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We study the dynamics of a two-level system driven by an off-resonant few-cycle pulse which has a
phase jump φ at t = t0, in contrast to many cycle pulses, under non rotating-wave approximation
(NRWA). We give a closed form analytical solution for the evolution of the probability amplitude
|Ca(t)| for the upper level. Using the appropriate pulse parameters like phase-jump φ, jump time t0,
pulse width τ , frequency ν and Rabi frequency Ω0 the population transfer, after the pulse is gone,
can be optimized and for the pulse considered here, enhancement of 106 − 108 factor was obtained.
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Modern pulsed lasers produce bursts of light that are
both ultra-short and ultra-strong, exhibiting durations
comparable to those of molecular vibrations, and electric
fields rivaling those near an atomic nucleus [1]. Attosec-
ond lasers, emitting pulses with only a few optical cycles
per pulse [2], hold the promise of controlling the phase
difference between the carrier wave and its envelope[3].

The interaction between strong, broadband electro-
magnetic fields and atoms, especially laser radiation that
is tuned far from resonance, is of current interest. Short
pulses can excite coherence on high-frequency transitions
that may be used for efficient generation of XUV radia-
tion [4–6]. Shaped pulses can enhance transient popula-
tion of the excited state [7] or create optimal coherence
in TLS [8]. Recently we have found a new analytical
solution describing the dynamics of a two-level atom un-
der the action of laser radiation with an arbitrary pulse
shape and polarization [9]. Furthermore, we have stud-
ied two mechanisms of atomic excitation: multi-photon
excitation, and breaking of adiabaticity [4], and we have
shown [10] that the latter can be the more efficient.

Interaction of such ultrashort pulses with a two-level
atom under rotating-wave approximation does not give
us the complete picture since the variation of the atomic
polarization and population within the optical cycle is
not slow. Thus we should not neglect the contribution
of the counter-rotating terms in the Hamiltonian while
studying few cycle pulses interaction with atomic sys-
tems [11–18]. On the other hand if the fields are not too
strong and the variation of the atomic polarization and
population within the optical cycle is slow, RWA appears
to be a good approximation.

In this Brief report we studied the interaction of few-
cycle pulses, in contrast to many cycle pulses [19–21],
with two-level system. These pulse have a phase jump
φ at t = t0. Thus they can be characterized by the pa-
rameters peak Rabi frequency Ω0, pulse width τ , carrier
frequency ν, phase jump φ and jump moment t0 along
with the pulse envelope ( which we have considered gaus-
sian for the numerical simulation). We present an ana-
lytical solution for this problem. Using the appropriate
characterizing parameters, the population transfer, can

be optimized and for the pulse considered here, enhance-
ment of 106 − 108 factor was obtained [see Fig. 5(b)].

The equation of motion for the probability amplitudes
for the states |a〉 and |b〉 of a two-level atom (TLA) in-
teracting with a classical field is given as [22]

Ċa = i
℘E(t)

~
cos(νt)eiωtCb, (1a)

Ċb = i
℘∗E(t)

~
cos(νt)e−iωtCa, (1b)

where ~ω is the energy difference between two levels,
℘ is the atomic dipole moment; E(t) = E(t)cosνt.
In the rotating-wave approximation (RWA) we replace
cos(νt)e±iωt → e±i∆t/2 where ∆ = ω − ν [23], is detun-
ing from resonance. Introducing Ω(t) = ℘E(t)/~, Eq.(1)
reduces to

Ċa = i
Ω(t)

2
ei∆tCb, (2a)

Ċb = i
Ω∗(t)

2
e−i∆tCa, (2b)

which have an integral of motion |Ca|2 + |Cb|2 = 1. If we
define a function f(t) = Ca(t)/Cb(t), Eq.(2) yields the
following Riccati Equation

ḟ + i
Ω∗(t)

2
e−i∆tf2 − iΩ(t)

2
ei∆t = 0. (3)

