control objectives and conservative torque limits can lead

to infeasible systems of inequalities, the CLF constraint is relaxed [41] by δ > 0, resulting

in

V̇ε(η) = LfVε(η) + LgVε(η)µ ≤ −εVε(η) + δ. (2.12)

The relaxation δ will be minimized in the cost function of the corresponding CLF-QP.

The CLF constraint Eq. (2.12) together with the ZMP, normal force and torque constraints

comprise the inequality constraints Eq. (2.10).

The equality constraints Eq. (2.11) enforce holonomic constraints h(q) = 0 corre-

sponding to contact(s) between the robot and the ground through a constraint on the accel-

eration

ḧ(q, q̇, ū) = 0. (2.13)

The vector h(q) includes the horizontal and vertical components of one foot in the single

support phase, and both feet in the double support phase.
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2.3.2.2 CLF-QP Cost Function

The CLF-QP cost function is designed to balance the minimization of the control µ

and the relaxation δ to the CLF constraint in Eq. (2.12)

argmin
(ū,δ)

pδ2 + ūT ĀT Āū+ 2LTf Āū (2.14)

where p > 0 is a weighting factor. Note that Eq. (2.14) encodes the goal of minimizing

µTµ through Eq. (2.8). The CLF-QP cost function Eq. (2.14) and constraints Eq. (2.10)–

Eq. (2.11) are used in conjunction with elements of a walking pattern generation QP to

form the unified QP described in Section 2.3.5.

2.3.3 Walking Control Objectives

This section describes the choice of control objectives, i.e., ya(q) and yd(t), for achiev-

ing ZMP-based walking in the nonlinear system Eq. (2.2). To reduce the differences be-

tween the LIP and the full nonlinear dynamic model, the height of the COM is regulated

to a constant z0 > 0, and the desired torso angle with respect to inertial frame is set to

zero. In the single support phase, the desired orientation of the swing foot is set to zero (to

ensure that the foot lands flat on the ground), and the desired horizontal and vertical com-

ponents of the swing foot are smooth time-based polynomial functions with zero boundary

velocities and accelerations. Finally, note that

ẍc = L2
fxc + LfLgxcū, (2.15)

is the actual acceleration of the center of mass in the nonlinear system. To achieve forward

walking, an equality constraint will be enforced on ū to achieve a desired acceleration of

the center of mass, i.e. L2
fxc+LfLgxcū = ẍdc . The value of ẍdc will be determined through
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the use of the LIP model for walking pattern generation, as described in the next section

and Eq. (2.15) will subsequently be used as a bridge between the nonlinear robot dynamics

and the LIP model.

2.3.4 LIP Model Predictive Control Setup

The CLF-QP – described by the constraints Eq. (2.10) and Eq. (2.11) and cost function

Eq. (2.14) – provides a method of locally stabilizing control objectives in the full nonlin-

ear robot dynamics while also ensuring the instantaneous ZMP constraints are satisfied.

However, under the action of the CLF-QP alone, the robot can enter states for which there

is no feasible solution to the ZMP constraints. This motivates the combination elements

of the local nonlinear CLF-QP with elements of a Model Predictive Control QP for pro-

ducing feasible ZMP trajectories over a forward horizon. The following sections describe

the construction of the specific MPC-QP considered.

2.3.4.1 General MPC Setup

The MPC-QP solves a receding horizon problem using the discrete-time, LIP dynamics

Eq. (2.5) with time-step ∆T . The target walking behavior consists of alternative phases of

single and double support. The target duration of the single and double support phases are

TSS and TDS seconds, respectively. The number of discrete points in the plan is fixed to

be N = (TSS + TDS)/∆T . Similar to X̄ in Eq. (2.5), the predicted evolution of the ZMP,

xzt, COM, xct, and COM velocity, ẋct, for the next N discrete points can be expressed as:

X̄z = ĀzmpX̄t0 + B̄zmpŪ

X̄c = ĀcomX̄t0 + B̄comŪ

˙̄Xc = ĀcomV X̄t0 + B̄comV Ū

(2.16)
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where Āzmp, B̄zmp, Ācom, B̄com, ĀcomV and B̄comV also can be derived recursively from

Eq. (2.5). As these expressions are affine in Ū , constraints on the evolution of ZMP and

COM can be expressed as constraints on Ū .

2.3.4.2 MPC Horizon Computation

As mentioned previously, the COM trajectory planner will implement a receding hori-

zon. The model predictive control problem will solve 2 phases into the future. In general,

this means the problem will have 3 domains: one for the completion of the current phase

(with N1 discrete points), one for the entire duration of the next phase (with N2 discrete

points) and one for the remainder (with N3 discrete points), where N1 +N2 +N3 = N . As

the target walking consists of alternating phases of single and double support, the values

N1, N2 and N3 will change depending on the current phase. Specifically, at a point in time

t during a single support phase, the number of discrete points in first domain is N1,SS =

(TSS − t)/∆T , the number of discrete points for next domain is N2,DS = (TDS)/∆T and

the third and final domain’s discrete point number is N3,SS = t/∆T . Similarly, at a point

in time t during a double support phase, the numbers of discrete points for the three do-

mains are N1,DS = (TDS − t)/∆T , N2,SS = (TSS)/∆T and N3,DS = t/∆T respectively.

2.3.4.3 MPC Constraints

An equality constraint is imposed on the MPC-QP to enforce that the center of mass

reaches the position xgoalc at the end of the trajectory with the terminal velocity ẋgoalc . Ad-

ditionally, inequality constraints are imposed on the resultant ZMP trajectories to ensure

that the ZMP lies within the support polygon throughout the duration of the plan.

Aeq,pŪ = beq,p

Aiq,pŪ ≤ biq,p

(2.17)
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where

Aeq,p =

 [0N−1, 1]B̄com

[0N−1, 1]B̄comV


beq,p =

 xgoalc − [0N−1, 1]ĀcomX̄t0

ẋgoalc − [0N−1, 1]ĀcomV X̄t0


Aiq,p = [B̄zmp,−B̄zmp]

T

biq,p = [b̄− ĀzmpX̄t0 ,−ā+ ĀzmpX̄t0 ]
T

(2.18)

In Eq. (2.18), ā and b̄ both include three ZMP boundary sequences, which are determined

by the three domains in the horizon, with the corresponding support phase (single support

or double support) and step length (N1, N2, or N3). For example, the frontal ZMP bound-

ary of the horizon ā will be [āSS, āDS, āSS + 0.5Lstep]
T if it is in single support, and ā will

be [āDS, āSS + 0.5Lstep, āSS + 0.5Lstep]
T if it is in double support, where Lstep is the step

length.

2.3.4.4 MPC Cost Function

The cost function balances the goals of minimizing control effort, achieving ZMP tra-

jectory tracking, and driving the COM position to the desired location for next stepping.

This formulation is similar to the one used in [15]. The sequence of control inputs Ū then

can be derived by solving the following optimization problem:

argmin
Ū∗

ω1Ū
T Ū + ω2|X̄z − X̄goal

z |2 (2.19)

s.t. ā ≤ X̄z ≤ b̄ (ZMP)

xct0+N
= xgoalc (COM)

ẋct0+N
= ẋgoalc (COM Vel.)
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where ω1 and ω2 are weighting factors, X̄goal
z is the desired ZMP trajectory, xgoalc and ẋgoalc

are the desired COM terminal location and velocity at t = t0 +N respectively, ā and b̄ are

ZMP boundary vectors of the horizon. Using the equation in Eq. (2.16), the cost function

in Eq. (2.19) can be expressed as follows:

argmin
Ū∗

1

2
ŪTHpŪ + fp

T Ū (MPC-QP)

s.t. Aeq,pŪ = beq,p

Aiq,pŪ ≤ biq,p

(2.20)

where

Hp = 2ω1I + 2ω2B̄
T
zmpB̄zmp

fp = 2ω2[ĀzmpX̄t0 − X̄goal
z ]T B̄zmp

(2.21)

Note that the desired ZMP sequence X̄goal
z and the desired terminal COM position xgoalc

are calculated based on a horizon which changes over time.

2.3.5 Main Result: Unified QP Combining Pattern Generation and ZMP-based

Walking Control

Using the building blocks of the quadratic programs for pattern generation and ZMP-

based locomotion with RES-CLF QP, the proposed controller synthesizes all elements into

a unified quadratic program:
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argmin
ū∗,Ū∗,δ∗

1

2


ū

Ū

δ


T 

HCLF 0 0

0 Hp 0

0 0 p



ū

Ū

δ

+


fCLF

fp

0


T 

ū

Ū

δ

 (2.22)

s.t.

Aeq,CLF 0 0

0 Aeq,p 0



ū

Ū

δ

 =

beq,CLF
beq,p


Aiq,CLF 0 −1

0 Aiq,p 0



ū

Ū

δ

 ≤
biq,CLF

biq,p


(L2

fxc + LfLgxcū)
z0

g
− xc = −xz

In Eq. (2.22), the LIP model equation in Eq. (2.4) is adopted as the QP synthesis constraint.

The first term on left hand side is the COM acceleration expressed using input/output

relation with full dynamics in Eq. (2.8). By solving the quadratic program above for each

time step, the instantaneous torque input ū for ZMP-based locomotion considering both

output tracking and COM planning on-the-fly then can be derived.

2.4 Simulation Results

The unified controller was implemented in simulation on the model of AMBER 3∗,

which is a human-sized, planar, and fully actuated bipedal robot (Fig. 2.1). Using the

walking parameters listed in Table 2.1, the proposed unified controller was implemented

in MATLAB, where the unified QP combining the nonlinear CLF-QP with the MPC-QP

∗AMBER 3 was built in AMBER Lab led by Dr. Aaron Ames at Texas A&M University. Since July
2015, AMBER Lab has moved to Georgia Tech, and AMBER 3 has been maintained and operated in HUR
Group led by Dr. Pilwon Hur at Texas A&M University.
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Table 2.1: Important simulation parameters. Reprinted with permission from [1].

Parameter Value Parameter Value
TSS 2 s TDS 1 s

MPC sampling time ∆T 0.1 s Length of MPC horizon 3 s
Lstep 10 cm Stride Height 5 cm

is solved at every time step.

Compared to the controller solving MPC-QP and CLF-QP in sequence, several adjust-

ments of the unified QP controller has to be made to ensure that the system would not be

over-constrained. The first and most important change was to remove xc from the output

vector in the unified framework. Since the resolved control input would also minimize the

cost function in unified pattern generation, this soft ZMP tracking could implicitly provide

larger flexibility for integration with other tasks than a strict ZMP tracking. Second, the

COM terminal constraints which were originally for MPC stability were removed in the

unified framework, since it would make the system over-constrained and the control input

would lose continuity and cause chattering (as shown in Fig. 2.4 and Fig. 2.5), although

Figure 2.3: A comparison of ZMP trajectories (left) and joint tracking profiles (right) from
two different simulations of the proposed method: in simulation (1) the unified QP with
terminal constraints on the COM is used and in simulation (2) the terminal constraints are
not used. Reprinted with permission from [1].

32



,..---._ 

s 
20 z ...___,, 

Q) 10 
::l 
O"' 0 
H 

8 -10 
..µ 
Q -20 . ...... 
0 

l'--j 

0 1 2 3 4 5 6 

T ime (s) 

--Tza --Tzk --Tzh --Trh --Trk --Tra 

,..---._ 

s 
20 z ...___,, 

Q) 10 
::l 
O"' 0 
H 

8 -10 
..µ 
Q -20 . ...... 
0 

l'--j 

0 1 2 3 4 5 6 

T ime (s) 

--Tza --Tzk --Tzh --Trh --Trk --Tra 

Figure 2.4: Joint torques from the simulation of the proposed unified QP with (left) and
without (right) terminal constraints on the COM. Reprinted with permission from [1].
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Figure 2.5: Ground reaction forces of the simulation using the proposed unified QP with
(left) and without (right) COM terminal constraints. Reprinted with permission from [1].

the derived joint angle trajectories and ZMP patterns (Fig. 2.3) are similar. Last but not

least, a impact map is adopted right after the single support phase in simulation, which

will cause a discrete jump on COM velocity. The direct feedback of this COM velocity

for updating xt0 in real-time COM planning will easily cause the resolved xc to diverge

due to the large postimpact COM velocity. As a result, the feedback of postimpact COM

velocity is assigned as zero to enforce the COM planned as free of impact, where the real

impact effect in full dynamics is suppressed by the nonlinear controller as a perturbation.
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Figure 2.6: The walking tiles of a half gait cycle from a trajectory tracking experiment
in which AMBER 3 took 383 steps without falling using trajectories produced by the
proposed method. Reprinted with permission from [1].
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Figure 2.7: The joint tracking results from a trajectory tracking experiment in which AM-
BER 3 took 383 steps without falling using trajectories produced by the proposed method.
Reprinted with permission from [1].

2.5 Experimental Result

The experiment was implemented in LabVIEW with C++ on AMBER 3. The walking

motion is generated from simulation by using the proposed unified QP controller. Using

this setup, AMBER 3 walked for two laps (about 383 steps); results from the correspond-

ing experiments are shown in Fig. 2.6 and Fig. 2.7. Using nonlinear constrained optimiza-
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tion, the torque command was converted into position and velocity commands. Although

real-time implementation of the quadratic program is still in progress, the current joint

trajectory tracking and experiment video [46] are quite similar to the walking motion dis-

played in simulation.

2.6 Conclusions and Future Work

In this work, we presented a method which solves a single Quadratic Program which

incorporates elements from Model Predictive Control (MPC) based center of mass plan-

ning methods and from rapidly exponentially stabilizing control Lyapunov function (RES-

CLF) methods. The resulting QP-based controller simultaneously solves for a COM trajec-

tory that satisfies ZMP constraints over a future horizon while also producing joint torques

consistent with instantaneous acceleration, torque, ZMP and RES-CLF constraints. The

method is developed for simulation and experimental study on a seven-link, planar robot

AMBER 3. Future work entails completing a real-time implementation of the unified QP

controller in C++. Robustness tests such as walking with disturbances, push recovery, or

walking through uneven terrain then can be conducted.
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3. A DIRECT COLLOCATION METHOD WITH STEP-TIME SAMPLING FOR

ROBUST TRAJECTORY OPTIMIZATION OF BIPEDAL LOCOMOTION

UNDER TERRAIN UNCERTAINTIES

3.1 Introduction

Generating efficient and agile dynamic walking of bipedal robots using trajectory op-

timization has been an active topic and attained more attentions in these years. Leveraged

by the advancement of nonlinear optimization solvers and the sparsity of the Jacobian ma-

trices of cost and constraint functions, trajectory optimization with direct collocation is

able to incorporate complicated dynamic constraints and contact conditions, and scales to

practical complex robotic system such as bipedal or humanoid robots [47, 31, 2]. How-

ever, even though the locally-optimal solution satisfies variable bounds, the dynamic and

kinematic constraints for feasibility, the bipedal robots still easily lose their balances due

to unmodeled dynamics, modeling errors, or perturbations from the environment. Various

approaches have been proposed to address this problem, such as robust motion planning,

robust controller design, or gait synthesis using gait library, just to name a few.

Among various methods to improve the robustness of robotic bipedal walking, the

differential dynamic programming has been used in [48] for minimizing the robust cost

under the worst-case disturbance (i.e. a MiniMax approach). For robust motion planning

and control, there exist several methods for improving robustness by stepping strategy

with whole body control, for example, the center of mass planning with Zero Moment-

Point (ZMP) constraints for push recovery [14], and the control methods based on Capture

Point [18, 19, 21]. Nguyen et al. [49] proposed a quadratic program-based controller with

control Barrier function (CBF) to enforce robot to stay within the safe operational region.

There also exist other approaches using gait library with switching controller design [9, 50]
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by integrating various limit cycles to synthesize more complicated walking behaviors.

On the other hand, some studies developed robust trajectory optimization algorithms

for bipedal locomotion [32, 33] or other robot applications [51]. Griffin et al. [33] pro-

posed a robust trajectory optimization with a robust cost based on the deviation of the

states and control (normalized by the perturbed step-time) from the nominal trajectory.

