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Abstract
Gene expression as an intermediate molecular phenotype has been a focus of research in-

terest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise

for understanding gene regulation through the discovery of genetic variants that explain var-

iation in gene expression levels. Existing eQTL methods are designed for assessing the ef-

fects of common variants, but not rare variants. Here, we address the problem by

establishing a novel analytical framework for evaluating the effects of rare or private variants

on gene expression. Our method starts from the identification of outlier individuals that

show markedly different gene expression from the majority of a population, and then reveals

the contributions of private SNPs to the aberrant gene expression in these outliers. Using

population-scale mRNA sequencing data, we identify outlier individuals using a multivariate

approach. We find that outlier individuals are more readily detected with respect to gene

sets that include genes involved in cellular regulation and signal transduction, and less likely

to be detected with respect to the gene sets with genes involved in metabolic pathways and

other fundamental molecular functions. Analysis of polymorphic data suggests that private

SNPs of outlier individuals are enriched in the enhancer and promoter regions of corre-

sponding aberrantly-expressed genes, suggesting a specific regulatory role of private

SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show lit-

tle evidence of involvement. Additional data suggest that non-genetic factors may also un-

derlie aberrant gene expression. Taken together, our findings advance a novel viewpoint

relevant to situations wherein common eQTLs fail to predict gene expression when herita-

ble, rare inter-individual variation exists. The analytical framework we describe, taking into

consideration the reality of differential phenotypic robustness, may be valuable for investi-

gating complex traits and conditions.

Author Summary

The uniqueness of individuals is due to differences in the combination of genetic, epigenet-
ic and environmental determinants. Understanding the genetic basis of phenotypic
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variation is a key objective in genetics. Gene expression has been considered as an interme-
diate phenotype, and the association between gene expression and commonly-occurring
genetic variants in the general population has been convincingly established. However,
there are few methods to assess the impact of rare genetic variants, such as private SNPs,
on gene expression. Here we describe a systematic approach, based on the theory of multi-
variate outlier detection, to identify individuals that show unusual or aberrant gene expres-
sion, relative the rest of the study cohort. Through characterizing detected outliers and
corresponding gene sets, we are able to identify which gene sets tend to be aberrantly ex-
pressed and which individuals show deviant gene expression within a population. One of
our major findings is that private SNPs may contribute to aberrant expression in outlier
individuals. These private SNPs are more frequently located in the enhancer and promoter
regions of genes that are aberrantly expressed, suggesting a possible regulatory function of
these SNPs. Overall, our results provide new insight into the determinants of inter-individ-
ual variation, which have not been evaluated by large population-level cohort studies.

Introduction
The advent of high-throughput genotyping and sequencing technologies enables a comprehen-
sive characterization of the genomic and transcriptomic landscapes of each individual. Deci-
phering the massive data points associated with individuals presents a major challenge [1, 2].
Over the last couple of years, eQTL analyses have provided in-depth insights into the effect of
genetic variation on regulating gene expression [3–6]. More recently, research has also focused
on the contribution of genetic variation on the variance of gene expression [7–9].

The analytical frameworks adopted by most eQTL studies have historically been based on
population-level test statistics, which are powerful for establishing associations between com-
monly-occurring genetic variations and gene expression. However, few frameworks or statistics
are available for assessing the impacts of rare genetic variants to gene expression (except, for
example, [10]). The problem is further exacerbated by the fact that individual gene expression
is a function of both genetic and non-genetic (such as epigenetic and environmental) factors,
as well as their combined action. Our failure to detect the effects of rare variants with large ef-
fects in biological samples, along with the inherent difficulty in dissecting the complex factors
influencing gene expression will hinder efforts to define and prioritize relevant variants and
impede the development of improved personalized diagnostic and therapeutic options.

Here, we envision an alternative approach based on the theory of multivariate outliers to ad-
dress these technical challenges. More specifically, we measure how any two individuals differ
in their expression profiles and quantify these differences with respect to a set of genes between
individuals. Based on the expression differences, we detect outlier individuals whose expression
profiles are so divergent from those of others in the population that the divergence cannot be
explained by random sampling variation alone. Many methods of outlier detection have been
developed. The most commonly used of these methods, such as those based on the estimation
of the location and scatter of the data points or the quantiles of the data, are more applicable to
univariate than multivariate settings. In practice, however, phenotypic traits are associated
with changes of multiple genes in biological pathways and molecular networks, more often
than single gene alterations. Reliably identifying outliers in such a multivariate setting is a chal-
lenging problem—unlike the simpler case of univariate outlier detection, simple graphical diag-
nostic tools like the boxplot often lack statistical power when the analysis of more than one
dimension is attempted [11].

Aberrant Gene Expression in Humans

PLOS Genetics | DOI:10.1371/journal.pgen.1004942 January 24, 2015 2 / 20

of Higher Education of China (Nos. 20120121120038
and 20130121130004), and the Fundamental
Research Funds for the Central Universities in China
(Xiamen University: Nos. 2013121025, 201412G009,
and CBX2014007). The TwinUK study was funded by
the Wellcome Trust; European Community’s Seventh
Framework Programme (FP7/2007–2013). The study
also received support from the National Institute for
Health Research (NIHR) Clinical Research Facility at
Guy’s & St Thomas’ NHS Foundation Trust and NIHR
Biomedical Research Centre based at Guy’s and St
Thomas’ NHS Foundation Trust and King’s College
London. SNP Genotyping was performed by The
Wellcome Trust Sanger Institute and National Eye
Institute via NIH/CIDR. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



To this end, we adapted the multivariate outlier method that allows simultaneous evaluation
of expression data with respect to many dimensions derived from multiple genes. With this
method, even though there is no natural ordering of multivariate data on which “extremeness”
of an observation can be ascertained, outliers showing markedly different data profile can be
detected. Using a framework based on this approach, we specifically address the following re-
search questions: Are there any differences between the functional properties of genes tending
to (or tending not to) be aberrantly expressed? Is aberrant expression population-specific?
What are the roles of genetic and non-genetic factors in aberrant expression? Do common or
rare genetic variants contribute to aberrant expression? Our overall results clearly demonstrate
that outliers, while often considered as error or noise, do carry important biologically-relevant
information. Thus, the careful characterization of the genetic bases underlying the markedly
different expression profiles of outlier samples is both worthwhile and necessary. Accurate de-
scription of inter-individual expression differences requires the incorporation of the effects of
both common and rare regulatory genetic variants.

Results

Study overview
The main results of our study comprise three parts. The first part concerns the identification of
sets of functionally related genes whose expression discrepancies among individuals are signifi-
cantly greater (or smaller) than those of random gene sets. The second part concerns the iden-
tification of outlier individuals whose expression profiles with respect to gene sets are
significantly divergent from those of others in the population. The third part concerns the un-
covered evidence that private SNPs contribute to aberrant expression in outlier individuals.

