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ABSTRACT

The aim of this study was to employing high-fidelity computational fluid dynamics to investi-

gate and quantify the turbulent flow effects for incompressible, isothermal fluid flows, in the near

wall region of unstructured, randomly packed spheres. The flow domain treated in this study is a

replication of an experimental setup and analogous to those encountered in pebble bed based high-

temperature reactors. A new meshing strategy and meshing assumptions have been employed to

decrease the mesh size and these were validated with the experimental results.

Quantifying turbulent flow effects sever a dual purpose: One, it assists lower-fidelity engi-

neering tool development, such as those incorporating Reynolds averaged Navier-Stokes based

methodologies, and two deepens our fundamental understanding of the physics involved for in-

compressible flows over complex geometries.

Nek5000, an open source spectral element computational fluid dynamics code, developed by

Argonne National Lab was used to conduct this study. The code was used to perform a series of

direct numerical simulations on the experimental geometry at low to moderate Reynolds numbers,

matching the experimental flow parameters, to validate the model. This was done for a the full and

section of the geometry to investigate the cross flow dependence in the problem.

Presented results include the comparison between experimental and numerical findings, the de-

velopment of a high-fidelity database of the experimental geometry at low and moderate Reynolds

number, identification of possible flow phenomena present in random packed spheres as well as

the calculation of the first and second order statistics in the near wall domain of random packed

spheres.
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NOMENCLATURE

Acronyms

ACF Auto-correlation function

ALCF Argonne Leadership Computing Facility

BDFk k-step backward differentiation formula
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Mathematical operations
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ρ Density
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ui Fluctuating velocity

〈Ui〉 Averaged velocity

P Pressure

ν Kinematic viscosity

Fi Body forces

g Gravitational acceleration

∆t Time-step length

∆x,∆y,∆z Spatial point separation

r Radius

δ Distance from wall
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ε Dissipation tensor

η Kolmogorov length scale

θ Angle

λ Eigenvalues

µ Dynamic viscosity

τ Stress tensor

τη Kolmogorov time scale

Ω Domain

Ω̂ Reference element domain

uη Kolmogorov velocity scale

ueijk Basis Coefficient

N Polynomial order

P Production tensor

p Pressure

Tijk Pressure transport tensor

Πik Velocity-pressure-gradient tensor

x Position

i, j, k Index notation indices

r, t, s Reference element indices

x, y, z Cartesian components
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1. INTRODUCTION

This study aims to investigate the fundamental turbulent flow effects that occur in the flow

through a random, unstructured close-packed pebble bed, by employing direct numerical simula-

tion (DNS). The goal was achieved by conducting numerical simulations and comparing the results

with that of an experimental setup for different Reynolds numbers. From these, specific flow phe-

nomena were investigated. A set of high-quality DNS reference data was developed and compared

to that of work done, by L.Fick [1], on a structured packing arrangement. The transport of tur-

bulent kinetic energy (TKE), temporal dependence of the averaged fields and the bounding wall

effects on the bulk flow will be compared with experimental and previous results.

1.1 Background

Several concepts, systems and methods of importance to this study will be broadly outlined in

the subsequent sections. An overview of pebble bed reactors (PBR), to which this research ap-

plies, is given. The tools used for fluid dynamic research, computational fluid dynamics (CFD), is

covered. A brief outline of DNS, which is the CFD framework that will be used, is then discussed.

The dissertation is then concluded by giving the significance and impact of this work.

1.1.1 Pebble bed nuclear reactors

The Generation Four International Forum (GIF) proposed the PBRs as one of the two very high-

temperature gas-cooled reactors (VHTR) that is a concept to replace current operational nuclear

power reactors [4]. The reactor is designed on the basses of an unstructured bed of spherical

graphite fuel pebbles in which tri-structural isotropic (TRISO) fuel particles are dispersed [5]. The

design offers energy transfer and conversion by either helium or molten salt as the primary working

fluid. This can be coupled via a heat exchanger, to a secondary gas (Brayton) or steam (Rankine)

thermodynamic power cycle [6]. The higher obtainable coolant temperatures that are achievable

by these reactors open the versatility to be used for process heat and hydrogen production. These

designs offer several improvements over the current light water reactor-based designs [1]:
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1. Improved economics by having higher thermal efficiency.

2. Application flexibility by having higher core outlet temperatures allowing power generation

and/or processes heat and hydrogen production.

3. Increased safety by having a lower power density and the stability of the graphite moderator

and core during accidents.

Fig. 1.1 gives the schematic representation of a PBR that is connected to a Rankine cycle. The

core graphite can either be in an annular or cylindrical configuration. Depending on the core power

output, this region is filled with the order of hundreds of thousands of spherical graphite pebbles.

The coolant is forced in from the top of the core, to avoid a fluidized bed and air ingress, which

may result in undesired mechanical stress, wear and vibrations.

Figure 1.1: Schematic representation of a PBR system connected to a Rankine cycle.

Depending on the designed, it can either incorporate online or offline refueling. When the
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system calls for online refueling, the pebbles are displaced towards the bottom of the core, where

they are collected before they are re-inserted at the top. Due to the slow rate of the displacement

the core can be considered as stationary when flow simulations are conducted.

Even though a few reactors, based on this designed, have been constructed, there are still

several technical challenges that have been left unanswered. Some of which appear due to the

constant change of the core geometry as pebbles are removed and added. Thus employing CFD, the

relevant issues, such as coolant flow path predictions, stagnation and resulting hot-spot generation

can be addressed for the bulk and near wall region.

1.1.2 Computational fluid dynamics

Most engineering systems that utilize a working fluid to transport energy, like nuclear reactors,

operate in the turbulent fluid-flow regime. Turbulence is a time-dependent, three-dimensional,

non-linear process, which can accurately be described by the Navier-Stokes (NS) equations [7].

Thus incorporating various frameworks and varying degrees of simplifications, CFD tools solve

these equations numerically, for flows of interest.

As the computation resources to our disposal advanced over the last couple of decades, CFD

has become an integrated part of the engineering design and research. CFD solutions provide

simplified, safer and more cost-effective tools for research and development, than experiments.

Complex phenomena, such as fluid flow and heat transfer can be characterized, without the need

for complex experimental set-ups, thus cutting down on cost and set-up time. Even with this

advantage, CFD tools are based on mathematical simplifications and assumptions, thus making

simulating complex turbulent flow practical in general engineering and design applications. To

ensure the assumptions and simplifications are adequate, CFD tools need to be validated, before

the results obtained can be trusted for new and novel applications.

The different CFD frameworks for numerical simulations of pebble beds can be found in the

subsequent sections. For a more detailed review of the framework, consult [8].
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Figure 1.2: Schematic of CFD frameworks used to simulate fluid dynamics [1].

1.1.2.1 Reynolds Averaged Navier-Stokes

Depending on the simplifications and assumptions applied to the NS equations different nu-

merical frameworks come to light. Fig. 1.2 details the different employable frameworks, their

application and corresponding computational cost and accuracy. Full-scale practical systems can

be approximated by using Reynolds averaged Navier-Stokes (RANS) and porous media based

frameworks. These are computationally inexpensive, but rely on numerous assumptions and clo-

sure models. For the results from these frameworks to be accurate, explicit testing has to be done

to ensure they deliver accurate results for the given geometry under question. RANS based studies

have shown the limited ability of these models to generate accurate results in pebble based geome-

tries [9]. RANS models are capable of capturing the overall averaged behavior of a system, but

lack as the detail of the underlying physics is lost in the averaging process.

1.1.2.2 Large Eddy Simulations

With an increase in computational cost, higher fidelity methods, such as large eddy simulations

(LES) and hybrid RANS/LES methods can capture more of the underlying physical phenomena

present in complex geometries [10]. As computational tools and computer resources become more
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advanced, these tools become more lucrative for engineering design and research [11, 12].

1.1.2.3 DNS

The most accurate is that of DNS, which explicitly solves the discretized NS equations using

numerical methods. The unrepresented accuracy comes from not needing to model the small scale

turbulent motions, unlike the RANS and LES approaches. With the high spatial and temporal

accuracy comes the biggest increase in computational costs, due to the capture of all the physical

phenomena in the flow. Due to the high expense, DNS is not used for design, but rather for

fundamental research. For this study NEk5000, a spectral element CFD code, will be employed.

Spectral element methods (SEM) are higher-order spatial methods, which is a subclass of finite-

element frameworks [13]. Due to the low numerical dissipation of SEM frameworks, it is well

suited for DNS, where detailed investigations are performed on the physical flow effects and dissi-

pation of turbulent kinetic energy in complex flow geometry.

The computational cost associated with DNS is still the biggest prohibiter for using DNS. This

limits both the physical size of the computational domain, as well as the achievable Reynolds

number that can be investigated. Thus DNS is applied to smaller idealized subsystems that are

found within practical systems, while low to moderate Reynolds numbers can be considered.

1.2 Study objectives

The objective of this study is to add to our understanding of the dynamics of turbulent flow in

unstructured random PBR geometries. The results of this study can be used to optimize the current

engineering research and design tools. This allows the broader application of this work.

By performing several simulations applicable to the flow in pebble beds, and analyzing the

results the above-mentioned goal can be obtained. Three studies, with a specific set of goals where

proposed and conducted. The goals of the different studies can be summarized as follow:

1. Flow over two spheres in free stream with different spacing:

• Verify the simulation methodology by using available numerical simulations and ex-

perimental literature.
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• Confirm increased meta-stable behaviour of data averaged over long time-integration

periods

• Confirm existence of critical sphere placement for wake separation for spheres in tan-

dem.