Then |Ca(t| = |f(t)|/
√

1 + |f(t)|2. Alternatively, we can
get a second order linear differential equation for Ca(t),
from Eq.(2)

C̈a(t)−

[
i∆ +

Ω̇(t)

Ω(t)

]
Ċa(t) +

|Ω(t)|2

4
Ca(t) = 0. (4)

In this paper we will work without RWA, hence the Ric-
cati Eq.(3) takes the new form as

ḟ + iΩ∗(t)cos(νt)e−iωtf2 − iΩ(t)cos(νt)eiωt = 0. (5)

The approximate solution for Eq.(5), in terms of the tip

ar
X

iv
:1

01
0.

01
38

v1
  [

ph
ys

ic
s.

at
om

-p
h]

  2
5 

Se
p 

20
10



2

a

b 

(a)

∆

Ω ω

E
le

ct
ro

m
a

g
n

et
ic

 F
ie

ld

(b)
  Time γt 

FIG. 1: (Color Online) (a) Two-level atomic system, atomic
transition frequency ω = ωa − ωb, detuning ∆ = ω − ν and
Rabi frequency Ω(t) = ℘E(t)/~. (b) Few cycle sine (dashed
line) and cosine (solid line) pulse with gaussian envelope.

angle θ is given as [9]

f(t) = i

∫ t

−∞
dt′
{[

dθ(t′)

dt′
− θ2(t′)

dθ∗(t′)

dt′

]
×exp

[
2

∫ t

t′
θ(t′′)θ̇∗(t′′)dt′′

]}
,

(6)

where the tip angle θ(t) has been defined as

θ(t) =

∫ t

−∞
Ω(t′)cos(νt′)eiωt

′
dt′. (7)

From Eq.(7) we can obtain |Ca(t)| = |f(t)|/
√

1 + |f(t)|2.
To see how well the approximate solution works, we have
plotted the probability amplitude |Ca(∞)| for a complex
pulse shape given by Ω(t) = Ω0[sech(αt) + sech(αt − 3)]
[see Fig 2]. Numerical simulation (dashed) and analytical
solution (solid) shown in Figs. 2(a,b) are nearly identical.

A. Pulse with phase jump

In this section we will investigate the dynamics of a
two-level atom subjected to few-cycle pulse with a phase
jump at an arbitrary time t = t0. Let us define the Rabi
frequency Ω(t) for our model as

Ω(t) =

{
Ω−(t) if t < t0,

Ω+(t) if t ≥ t0,
(8)

where Ω+(t) = eiφΩ−(t) and φ is the phase jump intro-
duced to the electromagnetic field at t = t0. Equivalently
the tip angle define by Eq.(7) takes the form

θ(t) =

{
θ−(t) if t < t0,

θ+(t) if t ≥ t0.
(9)

From the definition of the Rabi frequency Eq.(8), we
can easily see that θ+ = eiφθ−.The time evolution of our
system is divided into two regimes (−∞, t0) and (t0,∞).
In both these regimes, the functional form of the solutions
remains the same. We can write

fφ(t) =

{
f−(t) if t < t0,

f+(t) if t ≥ t0.
(10)
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FIG. 2: (Color Online) Population left in the upper level |a〉
after applying Ω(t) = Ω0[sech(αt) + sech(αt − 3)] pulse as a
function of the frequency ν/ω obtained by numerical solution
of Eq.(1) (dots) and using our approximate analytical result
Eq.(6) (solid line). In calculations we take Ω0 = 0.04ω and
α = 0.075ω. In (a) φ = 0 while in (b) φ = π, t0 = 0

Eq.(6) is the solution for φ = 0 for the initial condition
f(−∞) = 0. Using the same initial condition we can
safely write

f−(t) = i

∫ t

−∞
dt′Φ−(t′)exp

[
2

∫ t

t′
ζ−(t′′)dt′′

]
, (11)

where

Φ−(t′) =

[
dθ−(t′)

dt′
− θ2
−(t′)

dθ∗−(t′)

dt′

]
, (12a)