Data analysis in the first two parts relied on a metric of statistical distance that can quantify
the dissimilarities between individuals in the expression levels of gene sets, rather than single
gene. To this purpose, we adaptedMahalanobis distance (MD), a multivariate metric that can
be used to measure the dissimilarity between two vectors [12]. Key features of MD are illustrat-
ed in Fig. 1, which shows a hypothetical example of MD, compared to the simple Euclidean dis-
tance. Here, the expression levels of two genes are correlated and the Euclidean distance is not
an appropriate measure of distance between data points (or individuals). MD, on the other
hand, accounts for the correlation through estimating the covariance matrix from the observa-
tions, making MD a more appropriate distance statistic. With a given gene set (e.g., the two
genes of the hypothetical example), we can calculate MDi for N individuals under consider-
ation (i = 1 to N). Each MDi is the multivariate distance from the individual i to the population
mean, with the correlation between expression profiles of individuals captured by the inter-in-
dividual expression covariance. In Fig. 1A, the top three data points with largest MDi are la-
beled with 1, 2, and 3, while the Euclidean distances from these data points to the population
mean are not the largest. With MDi of each individual, we can calculate the sum of squared
MDi (SSMD). SSMD summarizes the overall distribution of MDi across individuals for the
gene set. The squaring operation puts more weight on larger MDi values of outlier individuals.
Gene sets with larger SSMD are more likely to contain genes that are aberrantly expressed by
outlier individuals. Thus, comparing SSMD values of gene sets, we can identify sets of genes
that tend to (or tend not to be) aberrantly expressed (i.e., Part 1 of the main results).

The outlier individuals can be identified with ordered MDi. To do so, we used the tool for
multivariate outlier recognition, chi-square plot [13]. As seen in Fig. 1B, the three data points
with the largest MDi are recognized as outliers. These data points, as shown in Fig. 1A, are the
most remote observations with the largest MDi to the population mean. None of the three data
points would otherwise be identified as outliers by using Euclidean distance. More important,
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none of them would otherwise be identified as outliers if we used any univariate approach.
This is because that, when the two genes are considered separately, the expression levels of ei-
ther gene in the three individuals are in the “normal” range. Finally the purpose of identifying
outlier individuals is to study the genetic basis of aberrant expression of genes in outliers. That
is to say, once the outlier individuals are identified, the genetic variation associated with outlier
individuals can be further analyzed to see what kinds of genetic variation contribute to aberrant
expression (i.e., Part 2 of the main results).

Gene sets (L-SSMD) that tend to be aberrantly expressed
We started by identifying gene sets that are more likely to be aberrantly expressed. We obtained
the expression data matrix of 10,231 protein-coding genes in 326 lymphoblastoid cell lines
(LCLs) of European descent (EUR) from the Geuvadis project RNA-seq study [3]. We used
SSMD to measure the total deviation of expression profiles from all individuals to the popula-
tion mean for gene sets. We computed SSMD for all gene sets with fewer than 150 expressed
genes in the Molecular Signatures Database (MSigDB) [14] and the GWAS catalog [15].

We identified 31 MSigDB gene sets whose SSMD values were significantly larger than those
of random control gene sets that contain the same number of genes randomly selected from all
expressed genes (Bonferroni corrected P< 0.01, permutation test) (Table 1). These 31 gene
sets, containing 1,855 distinct genes that are more likely to be aberrantly expressed in defined
outlier individuals. We named these gene sets and genes L-SSMD gene sets and genes. Fig. 2
shows one of L-SSMD gene sets, G-protein coupled receptor activity, which contains 94 genes.
In addition, eight GWAS catalog gene sets showed relatively large SSMD (P< 0.001, permuta-
tion test), though not significant following Bonferroni correction. These sets included genes
implicated in adverse responses to chemotherapy, conduct disorder, fasting insulin-related
traits, metabolite levels, obesity, retinal vascular caliber, temperament, or thyroid hormone lev-
els (S1Table).

Outlier individuals in L-SSMD gene sets
To identify outlier individuals, we applied chi-square plot to examine MD values of all individ-
uals with respect to each of the 31 L-SSMD gene sets. We identified 17 distinct outliers in total,
11 of which were found in more than one gene set, and almost all gene sets had more than one

Figure 1. MD-basedmultivariate outlier detection. (A) Scatter plot for the expression levels of two hypothetical genes. Three outliers indicated with red
stars have the largest MD values to the population mean. (B) The chi-square plot showing the relative position and order of the three outlier data points,
compared to those of non-outlier data points.

doi:10.1371/journal.pgen.1004942.g001

Aberrant Gene Expression in Humans

PLOS Genetics | DOI:10.1371/journal.pgen.1004942 January 24, 2015 4 / 20



T
ab

le
1.

G
en

e
se

ts
th
at

te
n
d
to

b
e
ab

er
ra
n
tl
y
ex

p
re
ss

ed
in

L
C
L
s
o
f
E
u
ro
p
ea

n
d
es

ce
n
t.

G
en

e
se

t
#
o
f
g
en

es

C
2:

cu
ra
te
d
g
en

e
se

ts
(C

h
em

ic
al

an
d
g
en

et
ic

p
er
tu
rb
at
io
n
s,

R
ea

ct
o
m
e
g
en

e
se

ts
)

1.
A
IG

N
E
R
_Z

E
B
1_

T
A
R
G
E
T
S

G
en

es
up

-r
eg

ul
at
ed

in
M
D
A
-M

B
-2
31

ce
lls

(b
re
as

tc
an

ce
r)
af
te
r
kn

oc
kd

ow
n
of

Z
E
B
1
[G

en
eI
D
=
69

35
]b

y
R
N
A
i

28
/3

5

2.
C
A
F
F
A
R
E
L_

R
E
S
P
O
N
S
E
_T

O
_T

H
C
_8

H
R
_3

_U
P

G
en

es
up

-r
eg

ul
at
ed

in
E
V
S
A
-T

ce
lls

(b
re
as

tc
an

ce
r)
tr
ea

te
d
w
ith

3
m
ic
ro
m
ol
ar

T
H
C
(d
el
ta
-9
-t
et
ra
hy

dr
oc

an
na

bi
no

l)
[P
ub

C
he

m
=
66

10
31

9]
fo
r
8

h.

5
/5

3.
G
A
U
S
S
M
A
N
N
_M

LL
_A

F
4_

F
U
S
IO

N
_T

A
R
G
E
T
S
_E

_U
P

U
p-
re
gu

la
te
d
ge

ne
s
fr
om

th
e
se

tE
(F
ig
.5

a)
:s

pe
ci
fi
c
si
gn

at
ur
e
sh

ar
ed

by
ce

lls
ex

pr
es

si
ng

ei
th
er

M
LL

-A
F
4
[G

en
eI
D
=
42

97
;4
29

9]
or

A
F
4-
M
LL

fu
si
on

pr
ot
ei
ns

al
on

e,
an

d
th
os

e
ex

pr
es

si
ng

bo
th

fu
si
on

pr
ot
ei
ns

.

76
/9

7

4.
H
O
F
M
A
N
N
_M

Y
E
LO

D
Y
S
P
LA

S
T
IC
_S

Y
N
D
R
O
M
_R

IS
K
_U

P
G
en

es
up

-r
eg

ul
at
ed

in
bo

ne
m
ar
ro
w
he

m
at
op

oi
et
ic
st
em

ce
lls

(H
S
C
,C

D
34

+
[G

en
eI
D
=
94

7]
)
fr
om

pa
tie

nt
s
w
ith

hi
gh

ris
k
of

m
ye

lo
dy

sp
la
st
ic
sy
nd

ro
m

(M
D
S
)
co

m
pa

re
d
to

th
e
lo
w
ris

k
pa

tie
nt
s.

19
/2

4

5.
IW

A
N
A
G
A
_C

A
R
C
IN
O
G
E
N
E
S
IS
_B

Y
_K

R
A
S
_U

P
C
lu
st
er

3:
ge

ne
s
up

-r
eg

ul
at
ed

in
lu
ng

tis
su

e
sa

m
pl
es

fr
om

m
ic
e
w
ith

tu
m
or
-

be
ar
in
g
ge

no
ty
pe

s
(a
ct
iv
at
ed

K
R
A
S
[G

en
eI
D
=
38

45
]a

lo
ne

or
to
ge

th
er

w
ith

in
ac

tiv
at
ed

P
T
E
N
[G

en
eI
D
=
57

28
])
.

