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 ABSTRACT 

 

Flaring is a controlled combustion process in which unwanted or excess 

hydrocarbon gases are released to flare stack for disposal. Flaring has a significant impact 

on environment, energy and economy. Flare gas integration to cogeneration plant is an 

alternative to mitigate flaring, benefiting from utilizing waste flare gas as a supplemental 

fuel to boilers and or gas turbines. Earlier studies have shown the energy and economic 

sustainability through integration. However, the impact of flare gas quality on 

cogeneration plants are yet to be identified.  

This paper studies the effect of flare gas composition and temperature from an 

ethylene plant to an existing boiler during abnormal flaring. The study proposes a unique 

framework which identifies the process hazards associated with variation in fuel 

conditions through process simulation and sensitivity analysis. Then, a systematic 

approach is used to evaluate the critical operational event occurrences and their impacts 

through scenario development and quantitative risk assessment, comparing a base case 

natural gas fuel with a variable flare gas fuel.     

An important outcome from this study is the identification of critical fuel stream 

parameters affecting the fired boiler operation through process simulation. Flare stream 

temperature and presence of higher molecular weight hydrocarbons in flare streams 

showed minimal effect on boiler condition. However, hydrogen content and rich fuel-air 

ratio in the boiler can affect the boiler operating conditions. Increase in the hydrogen 

content in flare to fuel system can increase the risk contour of cogeneration plant, affecting 
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the boiler gas temperature, combustion mixture and flame stability inside the firebox. 

Quantitative risk analysis through Bayesian Network showed a significant risk escalation. 

With 12 hours of flare gas frequency per year, there is a substantial rise in the probability 

of occurrence of boiler gas temperature exceeding design limit and rich fuel mixture in the 

firebox due to medium and high hydrogen content gas in flare. The influence of these 

events on flame impingement and tube rupture incidents are noteworthy for high hydrogen 

content gas. The study also observed reduction in operational time as the hydrogen content 

in flare gas is increased from low to high. 

Finally, to operate fire tube steam boiler with flare gas containing higher amount 

of hydrogen, the existing cogeneration system needs to update its preventive safeguards 

to reduce the probability of loss control event.  
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1. INTRODUCTION  

 

Flaring is a controlled combustion process in which unwanted or excess hydrocarbon gas 

during normal operation (e.g. off specification product streams) or abnormal operation 

(e.g. plant emergency shutdowns, system over pressurization) are sent to flare stack for 

complete combustion. Figure 1 shows an overview of flare system in a hydrocarbon 

processing plant. Generally, flare systems are classified based on the height of the flare tip 

(elevated or grounded) and method of mixing hydrocarbons at the flare tip (steam, air, 

pressure assisted or non-assisted) (Leslie B Evans, 2000). 

 

Figure 1 Standard Flare System (Emam, 2015) 

 

Flare systems are prevalent in all the industries encompassing chemical plants, 

petrochemicals, refineries, onshore and offshore oil and gas platforms. The major 
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challenges of flaring faced by these industries are its environmental and economic 

impacts. Gas flaring is a significant contributor to greenhouse emissions. During high 

volume of flaring, unburnt carbons along with greenhouse gases are released to the 

atmosphere. Annually around 145 billion cubic meters of gas is flared in the world, which 

shows nearly 300 million metric tons of CO2 is released to the atmosphere annually (World 

Bank, 2018). World CO2 emissions from flaring encompasses more than 50% of the 

annual Certified Emissions Reductions (624 Metric Tons CO2) under Clean Development 

Mechanism (CDM is one of the systems developed under Kyoto Protocol to United 

Nations Framework on Climate Change (Emam, 2015). Figure 2 shows top ten flaring 

countries in 2013 and 2017 (The World Bank, 2018). Moreover, financial loss due to 

flaring are estimated to be around 10-15 billion dollars annually (Farina, 2010). 

 

Figure 2 Top Ten Flaring Countries (World Bank, 2018) 

1
9

.9

1
3

.3

1
1

.1

9
.2

8
.2 9

.3

9
.3

4
.1

3
.2 4

.3

1
9

.9

1
7

.8

1
7

.7

9
.5

8
.8

7
.6

7

3
.9

3
.8

3
.8

R U S S I A I R A Q I R A N U S A A L G E R I A N I G E R I AV E N E Z U E L A L I B Y A A N G O L A M E X I C O

GLOBAL GAS FLARING IN 2013 AND 
2017

2013           (billion cubic meters) 2017        (billion cubic meters)



 

3 

 

Therefore, optimizing fuel consumption, saving energy and reducing gas emissions are 

the primary goal of every oil and gas industry. One of the approaches of utilizing the 

energy rich flare gas is through flare gas recovery method.  

In cogeneration system, 90% of the operational cost is due to the fuel and 

maintenance cost is 30% of the fuel cost (Monzure-Khoda Kazi F. M., 2015). Kamrava et 

al. demonstrated that 90% of CO2 can be reduced if the flare gas is reutilized (offsetting 

fresh fuel consumption) in cogeneration system (Serveh Kamrava K. J., 2015). So, using 

high energy content flare gas as a fuel reduces operational cost of cogeneration systems 

and CO2 emissions.  

 

Figure 3 Sample Flare Gas Header Flow 

 

Figure 3 shows a sample flare flow from a plant with a minimum of 5 Nm3/hr. of flare gas 

present in the header for 10 hours of operation. Assuming the flare gas is energy rich, flare 
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gas recovery techniques can be used to utilize the excess amount of flare gas as a fuel or 

feed to other process plants.  

The purpose of this study is to assess the operational risk in utilizing flare gas as a 

supplementary fuel to an existing bottom fired boiler to generate steam for power 

generation and provide additional heat to other process plants.  

 

1.1. Motivation 

In August, 2002, Global Gas Flaring Reduction partnership and “Zero Routine 

Flaring by 2030” initiative was launched by World Bank Group to curb flare gas 

emissions. 14 countries, 10 major oil and gas companies showed interest in overcoming 

the challenges for efficient utilization of flare gas (Brief, 2006).  

SaskPower, a Canadian electric company has designed a flare gas power 

generation program, in which oil and gas companies can produce electricity through flare 

gas and sell electricity to SaskPower. TERIC Power Limited, another Canadian power 

company utilizes flare gas from oil wells to produce electricity. General Electric is 

producing electricity from associated petroleum gas in Russia. Pacific Ethanol, American 

bio-refining company is involved in utilizing waste gas to produce power.  

Though in its initial stages, industries and international organizations has shown 

interest in utilizing flare gas as supplemental fuel. However, flaring during process upsets, 

emergency operations, equipment malfunctions, feed/product off-specifications, etc. are 

unpredictable event with varying gas flowrates, composition, pressure, flow, etc.  In 2007, 

a fire tube steam boiler at Dana Corporation, Tennessee, exploded due to overheating of 
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tubes (plant running in dry-fired state) injuring one person and damaging nearby facility 

(State of Tennessee Department of Labor and Workforce Development, 2007). Another 

incident took place in the same year at Dominion Energy, Massachusetts, when a coal 

fired steam boiler exploded due to tube failure. The incident caused 3 fatalities 

(Commonwealth of Massachusetts, Department of Public safety, 2008).  From other 

literatures, improper fuel-air ratio, tube failure due to overheating and delayed ignition are 

some of the common causes of explosions (defined as combustion resulting in a rapid rise 

of pressure).      

Thus, acknowledging the fact that flare gas utilization as a supplementary fuel has 

economic, energy and environmental benefit, it is also important to assess the operational 

risk on integrating flare gas containing high value combustible fuel to an existing boiler 

plant for cogeneration.  

  

1.2. Problem Statement 

When different flare streams with known variation in flowrate, frequency, composition, 

temperature from a specific plant is integrated to an existing boiler, it is desired to identify 

the technical operational risk during abnormal flaring. The study looks to address 

following: 

• What are the hazards on integrating flare streams with an existing boiler? 

• How the flare and the boiler process conditions affect the overall operation? 

• What is the change in the probability of undesired events? 
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1.3. Overview of Flare Gas Recovery Techniques 

Flare gas recovery systems were invented in 1970’s, but companies started 

embracing these technologies by last decade. There are two approaches to flare gas 

recovery and re-usage.  

I. Transporting flare gas through pipelines, reinjecting them into underground storage 

facilities, oil and gas reservoirs for carbon capture and sequestration (Abdollah 

Hajizadeh, 2017). LPG is produced by compressing associated gas, condensing 

heavier hydrocarbons and then separating the LPG. LNG is produced by 

refrigeration to nearly -162° C (after gas treatment) and shipped to tanks (Birnur 

Buzcu Guven, 2010).  

II. Recover the energy stored in the waste or excess flare gas and utilize it as secondary 

fuel (e.g. fuel gas) in industry, or produce synthetic fuels through Gas to Liquid 

Fischer-Tropsch process, or produce electricity through cogeneration systems.  

This study will focus on the second approach as the methods is at its incipient stage and 

needs further study. The general techniques used in flare recovery systems are following: 

• Gas collection, compression and injection to fuel gas system. 

• Gas-to-liquid (GTL) conversion. 

• Fuel for Electricity Production. 

 

1.3.1. Gas Collection, Compression and Injection to Fuel Gas System 

The type of flare gas recovery technique to be used primarily depends on the flare 

gas composition and existing facility design. Due to the requirement of minimum 
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modification to the existing plant setup, this process of flare gas collection from header, 

compression and reinjection to existing fuel gas system is preferred. Figure 4 shows a 

block diagram of flare gas compression, treatment and reentry to fuel gas system. 

 

Figure 4 Diagram of Flare Gas Collection, Compression and Injection System 

 

Generally, a flare gas is routed to Knockout Drum, which removes the carried out 

over liquid from the flare gas. Then the liquid free gas is sent to liquid seal (or water seal), 

which enables safer operation by providing back pressure in flare header. The flare 

recovery network is tied downstream of Flare Knockout Drum, operating simultaneously 

with flare stack operation. Typically, a minimum flare header pressure is maintained and 

the rest of the flare gas is sent through flare recovery network. If the flare gas flow is below 

the design flare stack flow, flare recovery system runs in recycle mode to maintain flare 

header pressure. Some of the fuel gas is also kept continuous through flare tip pilot lines. 

The common components present in compression and reinjection system are following: 
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• Compressor – Liquid ring compressor are the most common type of compression 

system used in flare recovery systems. Recent studies have also recommended 

using ejector systems. Compression design generally depends on the flare design 

conditions and intended flare recovery capacity. Liquid-ring compressors uses a 

sealing liquid (mostly water) in between impeller and compressor housing, 

preventing direct reversal of gas from compressor discharge. Also, liquid seal used 

as a sink to remove heat of compression and keeps the equipment in wet condition 

(P.W. Fisher, 2002 ).   

• Water Cooler – After compressing the flare gas, the contents are cooled in an 

air/water cooler to remove heat of compression. 

• Three Phase Separator – After cooling, Separator recovers the gases from the 

hydrocarbon condensate and sealing liquid/water. The sealing liquid is returned 

back to the liquid ring compressor. Gases are further routed to the fuel gas system 

(which are treated in acid gas treating facility for H2S removal before using in 

process heaters, boilers, etc.).  

Some of the plants using this recovery system are: 

I. Valero Benicia Refinery in California, USA has a FGRS system designed to 

recover 5 MMSCFD of flare gas, using two reciprocating compressors (2 stage 

and 3 stage), and finally injecting recovered gas to meet refineries fuel gas 

system (total fuel gas demand in Benicia refinery is 75 MMSCFD). (Valero 

Refining Company - California, 2010) 
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II. Tesoro Martinez Refinery in California, USA has a FGRS system designed to 

recover maximum 5 MMSCFD of flare gas with two positive displacement 

compressors and routing recovered gas to sour fuel gas system for further 

treatment. The average flow to the refinery flare header was 0.8 MMSCFD in 

2005 (Tesoro martinez Refinery, 2015).  