ζ−(t′′) = θ−(t′′)θ̇∗−(t′′). (12b)

As the functional form of f+(t) and f−(t) are the same,
we can write

f+(t) = i

∫ t

t0

dt′Φ+(t′)exp

[
2

∫ t

t′
ζ+(t′′)dt′′

]
+ c, (13)

where Φ+(t′) = eiφΦ−(t′) and ζ+(t′) = ζ−(t′) The con-
stant c can be obtained by demanding the continuity of
fφ(t) at t = t0 which gives

c = i

∫ t0

−∞
dt′Φ−(t′)exp

[
2

∫ t0

t′
ζ−(t′′)dt′′

]
. (14)

Population transferred to the level |a〉 during the inter-
action is given as |Ca(∞)|2 = |fφ(∞)|2

/
(1 + |fφ(∞)|2).

In order to study the effect of the phase jump φ let us
define a relative change in the amplitude

rφ(t) =

∣∣∣∣fφ(t)− f(t)

f(t)

∣∣∣∣ . (15)

Using Eq.(11), Eq.(13) and Eq.(6) we get,

rφ(t) =

∣∣∣∣∣∣
(eiφ − 1)

∫ t
t0
dt′Φ−(t′)exp

[
2
∫ t
t′
ζ−(t′′)dt′′

]
∫ t
−∞ dt′Φ−(t′)exp

[
2
∫ t
t′
ζ−(t′′)dt′′

]
∣∣∣∣∣∣ .
(16)

The asymptotic value rφ(∞) can be obtained by t→∞
in Eq.(16). We can easily see from the Eq.(16), that
rφ(∞) attains its maximum value for φ = π.
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FIG. 3: (Color Online) Effect of jump time t0. (a) Here we
have plotted the probability amplitude |Ca(∞)| against the
phase jump φ. Phase jump is introduced at the peak of the
gaussian envelope. (b) The symmetric influence on the degree
of excitation with respect to the position of t0. The symmetric
response is lost for shifted gaussian input pulse (c) and (d).
For numerical calculations we chose Ω0 = 0.875ω, ν = 0.75ω,
α = 0.331ω and γ = 1.25ω.

B. Effect of Pulse parameters: Numerical Analysis

In this section we will discuss the effect of the pulse
parameters like phase jump time t0, pulse witdth τ , de-
tuning ∆ and peak Rabi frequency Ω0 on the degree of
excitation of the upper level |a〉. For the computational
purpose we have considered a Gaussian pulse of the form
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FIG. 4: (Color Online) Effect of α. (a) Probability am-
plitude |Ca(∞)| varies in the range from 10−5 v 0.7. (b)
We have plotted |Ca(∞)| against normalized pulse width γτ
for fixed ω, ν,Ω0 and three combinations of the phase jump
φ = 0, π/2, π. (c) Shows the temporal evolution for the three
combinations used in (b). For numerical simulation we chose
Ω0 = 0.875ω, ν = 0.75ω, γ = 1.25ω and α = 0.331ω.
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FIG. 5: (Color Online) (a) Temporal behavior of |Ca| for
difference combination of φ. (b) Plot of |Ca(∞)| against ν/ω.
For numerical simulation we chose Ω0 = 0.875ω, t0 = 0, γ =
1.25ω and α = 0.331ω.

Ω(t) = Ω0e
−α2t2 where α = 2

√
ln2/τ (τ is the FWHM of

the pulse).