14
1
/1

70

6.
LE

IN
_C

H
O
R
O
ID
_P

LE
X
U
S
_M

A
R
K
E
R
S

G
en

es
en

ric
he

d
in

ch
or
oi
d
pl
ex

us
ce

lls
in

th
e
br
ai
n
id
en

tifi
ed

th
ro
ug

h
co

rr
el
at
io
n-
ba

se
d
se

ar
ch

es
se

ed
ed

w
ith

th
e
ch

or
oi
d
pl
ex

us
ce

ll-
ty
pe

sp
ec

ifi
c

ge
ne

ex
pr
es

si
on

pa
tte

rn
s.

79
/1
03

7.
LI
E
N
_B

R
E
A
S
T
_C

A
R
C
IN
O
M
A
_M

E
T
A
P
LA

S
T
IC
_V

S
_D

U
C
T
A
L_

D
N

G
en

es
do

w
n-
re
gu

la
te
d
be

tw
ee

n
tw
o
br
ea

st
ca

rc
in
om

a
su

bt
yp

es
:m

et
ap

la
st
ic

(M
C
B
)
an

d
du

ct
al

(D
C
B
).

77
/1

14

8.
LI
U
_P

R
O
S
T
A
T
E
_C

A
N
C
E
R
_U

P
G
en

es
up

-r
eg

ul
at
ed

in
pr
os

ta
te

ca
nc

er
sa

m
pl
es

.
79

/9
6

9.
M
A
S
R
I_
R
E
S
IS
T
A
N
C
E
_T

O
_T

A
M
O
X
IF
E
N
_A

N
D
_A

R
O
M
A
T
A
S
E
_I
N
H
IB
IT
O
R
S
_U

P
G
en

es
up

-r
eg

ul
at
ed

in
de

riv
at
iv
es

of
M
C
F
-7
ar
o
ce

lls
(b
re
as

tc
an

ce
r)
th
at

de
ve

lo
pe

d
re
si
st
an

ce
to

ta
m
ox

ife
n
[P
ub

C
he

m
=
53

76
]o

r
in
hi
bi
to
rs

of
ar
om

at
as

e
(C

Y
P
19

A
1)

[G
en

eI
D
=
15

88
].

11
/2

0

10
.

M
IK
K
E
LS

E
N
_M

E
F
_I
C
P
_W

IT
H
_H

3K
27

M
E
3

G
en

es
w
ith

in
te
rm

ed
ia
te
-C

pG
-d
en

si
ty

pr
om

ot
er
s
(I
C
P
)
be

ar
in
g
th
e
tr
i-

m
et
hy

la
tio

n
m
ar
k
at

H
3K

27
(H

3K
27

m
e3

)
in

M
E
F
ce

lls
(e
m
br
yo

ni
c

fi
br
ob

la
st
s)
.

11
5
/2

06

11
.

P
E
P
P
E
R
_C

H
R
O
N
IC
_L

Y
M
P
H
O
C
Y
T
IC
_L

E
U
K
E
M
IA
_D

N
G
en

es
do

w
n-
re
gu

la
te
d
in

C
D
38

+
[G

en
eI
D
=
95

2]
C
LL

(c
hr
on

ic
ly
m
ph

oc
yt
ic

le
uk

em
ia
)
ce

lls
.

11
/2

1

12
.

P
O
T
T
I_
E
T
O
P
O
S
ID
E
_S

E
N
S
IT
IV
IT
Y

G
en

es
pr
ed

ic
tin

g
se

ns
iti
vi
ty

to
et
op

os
id
e
[P
ub

C
he

m
=
36

46
2]
.

37
/4

3

13
.

Q
I_
P
LA

S
M
A
C
Y
T
O
M
A
_D

N
D
ow

n-
re
gu

la
te
d
ge

ne
s
th
at

be
st

di
sc
im

in
at
e
pl
as

m
ab

la
st
ic
pl
as

m
ac

yt
om

a
fr
om

pl
as

m
ac

yt
ic
pl
as

m
ac

yt
om

a
tu
m
or
s.

85
/1

00

14
.

R
E
A
C
T
O
M
E
_C

G
M
P
_E

F
F
E
C
T
S

G
en

es
in
vo

lv
ed

in
cG

M
P
ef
fe
ct
s

15
/1

9

15
.

R
E
A
C
T
O
M
E
_L

IG
A
N
D
_G

A
T
E
D
_I
O
N
_C

H
A
N
N
E
L_

T
R
A
N
S
P
O
R
T

G
en

es
in
vo

lv
ed

in
Li
ga

nd
-g
at
ed

io
n
ch

an
ne

lt
ra
ns

po
rt

6
/2

1

16
.

V
A
N
H
A
R
A
N
T
A
_U

T
E
R
IN
E
_F

IB
R
O
ID
_U

P
G
en

es
up

-r
eg

ul
at
ed

in
ut
er
in
e
fi
br
oi
ds

vs
no

rm
al

m
yo

m
et
riu

m
sa

m
pl
es

.
39

/4
5

17
.

W
U
_C

E
LL

_M
IG

R
A
T
IO

N
G
en

es
as

so
ci
at
ed

w
ith

m
ig
ra
tio

n
ra
te

of
40

hu
m
an

bl
ad

de
r
ca

nc
er

ce
lls
.

14
3
/1

84

C
3:

m
o
ti
f
g
en

e
se

ts
(m

ic
ro
R
N
A
ta
rg
et
s)

18
.

T
C
C
A
G
A
G
,M

IR
-5
18

C
T
ar
ge

ts
of

M
ic
ro
R
N
A
T
C
C
A
G
A
G
,M

IR
-5
18

C
13

2
/1

48

C
4:

co
m
p
u
ta
ti
o
n
al

g
en

e
se

ts
(c
an

ce
r
m
o
d
u
le
s,

ca
n
ce

r
g
en

e
n
ei
g
h
b
o
rh
o
o
d
s)

19
.

M
O
D
U
LE

_1
22

G
en

es
in

th
e
ca

nc
er

m
od

ul
e
12

2
11

1
/1

41

20
.

M
O
D
U
LE

_2
15

G
en

es
in

th
e
ca

nc
er

m
od

ul
e
21

5
3
/1

5

21
.

M
O
D
U
LE

_2
74

G
en

es
in

th
e
ca

nc
er

m
od

ul
e
27

4
44

/8
2

22
.

M
O
R
F
_B

C
L2

L1
1

N
ei
gh

bo
rh
oo

d
of

B
C
L2

L1
1

12
3
/1

88

23
.

M
O
R
F
_M

Y
L3

N
ei
gh

bo
rh
oo

d
of

M
Y
L3

44
/7

1

(C
on

tin
ue

d
)

Aberrant Gene Expression in Humans

PLOS Genetics | DOI:10.1371/journal.pgen.1004942 January 24, 2015 5 / 20



T
ab

le
1.

(C
on

tin
ue

d
)

G
en

e
se

t
#
o
f
g
en

es

C
5:

G
O

g
en

e
se

ts
(G

O
b
io
lo
g
ic
al

p
ro
ce

ss
,G

O
m
o
le
cu

la
r
fu
n
ct
io
n
)

24
.

