Bane

/

I\

=y

Unimodal sequences and quantum and

mock modular forms

Jennifer Bryson®', Ken Ono®, Sarah Pitman®, and Robert C. Rhoades®

*Department of Mathematics, Texas A&M University, College Station, TX 77843; “Department of Mathematics, Emory University, Atlanta, GA 30322; and

‘Department of Mathematics, Stanford University, Stanford, CA 94305

Edited by* George E. Andrews, Pennsylvania State University, University Park, PA, and approved August 17, 2012 (received for review July 13, 2012)

We show that the rank generating function U(t; q) for strongly
unimodal sequences lies at the interface of quantum modular
forms and mock modular forms. We use U(-1; q) to obtain a quan-
tum modular form which is “dual” to the quantum form Zagier con-
structed from Kontsevich’s “strange” function F(q). As a result, we
obtain a new representation for a certain generating function for
L-values. The series U(i; q) = U(—i;q) is a mock modular form, and
we use this fact to obtain new congruences for certain enumerative
functions.

1. Introduction and Statement of Results
A sequence of integers {a;}$ , is a strongly unimodal sequence of
size n if it satisfies
O<a <a,<..<ap>ap 1 >ap,>...>a,>0

for some k and a, + ... + a; = n. Let u(n) be the number of such
sequences. The rank of such a sequence is s — 2k + 1, the number
of terms after the maximal term minus the number of terms that
precede it.

By letting ¢ (respectively, t~!) keep track of the terms after
(resp., before) a maximal term, we find that u(m, n), the number
of size n and rank m sequences, satisfies’

0

= Y u(m,n)t"q" =Y (~14:),(~17'4:9),q""'
m,n n=0

=q+@*+t+1+tNg + ..., [1.1]

(1 —=xq"") for n>1

where (x;q), = (1 —x)(1 —xq)(1 —xg?)--

and (x;q), =

Example: The strongly unimodal sequences of size 5 are: {5},
{1,4}, {4, 1}, {1,3,1}, {2, 3}, {3. 2}, and so u(5) = 6. Respec-
tively, their ranks are 0, -1,1,0, -1, 1.

The g-series U(—1;q), the generating function for the number
of size n sequences with even rank minus the number with odd
rank, is intimately related to Kontsevich’s strange function®

(@@, =1+0-q)+(1-9)(1-4%)

M8

F(q) =

n=0

+ (-1 =-¢g>)(1-¢*) +.... [12]
It is strange because it does not converge on any open subset of C,
but is well-defined at all roots of unity. Zagier (1) proved that this

function satisfies the even “stranger” identity

= _7an12 q”z;I’

where y,(e) = (12). Neither side of this identity makes sense si-
multaneously. Indeed, the right-hand side® converges in the unit
disk |g| < 1, but nowhere on the unit circle. The identity means

[1.3]

www.pnas.org/cgi/doi/10.1073/pnas.1211964109

that F(q) at roots of unity agrees with the radial limit of the right-
hand side.

We prove that U(—1;q), which converges in |g| < 1, also gives
F(g") at roots of unity.

Theorem 1.1. If g is a root of unity, then F(q™') = U(-1;q).

Example: Here are two examples: U(-1;—1) = F(-1) =3 and
U(-1;i) = F(—i) = 8 + 3i.

Remark: Theorem 1.1 is analogous to the result of Cohen (2, 3)
that o(q) = —c*(g~") for roots of unity g, for the well-known
g-series 6(q) and ¢*(g) that Andrews et al. (4) defined in their
work on partition ranks.

Zagier (1) used Eq. 1.3 to obtain the following identity:

%il-e (1—e)...(1—e™) Z ~<—)n, [1.4]

where Glaisher’s T,, numbers (see Eq. 2.3 and A002439 in ref. 5)
are the “algebraic factors” of L(),,2n + 2). As a companion to
Theorem 1.1, we use U(-1;q) to give these same L-values.

Theorem 1.2. As a power series in t, we have that

L & T, [—t\"
et Ut = 3 (3)

n=0
6f Z (2n +1)!

2 n!

=3\
“L(y;,2n+2) - (W)

n=0

These results are related to the next theorem, which gives a
new quantum modular form. Following Zagier' (3), a weight k
quantum modular form is a complex-valued function f on Q,
or possibly P!'(@)\ S for some finite set S, such that for all

y = (“%) € SL,(Z), the function

Iy () = £ () = e(y) (ex + d) (‘jj i Z)
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SAs Zagier points out in section 6 of ref. 1, the right-hand side of the identity is essentially
the “half-derivative” of Dedekind'’s eta-function, which then suggests that the series may
be related to a weight 3/2 modular object.