2. Experimental geometry:

• Verify simulation methodology and mesh generation of unstructured random packed

pebbles.

• Verify simulation boundary conditions and simplification in geometry.

• Compare first- and second order turbulent statistics to that of experimental setup using

moderate Reynolds numbers.

• Generate a high-fidelity database of time-invariant flow data:

– First- and second-order turbulence statistics.

– Turbulent kinetic energy budgets.

• Identify and isolate temporal instabilities present in the flow.

3. Simplified Experimental geometry:

• Investigate the decrease in computational cost by simulating a smaller domain

• Investigate how different boundary conditions affect the flow in the random pack pebble

bed.

• Compare first- and second order turbulent statistics to that of the full numerical setup

using moderate Reynolds numbers.

1.3 Dissertation structure

For this dissertation, each numerical experiment will be treated as independent, with their

own results and discussion sections. The different cases will be tied together with an overall

introduction, background, mathematical theory and conclusion sections.
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A brief overview of the dissertation can be summarized as:

• Section 1: Introduction. General information and relative background and objectives for the

study.

• Section 2: Mathematical theory. A brief overview of the required mathematical theory re-

quired for the subsections.

• Section 3-5: Numerical studies

– Two spheres in tandem with different spacing

– Experimental geometry verification

– Simplified domain investigation

• Section 6: Conclusion and future work

1.4 Summary

To summarize and finish this section an introduction of the practical engineering system under

consideration was given, along with the introduction to CFD and DNS, as the tools employed for

the study.

The proposed objectives, to create a first-of-its-kind, DNS results for the near wall region of a

random packed pebble bed was given, as well as the steps that will be taken to achieve these goals.
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2. THEORETICAL BACKGROUND

The mathematical theory relevant, to the preformed study, will be covered in this section. As

the tools and theory used here are already well established, only a short discussion, with the rele-

vant reference will be given. For the derivations of these tools the reader can consult the references.

When theory, that is only relevant to a specific section is used, it will be covered there accordingly.

This will ensure that this chapter remains brief.

The conservation laws in the form of the NS equations are the basis for this study. The numer-

ical methods employed by Nek5000 to solve the discretized NS equations are then discussed. The

TKE transport equations, and the relevant terms are then discussed. To ensure that the numerical

simulation conforms to DNS requirements, which itself requires access to information in the TKE

budgets, are then treated.

2.1 Navier-Stokes equations

Using the derivation done by [7], the NS equations for incompressible fluids, with constant

properties, give the conservation of mass, in Einstein notation, as:

∂ρ

∂t
+

∂

∂xi
= 0 (2.1)

And the conservation of momentum:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − ∂p

∂xi
+ ν

∂Uj
∂xi

∂Ui
∂xj

+ ρFi (2.2)

Because the flow under consideration has constant fluid properties the conservation of mass Eq.(2.1)

reduces to the divergence-free condition:

∂Ui
∂xi

= 0 (2.3)
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To simplify, the NS equations are non-dimensionalised using appropriate characteristic parameters.

DefiningLD andU∞ as the characteristic length and velocity scales, the following non-dimensional

length, velocity and time occur:

x∗i = xi/LD (2.4)

U∗i = Ui/U∞ (2.5)

t∗ =
t

LD/U∞
(2.6)

from Eq. 2.4-2.6 and assuming that convection is dominant the non-dimensional pressure is:

p∗ =
p

ρU∞
(2.7)

This allows the NS equations to written in the non-dimensionalized form:

∂U∗i
∂t∗

+ U∗j
∂U∗i
∂x∗j

=
∂p∗

∂x∗i
+

1

Re

∂U∗j
∂x∗i

∂U∗i
∂x∗j

+
1

Fr

Fi
g

(2.8)

with the two dimensional less Reynolds and Froud numbers given as:

Re =
U∞LD
ν

(2.9)

Fr =
U2
∞

gLD
(2.10)

With no external forces acting on the fluid, the Froud number, Fr → ∞. This leaves us with the

non-dimensional equations:

∂U∗i
∂x∗j

= 0 (2.11)

∂U∗i
∂t∗

+ U∗j
∂U∗i
∂x∗j

= −∂p
∗

∂x∗i
+

1

Re

∂U∗j
∂x∗i

∂U∗i
∂x∗j

(2.12)
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This is the governing equations that will be used for the remained of the dissertation. For ease of

writing and simplification, the * is removed from the notation, as it is assumed we are working with

the non-dimensional forms of the equations. Using Reynolds decomposition, the instantaneous

velocity fields can be decomposed as the sum of the average and fluctuating fields:

Ui = 〈Ui〉+ ui (2.13)

Thus when taking the density as unity and calculating the variance and covariance of the fluctuating

fields, the Reynolds stresses can be given as 〈uiuj〉.

2.2 Nek5000 schemes and Spectral element method

Partial differential equations can be solved by using the SEM, a high-order finite element

method. The domain is discretization into disjointed elements, with the solution and geometry

approximated by high order polynomial expansions within each element [13, 14]. These meth-

ods combine the geometric flexibility of low-order finite-element techniques with the high-order

accuracy of the spectral method.

For three-dimensional flows, as considered for turbulence, the SEM divides the computational

domain into hexahedral elements. Each element‘s face consists of non-degenerate parallelograms.

Each element is sub-divided onto a local Cartesian mesh, resulting in a NxNxN tensor [15]. The

solution is evaluated in this tensor-product box using Lagrange polynomials, evaluated at Gauss-

Lobatto-Legendre (GLL) collocation points. GLL distributions are clustered closer to the boundary

of the element, this is due to the accuracy in the approximation, interpolation and quadrature

properties. An overview of how the SEM is implemented in NEK5000 will now be discussed. For

more about SEM [16] can be consulted.

2.2.1 Spatial discretization

Originally SEM was developed to use Chebyshev collection points within each element [13],

but later the scheme was modified to use GLL points by incorporating the Galerkin formulation

[14].
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With SEM, the entire domain, Ωf , is comprised of a set of non-overlapping sub-domains, Ωe,

so that:

Ωf =

Ef⋃
e=1

Ωe , e ∈ Ef (2.14)

within each element, a variable u(x, y, z) can be represented as:

u(x, y, z)|Ωe =
N∑
k=0

N∑
j=0

N∑
i=0

ueijkhi(r)hj(s)hk(t) (2.15)

where the basis coefficients are given by ueijk. hi(r), hj(r) and hk(r) are the N-th order one-

dimensional Lagrange polynomials evaluated at the GLL points. The arguments of the polynomials

(r, s, t) are the coordinates in the canonical reference element, Ω̂ = [−1, 1]3. For (x, y, z) ∈ Ωe an

non-parametric mapping relates Ωe as the the image of Ω̂ under the polynomial mapping in 2.15.

For this mapping it is assumed that the angles at the edges of Ωe are bounded away from 0◦ and

180◦, thus making it un-invertible with smooth element edges.

The pressure is discretized in the same manner as that of the velocity, where the only difference

being the Lagrange interpolants are of the order N − 2, when evaluating the GLL points. Thus this

forms the well known PN − PN−2 SEM formulation [1, 15].

2.2.2 Temporal discretization

Time stepping in Nek5000 is solved by means of a semi-implicit scheme. With this, the viscous

terms in the NS equation, Eq. 2.12, is solved by using a k-step backward differentiation formula

(BDFk) that is based on a truncated Taylor expansion. The convective term, which is non-linear,

is treated with a k-th order explicit extrapolation scheme (EXTk) [15]. For the work done, the

simulations were solved using k = 3 resulting in a BDF3/EXT3 time stepping scheme. This

scheme is globally third-order accurate.

In order to maintain stability, with an explicit numerical scheme, there is a time-constrained

placed on the time step size, ∆t, that can be used. The Courant-Friedrichs-Lewy (CFL) condition
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gives the stability criteria for the time step as:

∆t ≤ CFL×MINΩf

{
∆x

|ux|
,

∆y

|uy|
,

∆z

|uz|

}
(2.16)

where the x, y and z distances between the spatial collection points are given by ∆x, ∆y and ∆z,

the corresponding velocities are given by |ux|, |uy| and |uz| and MINΩf refers to the minimum

over the entire flow domain.

2.3 Turbulent kinetic energy transport equation

To understand the turbulent flow process, it is integral to understand the evolution of the tur-

bulent kinetic energy. As DNS allows the flow fields to be decomposed by means of Reynolds

decomposition, each term of the TKE equation can be computed for each time-step, at each lo-

cation of the domain. Following the work done by [7] and using the notation of [17], the TKE

equation is given by:

∂〈uiuk〉
∂t

+ 〈Uj〉
∂〈uiuk〉
∂xj

= Pik −
∂

∂xj
Tijk + Πik − εik (2.17)

with the first term giving the time evolution of the Reynolds stresses, the section the convection of

the Reynolds stresses. The Reynolds stress production tensor, Pik, is defined as:

Pik = −〈uiuk〉
∂〈Ui〉
∂xj

− 〈uiuj〉
∂〈Uk〉
∂xj

(2.18)

the Reynolds transport, Tijk, is:

Tijk = 〈uiujuk〉+ 〈ukp〉δij + 〈uip〉δkj − ν
∂〈uiuk〉
∂xj

(2.19)

the pressure strain correlation, Πik, is given by:

Πik =

〈
p

(
∂ui
∂xk

+
∂uk
∂xi

)〉
(2.20)
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and the dissipation, εik, is:

εik = 2ν

〈
∂ui
∂uj

∂uk
∂uj

〉
(2.21)

Each of these terms can be calculated, during the simulation, in Nek5000 by using subroutines

that was developed by [18]. Later sections will discuss the different terms for the TKE as they are

calculated for the different cases, as presented in the introduction.