 

1.3.2. Gas-to-Liquid (GTL) Conversion  

Gas-to-Liquid technology is a very known process. The technology converts 

natural gas (containing methane) to valuable liquid fuels (e.g. gasoline, jet fuel, diesel).  

As shown in the Figure 5, GTL process has three major steps: 

• Natural Gas Reforming to produce synthesis gas (CO+H2). Steam Methane 

reforming is preferred over partial oxidation, auto-thermal reforming. 

• Catalytic conversion of synthesis gas to long chain heavier hydrocarbons using 

Fischer-Tropsch synthesis.  

• (𝟐𝒏 + 𝟏)𝑯𝟐 + 𝒏𝑪𝑶 →  𝑪𝒏𝑯𝟐𝒏+𝟐 + 𝒏𝑯𝟐𝑶 ……Equation 1 

 

• Hydrotreating of olefins and cracking of heavier hydrocarbons (or paraffins) to 

middle distillate (A. Ghorbani, 2012).  

 

Figure 5 Block Diagram of a General GTL Process  
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Relatively low prices of natural gas to crude oil and carbon neutrality has boosted 

the GTL technology. Table 1 shows some of the examples of world scale and mini GTL 

plants. 

Table 1 Example of Gas-to-Liquid Plants 

Sl. No. Type GTL Plants Gas Consumption 

(MMSCFD) 

1.  World Scale Atlas Methanol plant, Trinidad 260  

2.  World Scale Pearl, Qatar 1500  

3.  Mini Scale Juniper, Louisiana, United 

States 

11  

 

Every year 140 billion cubic meter of gas is flared. Around 500 million barrels of 

liquid fuels can be converted from this humongous amount of flared gas, worth 35 billion 

dollars (World Bank Group Energy and Extractives, 2015). 

Flare gas flow less than 25 MMSCFD is considered as a good source for Mini-

GTL. Compact GTL is the first company to build mini scale GTL plant with feed from 

associated flare gas. The GTL plant in Kazakhstan consumes nearly 25 MMSCFD of flare 

gas (World Bank Group Energy and Extractives, 2015). 

The basic difficulties faced in converting flare gas to liquid fuels is the change in 

composition. However, GTL plants can process heavier feeds than methane with the 

addition of pre-reformer if the change is consistent for longer duration (World Bank Group 

Energy and Extractives, 2015).  
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1.3.3. Fuel for Electricity Production  

A Combined Heat and Power (CHP) system, also known as cogeneration system, 

are systems which produce heat and electricity simultaneously. Generally, the electricity 

is generated by steam turbine or gas turbine and part of the steam generated is extracted 

as a heat medium for external uses. Cogeneration system utilizes the heat generated (along 

with the electricity) from the steam/gas turbine. The steam turbine efficiency of 

transforming fuel to power is 40%  (Andrzej W. Ordys, 2009).  Refer to Figure 6. 

 

Figure 6 Cogeneration Plant with Steam Turbine 

 

In Combined Cycle (CC) system, electricity is produced from gas turbine and 

steam turbine. Fuel gas is burned in gas turbine at higher temperature and the heat 

generated from exhaust gases of the turbine is utilized to generated steam, which again 

runs steam turbine to generate additional electricity. The total efficiency of combined 

cycle is 50% (A.W. Ordys, 1994). 
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Figure 7 Standard Combined Cycle Power Generating System (A.W. Ordys, 1994) 

 

The selection of prime movers (gas turbine, steam turbines or engine) depends on 

the plant fuel and power requirement. Gas engines offer partial loading and low emissions 

of gases due to clean burning and catalysis of natural gas. However, there is substantial 

energy loss due to partial load and lower electricity generation. Gas turbine transforms 

burning energy of the gas to rotational energy of its shaft. Steam turbines follow Rankin 

cycle, the high-pressure steam expands, rotating the turbine shaft to generate electricity. 

The operating temperature of steam turbines are lower than the gas turbines. Usually, gas 

turbines are used for higher power generation (1-300 MW per module) (Andrzej W. 

Ordys, 2009). Figure 7 shows a simple combined cycle power generating plant with a fuel 

gas fired boiler. 

The use of flare gas in cogeneration systems is an important part of flare gas 

recovery technique. The flare gas (with considerable LHV) are routed to treatment unit 

(for H2S removal before utilizing the sweet flare gas in Gas Turbines or gas fired boiler 

for generating electricity (shown in Figure 8).  
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Figure 8 Combined Heat and Power Generation by Flare Gas Utilization 

 

This cogeneration through flare gas helps in reducing GHG emissions, because, 

for the same amount of power produced, less amount of fresh fuel will be required. 

 

1.3.4. Comparison of Flare Recovery Techniques 

The application of flare gas recovery methods depends on the flare conditions, 

existing plant setup and user requirements.  

Rahimpour et al. carried out two studies on different gas refineries with different 

flaring rate. First, a simulative study was carried out in Asaluyeh Gas Refinery to 

investigate the difference between each technique to recover 356.5 MMSCFD of flare gas 

containing 0.87 mole fraction of methane after sweetening. Table 2 shows the detailed 

values for comparing the different techniques (M.R. Rahimpour, 2012). 

Result from the study are following: 

• Gas compression technique has the lowest total capital investment with higher rate 

of return on investment as lesser equipment’s are required.   

• The annual profit is highest for cogeneration systems using gas turbine. 
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• For a downstream industry, with focus on increasing petroleum products while 

curbing CO2 emissions, GTL process is a suitable alternative.   

Table 2 Flare Recovery in Asaluyeh Gas Refinery (M.R. Rahimpour, 2012). 

Sl. 

No. 

Flare 

Recovery 

Techniques 

Product 

Yield 

Total Capital 

Investment  

(US MM 

Dollar) 

Annual 

Profit  

(US MM 

Dollar) 

Payback 

Period 

(Years) 

1 Gas 

Compression  

355.8 

MMSCFD 

72 151 0.5 

2 Gas-To-Liquid 5,45,056 

BPD 

926 1155 0.8 

3 Electricity 

Generation 

2130 MW 1268 2746 4.76 

 

Second study was carried out in Farashband Gas Refinery. The flare contains 4.176 

MMSCFD of gas with 0.88 mole fraction of methane after sweetening. Table 3 shows the 

detailed values for comparing the different techniques in Farashband Gas Refinery (M R 

Rahimpour, 2012).  

Result from this study are following: 

• Gas compression has the lowest capital investment, however annual profit is 

lowest because the amount of recovered gas is low. 

• Electricity generation with gas turbines, has the highest annual profits and lowest 

payback period (2.8 years) due to higher power generation.  

• GTL has highest capital investment, but lesser carbon emissions as it utilizes CO2 

for fuel production.  
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Table 3 Flare Recovery in Farashband Gas Refinery (M R Rahimpour, 2012). 

Sl. 

No. 

Flare 

Recovery 

Techniques 

Product 

Yield 

Total 

Capital 

Investment  

(US Dollar) 

Annual 

Profit  

(US Dollar) 

Payback 

Period 

(Years) 

1 Gas 

Compression  

4.176 

MMSCFD 

3,360,000 1,225,510 2.8 

2 Gas-To-

Liquid 

563 BPD 31,940,000 9,054,864 2.3 

3 Electricity 

Generation 

25 MW 33,355,084 14,053,600 3.3 

 

Petri et al. carried out a techno-economic analysis of different flare gas recovery 

techniques. The study was to determine the utilization of 0.584 MMSCFD flare gas for- 

LNG production, LPG production or electricity generation.  The gross heating value is 

1162.43 Btu/SCF and contains 58 % mole percent methane and 12.9 % ethane primarily. 

The study concluded if the flare gas composition has considerable methane with a heating 

value between 950-1250 BTU/SCF and flare flow is moderate (<2.5 MMSCFD), power 

generation is favorable.   

 

1.4. Applications of Flare Gas Recovery for Cogeneration – Current Status 

The acceptance of flare gas for power generation is presently limited to gas fields 

(where associated gas is mostly flared) and renewable sources of energy. 

SaskPower is one of the principal electricity supplying company in Sasktchewan, 

Canada. Coal industry has been largely used in Power generation. However, SaskPower 

relied on renewable sources of energy.  The company has produced nearly 22% electricity 

from renewable energy from 2005 to 2014. In 2014, SaskPower designed Flare Gas Power 
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Generation Program, to support the development carbon neutral power generation 

techniques. As per the program, the oil and gas industries can sell electricity, generated 

from flare gas at a base rate $ 41.28/MWh in 2017 (Saskatchewan, 2015). In 2018, the 

project was revamped to Power Generation Partner Program (PGPP), allowing industries 

to sell as much as 25 MW of electricity, generated from flare gas (Electrical Line 

Magazine, 2018). TERIC Power Limited, an Alberta based power company, started using 

flare gas from Kerrobert oil wells owned by Sphere Energy, producing 750KW of 

electricity (Weyburn This Week, 2017).  

In 2011, General Electric announced production of electricity generation from 

Nizhnevartovsk, Russia associated petroleum gas (a raw natural gas found with petroleum 

deposit) processing plant. GE will use natural gas from processing plant in combined cycle 

(Gas Turbine and Steam Turbine) to produce 400 MW of electricity, supplying to 

Nizhnevartovsk State Power Plant (General Electric, 2011).   

Pacific Ethanol, a bio-refinery in California utilizes the waste gas to produce 3.5 

MW power. The waste gases are introduced to a CHP gas turbine, containing power 

oxidizer (instead of a gas combustor, a technology provided by Ener-Core, a company 

based in California, United States) (Technologies, 2018). Ener-core claims the 

adaptability of the power oxidizer over reciprocating engines is in the utilizing lower LHV 

gases (below 30% methane) and producing lower quantities of NOx (Renewable Energy 

World, 2015). 



 

17 

 

2. PREVIOUS RESEARCH  

 

Earlier research carried out is divided into four sections – flare gas recovery 

systems, hazards in heaters, risk assessment techniques and barrier management.  

 

2.1. Flare Gas Recovery Systems 

Cogeneration integration techniques have been studied by earlier research. 

Halwagi et al. has demonstrated the placement of heat engines and their integration with 

heat exchange networks (HEN). A power plant with a steam turbine is a heat engine, which 

following Rankin cycle where the boiler is an isobaric heating source with steam turbine 

and pump following isentropic expansion and compression and the condenser is constant 

pressure total condenser (El-Halwagi, 2017). Abdelhady et al. demonstrated the 

integration of solar energy and process heat for cogeneration systems (Faissal Abdelhady, 

2015).  

Flare gas recovery technology is in the industry from 1974 (MPR Industries, n.d.). 

Significant research has been carried out earlier on flare gas recovery techniques. Eman 

et. al. has provided an overview of gas flare recovery systems, discussing the techniques, 

application of the systems and role of Global Gas Flare Reduction Partnership (Emam, 

2015).  

Mourad et al. carried out simulation study for recovering flared associated gas 

containing high gas to oil ratio by compression and transferring the hydrocarbons to 

treating plant to valorize it as a fuel. The study showed requirement of multi-stage 
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compressors and the relation between compressor energy and flare gas flow, pressure 

within each stage. The process indicated high initial investment due to high energy 

consumption and equipment requirement (Mourad Djebri, 2009).  

Peeran et al. studied the use of special jet pumps instead of compressors to recover 

flare gas to recover and compress the gases to gas processing plants. (Syed M Peeran, 

2015). Engarnevis et al. suggested use of gas ejectors for compression instead of 

conventional compressors, citing lower capital cost and operational cost. The results were 

conducted through mathematical modeling and the implementation was shown in Tehran 

oil refinery (A Engarnevis, 2013).   

Rahimpour et al. carried out two studies on different gas refineries with different 

flaring rate to show the applicability of flare gas techniques. First, a simulative study was 

carried out in Asaluyeh Gas Refinery to recover 356.5 MMSCFD of flare gas containing 

0.87 mole fraction of methane after sweetening. Second study was carried out in 

Farashband Gas Refinery to recover 4.176 MMSCFD of flared gas with 0.88 mole fraction 

of methane after sweetening. From the study, it was concluded that gas compression has 

the lowest capital investment and annual profit is highest for the cogeneration systems (M 

R Rahimpour, 2012) (M.R. Rahimpour, 2012). 