However, this optimization is based on direct shooting method and is hard to handle com-

plicated systems. Dai et al. [32] proposed a method of trajectory optimization for the

robust limit cycle generation. In this method, a robust LQR cost-to-go function related to

the post-impact state and the pre-impact state was proposed, which is more suitable for

underactuated robots. However, the LQR constraints imposed in the nonlinear program

and the additional free variables used for sampling potential stepping heights make this

approach hard to scale to high dimensional systems. Extended from trajectory optimiza-

tion with direct collocation and dynamic programming, Manchester et al. [51] proposed a

method which includes the bounds of the deviated states and control under the ellipsoidal

disturbance estimated by the time-varying LQR. This approach scales well to the higher

dimensional problem. However, the effect of the mode transition (i.e. impact) needs to be

considered for bipedal robots especially the underactuated ones.

In this work, the proposed method aims to improve the robustness of the trajectory

while keeping the complexity similar to the original trajectory optimization with direct

collocation. In Section II, the related studies of the robust methods are first presented. In

Section III, we introduce the robust cost using step-time sampling and the validation with

SLIP running model. In Section IV, the main optimization framework is depicted. In Sec-

tion V and Section VI, the simulation results and conclusions are presented respectively.
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3.2 Optimization of the Robust Limit Cycle

Bipedal walking/running robots in general consist of both continuous (e.g. movement

in the single support phase) and discrete (e.g. impact due to foot strike) behaviors, there-

fore can be modeled as hybrid systems. To find a limit cycle (the nominal periodic gait)

of a given hybrid system, one common approach is to cast this problem as an open-loop

optimal control problem and solve it using nonlinear optimization (i.e. trajectory opti-

mization). Although this approach can generate walking gait for underactuated robots

with complex dynamic behaviors, its open-loop nature make it challenging to impose cost

or constraint to improve the robustness of the optimal solution, as the robustness is usually

associated with the closed-loop controller design. In this section, the state of the art to find

the robust limit cycle using trajectory optimization [32, 33] will be briefly introduced.

3.2.1 Problem Formulation for the Nominal Limit Cycle

A simple bipedal robot can be described as a hybrid system H (assuming it has only

one mode (e.g. walking phase) and one mode transition):

H =


ẋ = f(x, u), if φ(x, u) > hF

x+ = ∆(x−), if φ(x, u) = hF

where x = [q, q̇]T is the state of the system, f(·) is the state space equation of the robot.

φ(·) is a guard function to trigger the mode transition (where the foot-strike happens), e.g.,

the function that determines the foot height where hF is the nominal step height. ∆(·) is a

function defined at the mode transition to map the pre-impact states x− to the post-impact

states x+ based on momentum conservation.

The method for finding a limit cycle is widely used and extended from the studies of

passive dynamic walking [52, 53, 54], just to name a few. By running the simulation with
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f(·) with the sequence of the states x(·) and control u(·), the optimization to find limit

cycle can be formulated as:

min
x(·),u(·)

J0(x, u)

s.t. x+ = ∆(x−)

φ(x−) = hF

ceq(x, u) = 0, ciq(x, u) ≥ 0

where x(·) can be usually reduced to x0 or a coefficient set α(·) of the trajectory to express

x(·). J0(x, u) is the objective function (e.g. uTu or cost of transport). An usual optimiza-

tion incorporated with simulation is also referred to as direct single shooting method. The

major downsides of this method is that when the optimization complexity increases, it is

often hard to converge, or can be sensitive to the initial condition. To make the nonlin-

ear program more well-posed, direct collocation method discretizes the states and control

into a set of free variables. Instead of running a simulation, the equations of the state

continuity and the system dynamics are added into the equality constraints ceq(x). With

the discretization, a large but sparse nonlinear program can be formulated and solved effi-

ciently.

3.2.2 Robustness of the Limit Cycle under Step Height Variation

Even though the robustness of the bipedal locomotion on uneven terrains could be

challenging to quantify without considering the controller, there is an important insight we

can get by checking the nominal limit cycle and its behavior under step height uncertainties

[32]. The schematic of a nominal limit cycle and the mode transition of foot-strike is

shown in Fig. 3.1(a). When a robot is walking on an uneven terrain, the pre-impact states

will deviated from the x− (the circle markers in Fig. 3.1(b) and (c)). Intuitively, if the
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(a) Nominal limit cycle

(b) Bad limit cycle (c) Good limit cycle

Figure 3.1: The schematic of a nominal limit cycle, and the examples of ‘Bad’ and ‘Good’
limit cycles in terms of how far the post-impact states (due to step height uncertainties)
deviated from the nominal limit cycle. The shaded region indicates the region of attraction
of the trajectory.

post-impact states for all possible terrain heights are farther away from the nominal limit

cycle (Fig. 3.1(b)), it is more likely that the robot will fall down because more post-impact

states are out of the region of attraction (provided by the controller and trajectory). On the

other hand, if all the post-impact states are closer to the limit cycle (Fig. 3.1(c)), then the

system can be stabilized by the controller more easily. Therefore, this intuition is used to

design the robust cost function for the robust trajectory optimization.

3.2.3 Robust Cost Function via Step Height Sampling

Assuming the profile of an uneven terrain is known and H = {hj|1 ≤ j ≤ K} is

a set of sampled heights with the fixed sampling increment dh, then the cost function

which seeks the balance between the original objective J0(x, u) and the robust cost can be
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generally expressed as:

J0(x, u) + ω
K∑
j=1

Jj(x
−
j , uj)

s.t. φ(x−j ) = hj , hj ∈ H

where Ji(x−j , uj) is the robust cost to measure the trajectory difference between the nom-

inal limit cycle and the perturbed trajectory with step height hj . By combining the opti-

mization with time-varying LQR, Dai [32] proposed the following robust cost:

Jj = (x+
j − x+)TS(tj)(x

+
j − x+), S = ST , S > 0 (3.1)

where Ji indicates the cost-to-go for the given initial condition (x+
j − x0) to the infinite

horizon with the time-varying LQR control (S(·) can be derived by integrating the periodic

Riccati equation backward for the step-time tj), x+
j is the post-impact state for the step

height hj . Although this method provides a nice robust cost associated with the LQR

controller design and it is using direct collocation for the nominal trajectory, the imposed

constraints for the periodic Riccati equation, and the different sampled step heights with

different time steps largely complicate the optimization. On the other hand, Griffin [33]

proposed another robust cost function as:

Jj =
1

tj

∫ tj

t=0

(||δxj(τ)||2 + ||δuj(τ)||2)
τ

tj
dτ

where the square of the Euclidean distance between the normalized trajectory with the step

height hj and the nominal limit cycle is measured. This proposed method was validated

with the experiment results using the planar bipedal robot MARLO. However, since it

is based on the direct shooting method, it could be much more difficult for it to handle
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more complicated systems. These potential issues motivate us to propose the robust cost

function using step-time sampling which takes advantage of the structure provided by the

direct collation framework.

3.3 Robust Cost via Step-Time Sampling

Considering to sample the pre-impact states x−j near the nominal pre-impact state x−

(black circle markers) in Fig. 3.1(b) and (c) by utilizing the direct collocation method

(where the states and controls are discretized with the fixed time step), it is natural to

sample the step-time with fixed dt instead of sampling the step height with the fixed dh.

In this section we will introduce the proposed robust cost using step-time sampling and

the related robustness analysis with a Spring Loaded Inverted Pendulum (SLIP) running

model for validation.

3.3.1 Using Collocation Points to Express the Robust Cost

By using the direct collocation, the states and controls are discretized as x = [x1, . . . , xN ]

and u = [u1, . . . , uN ] which are corresponding to the time stamps t = [t1, . . . , tN ]. As-

suming the objective is to evaluate the robustness of the last K collocation points (where

K is an odd number, and the last (K − 1)/2th state is the nominal pre-impact state x−),

inspired by the robust cost proposed by Dai (Eq. (3.1)), we propose the following objective

function with the robust cost using step-time sampling:

J0(x, u) + ω
N∑

j=N−K+1

Jj(xj, uj)

s.t. φ(xj) = hj(tj), tj ∈ T

Jj = (x+
j − x1)TP (x+

j − x1), P = P T , P > 0

x+
j = ∆(xj)

T = {tj|N −K + 1 ≤ j ≤ N}

(3.2)

42



The main advantage of the robust cost using step-time sampling is that it utilizes the

last K states xj as the potential pre-impact states x−j , therefore no extra free variables

are required. Also, instead of implementing controller within the optimization to get the

S(·) like Eq. (3.1), we replace it with an user-defined weighting matrix P so that the

optimization can still be solved in an open-loop manner (Note both the distance (x+
j −x1)

and the weighting matrix P can be modified if the user has a priori knowledge about

the system dynamics). On the other hand, in regards to the performance of robustness

evaluation, the proposed robust cost also leads to two questions: 1) Can the robust cost

using step-time sampling reflect the robustness of locomotion under step height variation?

2) Can this robust cost reflect the robustness of the trajectory without control? (Note in

the previous studies [32, 33], the simulations or experiments for the robustness of the

trajectories were tested with the feedback controllers. Since the trajectory optimization

and control can be highly coupled to each other, this question is still remained open.) To

seek the answers of those questions, in the following subsections, we will introduce the

robustness analysis of the SLIP running model and compare it to the evaluated robust cost

using proposed function Eq. (3.2).

3.3.2 SLIP Running Model and Stable Fixed Points on the Poincaré Section

Figure 3.2: The schematic of a SLIP running model. TD indicates the touch-down event
and LO indicates the lift-off event.
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The SLIP model (Fig. 3.2) is a well-known model with the extensive studies of lo-

comotion in biomechanics and robotics. It is simple (with only one point mass and the

massless leg) while its high nonlinearity makes it analytically non-integrable. Addition-

ally, it is also challenging to analyze the model with linearization or other approximation

method due to the highly coupled dynamics. Following the dimension analysis of SLIP

running model by Shen [55], the initial conditions (i.e. the fixed points at the Poincaré

section defined at the touch-down) of the limit cycles can be defined as x0 = [l0, β, v0, δ0].

Because in the simulation both the initial leg length l0 and the touch-down angle β are used

at the touch-down event, and the magnitude of the velocity v0 for different steps should

always be the same as the energy conservation assumed to be hold, the direction of center

of mass (COM) movement δ0 will be the main decision variable needs to be solved and

checked for the stability. Across different dimensionless stiffness k̃, fixed points can be

found by using direct single shooting method, as shown in Fig. 3.3. The stability of the

limit cycle is identified by numerical Poincaré map analysis (The eigen values ev of the

Poincaré map for a stable fixed point need to be within the unit cycle). Once the stable

fixed points are found, both the evaluation of the robust cost using step-time sampling and

the robustness analysis with perturbed step heights can be implemented.

3.3.3 Robustness Analysis and Comparison to the Proposed Robust Cost Function

As indicated by the black arrows in Fig. 3.3, we simulated the SLIP running model at

the stable fixed points along two directions: (a) where the touch-down angle is fixed, and

(b) where the COM movement direction δ∗ is fixed. To compare the robustness, we first ran

the simulation for each fixed point with the randomized terrain height uncertainties (hj ∈

[−0.04, 0.04]) and collected the number of steps before the SLIP model lost its balance. We

ran the robustness test for 10 trials and then averaged the number of periodicity. Second,

since the nominal step-time tF can be derived from the simulation, we also evaluated the
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Figure 3.3: The fixed points for different touch-down angles (β) and the same v0 =
4.62m/s. Each point indicates that there is a limit cycle of the SLIP running model.
Its color indicates the ev of its Poincaré map (Red indicates the fixed point is unstable).

same limit cycle with the step-time sampling using Eq. (3.2) with K = 20, P = 100I ,

tj ∈ tF ± 0.15s. The robustness comparison for the fixed-point (a) and (b) are presented

in Figs. 3.4 and 3.5.

In Fig. 3.4, it is shown that the node (in Table 3.1) with lower robust cost (node 5 and

6) have higher step numbers. Also, the nodes with higher robust costs (node 1 to 4) have

lower step numbers except for node 7 and 8 which still have high step numbers (it could be

the largest δ∗s of node 7 and node 8 lead to the largest jumping height therefore can easily

jump over the tested heights compared to other nodes). Nevertheless, the region with low

Table 3.1: Stable fixed points of the SLIP running model along range (a) in Fig. 3.3 (β =
72o, v0 = 4.62m/s, l0 = 1m).

Node 1 2 3 4 5 6 7 8
δ∗(rad) 0.13 0.14 0.15 0.16 0.18 0.19 0.21 0.24
ev 0.47 0.52 0.58 0.64 0.70 0.75 0.81 0.89

k̃ 16.8 17.0 17.1 17.2 17.4 17.5 17.7 17.8
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Figure 3.4: The gait periodicity under step height uncertainties versus the robust cost using
step-time sampling (Eq. (3.2)) of fixed points listed in Table 3.1.

Table 3.2: Stable fixed points of the SLIP model along range (b) in Fig. 3.3 (δ∗ = 0.2rad,
v0 = 4.62m/s, l0 = 1m).

Node 1 2 3 4 5 6 7 8
β(o) 71.5 71.6 71.7 71.8 72.0 72.2 72.3 72.4
ev 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.79

k̃ 16.5 16.8 17.1 17.4 17.6 17.9 18.2 18.5

robust cost with the main objective function can still help to improve the robustness of

the solution. For example, intuitively one would design J0 to choose the fixed point with

minimum |ev| because it has the fastest convergence speed (in the range (a) in Table 3.1,

node 1 would be the optimal choice). While after adding the robust cost into the objective

function, then it can help the optimizer to choose the node closer to the node 5. On the

other hand, in Fig. 3.5 the result of the robust costs are consistent with the step numbers.

It is also shown that the robustness is not sensitive to different touch-down angles (The

nodes in Table 3.2). Therefore the optimizer with the proposed robust cost would be more

effective to search along δ∗ instead of β.
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Figure 3.5: The gait periodicity under step height uncertainties versus the robust cost using
step-time sampling (Eq. (3.2)) of fixed points listed in Table 3.2.

3.4 The Direct Collocation with Step-Time Sampling for Robust Trajectory Opti-

mization

With the robustness analysis of the SLIP running model as part of the validation, in

this section we present our main formulation of this paper: a trajectory optimization via

direct collocation with uniform step-time sampling and an example of compass-gait gen-

eration (with control). By designing a tractable robust cost function and adjusting the

path constraints without increasing the complexity of the original nonlinear program, this

formulation also has the inherent benefits from the direct collocation method (sparse non-

linear program, less sensitive to the initial condition compared to direct shooting method,

etc.).

3.4.1 Optimization Formulation

Assuming that the N knot (collocation) points [x1, . . . , xN ] and [u1, . . . , uN ] are dis-

cretized in the direct collocation, and the last K knot points are used (where N is an

odd number, K is an even number)) for the step-time sampling (i.e. potential pre-impact

states), the formulation of the nonlinear program with the proposed cost function in Eq. (3.2)
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can be expressed as:

min
x,u,dt

J0(x, u) + ω
N∑

j=N−K+1

Jj(xj, uj)

s.t. xF = x− = xN−K/2, tF = (N −K/2)dt

x1 = x+ = ∆(x−), x+
j = ∆(xj)

φ(x−) = hF

Jj = (x+
j − x1)TP (x+

j − x1), P = P T , P > 0

gi(x, u) = 0, ∀i = 2 . . . N − 1

tFmin ≤ tF ≤ tFmax

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax

(3.3)

where dt is the sampling time. gi(x, u) is a set of equality constraints of Hermite Simpson

method for the state continuity (i.e. the states are transcribed as a set of cubic splines):

xi −
1

2
(xi+1 + xi−1)− 1

8
h(fi−1 − fi+1) = 0 (3.4)

xi+1 − xi−1 −
1

6
h(f + 4fi + fi+1) = 0 (3.5)

where fi is f(xi, ui) = ẋi.

3.4.2 Robust Cost Function with Projection for Compass Gait Locomotion

As we mentioned in Section II, in the robust cost function, the distance (x+
j − x1) can

be modified based on a priori knowledge. In this subsection we will briefly introduce the

distance that is widely-used for the (periodic) bipedal locomotion. Considering the post-

impact states in Fig. 3.3 again, if a post-impact state x+
j is far from the nominal x+ while it

is close to the limit cycle, then in this case it is better to define the distance as the distance
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of the x+
j projected to the closest point on the nominal limit cycle:

x+
j − Π(x+

j ) (3.6)

where Π() is the projection function∗. To approximate the projection used in [32] for the

compass gait (assuming the state variables of a knot point of the compass gait robot in

Fig. 3.7 is xi = [q1i, q2i, q̇1i, q̇2i]
T ), we defined the projection as:

Π(x+
j ) = xi∗ , i∗ = min

i
|x+
j (1)− xi(1)| (3.7)

where this projection is to find the collocation point with the closest stance leg angle to the

stance leg angle of x+
j .