2.4 DNS requirements

In order to classify a numerical simulation as a DNS study, all length and time scales, for the

specific turbulent flow, has to be resolved. The turbulence processes and the concept of energy

cascades, as introduced by [17], showed that different sized eddies are present in the flow. The

mean flow imparts TKE to the largest eddies, which has a length scale similar to the geometry,

to smaller scales until the dissipation scale, which is the smallest length scale. In this scale, the

energy is dissipated into unusable internal energy or heat.

The most widely accepted theory for the energy cascade process and the smallest possible

scales in turbulence flow is that of Kolmogorov theory. This theory is based on three hypotheses.

Firstly, the Kolmogorov similarity hypothesis [19] states that turbulent flows of high Reynolds

numbers have a homogeneous and universal dissipative scale that is only determined by the fluid‘s

kinematic viscosity, ν, and the dissipation, ε, of the energy. From this hypothesis, three Kol-

mogorov scales can be defined, namely length, velocity and time as:

η =
(ν3

ε

)1/4

(2.22)

uη = (νε)1/4 (2.23)

τη =
(ν
ε

)1/2

(2.24)

For a numerical simulation be to consider a direct numerical simulation these scales are the mini-

mum criteria the discretization should adhere to. When the temporal and spacial discretization of
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the numerical study is finer than that of the Kolmogorov time and length scales, all possible scales

of motion can be fully captured by the the numerical simulation, thus classifying it as DNS.

To ensure that the simulations adhere to DNS requirements, these scales were calculated and

compared to ensure conformance for each simulation and studied Reynolds number. These shall

be discussed in the following chapters.

2.5 Proper orthogonal decomposition

One of the more powerful analytical tools to identify the energy content in turbulent flows,

is the implementation of proper orthogonal decomposition (POD). POD allows the basis modal

decomposition of turbulence, which is nearly infinite in dimensions, and capturing the dominant

features with a drastically reduced number of representative modes.

With turbulence being such high dimensional phenomena, POD allows different applications

and analysis of the results. The first application is to reconstruct the full set of governing NS

equations by approximating it with a basis set of low-dimensional data. Representing a high-

order system with low-dimensional approximation is termed reduced-order modeling. This method

consists of a system of differential equations that is time integrated to determine the temporal

coefficients. Combining these temporal coefficients with the spatial information contained within

POD modes, analysis can approximate the dynamics and reconstruct the flow under investigation.

Due to POD highlighting the highest energy structure in the temporal flow, by decomposing

the system optimally, it can be employed to investigate the underlying physical effects that drive

the flow.

If the reader requires more theory on POD, they can consult [20] and the method of snapshots

which is used to gather the data for POD [21]. How POD is implemented in Nek5000 can be found

in [22] and it will be discussed next.

When investigating and determining a good representation a set of scalar fields {uk}, where

each field is a function of u = u(x) and defined on the interval 0 ≤ x ≤ 1, each function of u has

to be decomposed and projected onto candidate basis functions. For this, it is assumed that all the

functions belong to an inner product space, L2([0, 1]), of square integrable functions, where the
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inner product is defined as:

(f, g) =

∫ 1

0

f(x)d(x)dx (2.25)

From this, the goal is to find a basis function, {φj(x)}∞j=0, for the space L2, that the finite-

dimensional representation in the form of

uN(x) =
N∑
j=1

ajφj(x) (2.26)

can describe the typical members of the data, better than any other basis can for the same dimen-

sion. This usually incorporates some form of averaging, which for our case will be time averaged

over an ensemble consisting of uk(x) = u(x, tk) members, taken from sequential time integration.

When the square space, L2, is to be taken as a more general Hilbert spaceH, the best condition

of selecting the basis function, implies that the normalized averaged projection of u onto φ should

be maximized,

max

{
φ ∈ H

〈
(u, φ)2

〉
||φ||2

}
(2.27)

Calculus of variations are used to solve the problem by generating an eigenvalue problem of the

following form:

Kφ = λφ (2.28)

The optimal basis functions are thus given by the eigenfunctions {φj} of the the K operator, that

is defined by the computational data, also termed the POD modes.
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When expanding Eq. 2.28, the equation becomes

Kφ(x) =

∫
Ω

K(x, x′)φ(x′)d(x′)

= λφ(x) (2.29)

where the kernel K(x, x′) = 〈u(x, t)u(x′, t)〉, and a dyadic product is implied for the vector mul-

tiplication. When the finite dimensional domain with the Hilbert domain H = RN is considered,

with the simulation data coming from a set of M vectors uk ∈ RN , and the arithmetic mean is

given by 〈 . 〉. From this the Kernel may be given as:

Kij =
1

M

M∑
k=1

uki u
k
j (2.30)

From this definition, the Kernel K, is a real, symmetric N × N matrix and Eq. 2.28 is a standard

matrix eigenvalue problem in RN . For DNS, the number of grid points N , can be quite substantial.

Due to the size of DNS data, solving the eigenvalue problem becomes impractical due to the size of

the matrix. This is the reason we convert to the method of snapshots to solve the M ×M problem.

When the method of snapshots is used, a collection of M vectors are used to generate the

kernel in Eq. 2.30. This is formed from a series of linearly independent flow realizations that is

sequentially taken during the time integration of the turbulence case. If the vector {ui}Mi=1 is taken

as the realization of the flow field and (., .) is the inner product of the N -dimensional vector space.

The discrete version of the inner product L2(Ω) allows the eigenfunctions to be written as:

φ =
M∑
k=1

aku
k (2.31)

Where the coefficients ak have to be computed. Combining Eq. 2.30, the eigenvalue problem of
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Eq. 2.28 can be given as:

(
1

M

M∑
i=1

ui(ui)
T

)
M∑
k=1

aku
k = λ

M∑
k=1

aku
k (2.32)

We can simplify the left hand side of the equation to:

M∑
i=1

[
M∑
i=k

1

M
(uk, ui)ak

]
ui (2.33)

the basis function is to find a solution for the coefficients ak, so that

M∑
i=1

1

M
(uk, ui)ak = λai, i ∈ (1,M) (2.34)

The M ×M eigenvalue problem solved in Nek5000 takes this form to compute and compare the

POD modes for the different flow cases.

2.6 Summary

The required mathematical theories that form the base of this study was detailed in this section.

This includes the relevant conservation, the equations for turbulent kinetic energy transport, the

basis of Nek5000‘s spectral element methods and the discretization requirements for DNS. The

following sections will cover the initial study, meshing strategy and experimental comparisons to

validate the modeling assumptions made.
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3. NUMERICAL EXPERIMENT I: TWO SPHERES WITH DIFFERENT SPACING

This section acts as a continuation of the work done by [1] where it was found that the addition

of another sphere affected the temporal dynamics of flow over a sphere. The exact effect of the

pebble placement was not investigated. Within random packed pebble beds, the complex geometry

allows for pebbles with different spacings, with potential endless underlying effects coming into

play. In order to isolate the effect of the pebble spacings 4 different idealized spacings where

simulated and compared. This was done to try and find a better understating on the different

simultaneous temporal effects that is present within a randomly unstructured pebble bed.

The section kicks off with a brief introduction and verification of the modeling done, for flow

over conical bluff bodies. The justification and previous work done, on a single sphere, can be

found in [1]. The methodology and modeling approaches for the 4 cases are then given. Followed

by the results and comparison between the 4 cases for the most important results. The section is

then ended by the conclusions drawn from the study.

3.1 Background

Numerous engineering and research areas require the understandings about incompressible

flow over bluff bodies. From fundamental fluid dynamics research, to high-temperature nuclear

reactors have some form of fluid flow over spherical components.

The complexity and computational burden of extracting high fidelity DNS results from actual

engineering systems have left fundamental research the only sector that can utilize the power and

accuracy of DNS. This results that the majority of high fidelity DNS results only covers flows

oversimplified single spheres, in a free stream with little to no experimental data for verification

or validation. Examples of where DNS have been incorporated is that of low Reynolds Number

flows, especially pertaining to the transition region [23]. These simulations‘ main focus was the

representation and visualization of the first- and second order turbulence statistics of the wake

region [24, 25].
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More recent work has been done by [26, 27, 26, 28] on an idealized, fully structured case.

This research focused on the temporal dynamics of the flow while still keeping the geometry fairly

simple. This does approximate the actual geometry better, but the random packing structure can

introduce even more temporal dynamics.

From a numerical simulation perspective, most practical flows over spherical bodies, as in that

of gas-cooled nuclear reactors, has been Reynolds averaged Navier-Stokes (RANS) or hybrid-

RANS approaches, as done in [29, 30, 31]. All these were done on idealized structured cases,

mostly iso-thermal, to quantify the effects of contact treatment and turbulence statistics. With

the numerical and modeling uncertainties associated with these modeling approaches, the answers

have to be validated by either DNS or experimental data.