Comodi et al. presented feasibility of flare gas recovery in a refinery. The study 

designed the recovery system using liquid ring compressor, using amine for gas treatment. 

The study showed economic feasibility for recovering 400 kg/hr. of flare gas (Gabriele 

Comodi, 2016).  
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Kamrava et al. proposed a process integration approach, identifying the flaring 

points from an ethylene plant, and re-introducing the flare gas as fuel source to a standby 

cogeneration system. The study assumed flare gas rates are steady and compared with 

non-integrated plants. The result showed integrated plants emitted lower CO2 and higher 

annual operational cost savings (Serveh Kamrava K. J.-H., 2015). 

Kazi et al. developed an optimization framework for a designing a cogeneration 

unit, recycling discontinuous flare gas from an existing ethylene plant as a fuel substitute 

for cogeneration unit. The study demonstrated the use of Pareto curve while deciding 

between two objectives – heating utility and power utility. The study suggested that the 

feasibility of recycling flare streams as a supplement fuel to reduce fresh fuel expenses. 

The heating value and Wobbe Index of the flare streams were sufficient to meet the power 

demand. However, the study did not consider the impact of variability in fuel quality 

(Monzure-Khoda Kazi F. M., 2015). 

Another optimization framework was developed by M. Kazi, identifying different 

possible outcomes of integrating process plant, flare gas from normal and abnormal plant 

operation and waste water from treatment plants, using cogeneration and thermal 

membrane distillation (TMD) system. Referring to Figure 9, the framework considers the 

techno-economic and environmental factors and showed that the integration of process 

plant, waste water treatment and flare will provide higher power and heating utility with 

same energy consumption and additionally will have additional income (e.g. CO2 savings) 

and lower payback back period  (Monzure-Khoda Kazi F. E.-H., 2016). 
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Figure 9 Multi-Objective Optimization Framework Integrating Process, Flare Gas 

and Water System (Monzure-Khoda Kazi F. E.-H., 2016) 

 

Javier et al. proposed an optimization method for determining the optimal 

economic and environmental benefit of integrated system, utilizing flare from 3 different 

plants under normal and abnormal conditions to a cogeneration plant. Three alternatives 

were identified – total flare gas burning the flare stack, partly mixing flare gas as 

supplemental fuel to cogeneration unit, and mixing entire flare stream with fresh fuel to 

cogeneration system.  The uncertainties in gas flows, heating value and natural gas price 

were included by choosing 50 different scenarios. After comparing, the result showed 

environmental and economic benefit for reutilizing flared streams. The study however, 

used random Wobbe Index values for calculation (Javier Tovar-Facio, 2017). 

 

2.2. Hazards in Heaters 

Dugue et al. reviewed the fired equipment safety. Starting from the NFPA-85 

codes for fire heated boilers (till 2011), the work discussed common hazards, incidents 

and safeguards in fired heaters. The main hazards in heaters are – explosions and tube 
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ruptures. Explosions occur after flame blow off (rich fuel condition), when gas is reignited 

or air is introduced swiftly. These can damage fired heater floors, bridge walls. Tube 

rupture occur due to loss of cooling medium or overheating of internal tubes. Large 

length/diameter and presence of partition wall can result in overpressure explosions 

(Dugue, Fired Equipment Safety in the Oil and Gas Industry, 2017). 

Hawryluk et al. studied the hazards of fuel rich combustion in furnaces. The flue 

gas was analyzed to identify the richness of fuel. The temperature, residence time and 

mixing were assumed to be normal. The study demonstrated that a furnace running on 

excess natural gas, above 1298 °F, all the methane will be converted to hydrogen in the 

flue gas. This rich flue gas can pose an overpressure hazard, if they quickly mix with fresh 

air inside the furnace at elevated temperature (Hawryluk, 2008).   

Ogle et al. investigated the fire-tube explosion due to detonation of natural gas. 

The methodology included inspection of incidents, analysis of damage patterns, 

comparison of incident scenarios, finally determining the cause. From a boiler shell 

explosion incident, the study identified that firebox flameout led to accumulation of 

unburnt natural gas-air mixture, which reached the stack and ignited. The combustion 

wave propagated back, accelerated and detonated (Russell A. Ogle, 1999). 

Sharifi et al. investigated the use of hydrogen along with regular fuels in furnace. 

The study involved analyzing the various hydrogen properties- energy content, energy 

density, radiant heat, diffusivity and flammability. The result showed environmental 

emission reduction but more propensity towards critical operation due to hydrogens high 

combustibility (Vahid Sharifi, 2012). 
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Ditaranto et al. studied the effect of hydrogen combustion on refinery fired heaters. 

Computational Fluid Dynamics simulations were carried while switching refinery fuel 

(methane) to hydrogen. The radiative heat load change was observed to be nominal. 

Burner overheating and higher NOx was observed during direct change from methane to 

hydrogen due to high flame temperature and flame speed. Modifications in burner 

resolved overheating problems (M. Ditaranto, 2013). 

Jones et al. studied the addition of hydrogen in natural gas appliances. The research 

evaluated the heating value (Wobbe Index) with higher hydrogen composition and studied 

the flame stability and flashback phenomenon in natural gas appliances. The study 

suggested (considering the port size of burners are relatively larger for fixed volumetric 

flow) hydrogen addition up to 34.7 mole% instead of 10 mole% hydrogen based on the 

minimal Wobbe Index limit of 49.75 MJ Nm-3 on natural gas appliances (Daniel R. Jones, 

2017).  

Lowe et al. conducted a simulation test of fired heater while changing the fuel from 

natural gas to hydrogen. The study checked heater conditions, NOx burner performance 

and fuel gas system reliability. The burners in the existing facility was replaced with NOx 

burners due to hydrogen’s higher flame speed (10 times that of methane) and flame 

temperature. The study concluded that the hydrogen will increase the radiation tube 

temperature, arch temperature, while reducing the convection section heat. Moreover, the 

fuel gas header showed a rise in pressure drop across mixing drum (Cliff Lowe, Nick 

Brancaccio, Dan Batten, Chris Leung, 2011).   
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Ramirez et al. investigated a firebox explosion in a steam boiler. The systematic 

root cause analysis method was used which primarily focused on Burner Management 

System (BMS). The failure of the boiler was identified due to multiple causes – indication 

failure of combustion control and failure of low air sensor led to failure of emergency 

shutdown. Moreover, closure of forced draft fans, damper resulted in over-pressurization 

with rich fuel (NFPA 85 recommends minimum 25% opening for air passage) (Juan C. 

Ramirez, 2010). 

Vries et. al. carried out test on boilers in Denmark, having lean burning (fully 

premixed type, where air and air are combined upstream of the burner) tendency. When a 

boiler operates at constant fuel gas pressure and constant air flow with H2 above 70%-

80%, due to hydrogen high flame velocity, flashback might result, resulting in boiler 

shutdown (De Vries Harmen, 2007).  

Bhangu et al. applied probabilistic risk assessment to analyze reliability of power 

plant. The study used Pareto method to identify critical failures (contributing to 85% of 

unit shutdown) and then applied fault tree analysis to identify failure of the plant (N. Singh 

Bhangu, 2015). 

Saleh et al. studied the reliability of steam boiler including operational, 

maintenance aspects. The hazard identification was carried out through fault tree analysis, 

which identified critical component failure rates. A visual basic language was used to 

evaluate reliability with time.  The study concluded failure rate was maximum at the early 

stages (in seven month) and then follows a constant rate (Faik Lateef Saleh, 2012).   
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2.3. Risk Assessment Techniques 

Hazard identification is the first step of risk assessment. The hazard identification 

is qualitative and the methods chosen are based on the organization, process facility, their 

size, operating data and phase of the plant. Hazard identification procedures are generally 

classified into non-scenario based (created on experience) and scenario based (predictive 

and analytical). Safety review, checklist analysis, preliminary hazard analysis, relative 

ranking indices, checklist analysis are non-scenario based whereas What-If, HAZOP, 

Fault Tree, Event Tree, Bow-tie analysis, Failure Modes and Effect analysis are scenario-

based hazard evaluation methods (Safety, 2008).  

Center for Chemical Process Safety mentions that for a regular operation, all but, 

relative ranking and preliminary hazard analysis are used (they are more used during initial 

design phase of the process). For single failure analysis, FMEA, What-If are preferred 

over Fault Tree Analysis and Event Tree Analysis. When previous information and 

experience is limited, prediction-based HAZOP or Fault Tree Analysis is used. However, 

hazard evaluations are qualitative method and is based on collective team knowledge, 

experience and information (Safety, 2008).    

 Often the hazard evaluation team can miss scenarios due to the overwhelming 

plant complexity, organizational factors. Incidents can happen after year of operation 

without any advance warning signals. The interaction of physical and chemical properties 

and material behavior cannot be precisely predicted. If the predicting of systems is not 

feasible, observing and learning from the process is of paramount importance. (Hans J. 

Pasman, 2017). Center for Chemical Process safety has identified some of the potential 
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limitations of hazard identification – completeness in identifying all hazards, 

reproducibility, inscrutable, competency of team and subjectivity of analysis (Safety, 

2008). 

Paltrinieri et al. defines atypical incident scenarios when identified scenarios from 

hazard evaluation deviate from normal prediction. This happens because of limited 

information or professional’s unawareness to warning signals or related events. Since the 

rarity of the events, atypical incidents are categorized as as unknown unknowns (unaware 

of events and unavailability of related information) and unknown knowns (unaware that 

we can learn from related information available). For example, a vapor cloud explosion in 

Buncefield oil depot, 2005 is an example of atypical incident, where the earlier hazard 

identification showed to be gasoline pool fire as a credible loss control event (Nicola 

Paltrinieri, 2016). 

Bobbio et al. studied the use of fault tree in Bayesian Network to evaluate the 

probability of dependable systems. The method was tried on hardware and software 

systems and identified that both forward (prediction) and backward (diagnosis) analysis 

can be carried out in BN.  Moreover, the dependencies can be modeled in BN while 

considering uncertainties in failure rates (A. Bobbio, 2001).   

Khakzad et al. carried out the comparison between fault tree and Bayesian 

Network. The study concluded the advantage of using Bayesian Network over fault tree 

due to the inclusion of uncertainty, multiple dependencies, updating prior probabilities of 

components and the ability to incorporate different state for a single variable (Nima 
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Khakzad, Safety Analysis in Process Facilities: Comparison of Fault Tree and Bayesian 

Network Approaches, 2011). 

Bearfield et at. mapped event tree to Bayesian Network, demonstrating the 

relationship of events, where events frequency is conditioned on prior event occurrence. 

With a derailment case study, the study represented the influence of causal on the 

probability of consequence (George Bearfield, 2005). 

Unnikrishnan et al. applied Bayesian Network to event tree. The prior probabilities 

of top event and barriers are applied to find the conditional probabilities of consequence 

from top event. The study demonstrated the usefulness of Bayesian Network in predicting 

consequence, diagnosis of causal factor influencing consequence, and updating 

component information to the methods (G. Unnikrshnan, 2014).  

Risk assessment is generally divided into three sections – dynamic risk assessment, 

operational risk assessment and real time risk assessment. Risk analysis is to identify and 

estimate risk level. The concepts of dynamic, real-time and operational risk assessment 

are intertwined and used interchangeably. Figure 10 shows subtle differences between 

each risk assessment methods. 

 

Figure 10 Risk Assessment Techniques (Xue Yang, 2018) 
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Real time risk assessment is evaluating the risk, when real time operation sate is 

added to risk assessment models. Data collection can be through process analyzers (e.g. 

H2S values) or management systems (e.g. near miss reports).  

Quantitative Risk Assessment is a technique to identify and evaluate overall risk. 