3.4.3 Optimization Results and Comparisons of Compass Gaits

Figure 3.7: The schematic of a compass gait robot.

With the proposed optimization framework and the modified distance metric in Eqs. (3.6)

and (3.7), we now applied it with the compass gait robot (Fig. 3.7, where the parameters

are indicated in the Table 3.3) and see how the weighting factor ω of the robust cost will af-

fect the optimal solution geometrically. The proposed optimization framework was imple-

mented with the OptimTraj [56] which uses fmincon()as the nonlinear program solver

∗To accommodate this modification in the trajectory optimization and walking control, researchers also
use phase variable [23, 33] for the projection.
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(a) ω = 0, P = I

(b) ω = 100, P = I (c) ω = 500, P = I

Figure 3.6: The phase portraits solved using Eq. (3.3) with the same set of stepping
time sampling (in the range of tF ± 10%tF ), the modified distance measure (Eqs. (3.6)
and (3.7)), and different weighting ω for the robust cost function. The lines/curves spanned
by post-impact states (pink markers) and pre-impact states of both legs (blue and red mark-
ers) become shorter towards to the nominal trajectory when ω is increased.

in MATLAB. As shown in Fig. 3.6, it is found that when the weighting ω is increased,

the post-impact states (the pink markers) on both sides (of the swing and the stance leg)

become closer to the nominal trajectory (at the expense of increased original cost where

we use J0 = uTu). With the geometric validation, next we will introduce the robust-

ness test of the generated compass gait with time-varying LQR control under step height

uncertainties.
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3.5 Compass Gait with Time-Varying LQR Control

3.5.1 Controller Implementation Details

An infinite horizon time-varying LQR controller was implemented with ode45()in

MATLAB to simulate the compass gait walking control. With the optimal trajectory from

the proposed optimization, the desired joint trajectories were parameterized as the poly-

nomial function of time. At each time instance, the state feedback gain was calculated

using lqr()in MATLAB with the linearized system and the associated Q and R (listed

in Table 3.3). To accommodate terrain disturbances, two adjustments are made:

Projection of the perturbed post-impact states: As we mentioned in Section 3.4.2, it is

better to project the perturbed post-impact state to the point on the nominal gait with the

closest stance leg angle as the new initial condition. For the consistency this projection

was also implemented in the controller as:

τ =
q1 − q1min

q1max − q1min

tF (3.8)

Π(x) , x(τ) =

 x(τ) if τ ∈ [0, tF ]

x(0) if τ < 0
(3.9)

where τ is used as the new ‘start time’ for a new step.

Desired trajectory when t > tF: When the simulation time t is exceeding the nominal

walking period tF , the traditional way is to ‘lock’ the desired state as xF :

x(t) =

 x(t) if t ∈ [0, tF ]

x(tF ) if t > tF

(3.10)

Although it seems a reasonable choice, the discontinuity caused by this locking can lead to

instability. Another hidden merit of the proposed optimization is that the optimal solution
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also contains the optimal trajectory for t > tF . Therefore compared to Eq. (3.10) it can

provide smoother desired motion, and additional conditions can also be specified for the

states with t > tF in the optimization if it is required.

Table 3.3: Important simulation parameters.

Parameter Value Parameter Value

a 0.2m Nominal slope angle 5o

b 0.8m Node number in opt. 61

m 1kg Sampled step-time tj ∈ tF ± 10%tF

I 1kg.m2 Range of slope [4.23o, 9.23o]

R 0.01 Q [I, 0; 0, 0.01I]

3.5.2 Result of Compass Gait Walking under Terrain Height Uncertainties

The simulation result is shown in Fig. 3.8. The range of slope was chosen based

on the ratio of the range of hj corresponding to tj within the sampled step-time. In the

optimization, the ω = 100 and weighting matrix P = I in the robust cost function were

chosen with the Q and R for getting the better result. In this simulation, the compass

gait robot walks 1000 steps without falling. In Fig. 3.8 it is also shown that although

the distribution of post-impact states (the left part of the red trajectories and the right

part of the blue trajectories) are diverse due to the randomized slope angle at every step,

those trajectories converge nicely toward the nominal trajectory generated by our proposed

method. This simulation result indicates that the generated trajectory with the time-varying

LQR control can reject the disturbances caused by the terrain uncertainties.
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(a) The overview of phase portrait.

(b) Closer view of region (i) in (a) (c) Closer view of region (ii) in (a)

Figure 3.8: Walking 1000 steps on the terrain with uniform randomized slope angle ∈
[4.23o, 9.23o] (Nominal slope angle: 5o). It shows that the pre-impact states and post-
impact states on the phase portraits (the end of red and blue trajectories) match the contour
(the black lines connect the markers) predicted by the solution from the proposed robust
trajectory optimization.

3.6 Conclusions and Future Work

In this work, we proposed a robust trajectory optimization using direct collocation. By

utilizing the last N collocation points and the proposed robust cost, the robustness of the
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gait can be evaluated via step-time sampling. The robust cost based on step-time sampling

was verified by the robustness test using passive SLIP running model (i.e. simulations

with different initial conditions under terrain height uncertainties). With the proposed

optimization framework, a compass gait bipedal locomotion was generated, controlled

with time-varying LQR, and was capable of walking on the uneven terrain with slope

uncertainties. Next, we plan to test it with wider range of physical constraints (e.g. with

tighter torque saturation and adding contact force constraints), and with more complicated

bipedal robots (e.g. 5-link knee-gait robot). On the other hand, without altering the direct

collocation framework, the idea of step-time sampling can also be applied to the state

and control with step-time deviations caused by other disturbances (e.g. incorporating the

ellipsoidal disturbance estimated by a time-varying LQR controller in DIRTREL [51]). It

will also be our next step in the future work.
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4. GENERATING HUMAN-LIKE WALKING GAIT ON FLAT TERRAIN USING

OPTIMIZATION THROUGH CONTACT∗

4.1 Introduction

Generating dynamic walking gait of humanoid robots which is targeting on efficiency,

agility and robustness is a challenging problem. For this motion generation problem, tra-

jectory optimization is a powerful tool for solving the locally optimal trajectories for the

dynamical systems which are potentially highly nonlinear. Among various methods in this

field, trajectory optimization with direct collocation has gained more attention in recent

years. In the field of biomechanics, the dynamic simulation using trajectory optimiza-

tion is useful for studying neuromuscular coordination, predicting human behavior under

various conditions [57, 58], or generating walking gait for lower-limb prosthesis control

[59]. On the other hand, there are more and more applications using trajectory optimiza-

tion for bipedal locomotion generation [47, 60], especially for bipedal robot controller

design using Hybrid Zero Dynamics (HZD) scheme [61, 59, 31]. Although the trajectory

optimization with direct collocation works well with HZD-based controller, this approach

usually requires the specification of the contact sequence (or called domains/modes) as a

priori. This specification can potentially make the problems much more complicated than

needed since the combinatorics of the potential contacts need to be considered.

On the other side of the spectrum, some researchers have developed approaches that

do not require domain knowledge specific to the target behavior. Mordatch et al. proposed

the contact invariant optimization (CIO) [62] used for animations with simplified dynamic

models. By introducing the contact-invariant cost and multiple optimization phases, this

∗This chapter is a slightly amended version of: c© 2017 IEEE. Reprinted, with permission, from Ken-
neth Y. Chao and Pilwon Hur, “A Step Towards Generating Human-Like Walking Gait via Trajectory Op-
timization through Contact for a Bipedal Robot with One-Sided Springs on Toes”, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept. 2017.
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method optimizes over auxiliary decision variables which specify when and where the

contacts are made, and can generate complex behaviors such as walking, climbing and

handstand. Posa et al. [30] developed a unified framework termed trajectory optimization

through contact, which has shown its capability to generate motion for high-dimensional

systems with large number of modes, such as grasp planning, bipedal robot walking, or

running. However, this local method will be affected largely by the choice of initial guess,

and the accuracy of the numerical approximation using Euler method. In our work, for

improving the accuracy and efficiency of the algorithm to generate walking gait under

the similar optimization formulation, we first provide the modified framework and con-

straints for improving the numerical properties of the optimization formulation in Section

III. Several schemes deigned for motion planning with better solution and better dynam-

ical system description for the passive toes of the bipedal robot AMBER 3 (Fig. 4.1) are

presented in Section IV. Results and conclusions are presented in Section V and Section

VI respectively.

Figure 4.1: The human-sized planar bipedal robot AMBER 3 (left). It is 148 cm tall,
weights 33.4 kg, with 6 active degree of freedoms at hip, knee and ankle joints, capable
of performing walking with multiple contact domains (e.g. walking with foot rolling mo-
tion). It has passive toes (right) with the torsional springs (circled by the bright blue loop).
Reprinted with permission from [2].
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Figure 4.2: The schematic of a bipedal robot with a floating base. Reprinted with permis-
sion from [2].

4.2 Full Dynamics and Bipedal Locomotion

4.2.1 System Dynamics with Contact Constraints

The dynamics of a rigid body model with a floating base can be expressed as follows:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ (4.1)

where q is the generalized coordinate that includes [x, z, θ]T (Fig. 4.2), D(q) is the inertia

matrix, C(q, q̇) is the Coriolis matrix, G(q) is the gravity vector, J is the Jacobian matrix

of the contact position φ(q) such that J = ∂φ/∂q, B is the torque distribution matrix, u

is the control input, and λ is the contact force. Any potential contact point of the system

can be described as φ(q) = [φx(q), φz(q)]
T . φx(q) is tangential to the contact surface and

φz(q) is the normal distance. A contact is made when φz(q) reaches zero.

For each potential contact point φ(q) with the contact force λ = [λx, λz] and velocity

γ = Jq̇ , [γx, γz], if the sliding contact is permitted, a set of complementary constraints

[30] can be used to describe the Coulomb friction model:

φz(q), λz, |γx| ≥ 0 (4.2)

µλz − |λx| ≥ 0 (4.3)
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φz(q)λz = 0 (4.4)

(µλz − |λx|)|γx| = 0 (4.5)

where µ is the friction coefficient. On the other hand, if sliding is not allowed, instead of

Eq. (4.5), the constraint Eq. (4.6) needs to be satisfied:

λz|γx| = 0 (4.6)

4.2.2 Domains of Bipedal Robot Walking

In our setup, the model of AMBER 3 has four potential contacts: the heels and toes

on both feet. The contact conditions for each foot can be defined as: i) toe-off (φz,toe =

0, φz,heel > 0), ii) heel-contact (φz,toe > 0, φz,heel = 0), and iii) flat contact (φz,toe =

0, φz,heel = 0). A specific contact domain in the bipedal robot walking gait will be

determined by the contact conditions of both feet.

4.2.3 Trajectory Optimization and Locomotion Generation for a System with Mul-

tiple Domains

A trajectory for a dynamic system can be treated as a set of state as a function of time

x(t) resulting from its initial condition x(t0) and control u(t). As the name implies, tra-

jectory optimization is a set of local methods for planning the optimal trajectory x(t) with

u(t), and minimizing the objective cost over a horizon t ∈ [0, T ].

Among various approaches, trajectory optimization with direct collocation in general

has nicer numerical properties than the indirect method. Thus, it can be used to solve

complex problems such as a system with multiple contact domains. For handling this type

of problems, most state-of-the-art techniques assume the contact sequence is known or

specified, and then the contact condition is either inserted explicitly through constrained
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dynamics, or implicitly through dynamics constraints like Eq. (4.1). This approach works

well with HZD schemes, where a set of boundary conditions between domains (especially

the ones with impact maps based on inelastic collision) need to be satisfied [61, 59, 31].

However, several potential issues may arise with the increase of contact points, such as

determining the optimal contact sequence, and the increasing restriction for searching tra-

jectories with more and more impact maps, which may rule out some potentially feasible

trajectories. Therefore, the optimization through contact, which treats the contact sequence

as a part of the trajectory becomes a nice resolution for those issues, will be introduced in

next section.

4.3 Trajectory Optimization through Contact with Direct Collocation

Inspired by the time stepping method [63] used for forward simulation, Posa et al. [30]

proposed the trajectory optimization through contact. The main idea of the time stepping

method is to discretize the system state and control to formulate the multi-contact dynam-

ics as a Linear Complementarity Problem (LCP). In this way, only the contact force acting

over a period will be considered, which eliminates the need to differentiate between con-

tinuous and impulsive forces. Similarly, using direct collocation with trapezoid method,

the optimization through contact directly optimizes the given cost function over a set of

free variables including discrete states, control inputs, contact forces, time step and other

slack variables. The general trajectory optimization through contact can be stated as:

argmin
x=[h,x1,...,xN ,u1,...,uN ,λ1,...,λN ]

gf (xN) + h

N∑
k=1

g(xk, uk) (4.7)

s.t. xmin ≤ x ≤ xmax

fmin ≤ f(x) ≤ fmax
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where h is the time step, xk is the discretized state variables [qk; q̇k]
T at kth time step, gf ()

represents the final cost, and h
∑
g() is the integral cost. {xmin,xmax} and {fmin, fmax}

are the vectors corresponding to the lower and upper bounds of decision variables and con-

straints respectively. Though the direct collocation scheme largely increases the number of

free variables and constraints, the well-posed nature of the problem as a large sparse Non-

Linear optimization Problem (NLP) (with sparse Jacobian matrices of the cost function

and constraints) allows nonlinear optimization solvers like IPOPT [64, 31] and SNOPT

[65, 30] to solve the NLP efficiently.

However, despite the concise and unified framework that can automatically derive the

contact sequence by solving the NLP in Eq. (4.7), there exist several issues. For example,

general walking motion generation usually requires 20 to 50 collocation points for one half

gait cycle (i.e. a single step), where the step size is in the order of 10−2 second. However,

the step size required for time stepping method with more accurate simulation result is

in millisecond [63]. Therefore, the time step size h may not be small enough for accu-

rate dynamic simulation. As a result, a transcription method with higher accuracy, such

as Runge-Kutta method or Hermite-Simpson method should be considered to decrease the

integral error. In addition, the initial guess to this local method [30] and the related scheme

for relaxation of the complementary constraints also need to be carefully handled for im-

proving the optimization performance and the quality of the generated gait. In this section,

we will focus on the transcription using Hermite-Simpson method with the corresponding

constraint setup, followed by the introduction of the cost function and other important con-

straints in our modified optimization framework. The related constraint relaxation scheme

and other adjustments will be introduced in the next section.
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4.3.1 General Setup

For the discretization of all state variables, we set the time step as h = T/N , where

T > 0 is the duration of a half gait cycle and N = (2Nc + 1) is the number of collocation

nodes. To use the Hermite-Simpson method to describe the relationship between the ad-

jacent state variables, the number of cardinal nodes Nc needs to be selected first. In this

case, the odd points (x1, x3, . . . , x2Nc+1) are the cardinal nodes where the time duration

between any adjacent cardinal points can be arbitrarily chosen. For simplicity, the fixed

time step h is used in our framework, so the duration between two adjacent cardinal points

is 2h. On the other hand, the even points called interior points (x2, x4, . . . , x2Nc) need to

be placed at the center of two adjacent cardinal nodes.

4.3.2 Transcription for Direct Collocation Using Hermite-Simpson Method

In our modified framework, the Hermite-Simpson method is chosen for improving the

accuracy of numerical approximation for kinematics and dynamics [31, 47]. The con-

straints of this method can be expressed as:

xk −
1

2
(xk+1 + xk−1)− 1

8
h(ẋk−1 − ẋk+1) = 0 (4.8)

xk+1 − xk−1 −
1

6
h(ẋk−1 + 4ẋk + ẋk+1) = 0 (4.9)

The physical meaning of the constraints above is that the kth state variable and its time

derivative xk and ẋk on the interior node (approximated as a cubic spline) should match

the state variables and its time derivative evaluated through the system’s kinematic and dy-

namic equations explicitly. Note for this Hermite-Simpson method with local compression

[28], only the states of cardinal nodes belong to the free variables, since the state and its

derivative of the interior node can be explicitly calculated based on the constraints stated
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above. This method is referred as the compressed form of Hermite-Simpson method [28].