For this work, four different pebbles spacings were investigated: 1.5D, 2.0D, 2.5D and 3.0D.

This was to support DNS verification data and continue work published by [1]. This will also

finally serve as a baseline for PIV results on random pebble beds, done by [32]. For these cases

the Reynolds number of 1000 was used.

The verification of flow over a single sphere was done by [1] as well as 2 spheres with a 2.0D

spacing. The comparisons of the other spacing of first and second order turbulence statistics are

given.

3.2 Methodology

The outlines for the case, with the associated geometric, flow and computational parameters

used is given in this subsection.

3.2.1 Case Outline

The general geometry used for this study is that of two tandem spheres within a free stream,

as seen in Figure 3.1a. The mesh was generated by using ICEM-CFD‘s block meshing tools after

which the mesh was converted using the native Nek5000 tool, exo2nek. The mesh consists of

a rectangular box ranging from [−5D ≤ x, z ≤ 5D] and [−5D ≤ y ≤ −25D]. Within this

box, a spherical to rectangular o-grid transition conforms to the sphere surface. Where the pebble
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(a) An isometric view of the total domain
with a spacing of 2.0D.

(b) A slice view of the mesh at x=0.

Figure 3.1: Visual representation of the geometry and mesh.

diameter is defined as D = 1. Four different pebble spacings where simulated, the center to center

distances set as 1.5D, 2.0D, 2.5D and 3.0D. The pebble spacings and blocking was chosen, so

that the pebbles can be moved without changing the element count of the domain. This resulted in

a mesh of 31025 elements for all 4 cases.

All the flow and boundary conditions were kept consistent for all the cases. No-slip wall con-

ditions were applied to the sphere surfaces, while all other boundaries received a uniform constant

stream wise velocity of Uy = 1. The outlet top surface was treaded as a pressure outflow boundary.

The simulation was set up with a Reynolds number of a 1000 to match the conditions of [1] and

the experimental [23].

3.2.2 Computational Parameters

The free stream velocity, U∞ = 1, and the pebble diameter D = 1 was used to define the

Reynolds number. Assigning a unit density to the fluid, allows the Reynolds number to be defined
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(a) Maximum grid spacing to Kolmogorov ratio vs
polynomial order. (b) Line profile locations for in-

terpolation.

Figure 3.2: Visual representation of the Kolmogorov calculations.

as Re = 1/µ. To investigate the influence of the pebble spacing on the flow the Reynolds number

was chosen to match that done in previous work and proposed experimental conditions. The veri-

fication and defense of the choice in Reynolds number was done by [1], if required the reader can

consult the previous work done.

To ensure that DNS requirements are met for all 4 cases the Kolmogorov scales were calculated.

The ratio of the local grid size to length scale was calculated for a set period of time and the global

maximum was plotted as a function of polynomial order, Figure 3.2a, for all 4 cases. From this, a

polynomial order of N = 9 was used for production runs for all the cases.

Work done by [33, 34] showed that for cylinders in tandem, there exists a critical spacing

where wake separation is only seen from the front cylinder. [1] showed that for a single sphere

Kelvin-Helmholtz instabilities existed. With the different spacings, one would expect to see a

spacing where the vorticity closely resembles that on a single sphere and as the spacing increases

the second sphere‘s influence would become visible.

The Argonne Leadership Computing Facility IBM Blue Gene/Q clusters located at Argonne
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National Laboratory, was used to run these cases. The flow was developed for 200 convective units

(CU = D/U∞) at a lower polynomial order of N = 5. This allowed for rapid time stepping of

the cases. After development, the production runs were commenced. The flow was averaged for

800CUs after the flow has been developed, with a time step of 4 × 10−3. The simulation utilized

16384 CPU cores to solve the flow field over 22.618× 106 collection points.

3.3 Results and Discussion

The results obtained form the 4 numerical experiments are given in the following sub-section.

3.3.1 First and second order statistics

The statistics of this subsection was averaged after the simulation has reached a statistical

steady state. Due to the symmetry of singular spherical bluff bodies, a common practice for numer-

ical experiments, are to average interpolated line profiles azimuthally around the axial centerline.

This azimuthal averaging is established to produce well-averaged statistics. This is supposed to

hold up, because the statistics develop to a time-invariant azimuthal symmetric condition. In work

done by [35] there was found that a low-frequency switching of the azimuthal location occurred in

complex spherical geometries. As found by [1] there also exists the same, low-frequency shifting

in the simplified two sphere case.

Based on the fact that azimuthal averaging cannot be implemented for the two-sphere case the

longer integration period was required to obtained well-resolved statistics, as found by [1, 25, 24].

The 2.0D simulation was run and compared to that of [1] and it was found averaging over 800 CUs

produced the same results.

Figure 3.3 shows the averaged streamwise velocity at the [0, y, z] plane, all plotted over the

same minimum and maximum value for better comparisons. The averaged velocity field of a single

sphere was found to be symmetrical. Here it can be seen that for all 4 cases a fairly symmetric

wake region is also observed downstream of the downstream sphere, as in [1]. When inspecting

〈Uy〉 in the gap region they profile does not present a symmetric profile. It is also seen that the

flow switch the direction it is biased towards, indicating the pebble placement has an influence on
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.3: Pseudo-color field of the averaged stream wise velocity, 〈Uy〉, for the 4 sphere spacings.

this. Figure 3.3a seems to be fairly symmetric, as the downstream pebble distance is increased the

recirculation region, 〈Uy〉 ≤ 0, is biased towards z/D ≤ 0. As the distance increases the biasness

decreases to almost symmetry before it switches to z/D ≥ 0 for the last spacing. This indicates

that a critical pebble spacing occurs, as in that of tandem cylinders observed by [34].

The representation of the Reynolds stress tensor is simplified, due to the choice of unity for

the fluid density. This results in the Reynolds stress tensor being represented by the single-point,

single-time covariance tensor, 〈uiuj〉. Figure 3.4 shows the in-plane 〈uyuy〉 component of the

Reynolds stress tensor for the four spacings. Not only can the same asymmetry be seen in the

four cases, but also a significant change in magnitude and biasness as the gap distance is increased.

This is observed even after the statistics have reached a stationary state. It can be seen for the

smallest gap, the Reynolds stresses are significantly lower and there is no localized maximum in

the gap region. Then as the gap increases the maximum is biased towards z/D ≤ 0 for 2.0D.

A further increase results in an almost symmetric stress tensor in Figure 3.4c, before finally the

23



(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.4: Pseudo-color field of the in-plane Reynolds stress component, 〈uyuy〉, for the 4 sphere
spacings.

maximum shifts to z/D ≥ 0, but to magnitude decreases as the spacing is increased. This verifies

the existence of a critical sphere placement around 1.5D and again around 2.4D.

Figure 3.2b shows the interpolation line positions for each case.

Figure 3.5 is the interpolated line profiles 〈uyuy〉 in the near wake region for the four spacings.

The lines were constructed from 100 equally spaced individual points. Figure 3.5a is situated at

Z/D = 0.5 and each consecutive line‘s Z/D position is increased with 0.5D. To ensure that the

results from all four cases could be compared, the data was normalized for each line by using the

absolute maximum value for each line over all four spacings.

Xnorm = max(max(|Xij|)i=1,100)j=1,4 (3.1)

Where X is the normalized variable. This normalization allows the comparison and represen-
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(a) Y/D = 0.5 (b) Y/D = 1.0

(c) Y/D = 1.5 (d) Y/D = 2.0

(e) Y/D = 2.5 (f) Y/D = 3.0

Figure 3.5: Line profiles of 〈uyuy〉 in the wake region of two spheres. All the lines are normalized
using the largest absolute value obtained from the six lines over the 4 spacings.
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tation of the data between the four different cases as well as how the relative magnitudes for each

case at the current position.

When looking at the first line, it is seen that 〈uyuy〉 starts as a narrowly peaked profile with

2.0D clearly having the largest magnitude. And having a slight asymmetry towards Z/D ≤ 0. As

we move downstream to Y/D = 1.0, the relative magnitudes of spacing 1.5D, 2.5D and 3.0D start

to increase. For 1.5D the profile still have a fairly symmetric profile at this point. 2.0D shows the

maximum being biased towards Z/D ≤ 0, where the last two cases are biased towards Z/D ≥ 0.

At Y/D = 1.5 the magnitudes of 2.5D and 3.0 increases even furtherer and the profile become

broader. For 1.5D no significant change is observed. It seems like the downstream pebble is in the

slipstream of the first sphere and the flow is dumped behind the downstream pebble, resulting in

little to no recirculation of the closest spacing.

Moving further downstream to Y/D = 2.0 it is seen that the profile of 1.5D decreases. This

line is at the back of the downstream pebble, this is the smallest Reynolds stress region between the

4 cases. For the 2.5D the profile is moving away from the broad shape and it is taking on a more

narrow peak profile. 3.0D still exhibit the narrow peak profile, where the peak is biased towards

Z/D ≥ 0.

For the lines at Y/D = 2.5 it is interesting to see that case 3.0D and 2.0D have equal maxims,

but the maximum‘s location has switched. These profiles are almost mirror images of one another.

Case 1.50D‘s stresses are still at least an order magnitude smaller than that of the others.

At the last line, Y/D = 3.0 the stresses seem to be all of relative equal values, except for

the smallest gap. Case 2.0D shows an interesting development, where the profile exhibit two less

dominant peaks. The profile is also broadening as we are in the wake of the downstream sphere.