E
X
T
R
A
C
E
LL

U
LA

R
_L

IG
A
N
D
_G

A
T
E
D
_I
O
N
_C

H
A
N
N
E
L_

A
C
T
IV
IT
Y

G
en

es
an

no
ta
te
d
by

th
e
G
O

te
rm

G
O
:0
00

52
30

.C
at
al
ys
is
of

th
e

tr
an

sm
em

br
an

e
tr
an

sf
er

of
an

io
n
by

a
ch

an
ne

lt
ha

to
pe

ns
w
he

n
a
sp

ec
ifi
c

ex
tr
ac

el
lu
la
r
lig
an

d
ha

s
be

en
bo

un
d
by

th
e
ch

an
ne

lc
om

pl
ex

or
on

e
of

its
co

ns
tit
ue

nt
pa

rt
s.

14
/2

2

25
.

G
_P

R
O
T
E
IN
_C

O
U
P
LE

D
_R

E
C
E
P
T
O
R
_A

C
T
IV
IT
Y

G
en

es
an

no
ta
te
d
by

th
e
G
O

te
rm

G
O
:0
00

49
30

.A
re
ce

pt
or

th
at

bi
nd

s
an

ex
tr
ac

el
lu
la
r
lig
an

d
an

d
tr
an

sm
its

th
e
si
gn

al
to

a
he

te
ro
tr
im

er
ic
G
-p
ro
te
in

co
m
pl
ex

.T
he

se
re
ce

pt
or
s
ar
e
ch

ar
ac

te
ris

tic
al
ly
se

ve
n-
tr
an

sm
em

br
an

e
re
ce

pt
or
s
an

d
ar
e
m
ad

e
up

of
he

te
ro
-
or

ho
m
od

im
er
s.

94
/1

91

26
.

T
R
A
N
S
M
IS
S
IO

N
_O

F
_N

E
R
V
E
_I
M
P
U
LS

E
G
en

es
an

no
ta
te
d
by

th
e
G
O

te
rm

G
O
:0
01

92
26

.T
he

se
qu

en
tia

l
el
ec

tr
oc

he
m
ic
al

po
la
riz

at
io
n
an

d
de

po
la
riz

at
io
n
th
at

tr
av

el
s
ac

ro
ss

th
e

m
em

br
an

e
of

a
ne

rv
e
ce

ll
(n
eu

ro
n)

in
re
sp

on
se

to
st
im

ul
at
io
n.

10
8
/1

89

C
6:

o
n
co

g
en

ic
si
g
n
at
u
re
s

27
.

M
E
L1

8_
D
N
.V
1_

D
N

G
en

es
do

w
n-
re
gu

la
te
d
in

D
A
O
Y
ce

lls
(m

ed
ul
lo
bl
as

to
m
a)

up
on

kn
oc

kd
ow

n
of

P
C
G
F
2
[G

en
eI
D
=
77

03
]g

en
e
by

R
N
A
i.

10
4
/1

48

C
7:

im
m
u
n
o
lo
g
ic

si
g
n
at
u
re
s

28
.

G
S
E
19

82
5_

N
A
IV
E
_V

S
_D

A
Y
3_

E
F
F
_C

D
8_

T
C
E
LL

_U
P

G
en

es
up

-r
eg

ul
at
ed

in
co

m
pa

ris
on

of
na

iv
e
C
D
8
T
ce

lls
ve

rs
us

ef
fe
ct
or

C
D
8

T
ce

lls
.

12
8
/2

00

29
.

G
S
E
19

82
5_

N
A
IV
E
_V

S
_I
L2

R
A
LO

W
_D

A
Y
3_

E
F
F
_C

D
8_

T
C
E
LL

_U
P

G
en

es
up

-r
eg

ul
at
ed

in
co

m
pa

ris
on

of
na

iv
e
C
D
8
T
ce

lls
ve

rs
us

ef
fe
ct
or

C
D
8

IL
2R

A
[G

en
eI
D
=
35

59
]l
ow

T
ce

lls
at
.

13
3
/2

00

30
.

G
S
E
39

82
_N

K
C
E
LL

_V
S
_T

H
2_

U
P

G
en

es
up

-r
eg

ul
at
ed

in
co

m
pa

ris
on

of
N
K
ce

lls
ve

rs
us

T
h2

ce
lls
.

13
6
/2

00

31
.

G
S
E
85

15
_C

T
R
L_

V
S
_I
L6

_4
H
_S

T
IM

_M
A
C
_D

N
G
en

es
do

w
n-
re
gu

la
te
d
in

co
m
pa

ris
on

of
un

tr
ea

te
d
m
ac

ro
ph

ag
es

ve
rs
us

th
os

e
tr
ea

te
d
w
ith

IL
6
[G

en
eI
D
=
35

69
].

14
4
/2

00

T
he

na
m
es

of
ge

ne
se

ts
an

d
M
S
ig
D
B
su

bc
la
ss
es

ar
e
gi
ve

n.
N
um

be
r
(#
)
of

ge
ne

s
sh

ow
s
th
e
nu

m
be

r
of

ge
ne

s
in
cl
ud

ed
in

S
S
M
D
co

m
pu

ta
tio

n
an

d
th
e
nu

m
be

r
of

ge
ne

s
in

th
e

or
ig
in
al

ge
ne

se
t.

do
i:1
0.
13
71
/jo
ur
na
l.p
ge
n.
10
04
94
2.
t0
01

Aberrant Gene Expression in Humans

PLOS Genetics | DOI:10.1371/journal.pgen.1004942 January 24, 2015 6 / 20



outlier. The distributions of outliers in the gene sets are given in S1 Fig Fig. 2 shows that three
outliers were detected in the L-SSMD gene set, G-protein coupled receptor activity, using chi-
square plot.

Gene sets (S-SSMD) that tend not to be aberrantly expressed
Fourteen gene sets with significantly smaller SSMD (S-SSMD) were identified (Bonferroni cor-
rected P< 0.01, Table 2). The S-SSMD genes (n = 534) in the 14 S-SSMD gene sets are involved
in homologous recombination repair of replication-independent double-strand breaks, cataly-
sis of the transfer of a phosphate group to a carbohydrate substrate molecule, or cell cycle con-
trol. GWAS gene sets implicated in alcohol dependence and metabolic syndrome showed
significantly smaller SSMD than random gene set (S1 Table).

Validation of L- and S-SSMD gene sets
We evaluated the power of SSMD as a statistic describing the propensity of a gene set for aber-
rant expression. We considered the influences of the sample size (n) and the size of gene set
(m). In cases where the SSMD are insensitive to n orm, the power would be maintained when
n orm changes. However, we found that the power dropped substantially when n dropped
from 326 to 300 or whenm dropped from 37 to 31, suggesting that SSMD is sensitive to both n
andm (Fig. 3A, B). This might be due to that only a small number of genes in the gene set test-
ed that were expressed aberrantly in few individuals, and the power analyses form and n were
based on the sub-sampling of genes and individual samples, respectively (Materials and
Methods).

Nevertheless, owning to the sensitivities, it was necessary to validate our results of identified
L- and S-SSMD gene sets, which were obtained using the Geuvadis LCL expression data [3].
We validated our results by taking into consideration three factors: (1) the robustness against
the influence of data normalization methods, (2) the replicability against technical variability,
and (3) the reproducibility against independent expression data of different tissues.