Zagier’s definition of a quantum modular form is intentionally vague with the idea that

sufficient flexibility is required to allow for interesting examples. Here, we modify his
defintion to include half-integral weights k and multiplier systems e(y).
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satisfies a “suitable” property of continuity or analyticity. The
€(y) are roots of unity, such as those in the theory of half-integral
weight modular forms when k € 1 Z\ Z. We prove that

P (x) = e s - U(—l;ez””‘) [1.5]

is a weight 2 quantum modular form. Because SL,(Z)=

2
(@ {) (O=h) and ¢(x) — e - p(x + 1) = 0, it suffices to consider
el The following theorem establishes the desired relationship
on the larger domain Q U H — {0}, where H is the upper-half of
the complex plane.

Theorem 1.3. If x € Q U H — {0}, then

P(x) + (=ix) 2(=1/x) = h(x),

where (ix)™2 is the principal branch and

By = Y3 [0
i(x 4 1))
i

27 0 (—
- 3
_ L (e2miv p2min)2 /’ n(t) dr.
2 0 it o)

Here, 1(t) = e™3(e?™;e?™)  is Dedekind’s eta-function. More-
over, taking n(x) =0forxeR h: R — Cisa C* function that
is real analytic everywhere except at x =0, and h"(0) =
(—mi/12)" - T, where T, is the nth Glaisher number.

Remark: Zagier (1) proved that e - F(e?™) is a quantum mod-
ular form. Theorem 1.3 gives a dual quantum modular form, one
whose domain naturally extends beyond Q to include H. This is
somewhat analogous to the situation for (g) and ¢ *(g) discussed
above. Zagier constructed a quantum modular form from these
g-series in example 1 of ref. 3.

Remark: Theorem 1.3 implies that ®(z) :=n(z)¢(z) behaves
analogously to a weight 2 modular form for SL,(Z) for z € H
with a suitable error function. Namely, ®(z + 1) = ®(z) and
®(z) — z72®(—1) = n(2)h(2); see also theorem 1.1 of ref. 6.

It turns out that U(1;q) and U(=i;q) also possess deep prop-
erties. We have that U(1;q) (7) is a mixed mock modular form,
and U(=i;q) is a mock theta function (see refs. 8-10). We use
these facts to study congruences for certain enumerative
functions.

Theorem 1.4. If 3 < £#23 (mod 24) is prime, 8(¢) = (£* —1)/24
and ¢k, then for all n

u(n+kt -35(¢))=0 (mod2).
Example: If ¢ = 7, then Theorem 1.4 gives u(49n + a) =0 (mod

2) for a € {5, 12, 19, 26, 33, 40}.

The nature of Theorem 1.4 suggests the existence of a Hecke-
type identity for U(—1;q) analogous to those obtained for c(q)
and o*(g) in ref. 4. Here we obtain such an identity.

Theorem 1.5. We have that

=X X -

n>0 6n>(6j+1|

+22 Z

n,m>06n>16j+1|

1)+ 2= 1671

]+I 2n% +mn— ](3”1)

16064 | www.pnas.org/cgi/doi/10.1073/pnas.1211964109

These congruences appear to have refinements modulo 4.
In analogy with the theory of partition ranks (11-13), we suspect
that ranks also “explain” these congruences. Namely, let
u(a, b;n) be the number of size n strongly unimodal sequences
with rank = a (mod b).

Conjecture 1.6.If £ =7, 11, 13, 17 (mod 24) is prime and (%) =—1,
then for all n we have

u(@n+kt -8(¢))=0 (mod4). [1.6]

Moreover; for a € {0, 1, 2,3} we have u(a, 4;¢*n + k¢ —8(¢)) =
0 (mod 2) and

u(0,4;:°n +kt —8(¢)) =u(2,4;,*n+ k£ —8(¢)) (mod4).

[1.7]

We have that u(1, 4;n) = u(3, 4;n), and so the truth of Eq. 1.7
is a proposed explanation of Eq. 1.6. Therefore, it is natural to
study U(=1;q) and the third-order mock theta function (14-16):

U(+isq) =¥(q) = i (q?;) = i"(—qz;qz)nf]"+l
’ n n=0

q (_l)nqﬁn(n+l)
=73 Z 1 — gt
(4%)e

nez

BN

Using this mock theta function, we are able to obtain the follow-
ing related congruences.

Theorem 1.7. If (Q, 6) = 1, then there are arithmetic progressions
An + B such that

u(0,4;An+ B) =u(2,4;An+ B) (mod Q).

Example:For O = 5, the cusp form in the proof of Theorem 1.7 is
annihilated by 7(112), and so if

a(24n —1) ==u(0,4;n) —u(2,4;n) (mod5)
[note. a(n) = 0 if n#23 (mod 24)], then for every n = 23,47

(mod 120) we have that

a(121n) — <1n—l)a(n) +a(n/121)=0 (mod5).