From the presented statistics, it is evident that the spacing of the second sphere not only influ-

ences the magnitude but as well as the symmetry of the observed nominally steady solution.

3.3.2 Turbulent kinetic energy

This subsection will present some of the selected components of the turbulence kinetic energy

transport equation. Production and dissipation tensors where chosen to be presented.
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.6: Pseudo-color field of the diagonal component of the turbulent kinetic energy production
tensor, in the span wise direction Pxx, in the [0, y, z] plane.

(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.7: Pseudo-color field of the diagonal component of the turbulent kinetic energy production
tensor, in the stream wise direction Pzz, in the [0, y, z] plane.
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.8: Pseudo-color field of the diagonal component of the turbulent kinetic energy production
tensor, in the stream wise direction Pyy, in the [0, y, z] plane.

When looking at the structures and magnitudes of the lateral components, Pxx and Pzz, Figures

3.6 and 3.7, it is seen they present similar magnitudes and structures, except for the 1.5D case. It

clear that there is little to no production in the recirculation region, indicating that the downstream

pebble is in the slipstream of the first and the generate wake is produced by the first pebble being

shed behind the downstream sphere. From the other three cases, the maximum and position shows

were the shear-layer Kelvin-Helmholtz instability manifests on the periphery of the recirculation

region. the highest lateral production is found in the recirculation region of the 2.0D case.
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.9: Volume rendering of the span wise diagonal components of the turbulent kinetic energy
dissipation tensor,Pxx, in the [0, y, z] plane.

(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.10: Volume rendering of the span wise diagonal components of the turbulent kinetic
energy dissipation tensor,Pzz, in the [0, y, z] plane.
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.11: Volume rendering of the stream wise diagonal components of the turbulent kinetic
energy dissipation tensor,Pyy, in the [0, y, z] plane.

Looking at the streamwise production Pyy in Figure 3.8, negative non-zero production origi-

nates at the sphere surface where the wake separates from the sphere. For the 1.5D case, it is seen

that the production almost engulfs the downstream sphere, where for the other cases the production

is dumped before. There is also a clear asymmetry in the production of turbulent kinetic energy

in the cases with larger spacings. The switch in maximum is also seen from Z/D ≤ 0 in 2.0D

to Z/D ≥ 0 in 2.5D indication in the existence of a transition region. This is consistent with the

velocity and Reynold stresses discussed in the previous section.

When investigating the dissipation of turbulent kinetic energy for the four cases, it is seen

that the maxima are concentrated on the surface of the downstream sphere. In order to better

visualize the dissipation of turbulent kinetic energy, volume renderings were used to represent the

structures. With the 1.5D case, very little dissipation can be seen, this is coupled to the fact that

the production for this case is also much lower than the others. When looking at the structure of

the spanwise dissipation, it seems like to structure is rotated 90◦ degrees.
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.12: Pseudo-color field of the highest energy POD eigenfunctions in the [0, y, z] plane.

For the streamwise dissipation, Figure 3.11, the 1.5D case exhibit a band of dissipation on the

equator of the downstream sphere, corresponding to the fact there is little to no recirculation hap-

pening in the gap between these two spheres. Then investigating the other three cases, a symmetric

even distribution is seen on the upstream surface of the downstream sphere.

3.3.3 Proper orthogonal decomposition

Applying proper orthogonal decomposition to the flow field allows the isolation of the un-

derlying coherent structures within the turbulent flow. These structures are separated into spatial

variables which contain the highest energy. For turbulent flows, the spatial variables under consid-

eration is that of the turbulent kinetic energy. The method of snapshots and the algorithm used for

the POD analysis in Nek5000, and the details can be found in [22].

For the cases under consideration, 3000 instantaneous flow fields snapshots were taken, every

0.2 CU , resulting in a total of 600 CU or 20 FFT . [1] stated that due to the low Reynolds

number the turbulent kinetic energy at higher wave numbers are neglectable and the snapshots
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(a) 1.5D (b) 2.0D (c) 2.5D (d) 3.0D

Figure 3.13: Pseudo-color field of the highest energy POD eigenfunctions in the [x, y, 0] plane.

were sufficient. To ensure this the snapshot frequency was doubled to ensure all the relevant

wavenumber are captured in the POD modes. If the assumption made was correct the POD modes

for the 2.0D case should be equal to that of [1] in both planes.

Fig. 3.13 and 3.12 shows the magnitude of the most energetic POD eigenfunction for the four

cases, in the [0, y, z] and [x, y, 0] planes respectively. [35] showed that for a single sphere the

coherent cyclic structures are found in the wake of a single sphere. It was also found that adding a

second sphere at 2.0D that the concentration of the structures is changed.

Inspecting Fig. 3.12b and 3.13b the similarity in the [0, y, z] plane is evident to that of [1].

For the [x, 0, z] plane, the general structure of the first POD mode does resemble that found in the

previous work, but less energy is contained around the downstream sphere‘s wake region. This can

be that the higher snapshots frequency captured higher frequencies that contained energy, that was

missed in the previous assumption.

When decreasing the spacing to 1.5D, in Fig.3.12a and 3.13a, it is seen that the highest mode of
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energy is mostly concentrated in the wake of the downstream sphere. The structures are elongated

tubular in form with a small asymmetric concentration on the downstream surface of the second

sphere. This follows the trend of the Reynolds stress being much lower for this case than the other

3 spacings, indicating some form of critical sphere separation distance exists. The structure does

not resemble that of a single sphere, not that of the larger spacings. This highlights the different

flow physics that will come into play when investigating the fully random packing geometry in the

next chapter.

Fig. 3.12c and 3.12c see relatively the same structure as in the 2.0D case, with slightly lower

magnitude and the highest concentration upstream of the downstream pebble. In Fig. 3.12c the

appearance of a small concentration of energy appearing on the downstream surface of the first

sphere along with a small symmetrical profile. For Fig. 3.13c the profile emanating from the first

sphere surface extends past the downstream sphere, and is biased towards x ≤ 0. The concentration

of energy occurring on the downstream sphere‘s surface seems to flatten out a bit.

Fig. 3.12d and 3.12d more asymmetry comes into view for both the up and downstream sphere.

The higher energy modes separate from the upstream pebble and the cyclic structures, seen in the

single sphere case of [1], start to become visible downstream of the second sphere. The concen-

tration of the maximum on the downstream surface of the second sphere is flatter than that seen in

the previous two cases.

3.4 Conclusions

In this section the incompressible flow, with a Reynolds = 1000, over two spheres with different

spacings where given and discussed. The work was a continuation of work done by [1], where the

verification and validation were done for a single sphere. The results here obtained was verified

with those found in his work for a spacing of 2.0D

The work done here can serve as an introduction to randomly packed pebble bed work. From

the results the influence of the downstream pebble spacing on the temporal dynamics of the system

was evident. The results show not only does the spacing influence the asymmetry of the solution,

but also the magnitude, even for long time ingratiation periods. These results shall be used to
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define the randomly packed experimental setup, with similar Reynolds numbers.

There was found that a critical sphere spacing exists where separation form the downstream

sphere is not observed, due to the close proximity. This resulted in little to no turbulent kinetic

energy production and recirculation in the gap between the spheres, with a small spacing. A

spacing where the maximum production and asymmetry occurs was observed. When the spacing

is increased even further the asymmetry switches side and the maximum decreases. From these

results it is clear that when the random packed pebble bed is observed a complex combination of

different flow phenomena shall be present.

The POD analysis of the turbulent flow showed the coherent structures that are present in the

flow. This discussion illustrated the qualitative difference of the highest energy modes in the flow

to one another. The spacing of the spheres had a clear influence on the vortex street that was

observed for the four cases.

The continuation of the work shall focus on a randomly packed experimental setup, where the

interpretation of the results shall draw from the two pebble case.
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4. NUMERICAL EXPERIMENT II: EXPERIMENTAL RANDOM PACKED PEBBLE BED

The following section presents the results obtained from the randomly packed geometry, which

was obtained from the experimental setup. This study was done in parallel to that of the different

spacing cases. To see if the same structures could be observed in the random case.

The layout of this section will start will a background stating the importance of the problem,

followed by a case outline. The newly adaptive meshing strategy will be discussed and the loca-

tion of the interpolation lines. How the simulation was simplified in order to mesh the random

geometry is discussed and then determining the adequate discretization and statistical stationarity

is discussed. The study is concluded by comparing the results obtained from the experiment to see

how minor geometric differences and inaccuracies affected the flow.

4.1 Background

The Generation IV International Forum has selected the veryihigh-temperature reactor (VHTR)

as one of the reactor concepts that have the potential to replace the current generation of rectors,

due to the safety and versatility the reactors posses. These safety and efficiency features, along

with the different VHTR designs can be found in [4, 5].

The PBR, a sub-class of the VHTR, can have either a cylindrical or annular core, with hundreds

of thousands of fuel spheres, embedded with TRISO particles, randomly distributed within the

core. Some of the designs feature an on-line refueling system where spheres are extracted from

the bottom, tested for burn-up and reinserted at the top if required. The alternative is a more

conventional off-line refueling approach that can be used. For both of these cases, the core does

not have a structured packing and is completely random.

Depending on the primary coolant loop, inert gas or molten salt, a PBR can have secondary and

tertiary power conversion cycles. These cycles can provide thermal energy for chemical processes

such as hydrogen production, or employ Rankine or Brayton cycles, or a combination to produce

power and/or process heat. This versatilely of the PBR makes it such a good candidate to replace
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the current nuclear fleet.