However, it cannot identify dynamic changes in the plant. The data incorporated in QRA 

are limited, old and does not address uncertainties. Dynamic risk assessment purpose is to 

update calculated risk which includes addition of new data to evaluate the ever-changing 

plant conditions, such as evaluating dynamic prevention and protection safeguards, 

consequences. Importantly dynamic risk assessment considers causal interaction or 

dependency of components.  The dependency of causal factors, top events, safeguards, 

consequences are modeled in Bow-tie diagram or Bayesian Network (Xue Yang, 2018).  

Operational risk assessment is to identify, analyze and evaluate the overall risk in 

in a critical operational event. In operational plant, decisions are divided into four 

categories –  

• Risk related with human and organizational errors, such as filling column above 

design limit (e.g. splitter column overfilling). 

• Incident risk while operating a facility/plant, such as fire in the facility.  

• Risk associated with critical tasks such as handling plant emergency. 

Yang et al. developed a framework for operational risk assessment, where a 

Bayesian Network is used to calculate the probability of an event using precursor events 

and loss functions are used to show time-dependent consequences in terms of monetary 
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values. The BN and loss functions were integrated to develop a real time risk trend (Ming 

Yang, 2015). 

Khakzad et al. carried out a quantitative risk assessment of drilling operations 

using Bayesian Network and Bow-tie method. Initially, the accident scenarios are 

developed in event tree and fault tree and then translated to Bow-tie model. Second the 

Bayesian Network was modelled for accidents. On comparison, it was concluded from the 

study that Bayesian Network can provide the dynamic analysis of drilling operation as it 

includes common cause failures and explicitly analyses the conditional dependencies, 

while learning from precursor events (Nima Khakzad, Quantitative Risk Analysis of 

Offshore Drilling Operations: A Bayesian Approach, 2013).  

Abimola et al. applied Bow-tie model (graphical representation of cause and 

consequence) and real time safeguards failure (blowout preventer) probability to assess 

the dynamic risk of offshore drilling operation. The prior probabilities of components 

failure are updated in Bow-tie model (Majeed Abimbola, 2014).  

Barua et al. showed real time cause effect relationship by dynamic operational risk 

assessment. The method demonstrated dependency of variables and the effect of change 

on dynamic Bayesian Network. The study developed a dynamic fault tree and mapped it 

onto dynamic Bayesian Network, to identify and evaluate operational changes in 

components (Shubharthi Barua, 2016). 

Pakorn et al. carried out probabilistic risk assessment by applying Bayesian 

Network to risk assessment techniques. HAZOP and Bowtie were mapped in continuous 

type Bayesian Network. The 11 process safety indicators data were collected from IOGP 
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for a year, represented into prior distribution, assimilated into three categories – 

mechanical, operational and personnel integrity and finally incorporated into Bow-tie-BN 

and HAZOP-BN model. Methodology shown in Figure 11 (Pakorn Chaiwat, 2016).  

 

Figure 11 Integration of Bayesian Network and Process Safety Indicators in 

HAZOP and Bow-Tie Study (Pakorn Chaiwat, 2016) 

 

Susana et al. proposed a framework to identity hydrates in offshore drilling 

operations. She applied Bayesian Network from Bowtie method and compared the results 

with kinetic and thermodynamic models with sensitivity analysis (Susana Leon Caceres, 

2017).  

 

2.4. Barrier Management 

Barriers are physical or non-physical component that prevent, control, or mitigate 

undesired event. A barrier can be classified into technical (e.g. sensors), operational (e.g. 

operating pump) or organizational (e.g. procedures). Technical barriers are subdivided 

into Safety Instrumented Systems (SIS), safety systems without internal instrumentation 

logic, and risk reduction systems (e.g. egress components) Performance Influencing 

Factors (PIF) or Risk Influencing Factors (RIF) are helps the functionality of barriers (e.g. 

preventive maintenance). Further, the barriers are divided into proactive and reactive 
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barriers based on their preventive or mitigating roles. Johansen et. al. discusses the uses 

and reproduces the challenges in barrier management systems (Inger Lise Johansen, 

2015).    

Haddon et al. proposed a comprehensive application in cause-consequence model, 

which he called Hazard-Barrier-Target method. He proposed ten strategies to reduce hum 

and other losses through barriers (Haddon, 1973). 

Sklet et al. carried out a thorough review of the barriers, classifying the barriers 

and providing further information about the performance of safety barriers (Sklet, 2006). 

The ARAMIS project under SEVESO-II directive, classified the barriers based on their 

action as – avoid, prevent, control, protect. Table 4 represents classification of barriers 

based on the action proposed by Duijm et al. 

Table 4 Safety Barriers Classification (Sklet, 2006) 

 

 

2.5. Limitations of Current Research 

Studies have been carried out on techno-economic analysis of flare gas integration 

to cogeneration systems. However, limited research has been done to address the process 

risks involved in using inconsistent flare gas from a plant to an existing fired boiler for 

cogeneration. Some of the process risk unaddressed in previous research are: 

A. Effect of flare gas quality on cogeneration system. 

In an abnormal flaring, flare gas will have inconsistent quality and process conditions. 

Each composition will have a different impact on the cogeneration performance.  



 

31 

 

• If flare gas has hydrogen, then as hydrogen is carbon free, it produces flameless 

combustion and is not visible to naked eye. Moreover, hydrogen has lower heating 

value of 51,585 Btu/lb. compared to 20,267 Btu/lb. of natural gas. Also, hydrogen 

has higher laminar flame speed (7.3 times more than methane in atmospheric 

conditions). These reasons can lead to hydrogen fuel burning fast, chances of 

flashback and higher temperature near burners and refractory.  

• Condensate carryover along with the fuel in boiler combustion chamber can plug 

the burners and burner inlet strainers, resulting in reduced load operation 

(assuming there are limited standby burners available). Water carryover with fuel 

cause pressure shock due to the expansion of water to steam at high boiler 

temperature (expansion factor is 1600 times), which can lead to tube and burner 

failure. Additionally, excess water retention can lead to equipment corrosion and 

burner flame put off. 

• Flame impingement in a boiler is due to improper air fuel mixing can raise the tube 

metal temperature. Un-uniform air fuel can cause flameout and instant startup will 

lead to firebox explosion. 

B. Risk assessment methods 

• Hazard identification is generally qualitative which is based on experience or 

prediction. The evaluations are sensitive to safety professional’s judgement, risk 

acceptance and assumptions. Thus, for same information, different professional 

will have different outcomes, which lead to subjectivity. Moreover, if the teams 



 

32 

 

experience and competency is less, then the outcome of the evaluation can be less 

effective. 

•  For new process technologies or new operational changes, the availability of 

information on related incidents, warning signals are limited. Then predictions are 

used in place of experience. These prediction based hazard identification can be 

incomplete and may miss some low occurrence, high probability events. 
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3. PROPOSED METHODOLOGY 

 

Hazard evaluation is a systematic way to identify and analyze the significance of 

hazardous situation in a process. Hazard evaluation is extensively used for checking the 

occurrence of undesired events in design and operation by hazard identification, scenario 

development and assessment of risk. Considering the previous research limitations, this 

section proposes a framework for assessing the operational risk in managing flare gas for 

cogeneration (shown in Figure 12).  

 

Figure 12 Framework to Assess Operational Risk of Using Flare Gas for 

Cogeneration 
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3.1. Process Analysis 

To assess the hazards and risk in a process, it is essential to define the process 

boundary first. After the process boundary is selected, following steps are followed- 

collection of data, building of process model, checking the response of operating 

parameters through sensitivity analysis.  

 

3.1.1. Process Information 

After defining the process boundary, design and operational data are collected for 

the particular section of the plant from process safety information, which includes Process 

Flow Diagrams (PFD), Process Flow and Instrumentation Diagrams (P&ID), process 

control schemes, process package data on equipment’s, process streams, utility streams, 

instrument device, preventive and mitigating safeguards.     

 

3.1.2. Process Simulation and Sensitivity Analysis 

After the process design data and operational data are collected, process simulation 

is carried out to predict the response of a defined system under the given set of conditions 

(Dominic Foo, 2017). The general steps followed for process simulation are shown below: 

• Providing Information – Choose chemical components and thermodynamic model. 

All the pure light gas components are entered and Peng-Robinson equation of state 

(EOS) is chosen because for combustion application with wide range of change in 

temperature and pressure PR-BM is preferred (Aspen technology Inc., 2000).  

• Building Flowsheet - Choose model, join individual streams.  
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Simulation environment has main flowsheet. In this the sequence of operation will be 

defined. The material steams will be chosen and the conditions will be defined based 

on the collected data. Sequentially other equipment’s and energy streams will be 

defined and finally connected together.  

• Running Simulation – Give specification, converge data and validate simulation 

results. 

After providing the data and specifying the streams and equipment and simulation can 

be run. In the workbook section, all the conditions of material, energy streams and unit 

operations can be monitored and validated.  

Sensitivity analysis is carried out to evaluate the effect of manipulated variable on 

the target parameter or on the overall process. For example, in this study the fuel quality 

was considered as one of the manipulated variables and the effect on boiler was observed 

(Aspen technology Inc., 2000). 

After sensitivity analysis, the manipulated variables which affect the process 

condition and are not consistent with the operating philosophy and/or design limit are 

identified as process hazards (also can be referred as primary events). The change in 

process operating condition are classified into intermediate events.  Thus, from sensitivity 

analysis, the critical parameters and their effect are identified. 

It is important to note that through simulation and sensitivity analysis, only 

technical safety items (physical parameters, e.g. pressure, temperature, etc.) will be 

identified. The human factors will be identified during scenario development. 
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3.2. Operational Risk Assessment 

After the identification of critical parameters and the type of effect on the system, 

a hazard scenario will be developed to evaluate the occurrence of loss control event and 

the probability of occurrence of various consequences.  

 

3.2.1. Scenario Development 

Fault tree and event tree will be used for hazard scenario development. Fault tree 

and event tree are probabilistic methods to identify and analyze loss of control event (or 

top event). The top event is when control is lost, and is the common node between cause 

and consequence diagram. The top event is defined as an event which can lead to many 

consequences, such as tube rupture, firebox explosion.  

Fault tree is a deductive approach, finding causes which can lead to top event. Fault 

tree uses Boolean logic (two possible values). All the events in the fault tree diagram will 

receive a probability of occurrence, based on which top event occurrence will be predicted. 

Following steps are followed for construction fault tree diagram: 

• Define top event (loss of control). 

• Construct contributing causes/events leading to the top event. 

• Calculate the frequency of top event. 

• Identify the minimal cut sets. 

Several logic functions are used for fault tree are shown in Table 5. The fault tree 

diagram is prepared using the logic functions. Then the failure probability of all the 

components are provided. The top event frequency calculation can be done in two ways- 
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I. From fault tree diagram – calculations are carried out across all logic gates with 

probability of failure updated at each event. AND gate multiplies the failure 

probabilities whereas OR gate multiplies the reliability of components. 

II. From minimal cut sets- Cut sets are the exclusive pathways followed by the base 

events to reach top event. Thus, from the diagram, minimal cut sets (or the failure 

modes) are identified. Usually for large events with higher failure probabilities, 

the estimation of failure probability from minimal cut sets are more conservative 

than through fault tree diagrams (Joseph F. Louvar, 2011). 

Table 5 Logic Functions for Fault Tree (Joseph F. Louvar, 2011) 

 

 

Fault tree is complemented by Event tree. Event tree also follows Boolean logic. 

Following steps are followed for constructing event tree diagram: 
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• Identifying top event (same as fault tree). 

• Construct the event sequence in the even tree diagram. 

• Identifying safeguards or barriers to mitigate the consequences. 

• Calculate the frequency of consequences. 

Event tree is an inductive approach, starting with a top event and working toward 

worst case scenario. Top event is first written and mitigating barriers are incorporated with 

either fail or succeed probabilities.  

Barriers are physical or non-physical component that prevent, control, or mitigate 

undesired event. A barrier can be classified into technical (e.g. sensors), operational (e.g. 

operating pump) or organizational (e.g. procedures). Technical barriers are subdivided 

into Safety Instrumented Systems (SIS), safety systems without internal instrumentation 

logic, and risk reduction systems (e.g. building exits) (Inger Lise Johansen, 2015). 