The “original” Geuvadis expression data we used to identify L- and S-SSMD gene sets had
been normalized by using the algorithm of probabilistic estimation of expression residuals
(PEER) [16, 17]. We first showed that the PEER normalization algorithm did not change our
results. To do so, we downloaded the “raw” Geuvadis expression data quantified in reads per

Figure 2. Gene expression profiles and outlier detection in the gene set, G-protein coupled receptor activity. (A) The expression profiles of 326 EUR
samples for 94 genes in the gene set. The expression profile of the outlier individual with the largest SSMD is outlined in red. (B) The chi-square plot showing
three outliers, as highlighted with the star symbol. (C) The null distribution of SSMD established from 1,000 permutations of 94 randomly selected genes. The
red vertical line indicates the observed value of SSMD computed for the original gene set.

doi:10.1371/journal.pgen.1004942.g002
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kilobase per million (RPKM) without PEER normalization. Two replicate sets of raw RPKM
data were available for most of the Geuvadis samples. We therefore used each set independent-
ly to test the significance of SSMD for L- and S-SSMD gene sets against random control sets.
The procedure was similar to what we used for establishing the original L- and S-SSMD gene
sets. Briefly, for each L- or S-SSMD gene set, we tested whether the SSMD computed with raw
RPKM data tended to be larger or smaller than that of random gene sets. The observed SSMD
was compared against SSMD values computed from 1,000 replicates of randomly selected
genes and the significance was evaluated by examining how many times the observed SSMD
was larger or smaller than random SSMD. As expected, with the original (PEER normalized)
expression data, all 31 L-SSMD gene sets had a larger SSMD than sets of randomly selected
genes, while all 14 S-SSMD gene sets had a smaller SSMD. The same patterns were recovered
with the raw RPKM expression data (Fig. 3C). These results indicated that our results for L- or
S-SSMD gene sets were robust against the normalization methods and the technical variability.

In addition, we used independent gene expression data from tissues different from LCL to
validate our results. We obtained the expression data of whole blood and muscle (in 156 and
138 samples, respectively) from the pilot study of the Genotype-Tissue Expression project
(GTEx) [18]. We re-computed SSMD using the GTEx data and conducted the same validation
tests. With GTEx data, the frequency of observed SSMD greater than random SSMD was sig-
nificantly higher for L-SSMD gene sets than S-SSMD gene sets (Kolmogorov-Smirnov [K-S]
test, P = 1.02e-5 and 9.9e-4, for whole blood and muscle, respectively, Fig. 3C). These results
suggested that gene sets tending to have larger observed SSMD in LCL were more likely to have
larger SSMD in the other two tested tissues, or vice versa. The consistency in the direction of
SSMD patterns validates the biological significance of L- and S-SSMD gene sets.

Differences in aberrant expression between Europeans and Africans
Next we examined which gene sets show strong population-specific SSMD. For a given gene
set, we first computed MDi with the gene expression data for all 402 samples of both European
(EUR, n = 326) and African (AFR, n = 76) ancestries. We then use these MDi to compute
SSMDEUR and SSMDAFR for EUR and AFR samples, respectively, and calculated the difference
in SSMD between them: diffSSMDEUR-YRI = SSMDEUR-SSMDAFR. To assess the significance,
we computed diffSSMDrand by randomly assigning samples without regard to their identities of
original populations. For each gene set, we computed 1,000 permutations of diffSSMDrand to

Figure 3. Power of SSMD test and validation of significant L- and S-SSMD gene sets. (A) The change of power as a function of sample size. (B) The
change of power as a function of the size of a gene set. (C) Validation of significant L- and S-SSMD gene sets using different expression data. Original:
Geuvadis LCL expression data normalized using PEER (i.e., data used for the main results); Rep1: first set of replication of Geuvadis LCL expression data
without PEER normalization; Rep2: second set of replication of Geuvadis LCL expression data without PEER normalization; Whole blood: GTEx whole blood
expression data; and Muscle: GTEx muscle expression data. The boxplot shows the frequency of observed SSMD is greater than the control SSMD of 1,000
random replicates.

doi:10.1371/journal.pgen.1004942.g003
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obtain the null distribution of expected diffSSMDEUR-YRI. We compared the value of diffSSM-
DEUR-YRI with the null distribution to obtain its significance.

We used two random sets of genes (n = 20 and 40) to show that the values of diffSSMD were
proportional to gene set size and changed linearly with the ratio by which the total samples
were partitioned into two sub-groups (Fig. 4A). In the test, we ignored the EUR and AFR an-
cestries of samples. We randomly shuffled the 402 samples, partitioned them to two sub-
groups with different ratios (such as, 201/201 or 326/76), and computed the diffSSMD between
the two sub-groups. We repeated this 1,000 times per ratio to obtain null distributions of
diffSSMD. We found that, regardless of gene set size, when samples were partitioned into
groups of equal size (i.e., 201/201), the average diffSSMD was close to zero. When samples were
partitioned unequally, the average value of diffSSMD increased with the degree of inequality in
a linear manner. When the ratio of partition was fixed (e.g., 326/76, the actual sample ratio of
EUR and AFR), the average diffSSMD reflected the size of the gene set (e.g., twice as large for
the 40-gene set as the 20-gene set). When both the ratio of partition and the gene set was fixed,
as we did in the real test for each gene set, the values of null diffSSMD fluctuated only due to
the random assignment of samples into the two sub-groups. Similarly, in our significance test
for diffSSMDEUR-YRI, both the gene set size and the ratio of partition (=326/76) were fixed, and
the null distribution of diffSSMD, diffSSMDrand, was constructed from 1,000 random repeats of
the partition of shuffled samples. An observed diffSSMDEUR-YRI was considered to be signifi-
cant when it was greater or smaller than all values of diffSSMDrand.

In total, 231 gene sets showed significantly smaller diffSSMDEUR-YRI than diffSSMDrand in
our analysis (S2 Table). For these gene sets, the differences between SSMDEUR and SSMDAFR

were relatively smaller than those differences calculated when EUR and AFR individuals were
randomly assigned. This was likely caused by the relatively large SSMDAFR in real data. In
other words, AFR samples were more likely to produce disproportionally larger SSMD than
EUR samples.

In contrast, only four gene sets showed the opposite pattern—that is, for these genes,
diffSSMDEUR-YRI was significantly larger than diffSSMDrand. Genes in these four sets included:
(1) genes involved in the process preventing the degeneration of the photoreceptor

Figure 4. Change of diffSSMD as a function of the ratio between partitioned samples and the power of diffSSMD test under varying sample size.
(A) The change of diffSSMD as a function of the size ratio of partitioned samples. The results with respect to two gene sets of size 20 and 40 are shown. For
each ratio of partition, the distribution of diffSSMDrand were constructed from 100 randomly shuffled samples. (B) The change of the power of the diffSSMD
test between EUR and AFR populations for the population-specific effect as a function of the size of EUR samples. The red line is fitted by using polynomial
regression with the cubic model.

doi:10.1371/journal.pgen.1004942.g004
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(a specialized cell type that is sensitive to light), (2) genes down-regulated in prostate tumor
(a tumor with distinct signatures differentiate between African-American and European-
American patients [19]), (3) genes associated with malignant fibrous histiocytoma tumors, and
(4) genes up-regulated in colon tissue upon the knockout ofMBD2, a methyl-CpG binding
protein that mediates the methylation signal.

Finally, the power analysis for diffSSMDEUR-YRI was conducted using the first gene set
among the four with significantly larger diffSSMDEUR-YRI. The result suggested that the differ-
ence in sample size between EUR and AFR had little impact on the sensitivity of asserting that
the tested gene set was significant. As shown in Fig. 4B, when the EUR were subsampled from
326 to 76 (the sample size of AFR), the power of diffSSMD only slightly decreased.

Genetic and non-genetic factors contributing to aberrant expression
To evaluate the contributions of genetic or non-genetic factors in causing aberrant expression,
we utilized three statistical metrics to characterize L- and S-SSMD genes and compared the
properties of the two groups of genes (Materials and Methods). The three metrics are: (1) the
discordant gene expression, measured as the relative mean difference in gene expression, be-
tween twin pairs, considering both monozygotic (MZ) and dizygotic (DZ) twins [9]; (2) the
narrow-sense heritability (h2) of gene expression [20]; and (3) the coefficient of variation (CV)
of single-cell gene expression [21].