In order to license and design a nuclear reactor, a thorough understanding of the fluid flow and

flow phenomena through the core is critical. As stated, each core is essentially unique due to the

random packing and or the fuel loading process. Unlike Gen II and III reactors where the core

is structured with identical fuel assemblies, PBR cores only consist of spheres. This randomness

coupled with the high curvature of the complex geometry makes PBR cores some of the most

complex flow geometries to simulate. This complexity coupled with the size of these cores has

hampered, not only computational studies [12], but also experiments [36]. Due to this, heuristic

approaches had been utilized that developed empirical correlations form macro-scale data. These

correlations [37] are of importance for engineers to calculate parameters such as pressure and

temperature distributions throughout the core. Some of these correlations are frequently referenced

[37] when determining the accuracy of the large scale results obtained from CFD tools.

With regulatory framework becoming more stringent and focused on reactor safety, more em-

phasis has been placed on detailed analysis of the flow physics. Current correlations and frame-

works, might be insufficient to capture the complex flow phenomena in these new reactor designs,

as they only focus on large-scale effects. Due to the increase of computational capabilities over the

last few years and using CFD as a research tool, more and more detailed studies of these geometries

has been made. Current CFD tools are able to cover all the entire range of scales that are present

within PBR systems, from one-dimensional full system [36], to high detail three-dimensional CFD

simulations have been conducted at pebble scale [38].

Numerous challenges have to be overcome to simulate pebble bed flows with CFD. The size

coupled with the large degree of curvature introduced by the spheres causes bluff body effects

such as flow separation and reattachment. RANS based turbulence models, the method usually

employed in these geometries struggle to fully capture all the physics. With this, the success of

these approaches has been limited when it comes to the details of the flow analysis [38]. The

fact there is limited two- and three-dimensional experimental data results in problems validating

RANS-based approaches. This comes from the complexity of the flow domains which complicate
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the data gathering for experimentalists [32].

Schemes that are better suited to accurately capture the flow through pebble beds are LES and

DNS. LES solves the majority of the turbulent length scales, while modeling the dissipative scales

in the given flow. DNS, on the other hand, employs no modeling and solve all the turbulent scales

past the dissipation scales. Although these frameworks are more accurate, the computational effort

that goes with them are significant. These approaches, due to their computational cost, are usually

used for fundamental and idealized cases [1, 18, 12, 32]. By studying these cases the flow physics

are better understood and used to improve the RANS-based models. This allows RANS-based

approaches to give better results for flow through pebble beds.

This section covers the steps taken to capture the high curvature of the geometry with a mor-

phing mesh approach as well as the TKE budget terms for incompressible, isothermal flow over

a random packed pebble bed. This TKE is discussed for three different Reynolds numbers, as

conducted by the experimental set-up. There is also a preliminary experimental comparison to see

how certain simplifying assumptions and geometric uncertainties influenced the simulated results.

4.2 Methodology

This section will present the research methodology used for the random pebble base. The scope

of the problem, computational aspects and consideration, as well as discretization and simulation

parameters, will be given.

4.2.1 Case Outline

The flow domain covered in the rest of this dissertation is that of a randomly packed pebble bed

obtained from an experimental set-up, done by Texas A&M, the specifications of the geometry can

be found in Table 4.1. The experiment consisted of uniform diameter acrylic pebbles randomly

placed into an acrylic tube, as seen in Figure 4.1a. A section of the core, several pebble diam-

eters thick, was then scanned using PIV. A graphical algorithm was then used to determine the

coordinates of each pebble‘s center by combining multiple snapshots, spaced equal distance apart.
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Table 4.1: Actual and Normalized Data for the Randomized Domain.

Parameter Actual Normalized
Number of scanned pebbles 147 147

Pebble Diameter 22.25 mm 1
Tube Inner Diameter 140.01 mm 6.285

Scanned Height 123.48 mm 5.55

(a) Experimental set-up.

(b) Solid Works geometry.

Figure 4.1: Figures showing the experimental and computational domains.

Due to the high curvature of the pebbles, light infraction resulted in some fuzzy pebble bound-

aries. The lack of high quality on the boundaries required the algorithm being run multiple times

to determine an average pebble coordinate. These coordinates were then used to determine the

flow domain in SolidWorks, Figure 4.1b, which would then be used to generate the mesh. When
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Figure 4.2: The SolidWorks model superimposed on the experimental PIV region to compare
accuracy of given pebble locations.

the coordinates and SolidWorks model were inspected, Figure 4.2, minor deviations were found in

the pebble locations due to experimental uncertainties. Due to the quality of the PIV images and

the method used some of the pebbles showed minor overlap and some deviation from the actual

location. An initial shaking algorithm was used to see if these overlaps could be removed, but

due to the nature of the problem, the final geometry was significantly different from that of the

experimental one. In the end, it was decided to keep the overlaps, as this can potentially capture

pebble deformation due to continues operation and friction experienced in actual reactors, which

will result in non-uniform pebble diameters.

From literature, only limited DNS and LES investigations on flow over pebbles have been

conducted. Most of these studies were done on idealized, structured pebbles cases, as seen in work

done by [1]. No DNS studies have been done on randomly packed pebble beds, nor have extensive

experimental results been published, [32].
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Figure 4.3: The method of how one tetrahedral element (left) gets converted to four hexahedral
elements (right) [2].

Within the flow domain all wall surfaces, pebbles and bounding wall, was treated as no-slip

walls. To approximate the effect of downstream pebbles, the inlet and outlet of the domain were

set to periodic conditions. This was used to replicate an infinite pebble bed, due to the lack of

actual geometry.

4.2.2 Meshing

As mentioned in the previous chapter and work done by Fick [1], Nek5000 requires the domain

to be decomposed into hexahedral elements. For simple geometries such as the two pebbles and

unit cell [1] the traditional block meshing can be utilized to generate a structured mesh. When the

complexity of the geometry passes a certain threshold, this method becomes time-consuming and

sometimes even impossible. For idealized cases the symmetry of the geometry can be exploited,

but for the random pebble case, no such symmetry or unit cell exists, thus making conventional

block meshing techniques inadequate for this case.

In order to generate a structured mesh for Nek5000, a new meshing approach had to be devel-

oped. A tet-hex meshing method, developed by Argonne National Lab, was used and modified to

mesh the unstructured pebble bed. The basis of this approach is to decompose each tetrahedral ele-

ment into 4 hexahedrons. This method utilizes the ability of a tetrahedral mesh to capture complex

geometries, while allowing a structured mesh for Nek5000.
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Figure 4.4: Hexahedral 8 element (left) and hexahedral 20 element (right) [3].

Current commercial and open-source codes provide the ability of automatically generating pure

tetrahedral meshes for any geometry. For this study, ANSYS-meshing [2] was used to generate the

pure tetrahedral mesh after which ANSYS-ICEM [3] was used to convert the mesh elements from

tetrahedral to hexahedral. The method of how one tetrahedral element is decomposed into four

hexahedral elements is shown in Figure 4.3.

The hexahedral elements generated from this method is known as hex8 elements, as they can be

defined by the 8 corner vertexes. It is known that Nek5000 utilize second order elements to better

capture the curvature of the geometry. These hex20 elements [3] have points defined halfway

between each corner vertex, as seen in Figure 4.4. Hex20 elements can be projected to fully

describe and capture the curvature of the geometry. With the ability to project the mid-side nodes,

larger and few elements can be used to capture the geometry. Not only does this decrease the mesh

size significantly, but the mesh conforms better to the geometry. This allows structured meshed to

be generated for complex geometries, such as the random packed pebble bed.

With the ability to generate a structured mesh with the tet-to-hex method and the knowledge

of the mid-side nodes of hex20 elements, the moving boundary projection method, used for the

random pebble case, can be described.

First, the geometry was modified by increasing the pebble radius with the boundary layer thick-

ness. The bounding wall radius was in turn, reduced by the boundary layer thickness. Next, the

new flow domain was imported into meshing package of ANSYS WORKBENCH [3]. The ge-
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(a) Before moving boundary projection is
applied.

(b) After moving boundary projection is
applied.

Figure 4.5: A cut plane to show the effects of the moving mesh projection technique for N=3.

ometry was then meshed using a full tetrahedral mesh. The base size was increased to ensure a

minimum cell quality of 0.01 as obtained.

Next the tetrahedral mesh is imported in ICEM-CFD [3]. Where the tetrahedral mesh is con-

verted into hexahedral elements, by dividing each tetrahedral into 4 hexahedrons. From this point,

the boundary surface elements are extruded by the boundary layer thickness, resulting in uniform

hexahedral elements on the surface of the pebbles. This method resulted in the mesh of 865,394

elements, having the required boundary layer thickens, but not conforming to the shape of the

pebbles, as seen in Fig 4.5a

The mesh is then exported to the standard Nek5000 format and all required wall and periodic

boundary conditions are applied. Once within Nek5000 a mesh morphing algorithm, initially

developed by Yuan at Argonne National Lab for a single pebble, was then modified for the entire

domain and used to project the boundary layer elements to the geometry.