The calculation at each junction is carried out from the failure rate of safeguards 

and probability of top event as shown in Figure 13 (Joseph F. Louvar, 2011). 

 

Figure 13 Sample Event Tree Analysis (Joseph F. Louvar, 2011) 
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3.2.2. Failure Data Collection 

There are several reliability databases which are used by academia and industry. 

Offshore and onshore reliability database (OREDA) and Lees loss prevention in the 

process industries are primarily used for the failure rates of equipment’s, instrument’s and 

human error.  From OREDA database, individual components are assumed to be operating 

in homogeneous operating conditions and the plant is operating in useful life phase with 

constant failure rate. The probability of failure is expressed using Poisson distribution 

(Joseph F. Louvar, 2011). 

𝑹(𝒕) =  𝒆−𝝁𝒕……Equation 2 

 

𝑷(𝒕) = 𝟏 − 𝒆−𝝁𝒕……Equation 3 

 

where, R(t) = Reliability of component in time, t, 

P(t) = Probability of component failure in time, t, 

µ = constant failure rate of component. 

 

3.2.3. Bayesian Network for Qualitative Risk Assessment 

The ability of bi-directional interpretation along with probabilistic calculation gave 

rise to Bayesian Network in 1970’s. Bayesian Network derived from Bayes’ theorem, 

which encompasses conditional probability. 

𝑷(𝒉𝒊|𝑬) =
𝑷(𝑬|𝒉𝒊)×𝑷(𝒉𝒊)

𝑷(𝑬)
……Equation 4 

 

𝑷(𝑬) = 𝑷(𝑬|𝒉𝟏)𝑷(𝒉𝟏) + 𝑷(𝑬|𝒉𝟐)𝑷(𝒉𝟐) + ⋯ . 𝑷(𝑬|𝒉𝒏) 
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=  ∑ 𝑷(𝑬|𝒉𝒊)𝑷(𝒉𝒊)𝒏
𝒊 ……Equation 5 

 

where, P(H) = Probability of hypothesis, H, 

P(E) = Probability of evidence, E,  

P(H|E) = Probability of hypothesis, H given evidence, E. 

A Bayesian Network is a representation of the dependency between variables and 

helps in understanding the propagation of effects. Bayesian Network pictorially represents 

nodes, arcs and Node Probability Tables (NPT). Nodes represent the variables, arcs elicit 

the dependencies between the variables and NPT displays the probability distribution.  

There are certain advantages of mapping fault tree and event tree on Bayesian Network. 

• Bayesian Network are bi-directional, i.e. forward and backward analysis can be 

carried out. 

• Bayesian Network are more explicit, which can have more than two states whereas 

the fault tree and event tree has only two states. For example, in Bayesian Network 

flow node can be mentioned as high, low and medium. 

• In Bayesian Network, the parent nodes (primary components) can have 

dependency (e.g. running pump and standby pump failure due to dependency on 

power). In Fault tree basic events are independent. 

• Event tree lacks the ability to demonstrate individual events influence on top event 

(backward analysis). Moreover, the states are only binary, rendering less clarity. 

• Bayesian Network calculations are more accurate than fault tree analysis. In 

discrete mode, while calculating the event occurrence in fault tree through cut sets, 
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the intersection of multiple events is dropped 𝑃(𝑋 ∩ 𝑌 ∩ 𝑍) (Norman Fenton, 

2013) 

𝑷 (𝑿 ∪ 𝒀𝒁 ∪) = 𝑷(𝑿) + 𝑷(𝒀) + 𝑷(𝒁) − 𝑷(𝑿 ∩ 𝒀) − 𝑷(𝒀 ∩ 𝒁) − 𝑷(𝒁 ∩ 𝑿) + 𝑷(𝑿 ∩
𝒀 ∩ 𝒁)……Equation 6 

Steps followed in mapping fault tree and event tree to Bayesian Network are:  

I. Fault tree to Bayesian Network – The primary events, intermediate events and top 

events from fault are selected as root nodes, intermediate nodes and leaf node in 

Bayesian Network. The root nodes are provided with prior probabilities from 

OREDA database. The intermediate and the leaf nodes are defined with 

conditional probability table (Nima Khakzad, Dynamic Safety Analysis of Process 

Systems by Mapping Bow-tie into Bayesian Network, 2013). 

II. Event tree to Bayesian Network – The safeguards are shown as nodes with 

binomial states (e.g. fail or success), with prior probability values from OREDA 

database. The safeguard nodes will be connected to each other if they are 

dependent on each other’s response. The safeguard node (e.g. alarm) will be 

connected to consequence node (e.g. tube rupture), if the consequence states are 

influenced by failure/success of safeguards. The consequence node in Bayesian 

Network has same number of states as the consequences in the event tree. 

Conditional probability table is assigned to consequence node.   

 

After the construction of Bayesian Network for the identified scenarios, 

quantitative inferences can be made on the occurrence of various consequences, the 
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influence of critical parameters on top event and comparison of process conditions with 

different operating parameters. 

 

3.3. Software 

Aspen Hysys V10 software is used for process simulation and sensitivity analysis. 

Peng-Robinson-Boston Mathias equation of state is used for the cogeneration system due 

to its acceptability in natural gas combustion process and wide range of temperature and 

pressure application (Maria Jesus Guerra, Aspen Process Engineering Webinar, 2006).  

AgenaRisk 6.0 software is used for constructing Bayesian Network.  The software 

is capable to run both discrete and continuous variables and has the ability to do sensitivity 

analysis through tornado graph. It can be used for prediction, diagnosis as well as for 

causal factor and dependency evaluation (Agena Risk Inc, 2012). 
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4. CASE STUDY 

 

The operational risk assessment flowsheet to identify the process hazards, their 

associated effects on operation and quantifying the occurrence of untoward events is 

shown in Figure 14. 

 

Figure 14 Flowchart of Operational Risk Assessment of Boiler System  
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4.1. Process Description 

In this case study, a steam boiler with a bottom fired furnace and a natural draft 

circulation is chosen. Natural gas is used as a fuel to the furnace in base case study. Fuel 

gas header pressure is maintained at 50 psia and flow is controlled through controller, FIC-

1. Before natural gas enters the firebox, pressure is maintained through pressure regulator, 

PRV-1. In natural gas case, natural gas flows at 2866 lb/hr at 14.5 psia and 108 °F to the 

firebox. Dry air is controlled through flow controller, FIC-2 at 49,950 lb/hr and reaches 

fired boiler at 392 °F. The air to fuel ratio is maintained at 9.92 (mole basis).  

Boiler feed water at 37,600 lb/hr at 290 psia first exchanges heat with flue gas in 

economizer and then is routed to radiation and convection zone of furnace. The diversion 

of boiler feed water to radiation zone is 68.5% as most of heat duty of furnace is from 

radiation zone. The radiation outlet steam temperature is 429 °F and convection zone 

outlet steam temperature is 435 °F at 275.6 psia. The steam produced are operated at 20 

°F above steam saturation temperature (at 275.6 psia, steam saturation temperature is 410 

°F). Both the steam mixes in the Steam Drum-2 and then goes to steam turbine for power 

generation. 

The flue gas from convection section goes to economizer exchanging heat with 

inlet boiler feed water (5 MM Btu/hr duty). Additional heat from the flue gas is provided 

to the external process at 14 MM Btu/hr. Before routing flue gas to atmosphere, it 

exchanges the residual heat with air in air-preheater (3.5 MM Btu/hr). Flue gas at stack 

outlet to atmosphere is maintained above 320 °F, to avoid corrosion due to Sulphur 
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condensation, if any. The total heat duty of furnace is 43.3 MMBTU (excluding heat 

provided to external process). The efficiency of heater is assumed to be 40%.  

Figure 15 and Table 6 shows the initial condition of boiler to meet 37,600 lb/hr of 

steam with boiler duty less than 60 MM Btu/hr (Serveh Kamrava K. J.-H., 2015).  

 

Figure 15 Process Flow Diagram with Base Case 
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Table 6 Initial Condition of Boiler with Base Case (Natural Gas) 

Unit 

Natural 

Gas 

Air BFW Steam 

Boiler 

Duty 

(MM 

Btu/hr.) 

External 

Process 

(MM 

Btu/hr.) 

Temperature 

(°F) 

110 90 212 429 

43.5 14 

Pressure (psia) 50 14.5 290 261 

Flow (lb./hr.) 2,866 46,950 37,600 37,600 

Stream to Boiler-

R Inlet Temp 

(°F) 

108 392 335 

 

Stream to Boiler-

R Pressure (psia) 

14.5 13.8 275.6 

 

Flare streams from an Ethylene plant is identified as a potential source of high 

heating value fuel to cogeneration unit. The three flaring sources from Ethylene plant are 

identified as flare-A, flare B and flare-C with known composition and a flaring frequency 

of 12 hrs. annually.  After integration of flare gas to fire boiler fuel gas system, the pressure 

of fuel gas system is maintained at 50 psia with sequential control, i.e. primary pressure 

control is through flare gas system. In case, there is no flaring, fuel gas header pressure is 

maintained through natural gas.  
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Figure 16 Boiler Simulation Flowsheet after Flare Integration 

 

 

Figure 17 Process Flow Diagram after Integration with Flare Streams 
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4.2. Process Simulation and Sensitivity Analysis 

After the initial simulation of the base case boiler process is completed (shown in 

Figure 17), the flare stream data is gathered as shown in Table 7.  

Table 7 Flare Stream Data (Serveh Kamrava K. J.-H., 2015) 

Parameter 
Natural 

Gas 
Flare-A Flare-B Flare-C 

Temperature °F 110 -57 179 -19.40 

Pressure psia 50 335 464 270 

Mass Flow tons/year 1.03e10 2248 2248 1350 

Wobbe Index Btu/SCF 1367 1325 1327 1615 

Composition 

Hydrogen 0 0.427 0.423 0 

Methane 0.93 0.091 0.092 0 

Ethane 0.04 0.069 0.0695 0 

Ethylene 0 0.406 0.416 1 

C4/C5/N2 0.03 0 0 0 

 

The flare stream data has five parameters – temperature, pressure, flow, heat of 

combustion and composition. Since, the process has fuel pressure and flow controllers the 

pressure and flow parameters will not have impact on the system with the defined process 

control scheme. Heat of combustion is a function of composition. So, temperature and 

composition will be considered for sensitivity analysis.  

The sensitivity analysis and comparison with base case will be carried out based 

on these five categories: 

I. Check with flare stream point values- composition and temperature. 



 

49 

 

II. Vary fuel gas temperature. 

III. Different composition effect on heating value and Wobbe Index 

IV. Vary fuel gas composition with constant air flow. 

V. Pure composition at stoichiometric air to fuel ratio. 

 

4.2.1. Effect of Flare Stream Point Values on Boiler Performance  

The flare stream and natural gas composition data are shown in Figure 18 and 

Table 7. Natural gas, flare-A, flare-B and flare-C primarily contains hydrogen, methane 

and ethylene. 

 

Figure 18 Flare and Natural Gas Composition 
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Table 8 Continued 

Properties Hydrogen Methane Ethane Ethylene 

Upper Flammability Limit (vol% in 

air) 75 15 12.4 28.6 

Minimum Ignition Energy (mJ) 0.02 0.29 0.24 0.07 

Higher Heating Value (Btu/lb at 

NTP) 60,340 23,710 22,180 21,540 

Higher Heating Value (Btu/SCF) 310 951 1,717 1,552 

Specific Heat (Btu/lb-mole-F at 

NTP) 6.78 8.57 12.55 10.46 

Adiabatic Flame Temp (Mix at 

25°F) °F 3860 3547 3608 3806 

Stoichiometric Air-Fuel Ratio (mole 

basis) 2.4 9.7 14.4 15.44 

Flame Speed at Stoichiometric 

(ft/sec at 25°F and equivalence 

ratio=1) 7.8 1.4 1.46 2.23 

Wobbe Index (Btu/ SCF) 1296 1432 1828 1715 

 

Initially, to check the effect of flare point values manipulated variables, observed 

variables and fixed variables are identified as shown in Table 9. The flow and pressure 

values of flare gas streams are not incorporated in base case condition because the system 

already has pressure and flow controller to maintain constant fuel flow and pressure. 