Because ({;) = 0 and a(n/121) = 0 when 11||n, this gives con-
gruences such as

u(0,2;73205n + 721) = u(2, 4;73205n + 721)  (mod5).

2. Quantum Properties of U(-1;q)

Here we prove the quantum properties of U(—1;q). We first
prove Theorem 1.1 relating the values of Kontsevich’s F(q)
and U(—1;q) at roots of unity. We then prove Theorem 1.2 giving
a new representation of Zagier’s L-value generating function,
and we conclude with a proof of Theorem 1.3.

2.1 Proof of Theorem 1.1: For € a fixed kth root of unity, define the
polynomial

Bryson et al.
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CX) =Y (X =) (X =),
n=0
We have the identity
CEX)=X-1DC(X)-X(XF-1)+X. [2.1]

Define the functions u,(X) for a > 1 by

(2= XFu, (7 X) = C(™X) = (1= X) %+ (1 =g~ VX)>C(X).
Hence, for a = k we have
X*C(X) = u(X). [2.2]
Then we have
(2= X (g1 (X) = uy(X)) = (1 - 8X)?(1 - £°X)*(C(E“X)
- (1 -g")2C(E1X)).
By Eq. 2.1, we have
CE'X)=(1-g"X)?CE™X) +gu.
Letting X = 1 gives 1, (1) — (1) = £971(1 = £) 20 (1 — £9)2,

Induction and Eq. 2.2 give

k=1
C(1) = Y &1 -5

n=0

(1-¢gm)2.

2.2 Proof of Theorem 1.2: By the results of Andrews et al. (6) (see
equation 9.2 and propositions 9.2 and 9.3) with g = ¢72%, we
have

00 qn+1 66(3_52) © 2

) =Y A = xe
,,z;)(q ha)s V3z )
smh(T"")

cos(mx) dx - (1+0(zY))

. Because we have

'(1+0(zY))

_ Zoo ‘1"
T &n=0 (g"q)3

for any positive N where v(q)

U(-1:q) = (:9)2qv(q) and (g:q)% = e86)z"
for any positive N, we have

«2 sinh(3)

qHU(10) = e S a1+ 06Y))

for any N. The Glaisher’s T-numbers are given by

sinh(*%) 2 T, imx 2n+1
cosh(m) 1 ;0 2n+ 1) (?) : 23]

We also have the identity

Azfe‘_dx (22].])‘<23)j\/§zf.

Combining these identities and then setting ¢t = 21z completes
the proof.

Bryson et al.

2.3 Proof of Theorem 1.3: Define G(z) :=
Theorem 1.1 of ref. 6 gives

e +i§.n<z>/_"°°—."“> .

z41))2 2mi : (—i(t+2))?
A

Note that using n(—1) =

(eanz 621:iz) U(_l;eZniz).

(o]

m~

= (\/:5)311(2)3 /0 (\/_—i;n(r))3(_z't)%r_2dr

= (milz+1)

_ (GO
- Zzn(z)z/o —(—i(z+r))%d' [2.5]

Similarly, we have
HEL I A (S = am
() [ G e

Combining Eqs. 2.4-2.6 gives

G(2) —z—ZG(—l) _¥ e Aiw%dr

z 2mi

Dividing by 1(z) and using its modular transformation property
give the result for x € H.

For x € Q, note that (e?*;¢2™)_ = 0. Moreover, Zagier, in
the discussion after the theorem of section 6 of ref. 1, explains
how the integral [$°n(z)(z +x) ~dz is real analytic for real x.

3. Congruence Properties and the Hecke-Type Identity

We first prove Theorem 1.4 on the parity of u(n), and we
then prove Theorem 1.5 giving the Hecke-type identity for
U(-1;q). We then conclude this section with the proof of
Theorem 1.7.

3.1 Proof of Theorem 1.4: By theorem 1 of ref. 14 (see Eq. 1.2), we
have that

an24n

N "'(1+C1)q2 S
o (e e

n=1 n=
1)" 1 2+n
+2 Z - .

If spt(n) is the smallest parts partition function of Andrews, then
by theorem 4 of ref. 17 we have:

U(-1;q) =
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= Y spt(n)q
n=0
L (x4 = (1) (1 + g ))
= + .
(4:9)os <nz;(1 -q")? z; (1-q")°
We have used the elementary fact that
00 nqn
Zqu Z =21_ —. [3.1]
n=1 din o 4
We have U(-1;q) = S(g) (mod 2), and so the theorem follows

from theorem 1.2 in ref. 18!l

3.2 Proof of Theorem 1.5: We prove Theorem 1.5 using the method

of Bailey pairs. As usual, we let (a), = (a;q),. Two sequences
(o, Bn) form a Bailey pair for a if
n
o,
Bn = -
Z:; (@)n-r(aq) 4,
n(n )
(1 —ag¥)(a), (-1 . .
(xn - (1 _ [l) Z aq q) ﬁj'

n ]:0

The following Bailey pair is central to the proof of Theo-
rem 1.5.