When the mesh is loaded into Nek5000, each base element is subdivided by an Nth-order GLL

polynomial. Knowing the coordinates of each pebble‘s centroid, as well as the location of each

surface element vertex the distance between the sphere radius and surface element vertex can be
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calculated. Using the know difference in position, a radial velocity field is applied to all surface

elements, as a function of the relative distance it should move. A protected layer thickness, δ , is

selected to ensure all elements a set distance from the surface element moves the same distance.

This keeps the boundary layer thickness uniform over all elements. The algorithm then determines

the distance, h, to the closest wall following the radial outward facing normal, from the element.

The velocity is then diffused for a set number of time steps following the decaying function:

v(t) = v(t) + 100e(
h(t)
δ

)2 + 100e(
h(t)
2δ

)2 (4.1)

This allows for large element movement where the distance between pebbles are large and

dampens the movement where pebbles are in close proximity of one another. This dampening

protects elements in between two walls, in close proximity, of being warped and causing negative

Jacobians. Figure 4.5b shows a sectional view of the mesh after all surface element movement has

been carried out.

From these figures, the pebble-pebble interaction is taken care of due to the increase of the

initial geometry, where the boundary elements of pebbles in close proximity is not moved to ensure

mesh quality. Depending on the orientation of the cut plane and the pebble locations the effects of

the boundary elements not moving can be seen as flattening of the pebbles.

4.2.3 Interpolation

Figure 4.6a shows the location and direction of the laser sheet, as well as the different windows

the camera was focused on to take the PIV measurements. Due to the diffusion of the laser sheet it

was recommended to keep the DNS investigation to the region for windows 1 to 4, as these would

give the best data for the near wall region close to the laser sheet origin. From this, the interpolation

and time history locations were selected within this region. Figure 4.6b shows the sphere ID as

well as the numbering convention used for the interpolation lines and time history probes for the

domain in the [X/D, Y/D, -2.285D] plane.
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(a) PIV laxer location and window overlap
at [X/D,Y/D,-2.285D] (b) Numbering convention for the line

probes in the random packed pebble bed.

Figure 4.6: Justification of the interpolation line and time history locations.

The interpolation line locations, for the pebble-pebble and pebble-wall, was chosen so that

the lines are normal to the specific surface. Each line was subdivided into 100 equally spaced

points of the length, L, of the line. To simplify, all the lengths were normalized to one for better

representation. With the random packing nature of pebble bed, the tail of the arrow indicated the

origin (L = 0) as well as the line number, where the arrow tip is the end (L = 1).

4.2.4 Computational Consideration

As stated the mesh was generated using the tet-to-hex method to create a full hexahedral mesh

with adequate boundary layer thickness. This meshing technique resulted in a mesh with 865,394

elements. Figure 4.7 shows a plane of the mesh at [X/D,Y/D,-2.285D] for the N=5 mesh, that is

the 5th-degree mesh resulting in 108 million GLL collection points. From the left two pebbles, the

pebble interaction can be seen. In the bottom left corner, the flattening due to the two pebbles in

close proximity can be seen. As iterated, this occurs due to the projection dampening mentioned
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Figure 4.7: Section of the spectral-element mesh after sub-discretization, illustrating the boundary
layers, pebble-pebble interactions and close proximity regions for N=5.

in Eq. 4.1. This motion dampening ensures that elements in tiny flow paths are not moved which

could result in highly skewed or elements with negative Jacobians.

The little numerical dispersion [39] and dissipation exhibited along with the validation [40]

of SEM makes it advantageous to be utilized for DNS. The vicious terms of the Navier-Stokes

equations were solved by utilizing an implicit third-order backward differentiation (BDF3) scheme.

A third-order, explicit extrapolation (EXT3) scheme was utilized to solve the nonlinear terms. The

previous chapters can be referenced if the reader requires more detail regarding the time-stepping

scheme.

To decrease the computational time required to develop the flow, third-degree polynomials

were used with rapid time-stepping. The flow was allowed to develop for 35 convective time units

(D/U), where 5 convective units correspond to roughly 1 flow-through time (FTT). Fig 4.8 shows

a cut section of a volume rendering of the instantaneous velocity field for Re = 430 and 1050 after

35 CU, which illustrates the random packing and flow structures.
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(a) Re = 430

(b) Re = 1050

Figure 4.8: Volume rendering of Umag after 35 CU of flow development.
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Figure 4.9: Global maximum GLL spacing to Kolmogorov ratio for the different Reynolds num-
bers to ensure DNS requirements.

To ensure DNS requirement were achieved the TKE dissipation and Kolmogorov scales were

calculated for each point in the domain for 1 FTTs at third-, fifth-, seventh- and ninth-degree

discretization. Figure 4.9 shows the global maximum Kolmogorov length scale to grid spacing

ratio for the different Reynolds numbers. From this figure, it is seen that only a slight decrease

in the ratio is observed when increasing above fifth-order discretization. Table 4.2 shows the

computational cost used to calculate the Kolmogorov scales for the highest Reynolds number of

1050.

From Fig 4.9 and Tab 4.2 the sheer computational cost required for DNS can be seen. Fick

[1] showed that increasing the polynomial order past the DNS requirements only increases the

computational expenses without affecting the results. From this, a fifth-order polynomial is used

for all the production runs.

The production runs, as well as the post-processing was performed on the IBM Blue Gene/Q

MIRA and CETUS clusters located at the ALCF at Argonne National Laboratory.
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Table 4.2: Computational Parameters to calculate Kolmogorov scales for Random packed pebble
bed, Re = 1050.

Polynomial Degree
Parameter 5th 7th 9th

Time Step length 1× 10−4 5× 10−5 2.5× 10−5

GLL points 108.17× 106 296.83× 106 630.87× 106

Nodes (Cores) 1024(16384) 2048(32768) 4096(65536)
Total FTT 1 1 1

Core Hours/FTT 245.76× 103 737.28× 103 4.571× 106

4.2.5 Turbulent time scales

The auto-correlation function (ACF) is used to characterize the temporal dependencies of a

random signal. The ACF is useful as it characterizes the time scales of turbulent motion at a

specific point with itself over time. The ACF of the three different cases can be compared to show

that the data sets deliver a consistent time evolution of the fluctuating velocities, and thus if they

are resolved in time. The ACF for the three different fluctuating velocity magnitudes, umag, is

plotted in Fig 4.10. For each Reynolds number, the fluctuating velocities of the last 60 seconds

were extracted from the total time history and the ACF calculated. The center point data for lines

3 and 10 were chosen for the temporal investigation. These were chosen as a near wall and far

field location, as well as in large and moderate flow restriction. For each case data, the signal was

lagged with 200, 000 time steps, which equated to 20CUs, and the ACF was computed.

From Fig 4.10, top and bottom right, the ACF decays rapidly to for both lines within the first

0.2CU , after which it starts to oscillate and approach zero asymptotically. For line 3 (top left

and right) the frequency of the oscillations is higher with only one or two local minimum and

maximum. Due to the strong mean flow gradient present in the large contraction for line 3, little

correlation would be expected. For line10 (bottom left and right) the span of the gap is larger.

With the larger flow path the average mean flow gradient is weaker and a lower oscillation in the

correlation is seen. For the low (430) and intermediate (740) Reynolds number a few predominant
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Figure 4.10: Temporal ACF for the entire time history (left) and zoomed in on the first 2 CU (right)
of 〈umag〉 for the center point of line 3 (top) line 10 (bot).

peaks can be seen at around τ = 2 and 6 for Re = 430 and τ = 4 and 7 for Re = 740. Indicating

an increase in correlation. As the time signal is increased, these also decrease and approaches zero

asymptotically.

4.2.6 Statistical stationary

From the Kolmogorov calculations, Table 4.2, the computational cost to run consecutive FTTs

can be seen as the polynomial order was increased. As Fick [1] showed with his FCC cases, the
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Figure 4.11: Interpolated profiles for the steam-wise averaged velocity 〈Uz〉 (left) and the Reynolds
stresses 〈uzuz〉 (right) for times f(t) = 22 FTT and f(t+ τ) = 23 FTT for the N = 6 data set.

increase in polynomial order did not affect the solution, but rather the time it took for converge.

For the three Reynolds numbers under investigation, a total of 23 FTTs were simulated at

N = 5. In order to efficiently use resources and the ALCF queue scheduler a checkpoint save

and restart methodology was used. The production runs were submitted for 6-hour intervals that

resulted in 2 CUs of simulation data per submission. The averages and the TKE budget terms

were computed and outputted every CU or 10, 000 time steps. This was done to enter the shortest

possible queue system, allowing for as frequent submissions as possible.

Once 1 FTTs (5CUs) data was present, the total running averages were calculated. To ensure

that the flow has been averaged long-enough and that the statistics are satisfactory, the two most

recent averaged line-out results were compared to one another to ensure that the solution is time

independent. The shift size, measured in FTT‘s, between the different compared checkpoints are

indicated by τ . The interpolation lines are projected onto the [x,y,0] plane and illustrated at the

corresponding location within the domain. The line locations and numbering convection detailed
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Figure 4.12: Interpolated profiles for the averaged velocity 〈Ux〉 (left) and the Reynolds stresses
〈uxux〉 (right) for times f(t) = 22 FTT and f(t+ τ) = 23 FTT for the N = 6 data set.

Figure 4.13: Interpolated profiles for the averaged velocity 〈Uy〉 (left) and the Reynolds stresses
〈uyuy〉 (right) for times f(t) = 22 FTT and f(t+ τ) = 23 FTT for the N = 6 data set.
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in Fig. 4.6b was used.