The discordant expression between twin pairs in L-SSMD genes is greater than that in S-
SSMD genes (P = 2.8e-15 between MZ pairs and 3.0e-34 between DZ pairs; K-S test, Fig. 5A).
The more pronounced discordant expression between MZ pairs for L-SSMD genes, compared
to S-SSMD genes, is likely due to the effect of environmental factors. L-SSMD genes may have
increased sensitivity to environmental factors. On the other hand, regardless of L- or S-SSMD
genes, the discordant expression is always greater between DZ pairs than between MZ pairs.
This suggests that genetic diversity increases the level of discordance in gene expression. The
difference is more pronounced for L-SSMD genes (P = 5.6e-23 and 5.4e-6 for L- and S-SSMD
genes, respectively; S3 Table).

L-SSMD genes tend to have a smaller h2 than S-SSMD genes (P = 3.6e-5, K-S test, Fig. 5B).
Similar results were obtained with different h2 estimates (e.g., those using data from another
twin cohort [22] and those using data from unrelated individuals [23]). Furthermore, L-SSMD
genes showed greater expression variability at the single-cell level than S-SSMD (P = 7.7e-21,

Figure 5. Differences in expression discordance, heritability and variability between L- and S-SSMD genes. (A) Normalized mean discordant
expression (measure as the relative mean difference, RMD) per gene. (B) Heritability of gene expression. (C) Coefficient of variation of single-
cell expression.

doi:10.1371/journal.pgen.1004942.g005
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K-S test, Fig. 5C). Forty genes were found to be shared between L-SSMD and S-SSMD groups.
Excluding these overlapping genes did not qualitatively change any results described above.

Common regulatory variation is not responsible for aberrant expression
To evaluate the contribution of eQTLs to aberrant expression, we obtained 419,983 cis-acting
eQTL SNPs (eSNPs) associated with 13,703 genes from a previous study [3]. We found that
20.3% of L-SSMD genes and 19.3% of S-SSMD genes have cis-eSNP(s). That is to say, there is
no difference in cis-eSNP existence between L- and S-SSMD genes (P = 0.67, Fisher’s exact
test). Due to the prevalence of eSNPs, this result was not unexpected.

Next we set out to examine whether outlier individuals are more likely to have an eQTL ge-
notype that might explain their outlier status. In particular, we calculated the genotype-scaled
effect size (β = jβj�genotype, where genotype = {0,1,2}, to take into account of the direction of
the effect) for all cis-eSNPs of associated genes in L-SSMD gene sets for outlier individuals.
Multiple eSNPs in the same genes were treated independently and the values of genotype-
scaled effect sizes calculated were pooled together as βoutlier. We did the same calculation for
the same sets of genes for all non-outlier individuals and obtained βnon-outlier.

We hypothesized that if cis-eSNPs cause the outlier’s gene expression level to deviate away
from the population mean, then the genotype-scaled effect size of these eSNPs in outlier indi-
viduals should be less likely to be zero and more likely to be larger than that of non-outlier indi-
viduals. However, we found that 45.3% of βoutlier (n = 24,649, pooling from 63 outlier-gene
pairs, i.e., pairs of outlier individual and gene in corresponding gene sets) and 46.2% of
βnon-outlier (n = 3,329,296, pooling from 309 outlier-gene pairs) were zeros. There was no differ-
ence between the two fractions (P = 0.086, χ2 test). Considering that this result might be affect-
ed by the uncontrolled linkage disequilibrium between eSNPs, we re-performed the analysis
using only the most significant eSNP per gene. With such a single-eSNP setting, we found that
9.49% of βoutlier (n = 875, pooling from 63 outlier-gene pairs) and 10.58% of βnon-outlier
(n = 118,965, pooling from 309 outlier-gene pairs) were zeros. Again, there was no difference
between the two fractions (P = 0.3448, χ2 test). Furthermore, with only the most significant cis-
eSNP per gene, we found that the distribution of nonzero βoutlier was similar to that of nonzero
βnon-outlier (K-S test, P = 0.67, Fig. 6).

These results suggest that eSNPs, as commonly-occurring regulatory genetic variants, may
not be responsible for aberrant expression of genes under their regulation.

Private variants may be responsible for aberrant expression
We resorted to examining whether private SNPs are responsible for aberrant expression. We
tested whether private SNPs are enriched in regulatory regions of L-SSMD genes in outlier in-
dividuals. The SNP density was calculated by pooling SNPs, which are private to each outlier
individual, in 1Mb cis-regulatory regions of L-SSMD genes. Based on the ENCODE annota-
tions [24], the regulatory regions were divided into seven subclasses, namely, E (predicted en-
hancer), TSS (predicted promoter region including TSS), T (predicted transcribed region), PF
(predicted promoter flanking region), CTCF (CTCF-enriched element), R (predicted repressed
or low-activity region), and WE (predicted weak enhancer or open chromatin cis-regulatory
element).

We found that the density of private SNPs in E regions of L-SSMD genes in outlier
individuals was significantly higher than that in the same E regions in non-outlier individuals
(P< 0.001, one-tailed t test). The density was also significantly higher than that derived from
three additional control settings, including the reconstructed E regions from the locations
10 Mb away from genes, and randomly selected L-SSMD or S-SSMD genes (Materials and

Aberrant Gene Expression in Humans

PLOS Genetics | DOI:10.1371/journal.pgen.1004942 January 24, 2015 12 / 20



Methods). In summary, we randomly selected individuals or genes in a total of four different
manners to construct the control scenario, from which the private SNP density was calculated
and compared with the observed density. The most salient finding was that for the E regions,
the observed density of private SNPs in L-SSMD genes was significantly higher than any of the
controls (Table 3). In addition, we also found that, for TSS, the density is significantly higher
than three controls (P< 0.001, one-tailed t test). These results are consistent with the findings
of a previous study, which also focused on the effects of rare variant on causing outlier expres-
sion [25]. The rest of the region classes showed less significant enrichment or similar levels of
the density (Table 3). For illustrative purpose, two private SNPs, rs189458147 and
rs117086221, located in E region of PMAIP1 and TSS region of NEIL1 are depicted (S2 Fig).

Discussion
We have used MD as a measure of distance between two points in the space defined by two or
more correlated variables to quantify the deviation of individuals’ gene-set expression to the
population mean. This quantity allowed us to identify outliers. The sum of the quantity across
individuals (i.e., SSMD) allowed us to assess how likely a gene set is to be aberrantly expressed
in outlier individuals. As expected, genes involved in fundamental molecular functions and
metabolic pathways are unlikely to be aberrantly expressed, showing a small SSMD. In con-
trast, genes in the gene sets with large SSMD tend to be involved in regulation of cellular pro-
cesses and modulation of signal transduction (see Table 1). Notably, three gene sets with large
SSMD have GO definitions: (1) extracellular ligand gated ion channel activity, (2) G-protein
coupled receptor activity, and (3) transmission of nerve impulse. G-protein coupled receptors
constitute a large protein family of receptors that sense molecules outside the cell and activate
inside signal transduction pathways, implicated in various human diseases and development
processes [26–28].

Widespread genetic regulatory variants have been uncovered by eQTL analyses. Most
eQTLs are detected based on linear regression between genotype and gene expression level.