4.3.3 The Implicit Constraint Expression with Extra NLP Variables

As per the previously mentioned explicit calculation (the acceleration q̈i = f(qi, q̇i)

from the system dynamics), the state on the interior node in Eqs. (4.8) and (4.9) is coupled

with the states on adjacent collocation points. In addition, this calculation requires the

inverse of the inertia matrix. Though the compressed form of Hermite-Simpson method

using less decision variables (because the states of internal nodes are functions of cardinal

nodes), it can limit the sparsity of the Jacobian matrix of constraints. To improve the

sparsity, extra NLP variables, such as q̈k of the cardinal points and the interior points’

states and accelerations (xi and q̈i) is introduced so that the set of free variables in Eq. (4.7)

becomes:

x = [h, x1, . . . , xN , q̈1, . . . , q̈N , u1, . . . , uN , λ1, . . . , λN ]

On the other hand, instead of explicitly calculating the q̈k for all nodes with the inverse

inertial matrix, the dynamic constraints in Eq. (4.1) for each time step are inserted. Please

refer to [28] for Hermite-Simpson (Separated) method (HSS) in Chapter 4 for further de-

tails and discussions.

4.3.4 Cost Functions and Constraints

Similar to the previous works using trajectory optimization with direct collocation [31,

30, 47], the mechanical cost of transport (COT) is used with an additional sum of torque

squared with a small scalar factor ω as shown:

cost(x) =
1

mgd

N∑
k=1

∑
i

|uk,iq̇k,i|+ ω
N∑
k=1

uTk uk (4.10)
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wheremg is the system total weight, and d is the total traveling distance of system’s center

of mass (COM). Empirically, the sum of torque squared can help to improve the generated

gait. Except for the kinematic and dynamic constraints (Eqs. (4.1), (4.8) and (4.9)), other

important constraints are summarized here:

Contact constraint. Depending on whether the sliding contact is allowed or not, either

Eqs. (4.2) to (4.5) (referred as SACC: sliding allowed contact constraints) or Eqs. (4.2)

to (4.4) and (4.6) (referred as NSCC: non-sliding contact constraints) need to be satisfied

for all cardinal and interior points.

Periodic constraints. To generate the nominal walking gait, the periodic constraints are

expressed as shown:

q1 − RqN = 0 (4.11)

q̇1 − Rq̇N = 0 (4.12)

ẋ1,COM = ẋN,COM (4.13)

z1,COM = zN,COM (4.14)

ż1,COM = żN,COM (4.15)

xN,COM ≥ x1,COM + dmin (4.16)

where R is the relabeling matrix which switches the state variables at the joints on the

left leg to the right and vice versa, dmin is the minimum moving distance of xCOM (the

horizontal position of COM), and zCOM is the vertical position of COM.

Contact constraint of stance toe. Since the duration of toe contact is slightly longer

(about 55% for a full gait cycle) than one half gait cycle in the human walking gait analysis,

the following constraint can further simplify the optimization without altering the objective
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for human-like walking gait generation, i.e. the stance toe (stoe) is constrained as:

φstoe(qk) = 0 (4.17)

for k = [1, . . . , N ]. This constraint can also help to eliminate some undesirable gaits, i.e.

the walking motion which includes the hopping in the half gait cycle.

4.4 Running the Optimization Towards Generating Human-like Walking Gait

With the modified framework of the trajectory optimization through contact, we im-

prove the numerical approximation accuracy, the sparsity of the Jacobian matrix about

kinematic and dynamic constraints. In addition, the quality of the generated gait is im-

proved by introducing the additional terms in cost function. However, sometimes it is

still tricky to derive a high-quality gait by solving the NLP just a few times. There are

several potential reasons for that. First of all, the choice of the initial guess can lead

to different feasible gaits that satisfy all the constraints as mentioned in [30]. Naturally,

more human-like initial guesses or the cost function for fitting human data may lead to a

more desirable result. But, such approaches would be deliberately guiding the optimiza-

tion towards human-like gait. Our objective, on the other hand, is to naturally generate a

human-like gait through trajectory optimization with general constraints and initial guess

that is easy to generate. We believe that such an approach would be applicable for pros-

thesis, orthosis, or exoskeletons, because the produced results would be favorable to both

the robotic systems and the humans interacting with them. Second, dependent on sliding

contact condition, the generated behavior from the same initial condition may vary a lot

because the different contact constraints have different numerical properties. Last but not

least, since humans inherently have more passive components compared to a pure rigid-

body model, it may be helpful to introduce some virtual components to slightly alter the

generated gait. In the following subsections, the series of adjustments and schemes for
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improving the generated gait will be introduced.

4.4.1 Choice of the Initial Guess

As per our objective, the ZMP-based flat walking gait is chosen as the initial guess.

The reasons for this choice are: i) The ZMP-based method for walking motion genera-

tion is widely-used. ii) With the simple flat-contact condition and two domains (i.e. the

single support and double support phases), it is relatively easy to derive a dynamically

feasible trajectory using constrained dynamics. iii) The generation of desired trajectory

for ZMP-based walking (e.g. the ZMP trajectory, end-effector trajectory, torso angle) is

straightforward.

4.4.2 Choice of Contact Constraints

In our implementation with the ZMP-based walking gait as the initial guess, the gen-

erated gait with SACC and NSCC are quite different, as shown in the next section. For the

gait with SACC, the foot clearance of the swing foot is relatively small; the foot is almost

sliding along the ground until it makes a step. On the other hand, the gait with NSCC

behave more like a passive walker, which has a slightly larger sway-up motion before the

heel-strike.

4.4.3 Virtual Springs on Ankles for Inducing Heel-strike Motion

For the resulting gaits that have no obvious heel-strike even with a larger dmin in

Eq. (4.16), one potential solution is to add virtual passive components to the system. Here

we choose to add a torsional spring with a small stiffness k to the ankle joint to emulate the

effect of the human Achilles tendon at the ankle (which prevents the foot from dropping

even when the ankle is relaxed). The equation of motion then becomes:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ− kBBkq (4.18)
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where BBk is the spring torque distribution matrix for assigning the spring torques to the

torque equations of ankle joints. With this setup, the resultant torque applied to the system

becomes u − kBkq. For mitigating the effect of introducing virtual elastic components,

the second term in the cost function Eq. (4.10) can be modified as follows:

ω

N∑
k=1

(uk − kBkqk)
T (uk − kBkqk) (4.19)

4.4.4 Contact Constraints for One-sided Springs on Toes

For the bipedal robot AMBER 3, a set of torsional springs are attached on the passive

toe joints (Fig. 2.1). The mechanical joint limit is designed that the torsional spring will

activate only when the foot is in toe-off condition. Therefore it can be approximated as a

contact point which has a one-sided torsional spring. An additional set of complementary

constraints for the toe with one-sided spring then can be expressed as follows:

ktoeθtoe = (T1 + T2)− T− (4.20)

(T1 + T2)T− = 0 (4.21)

T1T2 = 0 (4.22)

φz,toeT1 = 0 (4.23)

φz,toe, T1, T2, T
− ≥ 0 (4.24)

where the ktoe is the stiffness, T1, T2, and T− are slack variables for the one-sided spring,

where the real torque applied to the system through the active spring is the variable T1.

Under this setup, the equation of motion becomes:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ− JTθ,toeT1 (4.25)
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where the Jθ,toe is the Jacobian matrix of the toe orientation.

4.4.5 Relaxations on the Complementary Constraints

For solving this problem using SNOPT with sparse sequential quadratic programming,

it has been reported that it is practically useful to temporarily relax the complementary

constraints [30] as follows:

M(x), N(x) ≥ 0 (4.26)

M(x)N(x) = ε (4.27)

where ε is a small nonnegative constant. On the other hand, we also found when using

IPOPT (based on a primal-dual interior point method) to solve this type of the problem,

the relaxation is also required. Without the relaxation, the primal-dual barrier approach

will drive M(x), N(x) away from the boundary and leads to the worse local solution and

convergence of the optimization problem. Since ε is sensitive to the optimization problem,

we empirically used a simple grid search in the range of 10−3 to 10−1, with a smaller

maximum iteration number of the solver for quickly choosing a ε for a better start.

4.4.6 A Kinematic-based Trajectory Optimization for Increasing the Foot Clear-

ance

Another observation from the result of the optimization through contact is that the

ground clearance of the swing foot can be very small, probably caused by the minimization

of the objective function which contains cost of transport. In general it should be improved

by inserting the contact constraint in the form of φz(x)−f(x) ≥ 0, instead of the constraint

φz(x) ≥ 0 in Eq. (4.2). However, practically it might easily be compromised by the

relaxation of complementary constraints. For increasing the foot clearance effectively

with minimal effect on the original gait, a kinematic-based trajectory optimization for the
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swing leg trajectory is adopted as a post processing:

argmin
x=[x1,...,xN ]swing

∑
(qk − qk,ref )T (qk − qk,ref ) (4.28)

s.t. φz,toe ≥ f(φx,toe)

φz,heel ≥ f(φx,heel)

kinematic constraints in Eqs. (4.8) and (4.9)

where qk,ref is the joint trajectory derived from optimization through contact, and f(φx) is

a normal distribution function of the contact point’s horizontal position.

4.5 Optimization Results and Related Comparisons

The formulated optimization with different constraints were solved using IPOPT with

the linear solver ma57.Depending on the relaxation and the initial guess, the required

computation time varied from 30 seconds to 10 minutes. For the common parameter setup

applied for all the cases, ω = 10−3, k = 10Nm/rad, dmin = 0.5m. Except for the ZMP-

based walking (ZMP) as the initial guess, other generated gaits for comparison include:

Table 4.1: The list of the modified costs, stride lengths and double support percentage val-
ues for the initial guess, and generated gaits with different contact constraints. Reprinted
with permission from [2].

Gait type ZMP SACC NSCC OSS
Cost 0.577 0.048 0.049 2.664
Stride
length

0.2m 1.10m 1.0m 1.0m

Double
support
percentage

33.33% 31.37% 35.48% 35.48%
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the optimization using SACC (SACC), the optimization using NSCC (NSCC), and the

optimization with one-sided spring constraints and NSCC (OSS) (as shown in Fig. 4.3 to

Fig. 4.5). The main quantities for comparison are listed in Table 4.1.
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Figure 4.3: The walking tile of the generated gait with SACC. Reprinted with permission
from [2].
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Figure 4.4: The walking tile of the generated with NSCC. Reprinted with permission from
[2].
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Figure 4.5: The walking tile of the generated gait with OSS. Reprinted with permission
from [2].

The generated gaits with NSCC and SACC show that these two types of contact con-

straints can generate different gait characteristics. Thus the user can interchangeably

switch among different constraints during the optimization process for getting a better

result. In Fig. 4.6, the human gait, the gait with SACC before and after the kinematic

optimization for increasing the swing foot clearance are compared. Although the discrep-

ancies still exist, patterns of the gait with SACC and kinematic optimization are closer to

the human ones. The differences observed in the ankle trajectories are larger than those

of the knee and hip, but the concluding stage of the ankle trajectory with SACC and kine-

matic optimization is similar to the initial stage of the human ankle trajectory. Further

adjustments of the introduced schemes are required to improve the phase difference here.

For the gait with one-sided spring constraints, although the constraints helps to de-

crease the toe-off angle (Fig. 4.5), the minimum cost was still quite high compared with

the other gaits since there were more complementary constraints need to be satisfied or

relaxed at the same time.
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(a) The trajectories of the hip joint.

0 50 100
Walking cycle progression (%)

-0.5

0

0.5

1

1.5

Jo
in

t a
ng

le
 (

ra
d)

Human data
SACC
SACC w/ KineOpt

(b) The trajectories of the knee joint.
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(c) The trajectories of the ankle joint.

Figure 4.6: The angular trajectory comparison between human data, gait SACC and gait
SACC with the kinematic optimization. Reprinted with permission from [2].

Figure 4.7: The walking tiles of the experiment using the bipedal robot AMBER 3 [3].
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4.6 Conclusions and Future Work

In this work, we propose the modified optimization through contact, which uses Hermite-

Simpson method to get a better approximation of the state trajectories. Several schemes

such as virtual springs on ankles, additional constraints for the one-sided springs on toes,

and the kinematic optimization to increase the foot clearance are provided to adjust the

gait towards to more human-like motion. With the modified framework, a series of gaits

with different constraints are generated and compared. To make the optimization with

complementary constraints more tractable (e.g. for one-sided spring), other solvers using

SQP method should be considered. Further adjustment for the parameters of the provided

schemes is also required for more natural gait generation. On the other hand, further val-

idations including more simulations and experiments are required for testing the stability

and robustness of the gait. It is also important to measure the cost of transport (for the en-

ergetic efficiency) of the gait from the experiment, and compare it with the expected cost

of transport from the optimization. Currently, the testing experiment (as shown in Fig. 4.7)

is being undergone [3], and the artifacts from the support mechanism and treadmill will

be resolved. We also plan to use this method for generating the trajectories for lower-limb

prosthesis and exoskeleton.
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5. GENERATING HUMAN-LIKE WALKING GAIT ON DIFFERENT TERRAINS

USING HZD GAIT OPTIMIZATION

5.1 Introduction

Following the work presented in the previous chapter, the objective of this project is to

generate energetically efficient walking gaits for bipedal robots on various terrains which

are human-like. When it comes to a new terrain profile (assumed the profile is known),

the contact constraints in the original optimization formulation need to be adjusted ac-

cordingly, which could potentially increase the infeasibility of the original initial guess.

For a trajectory optimization method which is sensitive to the initial guess, that could in-

crease the difficulties for solving walking motions on various terrains, because the users

either need to generate different feasible initial guesses for different terrain profiles, or

they need to take considerable time to adjust optimization parameters to get an working

optimizer for each terrain condition. On the other hand, because human walking has really

low Cost of Transport (COT) compared to the bipedal robots [35], the robot walking is

desired to have the same contact sequence like human walking, which is with multiple

domains (phases with different contact conditions). As a result, to determine the suitable

approach for solving the walking gait with multiple domains in particular, we compared

the capabilities of the states of the art: Trajectory optimization through contact [30] and

Hybrid Zero Dynamics (HZD) gait optimization [24], as shown in Table 5.1.

Without the need of specifying the contact sequence, Trajectory optimization through

contact (or Contact-implicit trajectory optimization), proposed by Posa et al. [30], is an

approach which simultaneously optimizes all the states, controls and contact forces of all

the potential contact points. By adopting the time-stepping method proposed by Stewart

and Trinkle [63] which uses Euler method to discretize the states, the trajectory optimiza-
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Table 5.1: Comparisons between HZD and Contact-implicit trajectory optimization.

Trajectory Optimization HZD Contact-implicit

Method Direct collocation method Direct collocation method

Objective function Cost of transport Cost of transport

Impact handling Inelastic collision Time-stepping method

Predefined contact sequence Required Not required

Sensitivity to initial guess Relatively low Relatively high

Discretization Hermite-Simpson method Trapezoid method

tion problem is formulated as a nonlinear optimization with complementary constraints.

This time-stepping method only considers the integral of contact forces over a time step as

an approximation of the effect from both the impulsive and continuous forces. However,

this first-order approximation for states with relatively large time step (for bipedal walking

generation is usually in the order of 10ms) can cause unneglectable dynamic discrepancy.

In addition, to make the optimization problem to be more well-posed, it has been reported

that the relaxation of complementary constraints with nonlinear solvers such as SNOPT

or IPOPT need to be done manually for a target environment [30, 2], therefore make it

more difficult to be adapted to other terrain profiles efficiently. On the other hand, us-

ing the framework of controller design with hybrid zero dynamics, HZD gait optimization

proposed by Hereid et al. [31, 59, 61, 24] relies on the pre-defined contact sequence.

Although when the system is more complex, the combinatorics of the potential contacts

grows exponentially and this method will be less practical [30], this approach works well

for general walking motion generation. One important merit of this approach is that it

is less sensitive to the initial guess (it has been reported it can be used with randomized

initial guess [24]) and currently the implementation with third-order accuracy (by using

Hermite-Simpson method for discretizing the states) has been achieved. As a result, to
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mitigate the effect caused by different initial guesses, we adopt the HZD gait optimiza-

tion for walking motion planning, generalize it for various terrains, and propose several

adjustments to make the walking motions more human-like.