After simulation of given fuel stream point values on base case model, rise in boiler 

radiation zone duty, steam outlet from radiation zone, flue gas temperature from radiation 

zone and stack gas temperature were identified for flare-A and flare-B containing 

hydrogen and ethylene in majority.  
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Table 9 Manipulated, Observed and Fixed Variables for Simulation of Flare Gas 

Point Values 

Sl. No. 

Manipulated 

Variables 

Observed 

Variables 

Fixed Variables 

1.  

Point values of 

flare-A, B, C 

composition, 

temperature 

Boiler radiation 

zone duty 

• Boiler feed water and air 

flow rate, temperature, 

pressure. 

• Fuel gas pressure, gas 

mass flow.  

• Heat duty of convection, 

economizer, preheater 

and to external process. 

2.  

Boiler radiation 

zone outlet steam 

temperature 

3.  

Flue gas to 

atmosphere 

temperature 

4.  

Boiler radiation 

outlet flue gas 

temperature  

   

Table 10 Simulation Result of Changing Fuel from Natural Gas to Flare Gas  

Parameter 
Natural 

Gas 
Flare-A Flare-B Flare-C 

Steam Outlet Temperature 

(Radiation zone) °F 
429 546.8 543 410.4 

Flue Gas to Atmosphere °F 516 685.2 681.4 464.2 

Radiation Zone Duty MM 

Btu/hr 
23.80 25.3 25.30 23.2 

Radiation Outlet Gas °F 2626 2793 2790 2673 
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Figure 19 Effect of Flare Gas on Radiation Outlet Gas Temperature 

 

 

Figure 20 Effect of Flare Gas on Radiation Steam Temperature and Flue Gas 

Temperature 

 

 

Figure 21 Flare Gas Effect on Boiler Radiation Zone Duty 
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From the above simulation (shown in Table 10, Figure 19, Figure 20 and Figure 

21), it is observed that change in flare gas composition and temperature has an effect on 

boiler operating conditions. Thus, the study requires further evaluation to identify most 

influencing parameters effecting the operating condition and their consequences to the 

cogeneration system. 

 

4.2.2. Effect of Fuel Gas Temperature on Boiler Operation  

To check the effect of flare stream temperature on boiler base case, manipulated 

variables, observed variables and fixed variables are identified as shown in Table 11 .  

Table 11 Manipulated, Observed and Fixed Variables for Simulation of Flare Gas 

Temperature 

Sl. No. 

Manipulated 

Variables 

Observed Variables Fixed Variables 

1.  

Individual 

temperatures 

of flare-A, B, 

C. 

Fuel flow of boiler • Boiler feed water and 

air flow rate, 

temperature, pressure. 

• Fuel gas pressure, gas 

mass flow.  

• Heat duty of 

convection, 

economizer, preheater 

and to external process. 

2.  

Boiler radiation zone 

outlet steam 

temperature 

3.  

Boiler radiation outlet 

flue gas temperature 

4.  

Boiler radiation zone 

duty. 
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The flare stream temperature is individually simulated with the given flare gas 

temperature values while the rest of all the fuel gas (including composition), air and boiler 

water parameters are kept consistent with the base condition. The results are shown in 

Table 12. 

Table 12 Effect of Flare Stream Temperature on Boiler 

Parameter 

Natural 

Gas 

Flare-

A 

Flare-

B 

Flare-

C 

Fuel to Heater Temperature °F 108 -57.01 179.33 19.39 

Fuel Flow to Heater lb/hr 2866 2810 2866 2866 

Radiation Outlet Steam Temperature 

°F 429 410 429 429 

Stack Flue Gas to Atmosphere °F 515 460 523 502 

Radiation Zone Duty MM Btu/hr 23.8 23.3 23.8 23.8 

Radiation Outlet Gas Temperature °F 2626 2587 2633 2616 

 

 

Figure 22 Effect of Fuel Gas Temperature on Radiation Zone Steam Temperature 
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Figure 23 Effect of Fuel Gas Temperature on Fuel Flow and Radiation Gas 

Temperature 

 

From simulation of fuel temperature, it is observed that if the flare gas temperature 

is above condensation temperature, there is marginal change in the boiler performance. 

When the fuel gas header pressure is at 50 psia, if the natural gas temperature drops below 

-35 °F, part of gas will start condensing and there will loss of condensate with a steady 

opening of fuel control valve opening (shown in Figure 22 and Figure 23). 
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𝑊𝐼 =  
𝑯𝑯𝑽

√𝑺𝑮
……Equation 7 

For a fixed mass flow of fuel, higher heating value (HHV) is required. The Wobbe 

Index and HHV is observed at standard temperature (77 °F) and pressure (14.7 psia) for 

different composition to understand the flame stability and burning profile. Changes in 

WI indicates flame instability and possibility of greater emissions (Bryan Li, 2009). There 

are different ranges for Wobbe Index depending on equipment size and power 

requirement. Gas Safety Management regulations advices a Wobbe Index range 1248 to 

1418 BTU/SCF at 60°F in United Kingdom (Haywood, 2011).  

The manipulated variables, observed and fixed variables are shown in Table 13.   

Table 13 Manipulated, Observed and Fixed Variables for Composition Heating 

Value and Wobbe Indices 

Sl. No. 

Manipulated 

Variables 

Observed 

Variables 

Fixed Variables 

1.  

Composition- 

Hydrogen, 

Methane and 

Ethylene. 

Heating Value of 

gas. 

• Boiler feed water and air 

flow rate, temperature, 

pressure. 

• Fuel gas temperature, 

pressure, mass flow.  

• Heat duty of convection, 

economizer, preheater and 

to external process. 

2.  

Wobbe Indices of 

gas. 
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Table 14 Higher Heating Value and Wobbe Index for Hydrogen and Methane 

Mixture 

 

 

Table 15 Higher Heating Value and Wobbe Index for Methane and Ethylene 

Mixture 

 

 

Table 16 Higher Heating Value and Wobbe Index of Ethylene and Hydrogen 

Mixture 

 

 

Table 14, Table 15, Table 16, Figure 24 and Figure 25 shows the flame stability 

and heating capacities of major composition in flare gas. Higher heating value is observed 

for higher mole fraction of hydrogen due to lower density (higher volumetric flow at 

constant mass flow rate).  



 

58 

 

 

Figure 24 Composition Effect on Heating Value Mass Basis 

 

 

Figure 25 Wobbe Index for Different Composition 
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will lead to flame instability as observed at higher H2 concentration (above 60 mole% H2 

to 90 mole% H2).  

 

4.2.4. Effect of Fuel Composition on Boiler Operation 

The data collected shows flare streams primarily contains hydrogen, methane and 

ethylene. Thus, these three compositions are simultaneously changed, while the fuel 

temperature, pressure, flow as well as air and boiler water conditions are kept constant. 

The manipulated variables, observed and fixed variables are shown in Table 17. The 

results are shown in Table 18, Table 19, and Table 20. 

Table 17 Manipulated and Observed Variable for Fuel Composition Change 

Analysis 

Sl. No. 

Manipulated 

Variables 

Observed Variables Fixed Variables 

1.  

Composition 

of fuel stream 

– Hydrogen, 

Methane and 

Ethylene 

 

Boiler radiation zone 

outlet steam 

temperature 

• Boiler feed water and 

air flow rate, 

temperature, pressure. 

• Fuel gas temperature, 

pressure, mass flow.  

• Heat duty of 

convection, 

economizer, preheater 

and to external process. 

2.  

Boiler radiation zone 

duty 

3.  

Stack flue gas to 

atmosphere temperature 

4.  

Composition of stack 

flue gas 
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Table 18 Hydrogen and Methane Composition Effect Analysis 

Hydrogen Gas and Methane Composition v/s Boiler Performance 

Hydrogen 1 0.85 0.75 0.6 0.45 0.3 0.15 0 

Methane 0 0.15 0.25 0.4 0.55 0.7 0.85 1 

Steam-Radiation 

Outlet °F 809.0 721.2 535.0 410.0 410.0 410.0 410.4 410.4 

Furnace Flue Gas 

Outlet °F 2240 2597 2523 2473 2516 2544 2564 2579 

Flue Gas to 

Atmosphere °F 742.8 801.0 601.4 449.0 457.4 462.8 466.6 469.5 

Boiler-Radiation 

Duty MMBTU 28.80 27.60 25.19 23.40 23.40 23.40 23.40 23.40 

CO in Flue Gas - 0.016 0.05 0.07 0.048 0.033 0.022 0.014 

 

Table 19 Ethylene and Methane Composition Change Effect Analysis 

Ethylene Gas and Methane Composition v/s Boiler Performance 

Methane 1.00 0.95 0.85 0.75 0.60 0.45 0.30 0.15 0.00 

Ethylene 0.00 0.05 0.15 0.25 0.40 0.55 0.70 0.85 1.00 

Steam-

Radiation 

Outlet °F 410.4 421.2 462.4 452.4 434.5 419.4 410.4 410.4 410.4 

Furnace 

Flue Gas 

Outlet °F 2579 2613 2675 2679 2677 2676 2675 2674 2674 
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Table 19 Continued 

Ethylene Gas and Methane Composition v/s Boiler Performance 

Flue Gas to 

Atmosphere 

°F 469.5 502.6 562.6 550.7 528.2 508.9 492.0 477.5 464.5 

Boiler-

Radiation 

Duty 

MMBTU 23.40 23.70 24.24 24.11 23.87 23.68 23.50 23.36 23.24 

CO in Flue 

Gas 0.014 0.009 0.0006 - - - - - - 

 

Table 20 Ethylene and Hydrogen Composition Change Effect Analysis 

 



 

62 

 

 

I. Comparison of boiler outlet steam with composition fuel gas stream.  

 In base case, radiation steam temperature was 429 °F. Figure 26 shows radiation 

steam outlet temperature rising above 500°F when hydrogen is higher than 75 mole% in 

the methane- hydrogen mixture and 40 mole% in ethylene-hydrogen mixture. The rise in 

temperature in radiation section are contributed by higher molar flow of hydrogen at 

constant mass flowrate. Moreover, hydrogen has high flame speed and high heating value 

(mass basis 60,340 Btu/lb). If steam consumption to turbine is constant, and the water 

siphon tubes to radiation section are maintained at elevated temperature, excessive 

pressure in the steam drum can lead to steam explosion. When methane is 80 mole% and 

ethylene at 20 mole%, rise in temperature is due the combustion mixture reaching 

stoichiometric air-fuel ratio.  

 

Figure 26 Fuel Composition Effect on Boiler Steam Outlet Temperature 
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II. Composition Variation Effect on Stack Flue Gas Temperature 

In base case, stack flue gas temperature was at 515 °F. The temperature of flue gas 

follows the same trend on variation of composition as radiation outlet steam temperature. 

At pure hydrogen, the gas mixture in the firebox is too rich. At 75 mole% hydrogen with 

methane and 35 mole% hydrogen with ethylene, temperature rise above 600 °F is observed 

due to the presence of excess hydrogen (refer to Figure 27). 

 

Figure 27 Fuel Composition Effect on Stack Flue Gas temperature 

 

III. Composition Variation Effect on Boiler Radiation Zone Duty 

In base case, boiler duty was 23.8 MM Btu/hr. As shown in Figure 28, the boiler 

zone duty has increased above 24.8 MM Btu/hr. when pure hydrogen was introduced at 

higher molar rate (more than 75 mole% hydrogen with methane and 40 mole% with 

ethylene). 
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Figure 28 Fuel Composition Effect on Boiler Radiation Duty 

 

IV. Composition of flue gas on varying boiler fuel gas stream.  

In base case, flue gas stack had minute CO content (0.0008). However, Figure 29 

shows presence of methane in flare stack gas, when hydrogen composition (rest 

methane) in fuel gas is above 65 mole%.  At elevated flare stack temperature, unburnt 

hydrocarbons can ignite and can finally lead to flare stack explosion.   