Figure 6. Distributions of nonzero effect size β of cis-eSNPs of L-SSMD genes in outlier and non-outlier individuals. The effect size β is genotype-
weighted (i.e., β =jβj*genotype, where genotype={0,1,2}).

doi:10.1371/journal.pgen.1004942.g006
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The inherent limitation of this method is that only commonly-occurring regulatory genetic
variants will be discovered. Our analysis of cis-acting eQTLs in gene sets suggests that the ob-
served patterns of expression are unlikely to be related to commonly-occurring regulatory ge-
netic variation. The fact that eQTLs are less likely to be responsible for aberrant expression of
genes under their regulation underscores the technical limitation of the eQTL method in deal-
ing with gene expression regulation in outliers.

Instead we discovered that private SNPs are likely to be responsible for aberrant expression.
Our results suggest that private SNPs are significantly enriched in enhancer and promoter re-
gions of aberrantly-expressed genes. This is in agreement with the findings of [25], in which
Montgomery and colleagues reported the identification of the signal of rare SNPs underlying
large changes in gene expression by calculating whether individuals with outlier array expres-
sion values are enriched for rare genetic variants. They used Z-score as a measurement of how
far the observed value is from the mean of the sample. They found that individuals with gene
expression Z-score� 2 have an excess of rare variants within 100 kb of the transcription start
site. The signal was found to be statistically significant for rare variants landing in highly con-
served sites [25]. Taken together, results from both studies suggest that rare or private SNPs
contribute to the large changes in gene expression. Awareness of this effect is important as it
means that a rare genetic variant, even only seen in an individual genome, could potentially be
regulating the expression of the phenotype to an extreme extent relative to the population
mean. This makes sense because the recent explosion of human population size has created
abundances of rare variants [29]. These variants, segregating in single individuals or only in
small groups of people, have not been subject to the test of natural selection, and thus can po-
tentially have stronger functional consequences. They may underlie aberrant gene expression
and may also underlie susceptibility to complex diseases. Therefore, the individual bearing pri-
vate SNPs causing aberrant gene expression might be an interesting model of phenotypes rele-
vant to the function of the aberrantly-expressed gene. Otherwise, on the population level, the
variants may bear little relevance to the phenotypes.

Intrinsic properties of gene sets are defined not only by descriptive functions of genes they
include but also several measurable genetic metrics. Combined use of these metrics has

Table 3. Density of private SNPs in ENCODE regulatory regions of L-SSMD genes.

Density of private SNP (per million bp)

Abbreviation Description Observed (#/Mb) Control 1 Control 2 Control 3 Control 4

E Predicted enhancer 2.07 (308/149) 1.54* 1.41* 1.76* 1.73*

TSS Predicted promoter region including transcription start site 1.91 (408/214) 1.51* 1.23* 1.45* 1.82

CTCF CTCF enriched element 1.89 (213/113) 1.71* 1.34* 1.56* 1.79

T Predicted transcribed region 2.00 (4184/2092) 1.79* 1.52* 1.83 1.92

PF Predicted promoter flanking region 1.79 (94/53) 1.46* 1.33* 1.69 1.96

R Predicted repressed or low activity region 1.88 (10152/5400) 1.72* 1.45* 1.68* 1.79

WE Predicted weak enhancer or open chromatin cis regulatory
element

1.93 (102/53) 1.59* 1.63* 2.15 2.00

UNCL Unclassified region 1.64 (833/508) 1.41* 0.84* 1.53 1.60

The symbol * indicates the SNP density in the corresponding control regions is significantly lower than that in the test regions of the outlier. The

significance is assessed by one-tailed t test at the level of P = 0.001. Control 1: randomly selected non-outlier individuals to replace outlier individuals.

Control 2: randomly selected genomic region that locate 10 Mb away from L-SSMD genes. Control 3: select randomly shuffled L-SSMD genes to the

same amount of original gene set. Control 4: select randomly shuffled S-SSMD genes to the same amount of original gene set.

doi:10.1371/journal.pgen.1004942.t003
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demonstrated the contribution of both genetic and environmental factors to aberrant expres-
sion. First, twin data facilitated the dissection of the contributions of genetic and non-genetic
factors. The discordance in gene expression is expected to be larger between pairs of dizygotic
(DZ) twins than between pairs of monozygotic (MZ) twins, as the phenotypic difference be-
tween DZ pairs may result from both genetic and environmental effects. We indeed observed
the difference between MZ and DZ in discordant expression as expected, and to the same ex-
tent for both genes tending to and tending not to be aberrantly expressed. This result suggests
that genetic diversity increases overall expression variability. More importantly, we found that
the discordant expression in MZ pairs for genes tending to be aberrantly expressed is greater
than that for genes that tend not to be aberrantly expressed. This result suggests that under the
same genetic background, aberrantly expressed genes are more likely to be sensitive to the
change of environmental factors than non-aberrantly expressed genes. Second, heritability is a
dimensionless measure of the weight of genetic factors in explaining the phenotypic variation
among individuals [30–32]. We showed that genes with small SSMD have a higher narrow-
sense heritability of gene expression than genes with large SSMD. Third, we detected that genes
tending to be aberrantly expressed have a higher expression variability at the single-cell level
than genes tending not to be aberrantly expressed. This result suggests that intrinsic single-cell
expression contributes to aberrant expression.

In summary, we leveraged the 1,000 genomes RNA-seq data to identify aberrant gene ex-
pression in humans, and described a multivariate framework for detecting aberrantly-express-
ed gene sets and outlier individuals, offering a new way of measuring inter-individual variation
in gene expression. This novel perspective on how to measure differences in gene expression
between individual human subjects may provide important clues into the mechanisms of
human adaptation, and may also be helpful for the arising field of personalized medicine.

Materials and Methods

Geuvadis RNA-seq data
We downloaded gene expression data produced by the Geuvadis project RNA-seq study [3]
from the website of EBI ArrayExpress via accessions E-GEUV-1 and E-GEUV-3. The samples
included 462 unrelated human LCLs from the EUR (CEU, FIN, GBR, TSI) and YRI popula-
tions, most of which had been sequenced in the 1000 Genome Project Phase 1. The expression
data were normalized by using the algorithm of probabilistic estimation of expression residuals
(PEER) [3, 17, 33]. To minimize the impact of unspecific sources on measurement of individu-
al’s expression, principal component analysis (PCA) was applied to the full expression matrix.
Based on the PCA results, 19 EUR individuals with unusual global expression profiles relative
to the rest of individuals in the population were excluded due to potential technical artifacts
(S3 Fig). We also excluded individuals whose genotype information was unavailable in the
1000 Genome Project Phase 1, resulting in a total of 402 remaining samples (326 EUR and
76 AFR).

Annotated gene sets
Gene sets were downloaded fromMSigDB v4.0 [14]. The MSigDB gene sets had been divided
into seven groups: C1—positional gene sets (n = 326), C2—Curated gene set (n = 4,722),
C3—motif gene (n = 836), C4—Computational gene sets (n = 858), C5— GO gene sets
(n = 1,454), C6—oncogenic signatures (n = 189), and C7—immunologic signatures
(n = 1,910). The annotated gene sets of the NHGRI GWAS Catalog [15] were obtained from
http://www.genome.gov/gwastudies (accessed April 2014).
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Robust MD calculation
To calculate MD, the correlation between the expression profiles of individuals was captured
by the inter-individual expression covariance, Covab. For expression E between any two individ-
uals a and b, Covab is computed as:

Covab ¼
Xm

k¼1
ðEak � maÞðEbk � mbÞ

m� 1
;

wherem is the number of genes in the gene set under study, and µa and µb are the mean gene
expression values for individuals a and b, respectively. Given all pair-wise comparisons of indi-
viduals we obtained the inter-individual covariance matrix Cov. We employed the minimum
covariance determinant (MCD) estimator [34] to compute a robust version of Cov, as imple-
mented in the Matlab toolbox LIBRA [35]. We then computed the MD for each individual as

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi� � m~ÞTCov�1ðEi� � m~Þ

q
;

where m~ism length vector of the per-gene mean values across all individuals.