5.2 Bipedal Locomotion as a Hybrid System

For a bipedal locomotion system, it is natural to describe it as a hybrid system, which

contains both continuous and discrete dynamics. A domain (or a walking phase) in general

is specified with a set of contact conditions across possible contact points. The continuous

dynamics (like Eq. (4.1)) is used to describe the system behavior in a domain with the

specified contact conditions. The discrete dynamics is used to describe the state transition

from one domain to another, where the guard defines the subset of a domain to trigger

the state transition (where at least one contact condition for a potential contact point is

changed). A general bipedal locomotion (e.g. human walking) can be modeled as a multi-

domain hybrid system as it has more than one domain.

Continuous Dynamics. Similar to Eq. (4.1), the dynamics of a rigid body model with a

floating base can be expressed as follows:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ (5.1)

where q is the generalized coordinate that includes [x, z, θ]T (Fig. 4.2), D(q) is the inertia

matrix, C(q, q̇) is the Coriolis matrix, G(q) is the gravity vector, J is the Jacobian matrix

of the contact position vector φ(q) such that J = ∂φ/∂q, B is the torque distribution

matrix, u is the control input, and λ is the contact force. All active contact points of the

system in a domain can be described as φ(q) = [φx(q), φz(q)]
T , where φx(q) is tangential

to the contact surface and φz(q) is the normal distance.

Discrete Dynamics. When the contact condition of the system is changed (e.g. a new

contact is achieved or a existing contact breaks), the state of the system will have a dis-
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crete change, which can be represented as a reset map to project the system state at the

guard to the state in the next domain. A classic example is the joint velocity change due to

the impact induced by heel-strike (or foot-strike), which is a common phenomena across

different walkers. Following the hypothesis listed in [66], there are three important as-

sumptions for a bipedal locomotion system:

(i) The robot configuration is invariant under impact, i.e. q− = q+, where q− is the

pre-impact joint position and q+ is the post-impact joint position.

(ii) The collision is inelastic, and the position of the new established contact is fixed

during collision.

(iii) Following the second assumption, the momentum is conserved during the impact

collision.

With those assumptions, the equations govern the kinematics and dynamics about the new

established contact can be expressed as∗

D(q−) −JTe

Je 0


 q̇+

Fimpact

 =

D(q−)q̇−

0

 (5.2)

where the D(.) is the inertia matrix (note D(q−) = D(q+)), Je is the Jacobian matrix of

the new established contact point, and Fimpact is the integral of the impact force over the

impact period. The first row of Eq. (5.2) is the momentum equation during impact under

assumption (iii), and the second row is the velocity of the new-established contact position

under assumption (ii). Note for the case where only the existing contact breaks, the state

continuity will be hold (i.e. q− = q+ and q̇− = q̇+), as there is no impact force induced.

∗From Eq. (5.2) the reset map to get q̇+ can be derived.
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5.3 HZD Gait Optimization for Walking with Multiple Contact Phases

Following the work in [24], the method of trajectory optimization using direct colloca-

tion for hybrid systems will be introduced. Compared to the optimization through contact

introduced in the previous chapter, the main difference of HZD gait optimization is that the

contact sequence need to be specified, and then the trajectory in the previous optimization

will be divided to several domains (the period of each domain also becomes free variable)

and the bounds of dynamic constraints are specified according to the predefined contact

conditions.

5.3.1 Hermite-Simpson Collocation

In the direct collocation framework using Hermite-Simpson method, all the joint vari-

ables q, q̇, q̈ are discretized as nodes of cubic-splines. The derivative of the states at the

interior node between two cardinal nodes expressed from the cubic-splines should match

the derivative expressed via state-space equations of system kinematics and dynamics [31].

The constraints, assume the state at the node k as xk = [qk, q̇k]
T , the Hermite-Simpson col-

location constraint can be expressed as:

HHSM(x) =

 xk − 1
2
(xk+1 + xk−1)− 1

8
h(ẋk−1 − ẋk+1) = 0

xk+1 − xk−1 − 1
6
h(ẋk−1 + 4ẋk + ẋk+1) = 0

(5.3)

where we impose this constraint with the the compressed form of Hermite-Simpson method

[28]. Note this constraint is only applied on the collocation points within the same domain,

the constraint to relate the boundary collocation points between domains will be introduced

in Section 5.3.4.
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5.3.2 Constrained Dynamics

At each collocation point x, given the joint state variables q, q̇, q̈∗, the control u, and

ground reaction forces λ at the active contact point(s) φ(q) where its Jacobian matrix is

J = ∂φ/∂x, the constraints of constrained dynamics can be expressed as follows:

HCDym(x) =

 D(q)q̈ + C(q, q̇)q̇ +G(q)−Bu− JTλ = 0

Jq̈ + J̇ q̇ = 0
(5.4)

where the last equation is the time derivative of Jq̇ = 0 (the velocity of the contact point).

5.3.3 Contact Sequence from Human Data

When a stable periodic gait with multiple domains reaches the steady state, the order

of phases and the transitions in general will be fixed and periodic, therefore it enables us

to use predetermined contact sequence to solve the HZD gait optimization. Similar to the

sequence used in [24] derived from human data, we use the contact sequence as shown in

the following figure:

Figure 5.1: The schematic (a directed graph) of the contact sequence from human data.

Note since human walking is symmetric, in the hybrid optimization only the motion of the
∗Starting from this section, for simplicity the subscript k for every free variables at node (collocation

point) k is omitted, e.g. xk → x, qk → q.
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first half walking cycle is solved, with the periodic constraints imposed accordingly.

5.3.4 Constraints Setup for Flat Terrain

In this section the other main building blocks for formulating HZD gait optimization

for a multi-domain hybrid system will be introduced. Starting from the contact constraints,

the method to impose contact dynamics for all potential contacts with given contact con-

dition will be explained, and the periodic condition and the impact equations (Eq. (5.2)) to

relate boundary collocation points between domains will be then introduced.

Contact Constraints Inspired by Optimization through Contact. For each active con-

tact point φ(q) with corresponding contact force λx and λz, assuming the contact position

is non-sliding (assumption (ii) described in Section 5.2), a set of equalities and inequalities

can be used to describe the Coulomb friction model (for the 2D case):

λz ≥ 0, ∞ ≥ λx ≥ −∞ (5.5)

µλz − |λx| ≥ 0 (5.6)

φz(q) = 0 (5.7)

Jq̇ = 0 (5.8)

where µ is the friction coefficient, φz(q) is the normal distance from the contact point to

the contact surface and J is the Jacobian matrix of the position vector of the contact point.

Note the constraints above is the special case of the contact constraints with complemen-

tary constraints by imposing Eq. (5.7) and Eq. (5.8). To simplify the optimization problem

and improve its sparsity, we adopted a scheme similar to the one depicted in [30] to in-

troduce a few slack variables to replace the absolute value and the normal velocity at the
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active contact points as follows:

λz, λ
−
x , λ

+
x ≥ 0, γ = 0

HActiveContact(x) =


µλz − λ−x − λ+

x ≥ 0

φz(q) = 0

γ − Jq̇ = 0

(5.9)

where λ−x +λ+
x = |λx| and−λ−x +λ+

x = λx. On the other hand, the constraints for inactive

contact points can be expressed as :

λz, λ
−
x , λ

+
x = 0,∞ ≥ γ ≥ −∞

HInactiveContact(x) =


µλz − λ−x − λ+

x = 0

φz(q) ≥ 0

γ − Jq̇ = 0

(5.10)

The constraints for inactive contact points seem redundant by intuition, but its insertion to

the optimization actually greatly simplify the optimization formulation for the following

reasons:

(a) This can simplify the formulation of both constrained dynamics and contact con-

straints because the only difference between the active and inactive contact con-

straints are their constraint and variable bounds. Therefore, the same the dynamic

equations and the same contact constraints of all the potential contact points can be

generally expressed in every domains.

(b) Similar to the the compressed form of Hermite-Simpson method [28], this method

can slightly improve the sparsity of the optimization by introducing extra free vari-

ables.
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(c) On the other hand, without changing the constraint expression, the contact constraint

of the inactive contact point can also be modified to express the contact condition of

the collocation point at the guard (when a contact point is about to achieved):

λz, λ
−
x , λ

+
x = 0, γz ≤ 0

HGuard(x) =


µλz − λ−x − λ+

x = 0

φz(q) = 0

γz − Jz q̇ = 0

(5.11)

Boundary Constraints. As we introduced in the precious section about the discrete dy-

namics (Eq. (5.2)), the boundary constraints of collocation points between each domain

can be expressed as:

∞ ≥ Fimpactx ≥ −∞, Fimpactz > 0, Fimpact = [Fimpactx , Fimpactz ]
T

HBoundary(x) =

 q+ − q− = 0

D(q−)(q̇+ − q̇−)− JTe Fimpact = 0
(5.12)

Note the constraint Jeq̇+ = 0 is removed from the boundary constraints because it is

already imposed as part of the contact constraint in the new domain in Eq. (5.9).

Periodic Constraints. The periodic condition is the slightly modified boundary constraint

with an extra constraint as shown below:

∞ ≥ Fimpactx ≥ −∞, Fimpactz > 0, Fimpact = [Fimpactx , Fimpactz ]
T

HPeriodic(x) =


R(qstart)− qend = 0

D(qend)(R(q̇start)− q̇end)− JTe Fimpact = 0

xcom(qend)− xcom(qstart) ≥ dmin

(5.13)
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where R is the relabeling matrix to swap joint angles between legs, and dmin is the mini-

mum horizontal traveling distance of the center of mass xcom.

5.3.5 Optimization Formulation

Assuming the target hybrid systems has N domains, M collocation points, define the

set of free variable X = {qi, q̇i, q̈i, ui, λi, γi, Fimpactn ,∆tn} for all i ∈ [1, 2, . . .M ], n ∈

[1, 2, . . . N ]. With the constraints introduced in the previous sections Eqs. (5.3), (5.4)

and (5.9) to (5.13), the HZD gait optimization can be expressed as the following:

X∗ = argmin
X

J(X) (5.14)

s.t. xlb ≤ x ≤ xub

HHSM(x) = 0

HCDym(x) = 0

HContact(x)

HBoundary(x) = 0

HPeriodic(x) = 0

where J(X) is the cost function, xlb and xub are the lower bound and upper bound of

X . HContact(x) are the collection of contact constraints with stacked HActiveContact(x),

HInactiveContact(x), andHGuard(x) where the order is determined by the contact conditions

of the domains. Because the contact constraints contain both equalities and inequalities so

the right hand sides are omitted, please refer to Eq. (5.9) and Eq. (5.10) for the detailed

expressions.

Cost Function. One of the popular choice of the cost functions for bipedal locomotion is

the Cost of Transport (COT) [61, 30]: The cost function is the integral of the mechanical

power divided by the total mass times the traveling distance, which can be approximated
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with Simpson’s quadrature rule [24]:

J(X) =
1

mtotald

N∑
n=1

Jn(X) (5.15)

where mtotal is the total mass, d is the horizontal traveling distance of the COM, and

Jn(X) =
Mn∑
j=1

ωjP (uj, q̇j) , (5.16)

ωi =


1
6
∆tn if j = 1 or j = Mn

2
3
∆tn else

(5.17)

where Mn is the number of collocation points in a domain n (n ∈ [1, 2, ..., N ]), and P (.)

is the summation of the absolute values of power consumption of all actuators (the reason

to take absolute value is because the actuator cannot actually do negative work without

power consumption, unless there is an elastic component to store the energy).

5.4 Modified Contact Constraints of HZD Gait Optimization for Different Terrains

In the original HZD gait optimization introduced in Eq. (5.14), it aims for solving

multi-domain walking on the flat terrain. Therefore, the next step will naturally be extend

this formulation to other terrains. Assuming the terrain profile is given, to generate walking

gait for different terrains such as slope or stairs†, it can be easily achieved by modifying

the contact condition φz(q) = 0 in and Eq. (5.9), Eq. (5.10) and Eq. (5.11). The following

we will discuss the contact constraint modifications for both the periodic slope walking

and walking on the stairs.

Slope walking. As shown in Fig. 5.2b (a), assuming the origin is at the toe of the trailing

†In this work we only focus on the periodic motion planning on slop or stairs, therefore the slope angle
or stair height is assumed to be constant. But the optimization formulation can be readily extend to other
terrain profile, where the periodic constraint need to be removed and additional terminal constraints for
proper contact conditions need to be imposed.
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(a) Slope walking (b) Stair walking

Figure 5.2: The schematics of slope walking and stair walking.

leg and the slope angle is α, the slope heights for all active contact points can be derived

based on the horizontal positions. As a result, the original constraint φz = 0 can be

modified as:
φz(q)− φx(q)tan(α) = 0 if a contact point is active

φz(q)− φx(q)tan(α) >= 0 if a contact point is inactive

φz(q)− φx(q)tan(α) = 0 if a contact point is inactive but at guard

(5.18)

Stair walking. For the case of walking on the stairs, since the change of the stair height is

discrete, therefore we need to check the direct graph to check the desired step height of a

contact point. As shown in Fig. 5.1, the original constraint of contact point position in the
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normal direction as shown in Fig. 5.2b (b):


φz(q)− h = 0 if a contact point is active

φz(q)− h >= 0 if a contact point is inactive

φz(q)− h = 0 if a contact point is inactive but at guard

(5.19)

where the stair height h is:


−h for the contact points on the previous stair

0 for the contact points on the current stair

h for the contact points on the next stair

(5.20)

5.5 Additional Schemes Towards Human-like Motion

In Eqs. (5.14) and (5.18) to (5.20), the main work of this chapter – the fundamen-

tal framework of multi-domain hybrid locomotion on different terrains using HZD gait

optimization has been introduced. In this section we introduce several schemes (in the

form of additional constraints, cost function, or variable bounds) that are helpful to make

the generated trajectory more human-like or improve the average converging speed in the

optimization solving process.

Torso swaying. One common situation of the optimization result is that the locomotion

sometimes will come with large torso swaying, which is usually undesired for human to

perform upper body manipulation or have a steady view. This situation can be eased by

constraining the torso angle of all collocation points within a smaller range:

θmaxtorso ≥ θtorso(q) ≥ θmintorso (5.21)

Knee stretching. Another common difference between our optimization result and human
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walking is that sometimes the knee stretching of the optimization result (in the preswing on

the trail leg or in the terminal swing on the lead leg) is not obvious. It could be because the

robotic model does not have any elastic components, therefore it will not follow the trend

like a walking spring-loaded inverted pendulum (SLIP) model to restore and releasing the

energy during a walking cycle. To improve this, an additional cost can be added to the

original cost J(X) introduced in Eq. (5.15):

JkneeStretching = ωknee

N∑
i=1

qilknee
+ ωknee

N∑
i=1

qirknee
(5.22)

where the subscripts lknee and rknee indicate the left and right knee separately.

Free variable bounds. During the tuning process for improving the optimization result,

we found that the variable bounds can affect a lot for the speed of convergence. When there

is no bound for the free variables, the solver could waste a lot of time to evaluate solution

that is not actually desired or even physically feasible, while when the variable bound is

too tight, it could make it more difficult for solver to find a solution because the interior

method used in IPOPT will try to push the solution away from the variable bounds, which

can also lead to convergence issues for more complicated problems. Those findings also

match the observations presented in [24]. After checking the range of motion from human

data, and other physical parameters of AMBER3, we choose the variable bounds to form

the variable bound pxlb and pxub, where p is a factor to enlarge the variable bound a bit to

improve the convergence of the optimization solving process. All the variable bounds and

the parameter p we used are listed in Table 5.2.

Foot clearance. In the optimization result, because the main objective is to minimize the

COT, the foot clearance of the swing leg is usually pretty close to the ground, which is

easy to get tripping, or is difficult to cross over small obstacles. Assuming the desired foot
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Table 5.2: Important bounds for free variables

Parameter Range Parameter Range

qankle(rad) [−0.3, 0.3] ui(Nm) [−80, 80]

qknee(rad) [0, 1.4] λi (N) [−500, 500]x, and [0, 500]z

qhip(rad) [−0.5, 0.5] γi (m/s) [−100, 100]

qtoeoff (rad) [0, 0.6] γi (m/s) (guard) [−∞, 0]

q̇i(rad/s) [−20, 20] Fimpact (N) [−∞,∞]x, and [0,∞]z

q̈i (rad/s2) [−20, 20] ∆tn (sec) [1e− 5, 0.05]

θtorso (rad) [−0.15, 0.15] p 1.2

clearance and its location is known, one can create a smooth profile by combing two cubic

splines, as shown in Fig. 5.3 with the given (xstart, ystart), (xmid, ymid), and (xend, yend).