 

Figure 29 Fuel Composition Effect on Flue Gas Composition 
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In base case with air-fuel ratio of 9.92, there was CO of 0.0008. On varying 

composition, rich fuel condition is observed at higher hydrogen molar flow and as we 

introduce higher molecular weight hydrocarbons, the molar rate reduces and the fuel 

becomes leaner. Carbon monoxide and oxygen curve is shown in Figure 30, which 

indicate when methane is 80 mole% with ethylene and hydrogen at 55 mole% with 

ethylene, the combustion mixture is in stoichiometric condition, which minimal fuel 

consumption and optimum energy output. 

 

Figure 30 Carbon Monoxide and Oxygen in Flue Gas 

 

4.2.5. Change of Air with Change in Fuel Gas Composition 

Air-fuel ratio is a common term used to describe the mixing of air and fuel in the 

combustion zone. Stoichiometric air to fuel ratio (mole basis) for hydrogen is 2.39, 

methane is 9.52 and ethane is 16.68.  

𝐴𝐹𝑅 =  
𝑴𝒐𝒍𝒂𝒓 𝒎𝒂𝒔𝒔 (𝒐𝒓 𝒗𝒐𝒍𝒖𝒎𝒆) 𝒐𝒇 𝒂𝒊𝒓

𝒎𝒐𝒍𝒂𝒓 𝒎𝒂𝒔𝒔 (𝒐𝒓 𝒗𝒐𝒍𝒖𝒎𝒆) 𝒐𝒇 𝒇𝒖𝒆𝒍 𝒈𝒂𝒔
… …Equation 8 
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Air is increased to stoichiometric value based on the pure composition (hydrogen, 

methane, ethylene) to identify the changes in the process. This is to investigate, if pure 

compositions are in the fuel gas system and air is increased accordingly, how it is affecting 

the process. Also, to compare with base case and identify lean and rich fuel mixture 

formed. The manipulated variables, observed and fixed variables are shown in Table 21 

and the simulation results in Table 22 and Table 23. 

Table 21 Manipulated Observed and Fixed Variables for Stoichiometric Air to Fuel 

Ratio for Pure Components 

Sl. No. 

Manipulated 

Variables 

Observed Variables Fixed Variables 

5.  

Air and Pure 

Composition of 

Hydrogen, 

Methane and 

Ethylene 

 

Boiler radiation zone 

outlet steam 

temperature 

• Boiler feed water and 

air flow rate, 

temperature, pressure. 

• Fuel gas temperature, 

pressure, mass flow.  

• Heat duty of 

convection, 

economizer, preheater 

and to external process. 

6.  

Boiler radiation zone 

duty 

7.  

Stack flue gas to 

atmosphere 

temperature 

8.  

Boiler radiation zone 

outlet gas temperature 

 



 

67 

 

Table 22 Pure Composition at Stoichiometric Air-Fuel Ratio 

Fuel Mass Flow 

=2866 lb/hr 

 

Hydrogen Methane Ethane Ethylene 
Base 

Case 

Air Flow lb/hr 9.75E+04 5.00E+04 4.62E+04 4.25E+04 4.71E+04 

Air Flow lb-mole/hr 3378 1732 1472 1472 1632 

Air Fuel Ratio 2.40 9.70 15.44 14.40 9.95 

Radiation Outlet 

Steam °F 2808 491.3 410.4 410.4 434 

Radiation Flue Gas 

Outlet °F 2733 2570 2656 2877 2626 

Heater Duty 

MMBTU/hr 59.3 24.6 23.38 23.23 23.87 

Flue Gas to 

Atmosphere °F 1854 491.4 478.5 497.9 520 

O2 in Flue Gas to 

Atmos. Mole percent 0.0013 0.0052 0.0033 0.0036 0.0002 

 

Table 23 Pure Composition at Constant Air Flow 

100% Composition with Base 

Conditions 

 

Hydrogen Methane Ethylene Ethane 

Air Flow lb/hr 4.70E+04 4.70E+04 4.70E+04 4.70E+04 
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Table 23 Continued 

100% Composition with Base 

Conditions 

 

Hydrogen Methane Ethylene Ethane 

Air Flow lb-mole/hr 1627 1627 1627 1627 

Air Fuel Ratio 1.10 9.11 15.92 17.07 

Radiation Outlet Steam °F 809 410.4 410 410.4 

Radiation Flue Gas Outlet °F 2240 2579 2674 2625 

Heater Duty MMBTU/hr 28.8 23.4 23.24 23.38 

Flue Gas to Atmosphere °F 742.8 469.5 464.5 473.3 

O2 in Flue Gas to Atmos. Mole 

percent 0 0 0.0222 0.0063 

CO in Flue Gas to Atmos. Mole 

percent 0.2707 H2 0.0138 -  -  

Type of Combustion Rich Fuel Rich Fuel 

Lean 

Fuel  

Lean 

Fuel 
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Figure 31 Comparison of Pure Composition at Stoichiometric Air Fuel Ratio with 

Base Case 

 

Equation 9 and Equation 10 shows radiant section and tube wall temperature 

(Hassan Al-Haj Ibrahim M. M.-Q., 2013). 

𝑸 = 𝛔. (𝛂. 𝐀) . 𝐅.  (𝑻𝒈
𝟒 − 𝑻𝒘

𝟒 )……Equation 9  

 

𝑻𝒘 = 𝟏𝟎𝟎 + 𝟎. 𝟓 (
𝑻𝒊+𝑻𝒐

𝟐
)…… Equation 10  

 

Where, σ = Stefan-Boltzman constant (2.041 x 10E-7 kJ/h m2k4) 

α = Effectiveness factor of tubes bank 

A = Heat exchange surface area (m2) 

F = Exchange Factor (0.97) 

Tg = Gas temperature in firebox (also flame temperature) (K) 

Tw = Average tube wall temperature (K) 

Ti = Process fluid inlet temperature (K) 
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To = Process fluid outlet temperature (K) 

The radiation duty is more than double if pure hydrogen is present. Figure 31 

shows the elevated steam temperature from radiation zone and radiation zone duty. From 

equation 9 and Equation 10, it is shown that when the radiation zone temperature and 

radiation zone heat duty is high, the tube wall temperature will be high, which can lead to 

tube wall rupture, flame impingement. When pure ethylene is present, the steam 

temperature is reaching the steam saturation temperature. While transporting to turbines, 

loss of energy can lead to condensate formation in pipelines. 

 

4.2.6. Analysis and Hazard Identification 

From simulation and sensitivity analysis of flare composition and temperature, 

following inferences can be made: 

• Identified flare gas parameters can affect the boiler operating conditions. While 

simulating the flare gas composition and temperature, the boiler radiation zone 

heat duty and process steam and flue gas temperature changes. 

• Flare gas temperature variation has minimal effect on boiler process conditions. 

When the temperature of fuel gas is below -35 °F, condensate starts to form, which 

will be separated from the Knockout Drum and the flow can be compensated with 

fuel control valve opening. 

• With variable composition of flare gas, the heating value and Wobbe Index 

changes. With a constant mass flow, the heating value mass basis is higher for 

hydrogen (60330 Btu/lb), producing more heat in the firebox area. For ethylene, 
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lower heat transfer is expected.  However, if the fuel flow controller is stuck at 

same opening (rendering same volumetric flow for all compositions), then with 

hydrogen above 20 mole% with methane and 60 mole% with ethylene, Wobbe 

Index is lower than 1250 Btu/SCF. This situation will lead to flame instability as 

observed at higher H2 concentration (above 60 mole% H2 to 90 mole% H2). 

• Pure hydrogen to boiler spiked up the radiation zone steam temperature by 400 °F 

and flue gas temperature by 270°F (compared to pure methane fuel). Above 40 

mole% hydrogen with ethylene the radiation steam temperature started increasing 

above 500 °F compared to 430 °F in base case condition. Sharp rise in radiation 

zone steam is observed when hydrogen above 75 mole % is introduced with 

methane.  The rise of sudden process stream (steam) temperature and bridge-wall 

temperature (flue gas leaving radiant section) indicates high heat transfer in 

radiation zone. Rise in heat radiant heat transfer raises the fire box flame 

temperature and rise in process steam temperature increases the tube wall 

temperature. which can affect the fire box temperature, flame impingement to 

boiler tubes and radiant section tube metal temperature (or skin temperature).  The 

sudden rise of boiler temperature can also affect the pressure near the arch or the 

radiation to convection section. The operational draft near the arch is the lowest 

and any rise can lead to flue gas losses to atmosphere or can cause back fire (if 

damper is not operated to control boiler draft) as the flow of air will be reduced. 

The sensitivity analysis of boiler pressure could not be carried out on arch section, 
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but rise in boiler temperature is an indirect indication of its effect on boiler pressure 

condition. 

• On introduction of higher composition of hydrogen (more than 65 mole% with 

methane), hydrogen and methane carryover were observed in the flue gas stream, 

due to incomplete combustion. Moreover, higher stack flue gas temperature (more 

than 600 °F) was observed at higher hydrogen concentration, rendering loss of heat 

as well as chances of stack explosion in presence of an ignition source. 

• The saturation steam temperature of steam at 261 psig is 410 °F. When the fuel 

gas stream is lighter (methane is above 40% with hydrogen) and when fuel stream 

is heavy (ethylene more 70 mole% with methane), radiation zone steam 

temperature is near the borderline of saturation temperature (410.4 °F). If the 

frictional losses are considered in the pipelines, there is high possibility of 

condensate carryover to steam turbine. 

• During pure hydrogen, air-fuel ratio (1.14) was below the stoichiometric ratio 

(2.39). Fuel rich firebox can lead to explosion if fresh air is increased too swiftly 

to compensate for lower oxygen in firebox, because the incoming excess oxygen 

will rapidly mix with hot unburned fuel. The explosions due to fuel rich conditions 

usually observed during quick transition from rich to lean burning. When air is 

stoichiometrically increased for hydrogen, the radiation zone duty (59 MM Btu/hr) 

has increased by more than double compared to base case (23.8 MM Btu/hr), 

indicating very high flame temperature, which can affect the integrity of boiler 

tubes. 
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Therefore, from the sensitivity analysis, it was observed that hydrogen 

composition in fuel gas (from flare) and air to fuel ratio are the major parameters affecting 

boiler operation. Boiler radiation zone temperature and incomplete combustion are the 

critical scenarios observed from the variation of composition. 

 

4.3. Scenario Development 

For scenario development, fault tree and event tree are used for individual top 

events. The major critical events identified are – boiler flue gas temperature high and 

incomplete combustion. The change in fuel stream composition is updated (highlighted in 

red) in both the fault tree diagram. 

 

4.3.1. Fault Tree 

Fault tree diagram is made with boiler temperature exceeding design temperature 

and rich fuel in firebox as two top events (which are identified as critical operational events 

from simulation). The base events, leading to intermediate and the top event are added to 

the fault tree. For example, failure of preventive safeguards (e.g. emergency shutdown 

activation), human error (e.g. operating a wrong valve), software failures (e.g. controller 

logic), mechanical integrity (loss of cooling due to pump shutdown).  The technical 

hazards (e.g. excess hydrogen) identified due to change in operation updated to the fault 

tree. Refer to Figure 32 and Figure 33 for the respective fault tree diagrams. 
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Figure 32 Fault Tree Diagram for Boiler Gas temperature Exceeding Design 

Temperature 
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Figure 33 Fault Tree Diagram for Rich Fuel Mixture in Firebox 

 

4.3.1.1. Event Tree 

Fault tree is complimented by Event tree. For the event tree, the initiating event is 

boiler gas temperature exceeding design limit and rich fuel gas mixture in firebox. 

Subsequently, the safety functions or the mitigating barriers are identified to control the 

propagation of top event to incident. Figure 34 shows the event tree for boiler gas 

temperature high. Four barriers were identified – high temperature alarm, manual isolation 
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of fuel valve and steam drum relief vale operation with their corresponding failure 

probability values collected from OREDA and Lees Loss Prevention in Process Industries 

database. Four consequences were observed – normal operation, safe shutdown, tube 

rupture and steam explosion. 