The statistic SSMD ¼
X

MD2
iwas calculated for each set. To approximate the empirical

null distributions for SSMD, we applied resampling for gene sets with different numbers of
genes, ranging from 2 to 150. For a given number of genesm, we randomly sampledm genes
from the full expression matrix without replacement, and then computed SSMD for the resam-
pled gene set. The procedure was repeated 1,000 times for all gene sets. More permutations
were performed for significant gene sets until the desired Bonferroni correction level P = 0.01
was either achieved or rejected. The resampling process breaks correlation structure between
genes, hence providing a background distribution of expected random distribution of SSMD.
We compared the SSMD in the observed gene set to equally-sized sets drawn at random from
all assayed genes.

The chi-square plot was plotted as the I ranked MD value against the values of χ2(p,m),
where p = (i-0.5)/I andm is the number of genes in the gene set. The right panel of Fig. 1 is the
chi-square plot that supports the multivariate outliers identified [13]. A chi-square plot draws
the empirical distribution function of the square of the MD against the χ2 distribution with de-
gree of freedom equal tom. A break in the tail of the χ2 distribution is an indicator for outliers
[36], given that the square of the MD is approximately distributed as a χ2 distribution [13, 37].

Power analysis for SSMD test
To evaluate the sensitivity of SSMD as a statistic for detecting L-SSMD gene set, power analyses
were conducted. One selected L-SSMD gene set, POTTI_ETOPOSIDE_SENSITIVITY, was
used as the test set. The impacts of sample size (n) and the size of gene set (m) were considered.
The selected L-SSMD gene set contained 37 genes, that is,m = 37, while the sample size n =
326. The original expression data matrix was subsampled by lowering either n orm. For each
subsampled n orm value, 100 random replicates of expression data matrix were constructed.
The SSMD was computed for each subsampled replicate and the significance of the observed
SSMD was assessed by permutation tests, as described above for detecting L-SSMD gene sets.
The more sensitive is SSMD to n orm, the less would subsampled replicates remain significant
as an L-SSMD.
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Discordant expression, heritability, and single-cell gene expression
To compute the discordant expression of genes between twin pairs, twinsUK gene expression
data from the study of [22] were acquired. The discordant expression, i.e., the expression differ-
ences between each pair of twins, was measured as done previously [9]. Briefly, for each gene,
the relative mean difference (RMD) in expression between MZ twin pairs and between DZ
twin pairs was computed. For a pair of MZ twins, i, for example, the RMD was computed

using RMDi ¼ jyMZ1
i �yMZ2

i j
2�y i

, where �yi is the arithmetic mean of the levels of gene expression for

that MZ twin pair (designated as yMZ1
i and yMZ2

i ). For each gene, the data from all MZ or DZ

twin pairs were pooled to compute the mean RMD per gene, 1
n

X
RMDi, where n is the num-

ber of twin pairs. The computed mean RMD per gene was normalized by the value computed
in the same way but with the expression data reconstructed by randomly assigning the identi-
ties of twin pairs. The values of narrow-sense heritability (h2) of gene expression were obtained
from the study of [20]. The different estimates of h2 were also obtained from the studies of [22]
and [23]. The single-cell gene expression levels measured in 42 LCLs were acquired from the
study of [21].

Effect size of common eSNPs
The absolute value of slope coefficient (jβj) of the linear regression model was used as the mea-
sure of the effect size of each eSNP. The gene expression levels across individuals were normal-
ized using Z-score to make the values of β uncorrelated with the total gene expression levels.
The sign of β was ignored because it is only relative against the genotypes of each eSNP, which
were denoted by 0 for homozygous major alleles, 1 for heterozygous alleles, and 2 for homozy-
gous minor alleles. Instead, an eSNP’s effect direction was determined by whether the eSNP
causes gene expression to shift away from or towards the mean gene expression for the majori-
ty of individuals in the populations. In this sense, the notation of genotypes (0,1,2) provided
the information of effect direction for eSNP. If an individual’s eSNP genotype is 0, then the ef-
fect of the eSNP is to maintain the same expression level for the eSNP-regulated gene between
outlier individuals and the majority of individuals in the population; on the other hand, if the
eSNP’s genotype is 1 or 2, then the effect of the eSNP is to either increase or decrease (depend-
ing on the sign of the slope) the expression of the gene by one or two times of jβj than that of
genotype 0. Therefore, the effect size was weighted by the genotype: β = jβj�genotype. The ge-
notype-scaled effect size was used in the comparison of the combined eSNP effects between
outlier and non-outlier individuals.

Density of private SNPs in regulatory regions of L-SSMD genes
Both heterozygous and homozygous private SNPs, with allele frequency of 1/(2N) and 1/N, re-
spectively, for each individual (where N is the number of individuals), were counted. The cis-
regions of tested genes were split into seven subclasses of regulatory regions, according to the
combined chromatin state segmentation of the ENCODE GM12878 sample [24]. The density
of private SNPs in each subclass of the regions was assessed for enrichment significance by
comparing the observed density with that of randomly generated control regions. To provide
comprehensive controls, four different means were used to construct control regions: (1) ran-
domly selected non-outlier individuals to replace outlier individuals, (2) randomly selected ge-
nomic regions located 10 Mb away from L-SSMD genes, (3) randomly selected shuffled
L-SSMD genes in the same amount of original gene set, and (4) shuffled S-SSMD genes in the
same amount of original gene sets.
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Supporting Information
S1 Fig. Distribution of outliers in corresponding gene sets. The 63 outliers (involving 17 dis-
tinct individuals) with respect to the 31 L-SSMD gene sets, detected by using chi-square plot,
are highlighted with shaded box. The indexes of L-SSMD gene sets are given and their names
are given in Table 1 of the main text.
(PDF)

S2 Fig. Private SNPs located in ENCODE E (predicted enhancer) and TSS (predicted tran-
scribed region) regions of corresponding L-SSMD genes. (A) Rs117086221 is located in the
TSS region of gene NEIL1 in the individual NA12154. (B) Rs189458147 locates in the potential
E region of gene PMAIP1 in the individual HG00122.
(PDF)

S3 Fig. PCA with global gene expression data assists the removal of outliers. (A) A total of
19 outliers removed. They are: HG00099, HG00329, HG00125, NA12004, NA07051,
HG00358, NA12399, HG00280, NA20502, NA07346, NA20792, NA12340, NA12716,
NA12342, NA12842, NA20785, NA12044, NA12058, and NA07347 from populations of GBR,
FIN, GBR, CEU, CEU, FIN, CEU, FIN, TSI, CEU, TSI, CEU, CEU, CEU, CEU, TSI, CEU,
CEU, and CEU, respectively. (B) PCA result after the outliers are removed.
(PDF)

S1 Table. GWAS gene sets that tend to be aberrantly expressed in LCLs of European de-
scent.
(PDF)

S2 Table. Gene sets with significant diffSSMD = SSMDEUR-SSMDYRI.
(PDF)

S3 Table. P-values of Kolmogorov-Smirnov test for the normalized relative mean difference
(RMD) between “L-SSMD” and “S-SSMD” genes in monozygotic (MZ) and dizygotic (DZ)
twins.
(PDF)
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