Since the desired profile is above the line between (xstart, ystart) and (xend, yend), then if

we replace the original terrain profile with this desired one, the locomotion with a larger

foot clearance can be solved. This method can apply to basically any potential contact

point if a more detailed gait modification is required.

Figure 5.3: An example of a smooth curve combined by two cubic splines as the profile of
the desired height of the foot clearance constraint.
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Figure 5.4: An example to use the desired height profile for the constraint of swing ankle
(the top vertex of the triangle) height to increase the foot clearance.

To demonstrate how this work in a simpler way, we show an example where a height

constraint is imposed to the swing ankle height anklez(q) with a given smooth profile

(combined with two cubic splines a(x) and b(x)) as shown in Fig. 5.4, which can be

expressed as follows:


anklez(q)− a(x) ≥ 0 if x ≥ xstart and x ≤ xmid

anklez(q)− b(x) ≥ 0 if x ≥ xmid and x ≤ xxEnd

anklez(q) ≥ 0 else

(5.23)

Since the created desired profile is continuous and both a(x) and b(x) are piecewise dif-

ferentiable, therefore the analytical gradient of this constraint can also be calculated for

the optimization solver. With this constraint setup, the generated locomotion as shown in

Fig. 5.4 respects the constraint and keep the ankle height higher than the desired profile,

therefore can enlarge the foot clearance.
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5.6 Optimization Results

In this section, the optimization results of bipedal walking on flat ground, different

slopes and stairs are presented. Starting from the optimization setup, we will introduce the

optimization results for different terrains, including remarks about the robot configuration

and torso angle limit. The result comparisons to human data and the related optimization

sensitivity to the initial guess for each terrain will also be presented and discussed.

5.6.1 Optimization Setup

We use IPOPT [64] with the linear ma57 solver and its MATLAB interface for the

implementation of HZD gait optimization. In addition, we choose optimization option

optOptions.ipopt.hessian_approximation as ‘limited-memory’, and

optOptions.ipopt.mu_strategy as ‘adaptive’, and the optimization sum-

mary is shown in Table 5.3. To use IPOPT MATLAB interface, it is required to provide

analytical Jacobian matrices in the form of sparse matrices. The symbolic expressions of

the Jacobian matrices of the objective function and constraints are derived using Wolfram

Mathematica and exported as C++ functions so that they can be used as MEX files to speed

up the Jacobian matrix evaluation in MATLAB. Then the sparse matrices are created using

the those MEX Files with the MATLAB build-in function sparse().

Table 5.3: Details of the HZD gait optimization for bipedal robot AMBER 3.

Free variable number 2355 Constraint number 2721

Number of equality 1927 Number of inequality 794

constraints constraints

Domain number 4 (Configurable) Node number in domains [21,21,21,5]

Objective function Cost of transport Jacobian sparsity 0.4%

Jacobian matrices Analytical Hessian matrices Approximation
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It is known that the direct collocation will greatly increases the number of free variables

and constraints, which seems undesired for formulating a nonlinear program. However,

there are a few noticeable advantages. First, similar to the advantage of the multi-shooting

method over the single-shooting method in direct shooting, because the ‘decision weights’

are distributed to more variables, it eases the difficulties of solving the nonlinear program

for more complex systems. Second, in the direct collocation framework, most of the free

variables only affect the constraints of recent nodes, therefore the density of the Jacobian

matrices in our application is really low (e.g. the sparsity pattern shown in Fig. 5.5), which

can be solved efficiently with the sparse nonlinear program solver like IPOPT.

Figure 5.5: The sparsity pattern of the Jacobian matrix of the constraints. The makers
indicate the nonzero elements.

5.6.2 Walking on Different Terrains

In this section, we present our main result – walking on different terrains (flat ground,

ramp and stair) generated from the introduced optimization framework for AMBER 3.

Note all the optimization results are the periodic gaits. Therefore it is assumed that the

terrain profile (slope angle, stair height, or stair width) is consistent in the optimization.
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Table 5.4: The summary of optimization results on different terrains

Terrain COT Step time ∆tn
(s) (s)

Flat ground 0.096 1.35 [0.030, 0.030, 0.014, 1e− 5]

Ramp descent 0.121 1.48 [0.030, 0.030, 0.021, 1e− 5]
(α = −0.1rad)

Ramp descent 0.214 1.59 [0.030, 0.030, 0.023, 0.023]
(α = −0.2rad)

Ramp descent 0.529 1.44 [0.030, 0.030, 0.019, 1e− 5]
(α = −0.2rad,

θtorso ∈ [±0.15rad])

Ramp ascent 0.170 1.39 [0.030, 0.030, 0.016, 1e− 5]
(α = 0.1rad)

Ramp ascent 0.266 1.58 [0.030, 0.030, 0.022, 0.028]
(α = 0.2rad)

Stair descent 0.356 1.20 [0.030, 0.030, 0.006, 1e− 5]
(h = −0.1m, w = 0.5m)

Stair ascent 0.357 1.16 [0.030, 0.030, 0.004, 1e− 5]
(h = 0.08m, w = 0.5m)

To generate the optimization results, we ran the same optimization for each terrain with

200 randomized initial guesses, and then picked the solution with the lowest COT (the

sensitivity of the initial guess for HZD gait optimization will be introduced and discussed

in the next subsection). The cost of transport, walking speed, and time step in each domain

(∆tn) of the optimization results are listed in Table 5.4. The order of the domains and the

corresponding contact conditions are depicted in Fig. 5.1. Also, the default torso angle

range θtorso for slope walking is set as [−α, α] if it is not stated. Except the parameters

explicitly mentioned or listed in Table 5.4 (in the first column from the left), the other

bounds of decision variables listed in Table 5.2 are consistently used. In the following the

walking tiles and remarks of walking on different terrains will be presented and discussed.
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Figure 5.6: The walking tiles of the generated level-walking using HZD gait optimization.

Flat-ground walking. Among walking on different terrains, level walking with multi-

domain has the lowest COT 0.096. In the walking tiles shown in Fig. 5.6, it can show the

walking gait is generated with the desired contact sequence. The extremely small forth

∆tn in Table 5.4 indicates that the toe-strike of the front leg and the toe-off of the trailing

leg happen almost at the same time (as 1e− 5 is the lower bound of ∆tn).
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(a) α = 0.1rad, θtorso = [−0.1rad, 0.1rad]
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(b) α = 0.2rad, θtorso = [−0.2rad, 0.2rad]

Figure 5.7: The walking tiles of up-slope walking.

Slope walking. Compared to level walking, we can find that for slope walking (as shown

in Fig. 5.8 and Fig. 5.7), the larger the slope angle (|α|), the larger the COT. The optimiza-

tion results in Table 5.4 also indicate that gait on ramp ascent with the same slope angle

generally requires larger COT than the ramp descent. Another finding of the comparison

92



-0.5 0 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) α = −0.1rad, θtorso = [−0.1rad, 0.1rad]
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(b) α = −0.2rad, θtorso = [−0.2rad, 0.2rad]
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(c) α = −0.2rad, θtorso = [−0.15rad, 0.15rad]

Figure 5.8: The walking tiles of down-slope walking.

between walking result on ramp ascent and descent is that up-slope walking tends to have

a smaller torso swaying, as the torso swaying on up-slope requires more energy to work

against the gravity. In addition, we also noticed that when the slope angle becomes lager,

the forth ∆tn in Table 5.4 becomes much greater than 1e− 5 which indicates the gait on a

steeper slope requires longer time to transit the load from the trailing leg to the front leg.

We also compared the optimization results of slope walking with the same slope angle but

different torso angle limit, as shown in Fig. 5.8 (b) and (c). With a larger torso angle limit,

the gait in Fig. 5.8 (b) is capable of swaying the entire body forward in the way similar

93



to the level walking with a smaller COT, while with a smaller torso angle limit, the gait

in Fig. 5.8 (c) needs to hold its torso upright which also limit its horizontal velocities,

therefore requires the robot to lower the entire body vertically to reach the next stepping

location, results in a more cautious gait with the higher COT.

Stair walking. Fig. 5.9 shows the optimization result of stair walking ascent and descent.

One obvious difference of stair walking results from the other gaits is the third ∆tn in

Table 5.4 becomes smaller so that the front foot can achieve flat contact more quickly. To

demonstrate the capability of the optimization framework for stair walking, we only tried

few terrain profiles with the similar motion range of sloped walking for several reasons.

First, compared to the slope walking, stair walking is more complicated to be solved as

the contact constraints for stair walking is not smooth. Second, because of the constraint

complexity, the optimization is better to be solved with certain initial guess rather than the

randomized one (e.g. the slope walking gait with similar height and step length). Third, the

biomechanics study of stair walking [67] indicates that in stair walking the forefoot strikes

the ground first, which is different from the sequence we used. To get better optimization

results for stair walking, the contact sequence is required to be modified accordingly.
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(a) Down-stair walking (h = −0.1m, w = 0.5m)
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(b) Up-stair walking (h = 0.08m, w = 0.5m)

Figure 5.9: The walking tiles of stair walking.
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(a) The trajectories of the hip joint.
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(b) The trajectories of the knee joint.
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(c) The trajectories of the ankle joint.

Figure 5.10: The angular trajectory comparison between the optimization result of level
walking and the human data.

5.6.3 Comparisons to Human Data

In this section we compare the optimization results of level walking and slope walking

to human data, where the visualizations of the results with the 3D model of AMBER 3 and

the comparisons with the recorded human walking videos are available in [68]. As shown

in Fig. 5.10, the generated level walking and the human data are compared. Observed from

both the walking tiles (Fig. 5.6) and joint trajectory comparison, we identified two sources

of discrepancies. First, similar to the result of optimization through contact, the optimized

gait tends to have lower foot clearance than human, which causes large differences of
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knee and hip angles in the gait progression 60% − 90%. Second, compared to the human

walking, the generated gait does not fully stretch the leg, which also causes the difference

of knee and hip angle in the gait progression from 90% to 10% of the next step. This

difference is larger compared to the result from optimization through contact as shown in

Fig. 4.6. Possible reasons for this discrepancy include the effect of impact and the cost

function we used. There is study has shown that when removing running shoes, human

tends to shift foot-strike pattern from heel-strike to fore-foot strike to reduce the impact

[69]. Since we assumed heel-strike is an inelastic collision which will cause the largest

impact possible, in the optimization the gait will try to avoid fully stretching the leg before

heel-strike so that it will not penalize by the high COT due to the large impact. This can

also explain why the leg-stretching from the hybrid optimization result is smaller than

optimization through contact, as the later one only considers the impact force integral over

the time step and treats it as the regular force, therefore it can mitigate the effect from the

inelastic impact dynamics. Those possible causes can also affect the difference in the ankle

trajectory comparison, but the trends of optimization result and the human data, especially

the later part (50% to 90%), are still look similar.

In Figs. 5.11 to 5.13, we compared the generated slope walking results to the human

data. In general one major source of discrepancy is that we used almost the same parameter

set for level walking and walking on different slopes and , including the range of time step

∆tn and minimum step length, which may not be the case for human gaits. In the hip

trajectory comparison as shown in Fig. 5.11, the up-slope walking with slope angles 5.73o

and 11.46o, and the down-slope walking with slope angle −11.46o∗ (the one with smaller

torso angle limit θtorso ∈ [−0.15rad, 0.15rad]) are more similar to the human ones. The

discrepancies observed from other trajectories show that humans tend to use smaller hip

range for down-slope walking. Comparing down-slope walking gaits 11.46o and 11.46o∗

(the one with smaller limit) in Fig. 5.11, the later looks more similar to human data, which
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(b) Human data

Figure 5.11: The hip joint trajectory comparison for walking on slopes. In the legend
−11.46o∗ indicates the down-slope walking with smaller torso angle range: θtorso ∈
[−0.15rad, 0.15rad].
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Figure 5.12: The knee joint trajectory comparison for walking on slopes.

may imply keeping torso upright is more important than having lower COT for down-

slope walking. In the knee trajectory comparison (Fig. 5.12), the up-slope walking with

slope angles 5.73o and 11.46o are more similar to the human ones. For the optimized

down-slope walking, the segments near the beginning and the end are more close to the
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Figure 5.13: The ankle joint trajectory comparison for walking on slopes.

level walking, which are similar to the human data. In addition, −11.46o∗ is slightly

more similar to human data compared to other down-slope walking gaits. The cause of

the main discrepancy in the duration of gait progression 40% to 60% is mainly because

of the low foot clearance as the optimization minimizes the COT. From the human data

we also noticed that human tends to have larger foot clearance when the slope angle of

ramp decent goes larger, where there is no similar trend for up-slope walking gaits. In

the ankle trajectory comparison (Fig. 5.13), the up-slope walking with slope angles 5.73o

and 11.46o are still more similar to the human ones. For the down-slope walking, different

from the comparisons of hip and knee angle, the walking gaits with slope angle−5.73o and

−11.46o are more similar to human data compared to −11.46o∗, especially in the range of

gait progression 0% − 60%. The ankle angles of walking gaits with slope angle −5.73o

and −11.46o are much larger than human data in the end of the gait cycle. This maybe

because the robot requires a larger range of motion to move the foot downward quickly

(in the beginning of the gait cycle) to reduce the effect from the heel-strike, as we already

discussed that the impact effect of the inelastic collision could be larger than the collision

in actual human walking.

98



(a) Level walking (b) Slope descent (α = 0.1rad)

(c) Slope descent (α = 0.2rad)
(d) Slope descent (α = 0.2rad, θtorso =
[±0.15rad])

Figure 5.14: The histograms of level walking and down-slope walking results.

5.6.4 Optimization Sensitivity to the Initial Guess

In this subsection, we present and discuss the optimization sensitivity to the initial

guess. Because the optimization problem we formulated here is nonlinear and non-convex,

when solving this nonlinear program with local optimization solver like IPOPT, it is likely

the solver will return a local optimal solution rather than a global one. As a result, the

initial guess can have significant effect on the optimization result.

Though in [24] it is mentioned that this optimization framework can be used with

randomized initial guess, it is still not clear how well the randomized initial guess can

be used for different terrains (i.e. different contact constraints) or variable bounds. To
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get more understanding towards to the optimization sensitivity to initial guess, in Fig. 5.14

and Fig. 5.15 we show the histograms of the optimization results to present the distribution

of COT versus number of initial guesses (where we used 200 randomized initial guesses

to generate 200 walking gaits for each terrain), which can be good indicators to show

the optimization performance as well as the optimization complexity for each terrain. In

(a) Slope ascent (α = 0.1rad) (b) Slope ascent (α = 0.2rad)

(c) Stair descent (h = −0.1m, w = 0.5m) (d) Stair ascent (h = 0.08m, w = 0.5m)

Figure 5.15: The histograms of up-slope and stair walking results.

Fig. 5.14, for the level walking, more than 100 initial guesses result in COTs lower than

0.2, which shows that the HZD gait optimization can work with randomized initial guess

quite well. In addition, except Fig. 5.14 (d) we found that when the down-slope angle

100



increases, the more gaits are with the lower COT, which seems reasonable because the

larger slope angle the gravity can provide more potential energy on different initialized

walking gaits, and then a local optimal solution with lower COT might be easier to be

solved. Conversely, when the walking gait need to walk against the gravity more (like

Fig. 5.15 (a) and (b)) or the motion range is more limited (Fig. 5.15 (d)), the distribution

becomes flatter. This indicates it is more difficult to get a better local optimal solution,

therefore a better initial guess will be more important for those cases. The similar trend

can also be found in stair walking as shown in Fig. 5.15 (c) and (d).