The main result showing the effect of relative posi-
tion of t0, with respect to the peak of the pulse, on the
atomic excitation is shown in Fig. 3 and Fig. 7(a) where
we have shown the dynamics of the two-level atom inter-
acting with few-cycle pulse with a phase jump. In Fig.
3(a) we have one such scenario of φ = π/2. Here the
phase jump is introduced in the field at the peak of the
gaussian envelope i.e t0 = 0 and plotted the probability
amplitude |Ca(∞)| against the phase jump φ. Interest-
ingly the difference in the maximum and the minimum
value corresponds to ∆φ = π. The symmetric nature of
the atomic excitation is observed in Fig. 3(b) and the
contour plot Fig. 7(a). With the shifted Gaussian pulse

Ω = Ω0e
−α2(t±ts)2 [see Figs. 3(c) and 3(d)] the symmetry

is lost. Also the effect of the phase jump becomes signifi-
cant for t0 within the FWHM of the pulse and gradually
decreases when t0 is close to the tail of the pulse. Identi-
cal response of the system, for γt0 ≈ 10, is observed for
three combinations of the phase jump φ = 0, π/2, π.

While investigating the effect of few-cycle pulses on
atomic systems, the parameter α plays an important role
for a given value of the carrier frequency ν. It determines
the number of cycles of the field in the pulse. The main
results showing the effect of α or the pulse width τ is
given in Fig. 4 and contour plot Fig. 7(b). If we look
at the inset of Fig. 4(a) we see that the probability am-
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FIG. 6: (Color Online) (a) Temporal behavior of |Ca| for
difference combination of φ. (b) Plot of |Ca(∞)| against Ω0.
For numerical simulation in (b), we chose a shifted gaussian
pulse with ts = 1, ν = 0.75ω, t0 = 0, γ = 1.25ω and α =
0.331ω. Ω0 = 0.875ω for Fig. (a).
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FIG. 7: (Color online) Contour plot showing the effect of
pulse parameters like t0, τ, ν and Ω0 on the population left in
the excited states |a〉 in (a), (b), (c) and (d) respectively. The
influence of the phase jump time t0 is symmetric with respect
to t0 is shown in (a). Parameters used are Ω0 = 0.875ω,
ν = 0.75ω, γ = 1.25ω, , t0 = 0 and α = 0.331ω as required
appropriately. For (c) we used α = 0.110ω

plitude |Ca(∞)| varies in the range from 10−5 v 0.7. In
Fig 4(b) we have used three combination of phase jump
φ (φ = 0, π/2, π) to study the effect of α on the degree of
excitation. For lower pulse width (2 ≤ γτ ≤ 15)φ = π/2
creates more excitation than φ = 0 or π.

In order to study the effect of detuning ∆ we have plot-
ted the response of the system in terms of |Ca(∞)| for

the three combination of φ. Fig 5(a) shows the tem-
poral behavior while Fig. 5(b) gives the information
about steady-state population. The probability ampli-
tude |Ca(∞)| varies in the range from 4.4 × 10−4 v 0.4
for φ = 0 and 5 × 10−5 v 0.9 for φ = π. When |Ca(∞)|
is v 4.4×10−4 for φ = 0 we have |Ca(∞)| v 1 for φ = π,
thus we have an enhancement of 106 − 108 factor in the
population transfer by introducing a phase jump of π at
the peak of the envelope function.

The effect of the peak Rabi frequency Ω0 on the degree
of excitation of the upper level in shown in Fig 6 and the
contour plot Fig 7(d). While Fig 6(a) shows the temporal
behavior of |Ca| on the other hand Fig 6(b) gives the
information about the population left in the upper level
after the pulse is gone. We see that for some choice of Ω0

φ = 0 has the maximum effect while for some φ = π/2 is
dominant.

In conclusion, we have studied few-cycle pulses, with a
phase jump φ at t = t0, interacting with a two-level atom.
This interaction is investigated without the rotating-wave
approximation and we present an approximate solution
for the probability amplitude Ca(t) of the upper level.
The approximate solution not only works well with multi-
cycle pulse [9] but it is also in excellent agreement for
few-cycles pulses [see Fig 2]. Using the appropriate pulse
parameters φ, t0, α and Ω0 the population transfer, after
the pulse is gone, can be optimized and for the pulse
considered here, enhancement of 106 − 108 factor was
obtained [see Fig. 5(b)]
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