 

Figure 34 Event Tree for High Boiler Gas Temperature 

 

Figure 35 shows the Event Tree diagram for rich fuel in boiler firebox. Three 

mitigating safety barriers were identified – stack flue gas composition analyzer, fuel valve 

operation and air register manual adjustment with their corresponding failure probability 

(valve and air adjustment probability values are based on operator’s failure to adjust the 



 

77 

 

valves in 30 minutes from OREDA database). Three consequences were observed for rich 

fuel in firebox as initiating event – normal operation, flame impingement, and flameout or 

stack explosion. 

 

Figure 35 Event Tree for Rich Fuel Incomplete Combustion 

 

4.4. Quantitative Risk Assessment Through Bayesian Network 

As discussed in section 3.2, Bayesian Network can be used for diagnosis and 

prediction analysis. Provided with an evidence of critical event (e.g. boiler flue gas 

temperature high), the most probable cause can be identified/diagnosed (e.g. flare gas 
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composition). Additionally, the common cause (e.g. power failure effect on standby and 

running pump) can also be represented in Bayesian Network. 

The failure rate data for the components identified in fault tree and event tree are 

collected from Offshore and Onshore Reliability Data (OREDA) and Lees Loss 

Prevention in the Process Industries. The data are enumerated in Table 24. 

Table 24 Failure Rate of Components 

Sl. 

No. 
Node detail 

Failure 

Rate (yr-1) 

Failure 

Probability 
Reliability 

1 Control Logic for Shutdown  0.250 0.221 0.779 

2 Temperature Reading 0.019 0.019 0.981 

3 Solenoid Function 0.263 0.231 0.769 

4 Operator on Critical Response 0.040 0.039 0.961 

5 Wrong Valve Operation 0.050 0.049 0.951 

6 Pressure Regulator  0.166 0.153 0.847 

7 Pressure Transmitter  0.004 0.004 0.996 

8 Pressure Control Valve  0.167 0.153 0.847 

9 Flow Transmitter  0.032 0.031 0.969 

10 Fuel Gas Flow Control Valve 0.167 0.153 0.847 

11 Manual Valve Opening 0.050 0.049 0.951 

12 Flue Analyzer Indication 0.289 0.251 0.749 

13 Air Flow Control Valve  0.167 0.153 0.847 

14 Air Flow Transmitter  0.032 0.031 0.969 

15 

Process Control Logic for 

Normal Operation 0.048 0.047 
0.953 

16 

Pump Mechanical 

Performance 0.042 0.041 
0.959 

17 Low Pressure Water 0.042 0.041 0.959 

18 

Power supply with dual UPS 

(Assumed)  0.00051 0.0005 
0.995 

19 Pipe Leak Near Pump 0.083 0.080 0.920 

20 Water Valves  0.061 0.060 0.940 
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Table 24 Continued 

Sl. 

No. Node Detail 

Failure 

Rate (yr-1) 

Failure 

Probability 

Reliability 

21 Manual Valve Isolation  0.105 0.1 0.900 

22 Steam Relief Valve Operation 0.030 0.030 0.970 

23 Stack Damper  0.041 0.040 0.960 

24 Explosion Door 0.030 0.030 0.970 

25 Alarm Indication 0.200 0.18 0.82 

26 Gas Analyzer 2.500 0.918 0.082 

27 

Air Register Opening in 30 

minutes 0.105 0.1 0.9 

 

The components are assumed to be operating in homogeneous operating 

conditions and the plant is operating in useful life phase with constant failure rate. The 

power reliability of the plant is assumed good and approximated to be 0.005 per year. 

Flare gas frequency is considered 12 hours/year (from literature). Both the event tree and 

fault tree are mapped together in Bayesian Network to show the holistic cause-

consequence model.  

The top event and the consequences identified are shown in Table 25. The whole 

Bayesian network after mapping fault tree and event tree is shown in Figure 36.  

Table 25 Top Event and Consequence in Bayesian Network 

Sl. No. Top Event Consequence 

1.  

Boiler Flue Gas 

Temperature High 

Normal Operation 

2.  Safe Shutdown 

3.  Tube Rupture 

4.  Steam Explosion 
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Table 25 Continued 

Sl. No. Top Event Consequences 

5.  Rich Fuel Mixture in 

Boiler Combustion 

Zone 

Normal Operation 

6.  Flame Impingement 

7.  Flameout or Stack Explosion 

 

 

Figure 36 Bayesian Network for Base Case 

 

 The frequency of flaring is 12 hrs/year, which is considered as 0.033 probability of 

occurrence. Four fuel streams are identified – natural gas, flare gas-A/B, flare gas-C and 

pure hydrogen. Ranked nodes are used for “Fuel Gas”, “Hydrogen Carryover” and “Flare 

Frequency”. As flare-C and natural gas does not have hydrogen in their composition, they 

are categorized in none or low hydrogen, whereas flare-A and flare-B has nearly 42 mole% 

hydrogen from collected data, so they are categorized into medium to low hydrogen 

composition. Pure hydrogen is categorized as high hydrogen carryover. Weightage factor 
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of wmax (6.0 Fuel Gas,0.05 Flare Frequency) is used for parent node “H2 Carryover” 

node, showing the effect of hydrogen in firebox more on flare composition, even if 

frequency is relatively less. The advantage of Bayesian Network is, in an abnormal flaring, 

if the flare gas hydrogen composition and frequency vary for individual streams, then the 

child nodes- “Fuel Gas” and “Flare Frequency” node can be updated with different 

expressions and categorization (or states) to get an updated likelihood of consequence. 

 

4.4.1. Sensitivity Analysis in Bayesian Network 

In Figure 36, natural gas is chosen, to evaluate the likelihood of top events and 

their consequences in a year.  Similarly, flare-A, flare-B and base case natural gas were 

chosen to check the likelihood of occurrence in a year. Figure 37 and Figure 38 shows the 

top event and consequence probability in a year for flare-C as fuel gas.  

 

Figure 37 Frequencies of Top Events and Consequences for Base Case Boiler 

Operation 
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Figure 38 Probability of Occurrence of Critical Events for Base as Fuel 

 

After sensitivity analysis, the probability occurrence of top events and 

consequences (in a year) for each stream are tabulated as shown in Table 26. 

Table 26 Sensitivity Analysis of Top Events and Consequence Nodes 
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Figure 39 Change in Probability of Events for Flare Gas with Variable 

Composition 

 

Figure 39 shows the significant effect on the boiler operational time, loss control 

events and its consequence on tube rupture and flame impingement. Considering these are 

average probability values, there is a significant rise in boiler gas temperature and rich 

fuel gas in firebox due to change to higher hydrogen fuel.  

In a year, the operational time of steam boiler was observed to be 0.93, which has 

reduced, by 0.007 with flare-A/B as fuel and 0.126 with pure hydrogen as fuel. The 

likelihood of top event, boiler gas exceeding design temperature is 0.11 for base case, 

which has increased by 0.010 for flare-A/B and 0.20 for pure hydrogen. In addition, the 

chances of rich fuel in firebox was 0.196, which has increased by 0.027 for flare-A/B and 

by a huge difference of 0.53 for pure hydrogen. Noticeable consequences from top events 

are rupture of boiler syphon tubes and flame impingement. In base case, the probability of 

occurrence of tube rupture and flame impingement was 0.011 and 0.018. However, in case 
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of using pure hydrogen to the boiler fuel, the respective probabilities have increased by 

0.019 and 0.048. For, other consequences, the probability values are marginal. However, 

if the flare gas frequency increases from 0.033 (12 hrs/year) during abnormal flaring, the 

consequences will change. 

Thus, following inferences can be made from Bayesian Network: 

• The change of fuel from base case to flare gas –A/B, reduces the probability of 

operational time by 0.007, while increasing the boiler gas temperature by 0.010 

and rich fuel condition in boiler by 0.027. 

• There is a significant effect of pure hydrogen on safety constraints and their 

consequences. The operational time reduces by 0.126. There is a high probability 

of boiler temperature exceeding design limit (probability change is 0.20) and rich 

fuel in firebox (probability change is 0.532). 

• Pure hydrogen as fuel, increases the probability of tube rupture by 0.02 and flame 

impingement by 0.048.  

• The occurrence of steam explosion, flameout/stack explosion are very low (below 

7.5E-03). If the operating life of fire tube boiler is considered 30 years, then the 

probability of steam explosion and flameout/stack explosion are less than 0.25. 

• The probability of occurrence of incidents are marginal for flare-A and flare-B. 

However, if the frequency of flare gas utilization is increased, the consequences 

will change. 
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5. CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

In this study, the effect of flare gas quality on cogeneration system is investigated 

after integration of flare gas to cogeneration fuel system. The objective of the study was 

to identify the hazards on integrating flare streams to an existing boiler, evaluate the 

changes in operating conditions and to determine the possibility of risk escalation due to 

changes in fuel quality.  

The study developed a framework to identify process hazards and process upsets 

through process simulation and sensitivity analysis, followed by scenario development in 

fault tree and event tree, which were subsequently mapped to Bayesian Network to 

evaluate cause and effect relationship and determine the risk escalation due to changes in 

boiler fuel quality. The uniqueness of the proposed methodology is the identification of 

process hazards and their associated operational effects through process simulation of base 

case and with the change in operating parameters, i.e. variable fuel quality and 

temperature.  

From process simulation, flare stream temperature and presence of higher 

molecular weight hydrocarbons in flare streams showed minimal effect on boiler operation 

with constant fuel mass flow and pressure. Natural gas in base condition starts forming 

condensate at temperatures below -35°F, which leads to loss of energy. However, high 

hydrogen content has significant effect on boiler operating conditions. Increase in the 

hydrogen content in flare affects the boiler gas temperature and combustion mixture in the 
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firebox. Higher concentrations of hydrogen above 60 mole % with ethylene and 75% of 

hydrogen with methane, elevated radiation zone duty and gas temperature is predicted. 

Moreover, at constant air mass flow, lighter hydrocarbons in fuel system leads to 

incomplete combustion of fuel gas in firebox and results in carryover of unburnt 

hydrocarbons to flare stack, which have the potential to ignite and explode at elevated 

temperature. Pure hydrogen when at stoichiometric air to fuel ratio at the given base case 

condition, increases the boiler radiation zone duty and process steam temperature by a 

huge margin, rendering mechanical damage to tubes and burner nozzles.  

On development of incident scenarios and quantitatively assessing the technical 

risk in Bayesian Network, the escalation of risk due to hydrogen carryover in fuel were 

significant. The occurrence of boiler gas temperature exceeding design limit and rich fuel 

in boiler firebox has increased by a margin of more than 0.10 and 0.027 per year for flare 

streams containing average hydrogen, while for higher hydrogen content fuel, the 

respective probabilities have increased by 0.20 and 0.53. Though, the change in likelihood 

of flame impingement on tubes, tube rupture and flameout or stack explosion incidents are 

marginal for medium hydrogen content flare gas (below 0.002), the change in likelihood 

of flame impingement and tube rupture are higher (0.048 and 0.02) for high hydrogen 

content gas. An important conclusion that can be drawn from this work is that the presence 

of pure hydrogen in flare gas has significant impact on boiler operation and can lead to 

loss control events and untoward incidents. To utilize higher hydrogen content flare gas 

for cogeneration, process needs to update preventive safeguards to avert the occurrence of 

top events and increase the operational time of steam boiler. 
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5.2. Future Work 

For future work, the steam boiler base model to be run on dynamic simulation to 

investigate the effect of flare gas quality on steam boiler fuel controller, when the fuel 

control valve is in auto control with process steam outlet temperature. Secondly, in 

dynamic simulation, the effect of high combustion in firebox on fired boiler pressure 

profile (high draft can lead to gas loss through arch section). Finally, the consequence 

analysis of stack explosion and steam explosion to understand the severity of the incidents 

identified and based on the risk acceptance, the adequacy of preventive safeguards (e.g. 

Wobbe Calorimeter, NOx burners).   
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