Lemma3.1. If B, =1 and oy = 1 and for n >0

+i )

- _aiG=)
a = (1=g*)g*" "( mq : )
i=

then (o, B,) is a Bailey pair with respect to 1.

Proof: We apply theorem 8 of ref. 19 with §,, = 1 for all n. By
letting b, ¢, d — 0, and then letting a = 1, one obtains the lemma.
Some care is required for the j =0 and j =1 terms.

The following is Bailey’s Lemma (for example, see ref. 19).

Lemma 3.2. (Bailey’s Lemma). If o, and B, form a Bailey pair re-
lative to a, then

(P)n(p2)nlaq/pip2)"
2 (ag/p)n(agl/ps), "

n>0 )
o

— D80 R) 55), (5s) aa/p1ps)
& ® n>0

1

Proof of Theorem 1.5: By Lemma 3.2 with p, =x, p, =x~! and

a =1, Lemma 3.1 gives

DD Dl
2 nl " =T T

X - a,.
Z (1 —xq™) x‘lq") O

n>1

Dividing by (1 —x)(1 —x~!) and collecting the n = 0 terms give

ITheorem 1.2 in ref. 18 is not stated correctly in ref. 18. One must replace pm? by p***m?
where ged(p, m) = 1. Recent work by Andrews et al. (23) gives a new proof of this result.

16066 | www.pnas.org/cgi/doi/10.1073/pnas.1211964109

1
Xy 7' @)@ =
; n—1 n—1 (1 —x)(l —x 1)
: <(xq)oo(flq)w _ 1) CMCRTIN
(@) @)e
X Q.
r; (1 —xq") l—x‘lq") %
[3.2]
To simplify the o,, we have that
1 —g¥-! 1 1+q/+1+qf"
(I-g)(1-¢"") 2 \1-¢/ 1-¢"')
which in turn implies that
i i — g% ) qiw:l.qu.q,ﬂ_(_l)n
l—q/ (1—gi 1) 2 1-¢q 2
l+q" _ntn-1) 1S ]+1 3G sigen 1 — g3
: = (1 i —
g 2; +a)aT T S —
Thus, oy = 1, and for n > 1 we have
3n(n-1)
_ 2 1/1+q 5 (=1)"(1+4")q =
—(1=- 2n\ ,2n%-n q- . 3
o, =(1-g"")q ( q+2(1_qq + =g’
n—1 it
+ 3 (=D (14+¢7)(1+¢7+q7)g ™ )))
j=2
=(1-g*)g>” ( ”Z ) (14+q7)g ™
3n(n-1)
—1)" ——5—+n
=D - )
l-g
2n\ ,2n%-n < j+1 (e n ny )
=(1-¢"")q > (=g )+ (=) (14+q")q
Jj=—n+1
) n-l . JG3j+1) nlnt1)
(=g (B D) )
j=—n
We note that
1 -1 n
lim _ ((xfz)m(x2 Do _ 1) _ a
S0\ (@2 Zi(1-q")
n+1 n(n+1)(1 +q")
= Z )2 .
n>0

Now, insert these facts in Eq 3.2, let x —» 1, and use the iden-
tlty 1+q =1+ 22m>lq

3.3 Proof of Theorem 1.7: We give a sketch because it is analogous
to theorem 1.5 of ref. 12 and theorem 1 of ref. 20. We have

(u(0,4;n) —u(2,4;n))q",

M

U(+i:q) = ¥(q) =

n=0

where ¥(q) is one of Ramanujan’s third-order mock theta func-
tions. We have that ¢ ~'¥(g>*) is the holomorphic part of a weight
1/2 harmonic Maass form whose shadow is a unary theta func-
tion. Using quadratic and trivial twists modulo Q, one obtains
a weight 1/2 weakly holomorphic modular form. By work of

Bryson et al.
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Treneer (21), one obtains weakly holomorphic forms of half-in-
teger weight that are congruent to cusp forms modulo Q. By the
Shimura correspondence, we obtain even integer weight cusp
forms, which by lemma 3.30 of ref. 22 are annihilated modulo
Q by infinitely many Hecke operators 7' (p). Because the Shimura
correspondence is Hecke equivariant, it follows that infinitely
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many half-integral weight Hecke operators T(p?) annihilate
these cusp forms modulo Q. The proof follows from the formula
for the action of these operators.
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