5.7 Conclusions and Future Work

In this work, we presented the modified HZD gait optimization framework to generate

walking gaits on various terrains. With the modified contact constraints, this optimization

framework can be generally applied to flat-terrain, slope or stair with different profiles –

as long as the proper predefined contact sequence is given. We showed the optimization

results on different terrains also compared those gaits. We found that the COT will increase

when the step height either goes lower and higher (as the system needs to provide more

work to decelerate the body, or lift it up to a certain height), and we also found that the torso

angle limit is an main parameter to determine whether the down-slope walking is cautious

or not. We compared the generated level walking and slope walking gaits to the human

data, and discussed the similar trends, and possible reasons for the discrepancies. We

also presented the histograms of optimization results with randomized initial guess, which

indicate the performance and the complexities of optimization formulation for different

terrain profiles and/or parameters. In the future work we plan to use the gaits generated

from this optimization framework to build the gait library to synthesize more complex

walking behaviors. We also plan to use this optimization framework with the human model

and the lower-limb prosthesis to generate walking gaits for amputees.
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6. CAPTURE POINT-BASED ANALYSIS ON STANDING, WALKING, AND

WALKING WITH SLIPPING

6.1 Introduction

This project is for studying balance recovery which cannot be handled by low level

control and trajectory optimization. When a disturbance is too large to recovery from

a optimized reference for a bipedal system, fast reactions based on simple model-based

methods are required. By the means of stepping strategy, human walking is even more

resilient and can recovery the balance from unexpected disturbances (like a push, an un-

even terrain, or a slippery floor). Although human stepping strategy had been identified

as one of the main balance strategies in the literature of biomechanics [43], its underlying

principle is still relatively not clear. In this work, to get more understanding about the

human stepping strategy, we use the Capture Point(CP)-based methods originated from

bipedal robotics to analyze human stepping behaviors. As a preliminary study, its ultimate

goal is to apply the CP-based methods on the applications of controller design for human

rehabilitation devices (e.g. sensory augmentation device [70]) to provide the additional

sensory cue about the size of a proper step to the user, or directly control lower-limb wear-

able robots (e.g. prosthesis or exoskeleton) so that the user can perform proper stepping.

To interpret human balance strategies from standing/walking balance to stepping strat-

egy, we can use model-based methods with inverted pendulum model. Among the dif-

ferent models, linear inverted pendulum model (LIPM) is one of the simplest while still

capable of representing balance strategies with the connection between several important

quantities in the literature of robotics and biomechanics: center of mass (COM), center of

pressure (COP, or zero-moment point (ZMP) in a generalized sense) [13], and Instanta-

neous Capture Point (ICP) [19]. Depending on different concepts to achieve the balance,
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there are two different ways can explain the balance strategies: i) Balance margin and ii)

Capture point.

6.1.1 Balance Margin

One way to maintain balance is starting by assuming the full control of the LIPM is

available (therefore the system is full actuated, or equivalently, the system is with the

foot having the flat-contact to the ground). As long as the full control is available, then

it is possible for the system to exert torque to maintain balance. Therefore, the balance

margin, as its name suggests, is the margin before the system loses the full-control (i.e. the

flat-contact breaks ). Originating from the criterion of standing (static) balance, different

criteria can be derived for walking balance or stepping strategy. Except the flat-contact

assumption, other important assumptions include:

• The ground reaction force (GRF), including the frictional force along the ground

surface and the normal force, is large enough for the system to maintain the balance.

It is also implied that no slip occurs.

• Although the ground reaction force at a contact point in general only contains trans-

lational forces, however, through the force distribution along the contact surface area

(or the support polygon), it is still possible to exert torque to a contact point within

the support polygon. Therefore the generalized GRF (e.g. [fx, fy, τz] in 2D case) is

used through out this chapter.

Static balance: Used as a quasi-static approach, static balance assuming the COM move-

ment is so slow that its dynamics appears to be static, and the force balance equation below

must be hold (as shown in Fig. 6.1 (left)):

−mg + fy = 0 (6.1)
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where m is the total mass of the system and in GRF fx = τz = 0. The static balance

criterion, by assuming the support polygon (or the base of support, BOS) is ∈ [xheel, xtoe],

then can be expressed as shown:

xheel ≤ xc ≤ xtoe

where the COM position is [xc, zc] in the 2D case. Note the GRF needs to be exerted

within the support polygon as a contact force. When xc is outside the support polygon, the

force outside the support polygon is equivalent to a GRF inside the support polygon with

a moment, which will cause the system tipping and losing the balance because there is

no other force/torque can balance out this induced moment. Since static balance criterion

only requires the information of the COM position, it can be easily used. However, the

quasi-static assumption greatly limits its application to more dynamic behaviors, such as

walking or push-recovery by stepping.

Dynamic balance: Dynamic balance is extended from the static balance by considering

the horizontal dynamics of COM, where the zc is assumed to be a constant for the linear

inverted pendulum model (LIPM). To achieve dynamic balance, i.e. keep the system not

tipping over with the horizontal dynamics as shown in Fig. 6.1 (center), except Eq. (6.1),

the torque balance also needs to be considered (with an introduced reference point [xzmp, 0]

for the GRF where its τz is vanished):

−mg(xc) + zcmẍc + fzxzmp = 0 (6.2)

⇒ ẍc =
g

zc
(xc − xzmp), or (6.3)

⇒ xzmp = xc −
zc
g
ẍc (6.4)

The GRF reference point is referred as Zero-Moment Point (ZMP) [12], (basically equiv-
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Figure 6.1: The famous cart-table model to describe the LIPM for static balance (left),
dynamic balance (center), and the schematic of the linear inverted pendulum model (right).

alent to Center of Pressure (COP)). The system then is balanced as long as the Eqs. (6.1)

and (6.3) hold. Following the concept for establishing the static balance criterion, the

dynamic balance criterion can then be expressed as:

xheel ≤ xzmp ≤ xtoe (6.5)

Note the above equation implies that xc can be outside of the support polygon as long as

the Eq. (6.5) holds, therefore it is more general and more suitable to be used for walking

compared to the static balance criterion.

Extrapolated Center of Mass: In Eq. (6.3) if xzmp is assumed to be a constant, then

Eq. (6.3) becomes an ordinary differential equation (ODE) of xc. Its analytical solution

can be expressed as:

xc(t) = xzmp + (xc0 − xzmp)cosh(ωt) +
ẋc0
ω
sinh(ωt) (6.6)

where xc0 and ẋc0 is the initial condition of xc, ω is
√
g/zc. An additional assumption

is made when considering the case that ẍc is non-positive (e.g. as a restoring force for
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recovering balance). Then by Eqs. (6.4) and (6.6):

ẍc ≤ 0

⇒ xc(t)− xzmp ≤ 0

(xc0 − xzmp)cosh(ωt) +
ẋc0
ω
sinh(ωt) ≤ 0

⇒ xc0 +
ẋc0
ω
tanh(ωt) ≤ xzmp (6.7)

As −1 ≤ tanh(ωt) ≤ 1 for any t, therefore Eq. (6.7) becomes:

xc0 +
ẋc0
ω
≤ xzmp (6.8)

where the left hand side is termed extrapolated center of mass (XCoM) [71, 72, 73]. There

are two ways can interpret Eq. (6.8): i) The system’s balance can be maintained if xzmp

is moving forward fast enough. ii) If XCoM exceeds the maximum xzmp (e.g. xtoe), then

the system becomes unbalanced. With those interpretations and Eq. (6.8), the distance be-

tween xzmp and XCoM is used as a balance metric for studying human balance of standing,

walking, and step recovery [71, 72, 73].

On the other hand, by considering ẍc is non-negative (as the restoring force when

moving backward), then xc0+ ẋc0
ω
≥ xzmp can be derived. With the Eq. (6.8), an alternative

criterion [14] of dynamic balance can also be derived as:

xheel ≤ xc0 +
ẋc0
ω
≤ xtoe (6.9)

where xheel and xtoe are the boundary values of xzmp as mentioned in Eq. (6.5).
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6.2 Capture Point

Another way to keep balance is to make sure the system can step on a location which

makes the system come to a captured state (a state at a trajectory which will reach the

static equilibrium, i.e. a complete stop), where the stepping location is called a capture

point (CP) [18]. Unlike the balance margin method, capture point does not require the

system to be full-actuated, and can be derived and extended based on the LIPM with point

feet. The capture point (CP)-based methods turns out to be useful for challenging balance

tasks such as push-recovery or walking with line-contact for humanoid and bipedal robots

[18, 20, 21]. Here we briefly introduced the variations of different types of capture points

(which are proposed in [19]) we use in this study.

Instantaneous capture point of LIPM with point feet: With an arbitrary initial con-

dition, if the system can place the next step instantaneously on a point which makes the

system come to a completed stop, then this point is called an instantaneous capture point

(ICP). When the stepping actually happens, then the ICP becomes a capture point. For

the LIPM with point feet, the ZMP location (xzmp in Eq. (6.3)) coincides with the only

contact point – its ankle position xankle:

ẍc =
g

zc
(xc − xankle) (6.10)

For this system the orbit energy ELIP [74, 75] can be used to derive ICP as shown:

ELIP =
1

2
(ẋc

2)− 1

2
ω2(xc − xankle)2 (6.11)

where ω =
√
g/zc. Consider the case the legged system will come to a rest and thus ELIP
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is zero. Assuming the ICP is in front of the current stance, then its location can be derived:

xICP = xc +
ẋc
ω

(6.12)

Note that the equation of ICP is the same as the XCoM. Take the time derivative of

Eq. (6.12) and substitute ẍc from the Eq. (6.10), then we can derive the first-order ODE of

ICP and its solution (by assuming xankle is a constant):

ẋICP = ωxICP − ωxankle (6.13)

xICP (ts) = eωts(xICP (0)− xankle) + xankle (6.14)

where xICP (0) is the initial condition of ICP and ts is the step time. This analytical

expression of ICP in Eq. (6.14) can be used to estimate a stepping location if step time ts

is given.

N-step capture point: Extended from the concept of capture point, N-step capture point

means the point that can make the system come to a stop after N steps. One step on this

point cannot immediately bring the system to a complete stop, but it will bring the system

into the region that requires fewer steps to achieve that (e.g. N-1 steps, N-2 steps, ...,

2 steps, 1 step). In the capture point-based analysis in the later section, the ∞−step is

used to estimate the stepping location for walking and walking with slip, which can be

calculated using the following equation:

x∞step−ICP = xICP − d∞ (6.15)

d∞ = lmax
e−ωts

1− e−ωts
(6.16)

In Eq. (6.16), lmax indicates the maximum reachable distance and ts is the step time. Please
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refer to [19] for the detailed derivation of d∞.

ICP of LIPM with finite-sized foot: Considering that the legged system has finite-sized

feet and makes a complete surface contact with the ground, without making the foot rotate

with respect to the ground the ankle joint can exert limited torque to the system. In this

case, modified from Eq. (6.2) with the new added ankle torque τy, the equation of motion

can be expressed as:

ẍc = ω2(xc − xankle)−
τy
mg

(6.17)

= ω2(xc − xCoP ) (6.18)

where m is the total mass, g is the gravity acceleration, xCoP = xankle + τy
mgω2 , where the

CoP indicates the center of pressure (COP). Similarly, the corresponding ODE of ICP and

its solution can be expressed by simply substituting the xCoP for xankle in Eq. (6.13):

ẋICP = ωxICP − ωxCoP (6.19)

xICP (ts) = eωts(xICP (0)− xCoP ) + xCoP (6.20)

where the xCoP is assumed to be a constant. Note for the LIPM with finite-sized foot, the

set which contains 1-step CP is no longer a single point. Since any xCoP inside the base of

support can reach a valid 1-step CP according to Eq. (6.20), the set becomes a region which

can be used as a metric for stability measurement which is called 1-step capturability. This

concept can also be extended to N-step capturability [19], where N ∈ [0,∞] including the

cases of standing and nominal walking gait.
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6.2.1 Human Balance Strategies and ICP

In biomechanics of human movement, there are three basic strategies to maintain the

balance [43]: i) Ankle strategy, ii) Hip strategy, and iii) Stepping strategy. Similarly, for

bipedal/humanoid robots modeled as a LIPM, Stephens [44] and Koolen et al. [19] also

proposed the corresponding balance mechanisms based on balance margin and capture

point respectively, which are summarized in the following table:

Table 6.1: Comparisons of the balance mechanism between the balance margin and cap-
ture point for human balance strategies.

Balance strategy Balance margin Capture point

Ankle COP control with ICP constraint ICP with fixed COP

Hip CMP control ICP with fixed CMP

Stepping ICP or Hofmann stepping ICP

where CMP is centroidal moment pivot. Extending the LIPM by attaching a flywheel as

a reaction mass on the COM, the basic idea of CMP is to consider the torque balance at the

COM. The torque generated by the flywheel (driven by hip joints) as an additional term in

the torque balance equation Eq. (6.3), can also assist to enlarge the balance margin [44].

However, in this project we will not consider the effect of the angular momentum about

the COM for the following reasons:

• The torque from the motion of reaction mass is hard to regenerate.

• The hip torque and range of motion during standing or walking can be limited.

• The stepping strategy can be used to deal with larger disturbance that ankle and hip

strategy cannot handle.
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From Table 6.1 it is also shown that ICP is a quantity can generalize the human balance

strategies using simple LIPM, and it can be used to interpret stepping strategy from both

the balance margin or capture point concepts. As a result, it inspires our work of capture

point-based analysis on different human behaviors.

6.3 Method

One step recovery  

from standing
Walking

 
Walking with

 
1) Mild Slip 2) Severe Slip

LIPM with point feet/finitesized feet LIPM with point feet LIPM with point feet

Figure 6.2: The analyzed tasks listed in the order of task complexity and the corresponding
LIPM models for the CP-based step estimation.

To use ICP to study human balance with the focus on stepping strategy, we perform

CP-based analyses for humans, i.e. using ICP for human step estimations on different

tasks, including single step (balance) recovery from standing, walking, and walking with

slip. As introduced in the previous section, different LIPM models are chosen for different

tasks, which are shown in Fig. 6.2. Among those tasks, single step recovery is categorized

as the ‘stationary’ task, as it is the step recovery from the perturbed standing posture. On

the other hand, both walking and walking with slip are categorized as the ‘non-stationary’

tasks. Both the methods of the stationary tasks and the non-stationary tasks for the CP-

based analyses will be introduced in the following subsections.

6.3.1 Step Estimation – Stationary Tasks

As the first step to study human stepping strategy, we perform the analysis for two

stationary tasks. The analysis of stationary tasks are twofold: first is to validate CP-based

analysis (by estimating the 1-step CP) for single-step recovery and compare it with the
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Figure 6.3: The schematics of stationary tasks: Single-step recovery from the forward lean
(left) and single-step recovery from the combination of forward lean and pull force (right).

human experimental data [4, 6]. Second, we also compare the estimated 1-step CP to the

simulation results for the same two tasks through the nonlinear optimization where the

Model Predictive Control (MPC) with finite horizon was adopted [5]. Those stationary

tasks (as shown in Fig. 6.3) are briefly described as follows:

Task (1) Subjects were instructed to perform a single-step recovery to regain the balance

from the forward lean for 4 different inclination levels [4]. The corresponding step

length, lean angle, reaction time and step time were all recorded. Note in [4] only the

data from 10 young subjects is used for avoiding any age-related decay of recovery

ability. For the 1-step CP estimation, since the COP is at the edge of the base of

support (BOS) as the whole body is forward inclined and the support mainly relies

on the tether and electromagnet which are connected to the chest harness, we assume

that there is no ankle torque applied to the LIPM (i.e. Eq. (6.14) is used).

Task (2) Subjects were instructed to make a single-step to recover the balance as soon

as one cannot sustain the standing posture against the two combinations of forward

inclination and forward pull [6]. The corresponding step lengths, maximum lean

angle, maximum pull force, reaction time and step time were all recorded. Note in
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[6] only the data from the leaning trials is used. All the subjects from the leaning

trails were asked to sustain the forward pull force which was gradually increased.

As a result, for the 1-step CP estimation, we assume the ankle torque contributes to

the force against the maximum pull force (i.e. Eq. (6.20) is used) before a step is

made.

6.3.2 Step Estimation – Non-stationary Tasks of Humans and Robotic Walkers

Non-stationary tasks include walking and walking with slip where the CP-based quan-

tities are used to estimate the step location for different data. For the human walking

without and with slip, we used human experimental data from 20 healthy young adults,

which were approved by institutional review board [76]. Subjects were informed that the

surface would not be slippery for the first few trials. However, after two or three ‘dry walk’

trials, the surface was contaminated without notification to the subjects. Both marker data

and force data were recorded, and we took one set of walking trial and walking with slip

trial for every subject. For the walking with slip trails, subjects with Peak Heel Velocity

(PHV) greater than 1.44m/s were categorized as the ‘severe slippers’ and the rest were

‘mild slippers’ [34]. In this study there were 12 mild slippers and 8 severe slippers. For

details, please refer to [76].

On the other hand, we also use the CP-based quantities to estimate the stepping location

of the robotic walking from robot simulations using different robot models and walking

control methods. Since the system dynamics and control for those walking robots are well

understood, they can help to validate CP-based step estimation’s efficacy, and provide

information for the discrepancy between the estimated and actual stepping locations. To

make sure the robot models and control methods used in the analysis cover certain diversity

in the literature of bipedal robotics, the following bipedal-robots are selected and used in

the analysis:
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• A passive compass gait (CG) robot which is composed of two linkages and point

feet, can walk on down-slope periodically without any actuation.

• A 5-link active kneed-gait bipedal robot (the robot comprises torso, thighs and

shanks with point feet, where the legs are controlled by the actuated knee and hip

joints) walks on the level ground as an under-actuated system (KGUA) (i.e. with-

out ankle actuation) or a full-actuated system (KGFA) (i.e. with ankle actuation).

Human-inspired control with Partial Hybrid Zero Dynamics (PHZD) is adopted for

both cases [77].

• A 7-link active bipedal robot (ZMP) (robot with torso, thighs, shanks and foot pads)

walks on the level ground as a full-actuated system using ZMP-based walking mo-

tion generation and control [1].

Among the introduced CP-based quantities, 1−step CP and∞−step CP are used for

the step estimation. In addition, to reduce the number of predetermined variables such

as step time and maximum step length, we proposed a new quantity called Estimated

Instantaneous Capture Point (EICP), which is defined as:

xEICP = xc +
ẋc,Averaged

ω
(6.21)

where xc,Averaged is the average walking speed. Because the non-stationary tasks are

much more complicated than the stationary tasks, only the CP-based quantities (1-step

CP,∞−step CP and EICP) right before the heel-strike were calculated. By comparing the

errors between the 1-step CP (Eq. (6.14)),∞−step CP (Eq. (6.15)), EICP (Eq. (6.21)) with

respect to the actual foot placements, the main objective of this analysis is to understand

how well those CP-based quantities can estimate the stepping location for the walking

tasks (for both humans and robots) and the tasks of walking with slip (humans only).
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6.4 Result and Discussion

6.4.1 Step Estimation – Stationary Tasks

The step location estimations for the stationary tasks are shown in Figs. 6.4 and 6.5.

In many cases, the 1-step CP estimation results are similar to the simulation results using

MPC without considering the upper body inertia, and this also indicates the efficacy of

1-step CP estimation: given an initial condition of a simplified model and a predetermined

step time, the step location then can be estimated without running any simulations using

advanced control methods.
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Figure 6.4: Step location comparison between ICP and results in [4, 5] for Task (1).
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Figure 6.5: Step location comparison between ICP and results in [6, 5] for Task (2).
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According to Figs. 6.4 and 6.5, the results of 1-step CP estimates the step location

better with the inclination angles of 17.5 degree (Fig. 6.4), 19.7 degree (Fig. 6.5) and 20.5

degree (Fig. 6.5). Comparing the 1-step CP to the human data and MPC simulation with

hip strategy (considering the upper body inertia), the largest error in Fig. 6.4 is the one with

the largest inclined angle (27.5 degree) – where the estimated step length is larger than the

actual ones. The fact that the adopted LIPM does not consider the effect from upper body

motion could be the main reason for this discrepancy. On the other hand, the estimated

step length in Fig. 6.4 is smaller than the actual ones for the inclination angle 12.5 degree.

We postulate that although the inclination angle is small, subjects may still changed their

strategies to the more conservative (safer) ones due to the psychological reaction based on

the fear of fall.

6.4.2 Step Estimation – Non-stationary Tasks

For the non-stationary tasks, the main specifications of all walkers are listed in Ta-

ble 6.2. For the actuation type, UA refers to under-actuated and FA refers to fully-actuated.

For the terrain type, DS indicates down slope and LG indicates level ground. For the

robotic walkers, the CG and KGUA have point feet, KGFA and ZMP have foot pads and

both perform flat-feet walking (i.e. the foot always keeps horizontal during walking.)

Table 6.2: Parameters of the walkers (values in parentheses indicate the standard devia-
tion).

CG KGUA KGFA ZMP Human

Height (m) 0.90 1.0 1.0 1.5 1.73 (0.08)

Weight (Kg) 50 70 70 28.18 69.05 (12.02)

Speed (m/s) 0.6 1.36 1.18 0.07 1.39 (0.23)

Actuation type Passive UA FA FA Mixed

Terrain type 4◦ DS LG LG LG LG
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Figure 6.6: Estimation error of step location (normalized by step length) for different
walkers and difference tasks.

Table 6.3: Estimation error of step location (normalized by step length) for different
robotic walkers. The values in the parentheses indicate the standard deviation.

CG KGUA KGFA ZMP

1-step

CP

0.327

(0)

0.603

(0)

-0.269

(0)

-0.225

(0)

∞−step

CP

0.133

(0)

0.417

(0)

-0.154

(0)

-0.225

(0)

EICP
0.048

(0)

0.473

(0)

-0.031

(0)

-0.182

(0)

Fig. 6.6 presents CP-based estimated step lengths that are normalized by step lengths for

the robotic locomotion, human walking, and human walking with slip. The statistical

results of estimation errors are listed in Tables 6.3 and 6.4. Fig. 6.7 to Fig. 6.9 show the

normalized trajectories with respect to the normalized time (from step initiation to heel-

strike). For comparison, all the position trajectories were normalized by the step length,

and all the velocity trajectories were normalized by ω times step length which is similar

to the dimensional analysis introduced in [19]. The reasons for the discrepancies in the
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Table 6.4: Estimation error of step location (normalized by step length) for human walk-
ing, walking with mild slip, and walking with severe slip. The values in the parentheses
indicate the standard deviation.

Human
walking

Walking with
mild slip

Walking with
severe slip

1-step
CP

0.06
(0.033)

0.074
(0.038)

0.379
(0.102)

∞−step
CP

0.024
(0.028)

-0.174
(0.066) > 1.00

EICP 0.023
(0.029)

0.078
(0.041)

0.341
(0.057)

estimation results (Fig. 6.6) are more diverse than the stationary tasks, so we categorize

them into 4 different groups: un/under-actuated walkers, full-actuated walkers, human

walking and walking with mild slip, and human walking with sever slip (please refer to 4

different color codes in Fig. 6.6).

Un/under-actuated walkers. In both the CG and KGUA cases (Fig. 6.6 and Table 6.3),

∞−step CP and EICP estimate the step location (slightly) better than 1-step CP. For the

robots without ankle-actuation, the estimated CP-based step lengths are longer than the

simulated ones. The COM velocity of CG increases (Fig. 6.7) before stepping, which
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Figure 6.7: Normalized trajectories of COM, COM velocity, ICP, and EICP of the compass
gait robot (CG) with respect to the normalized time , before the step is made (i.e. at t̄ = 1.)
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moves like a free-swaying inverted pendulum.

On the other hand, the lack of considering the impact effect in calculating CPs could

be the cause of those errors: in the CP derivation, if the energy dissipation induced by

the foot strike is considered, the orbit energy in Eq. (6.11) should be smaller, which will

result in a CP with a smaller step length. Th step estimation of KGUA in Table 6.4 is also

over-estimated due to the same reason.

Fully-actuated walkers. For the fully-actuated robots (Fig. 6.6 and Table 6.3), the es-

timated step lengths are all shorter than the simulation ones. The main reason maybe

that instead of performing free-swaying motion as a LIPM with point foot, the ankle joint

torque dominantly contributes to the COM velocity in the flat-feet walking. The COM

velocity of KGFA as shown in Fig. 6.8 decreases before stepping, which indicates that the

ankle joint applies torque against the moving direction to modulate the COM velocity. Es-

timating the step location using EICP is better than∞−step CP in both KGFA and ZMP

cases and better than 1-step CP in the KGFA case. For the ZMP case, because the robot

walks at a really slow speed (0.2m/s), all CP-based estimation results are similar.
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Figure 6.8: Normalized trajectories of COM, COM velocity, ICP, and EICP of the kneed-
gait robot with actuated ankles (KGFA) with respect to the normalized time , before the
step is made (i.e. at t̄ = 1.)
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Human walking and walking with mild slip. The results shown in Figs. 6.6 and 6.9

and Table 6.4 indicate that both 1-step CP and EICP can estimate step length of human

walking and walking with mild slip quite well. There are several possible reasons. First,

human tends to utilize the passive dynamics while walking. As a result, the COM motion

acts more like a free-swaying inverted pendulum than the full-actuated robots (the COM

velocity in Fig. 6.9 is convex which is similar to the one in Fig. 6.7). Second, compared

to un/under-actuated robots (Fig. 6.7), the human ankle joint helps to modulate the COM

velocity, therefore the velocity profile (Fig. 6.9) in the beginning of a step (0.0 − 0.2 t̄)

is more similar to the full-actuated robot as shown in Fig. 6.8. Third, unlike un/under-

actuated robots, human tends to use foot-rolling motion to reduce the impact force and has

a smoother load transition (e.g. the duration of the double-support phase is not infinitesi-

mal). As a result, though the COM velocity in Fig. 6.9 still increases before stepping, the

foot-rolling motion helps to reduce the impact, which make the system closer to the LIPM

described in the CP-based methods.

0 0.2 0.4 0.6 0.8 1
t̄

-1

-0.5

0

0.5

1

1.5

˙̄xc: 0.599

COM
COM vel
ICP
EICP

Figure 6.9: Normalized trajectories of COM, COM velocity, ICP, and EICP of human
walking, before the step is made (i.e. at t̄ = 1.) The shaded areas indicate the regions
within a standard deviation.

Compared to 1-step CP and EICP, ∞−step CP has larger discrepancy on estimating
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Figure 6.10: The snapshot of human walking with severe slip occurred at the leading leg
(red) where the recovery step of the trailing leg (blue) was made behind the leading leg.

human walking with mild slip. A possible reason is that the normal step length is used as

lmax in Eq. (6.16) for the∞−step CP calculation due to the difficulty to determine the real

maximum reachable range of humans with different kinematic configurations and contact

conditions.

Human walking with severe slip. For estimating the foot placement for human walking

with severe slip (Fig. 6.6 and Table 6.4), none of the CP-based quantities estimated the

foot placement well. Fig. 6.10 shows a snapshot of the recovery step of a subject while the

severe slip occurred, which was the general stepping reaction among subjects. Instead of

making a step in front of the leading leg as the CP-based quantities suggested, the trailing

leg (the leg colored blue), in most of the cases stepped on a nearby location behind the

leading leg to reform the double support until the PHV decreased to an acceptable and

safer value. We also found that the value of∞−step CP calculated from Eq. (6.16) varied

a lot and is not practical to be used for estimating foot placement in human walking with

severe slip. The reason is that since in most of the cases the step time for severe slip is

really small, which makes the e−ωts close to 1 and thus the d∞ can easily diverge to an

infeasible value.
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6.5 Conclusion and Future Work

In this CP-based analysis, we checked the efficacy of CP-based step estimation for

different human tasks, including single step recovery, walking and walking with slip in

different severities. It was inferred that the CP-based step estimation could be a useful tool

for step estimation with certain modifications. Among the non-stationary and stationary

tasks, the following factors should be considered for the modified CP-based foot placement

estimation, which will be the future work: i) the effect of upper body motion, ii) the

velocity change due to impact, and iii) the weak estimation for human walking with severe

slip. In conclusion, the stepping location estimations using 1-step CP, ∞−step CP and

EICP could provide reasonable estimations for human single step recovery, walking, and

walking with mild slip. However, for walking with severe slip, CP-based method needs to

be improved further for better stepping location estimations.
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7. CONCLUSIONS

7.1 Summary

In this dissertation we present a series of works built upon different walking control

methods and algorithms – to improve bipedal walking in the three important perspec-

tives of human gait: predictive control, gait optimization towards robust and human-like

motion, and step estimation of human locomotion tasks based on stepping strategy. The

contributions are summarized in Section 1.5.

To improve the controller integration with model predictive control (MPC) and mit-

igate the model inconsistency between the simplified and full dynamic models, we de-

signed a novel framework to unify middle level control (the MPC for COM planning)

and low level control (QP-RES-CLF) which is capable of generating feasible walking gait

for bipedal robot AMBER 3. For the trajectory optimization, we studied and developed

several algorithms with direct collocation framework to improve the gait robustness and

locomotion with multi-domain towards to human-like walking. A new robust trajectory

optimization framework using step-time sampling was designed for simple walker under

terrain uncertainties. Its performance was validated by the simulations of the SLIP running

model, and the compass gait with time-varying LQR control. We improved the trajectory

optimization through contact with more accurate transcription (Hermite-Simpson method),

compared the generated level-walking gaits with different contact conditions and human

data, and conducted the preliminary experiment on bipedal robot AMBER 3. We also

generalized the contact constraints for HZD gait optimization, which enables the genera-

tion of multi-domain walking on flat ground, slopes and stairs. The generated results were

compared with the human data where the similar trends and the potential reasons for the

discrepancies were presented and discussed. In addition, we also studied the optimization
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sensitivity to randomized initial guesses for different terrains, which indicates the perfor-

mance of the optimization framework as well as the optimization difficulties of different

walking tasks. To get more understanding how humans choose their step location, we used

CP-based step estimation, which suggests capture point can be a promising method to es-

timate step location for step-recovery from standing, walking and walking with mild slip

(peak heel velocity < 1.44m/s).

7.2 Future Work

Towards to the ultimate goal, in order to contribute the control methods in bipedal

robotics to the lower-limb wearable robots and rehabilitation devices, the current devel-

oped control methods and algorithms in trajectory optimization and stepping strategy open

up several future directions for validations and extensions, which are listed below:

7.2.1 Trajectory Optimization

Experiment validations. With the generalized HZD gait optimization, it makes the mo-

tion planning of walking with multi-domain more tractable and easier to be adjusted with

different parameters and additional constraint sets. One immediate research direction will

be the experiment implementations on bipedal robot AMBER 3. In the premise that the

RBD model is accurate enough, studying the discrepancies between the optimized results

and the experiments will provide possible improving directions of the generalized HZD

gait optimization framework.

Moderate modifications of model from RBD. The current optimization results are gen-

erated from rigid body dynamics model. The next step is to incorporate important elastic

components existed in human body to the dynamic model, and use it to study their effect

to the walking gait generated from the optimization as a potential research direction for

both bipedal robotics and biomechanics.

Applications for lower-limb wearable robots. The current modified framework of gen-
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eralized HZD gait optimization also enables the application for wearable robots like lower-

limb prosthesis and exoskeleton, which can be achieved by replacing the AMBER 3 model

with a model of amputee with a lower-limb prosthesis, or a human model with a lower-

limb exoskeleton.

Gait library. With the capability of generating the walking gait for different terrain pro-

files, the generalized HZD gait optimization can be a potential tool to generate the key

trajectories for a gait library: A collection of the low-dimension descriptions of optimized

walking gaits (trajectories) within the range of specific gait parameters (e.g. the gait library

for different slope angles, or level walking with different step lengths/speeds). This can

be done by applying nonlinear regression to interpolate or extrapolate a new gait from the

key trajectories. In this way, the robot’s mobility can be improved by extending feasible

gaits for more selections of gait parameters.

7.2.2 CP-based Step Estimation

CP-based controller design for aperiodic prosthetic walking. With the analysis result,

one potential application is to design stepping controller for lower-limb prosthesis. Dif-

ferent from the approaches assumed the gait is periodic, this provides additional flexibility

for the user when stepping on specific footholds or moving in a short distance is required.

CP-based controller design for walking rehabilitation device. Another potential appli-

cation for CP-based method is to use it for the controller design of walking rehabilitation

devices (e.g. the sensory augmentation device introduced in [70].) The step estimation

potentially can be an useful indicator to warn the user when he/she reaches the state which

has infeasible step length (i.e. has the risk of fall), or to provide sensory cue to the user

for stepping on the proper location. It is also important to incorporate nonlinear model

extended from the LIPM to capture variable COM height and step impact so that the non-

linear dynamics can also be considered for more accurate step estimation.
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