The diagonal components of the averaged velocity and Reynolds stresses, non-dimensionalised

by the inlet velocity, are shown in Fig 4.11, 4.12 and 4.13. Form these the convergence for the fifth-

degree data set for all three Reynolds numbers can be seen. The interpolation lines are drawn for

the defined coordinates within the [X/D,Y/D,-2.285D] plane. For the chosen time shift of τ the

data shows acceptable statistical stationarity for both the near and far field profiles.

4.3 Results and Discussions

The subsequent section is a discussion of the quantitative and qualitative analysis of the data

in the near wall region for the three different Reynolds numbers. As this is a DNS study no grid

independence was done, as Fick [1] showed that increase polynomial orders do not affect the flow

solution and the computational and storage resources required for GCI in this cases was also not

feasible. Rather than a grid independence study, a boundary sensitivity study, presented in the

next chapter, was done by decreasing the domain side to a quarter of the original case. Different

boundary conditions were enforced on the cut plane to see how it would affect the streamwise, and

lateral flow for the domain as limited experimental data was available. For this section Visit was

used to visualize the flow data.

4.3.1 Inter-data-set comparisons

Figures 4.11, 4.12 and 4.13 shows the averaged velocity and Reynolds stresses for the three

different Reynolds numbers. From the stream-wise velocity in Fig 4.11 the effects of the different

Reynolds numbers can be seen. For the larger flow paths, such as line 3, the lower Reynolds

number has a higher averaged velocity, while in narrow contractions the flow is less. This is due to

the flow being more vicious driven. With the higher viscosity of the lower Reynolds number flow,

the fluid prefers the larger flow regions as the wall effects and friction in narrow regions essentially

block of the flow. As the inlet Reynolds number is increased by a decrease of viscosity. The wall

effects in narrow regions become less dominant and the flow can penetrate the smaller region, thus

redistributing the flow and decreasing the average flow in the larger flow paths. In the near wall

52



region, a change in stream-wise velocity direction is observed close to the bounding wall.

(a) Plane [X/D, Y/D, -2.285D] (b) Plane [-2.9D, Y/D, Z/D]

Figure 4.14: Three-dimensional representation of the pebble packing structure around the plane of
interest.

Due to the complex geometry of the random packed pebble bed, some time needs to be spent

on investigating the pebble structure around the plane of interest. Figure 4.14 shows the near

wall region that will be investigated. Figure 4.14a shows the location of the horizontal plane at

[X/D, Y/D, -2.285D], with the closest pebbles turned transparent to show the inter pebble regions.

This also serves as a visual interpretation of the packing structure so sensible analysis of the TKE

terms can be performed. From this and Fig. 4.6b that plane intersects the downstream surface

of pebbles 63 and 85, the upstream surfaces of pebbles 58, 67, and 69 and pebble 76 through the

origin. Knowing how the pebble surfaces change in the stream-wise direction will further aid in

the sensible analysis of flow paths, recirculation as well as detachment and reattachment zones.
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Figure 4.14b shows the cut plane in the near wall region, at [-2.9D, Y/D, Z/D] that will be used

to identify stream-wise structures. The bottom plane [X/D, Y/D, -4/D] is just a preview to give a

point of reference for the bounding wall location.

Fig 4.15 shows the pseudo-color plot of the averaged in-plane velocity magnitude, 〈Uxy〉, with

the vector direction overlaid to show the regions of recirculation. Vectors pointing on the pebble

surfaces shows regions of reattachment and vectors pointing from the surfaces shows flow sepa-

ration regions. With the plane intersection, the upstream surface of pebble 58 (The small sphere

profile in the near wall region) the separation from the surface can be seen as the flow enters the

recirculation zone. It can also be seen that flow detaches from the left side of pebble 85 and flows

towards 76 to reattach momentary before entering the larger expansion region.

For the low Reynolds number, Fig. 4.15a, a large low-velocity stagnation point can be seen

between [−1.5Y/D ≤ −0.7] close to the wall. As the flow is increased, Fig. 4.15b, this stagnation

region shrinks and smaller secondary circulations regions develop closer to the pebble surfaces

where the detachment occurs, the maximum velocity is also decreased as the flow becomes more

turbulent and the smaller inter pebble regions can be penetrated by the flow. With the highest

Reynolds number, Fig. 4.15c, a further decrease in the recirculation region and total velocity is

seen. There is still a strong flow detachment from the upper pebble, but more secondary reticula-

tions form in the larger inter pebble gaps.

The diagonal components of the streamwise Reynolds stresses, 〈uzuz〉, is shown in Fig. 4.16.

For the lower Reynolds number Fig. 4.16a the Reynolds stresses are more concentrated in the

larger flow regions between the pebbles. Due to the flow being accelerated and having a strong

mean flow gradient in the contractions between the pebbles low Reynolds stresses are seen here.

The Reynolds stresses are more concentrated in the regions of secondary circulations regions, as

the flow in these regions is not as strongly driven by the mean flow. As the Reynolds number is

increased Fig. 4.16b the maximum flow is decreased and more secondary flow paths can be used.

From this, the Reynolds stresses are more spread out as more fluctuations are present in the larger

inter pebble regions. The Reynolds stress is seen to follow the secondary recirculation regions that
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(a) Re=430 (b) Re=740

(c) Re=1050

Figure 4.15: Pseudo color field of the in plane velocity magnitude in the plane [x/D,Y/D,-2.285D]
with the velocity vector overlaid to show recirculation zones.

are less driven by the mean flow and contain more fluctuations. Finally for the largest Reynolds

number, Fig. 4.16c the effects of the reduced mean velocity can be seen was more fluctuations and
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(a) Re=430 (b) Re=740

(c) Re=1050

Figure 4.16: Pseudo color field of the in stream-wise Reynolds stress 〈uzuz〉 in the plane
[x/D,Y/D,-2.285D].

Reynold stresses are seen in the larger as well as smaller inter pebble regions.

To put the flow dynamics into better perspective the averaged velocity magnitude, 〈Umag〉, is
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.17: Pseudo color field of the averaged velocity magnitude 〈Umag〉 for the the plane [-2.9D,
Y/D, Z/D].

plotted in Fig. 4.17. From the pseudo-color plot, the recirculation zone can be clearly seen in the

wake of the pebble located at [Y/D = −1, Z/D = −2.8]. Here we can see that for the lower

Reynolds number, Fig. 4.17a, the flow detaches from the pebble surface and produces a relatively

large recirculation region. As the Reynolds number is increased, Fig. 4.17b and 4.17c, all the

low-velocity regions decrease in size as well as a decrease in overall velocity magnitude as more

secondary flow penetrates the smaller inter pebble flow paths.

4.3.2 Turbulent Kinetic Energy

The work done by Fick [1] provided important information regarding the TKE in his high

curvature FCC case. It was seen that for a simple two sphere set up the bluff body interactions

generated complex flow behavior. The flow results in the FCC case generated a temporal instability

that required extensive time stepping to properly capture the phenomena. Even with a relatively
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Figure 4.18: Iso-volume rendering of the negative production −10 ≤ Pzz ≤ −1 for Re=1050 to
show the complexity of the production tensor.

simple FCC and extended FCC geometry complex flow phenomena were seen. For the random

case, having high curvature, and a complex geometry the complex flow patterns where investigated,

but no temporal instability were seen in the domain. This is due to the random packing having

predefined regions of lower resistance where the bulk flow preference, unlike the FCC case where

the geometry where symmetric and all flow paths had equal possibility of being utilized.

Figure 4.18 shows an iso-volume rendering of the negative values for the stream-wise pro-

duction component for the Re=1050 case. Here we can see the complex structures due to the

geometry. As expected, the negative production occurs in regions where the flow is accelerated,

either by entering a contraction between pebbles or on the downstream surfaces where the flow
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.19: Pseudo color field of Pxx for the the plane [-2.9D, Y/D, Z/D].

reattaches.

The TKE fields presented in this subjection were all calculated using the data from the pro-

duction runs with N = 5. The gradients required to solve the TKE‘s are known to be steeper

and requires a higher resolution to accurately resolve, unlike those required for the velocity and

covariance data. With the already high mesh density it was found that the current polynomial order

was adequate to capture the TKE.

Due to the TKE equation consisting of numerous terms and the research being conducted over

different Reynolds numbers an overwhelming amount of data exists that can be plotted. As some of

the TKE terms are more relevant to lower order methods, only these components shall be selected

to be plotted. The two most important terms, regarding the physical processes taking place in the

flow, is that of the production and dissipation of TKE. The data of these two components are also

required for lower order models like RANS and LES.
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.20: Pseudo color field of Pyy for the the plane [-2.9D, Y/D, Z/D].

The TKE equation have second order tensors, each containing nine components. Due to the

symmetric nature of these tensors only six components need to be reviewed. It should be noted

that the individual terms structures‘ are highly dependent on the coordinate frame used. To obtain

the magnitude of the specific tensor can be computed by taking half of the trace, e.g. 1
2
εik. The

magnitude of the tensor is coordinate frame independent. Due to the complexity of the geometry

the frame of reference needed to properly represent the data is crucial, as no clear symmetry or

pattern exists in the domain. The data will be grouped so that each component can be compared

over the three different cases. It was selected to capture the TKE near the wall of interest, all TKE

terms will be shown on a plane that is orthogonal to x = −2.9D. This allows to see how the

budgets develop in the stream-wise direction.

Figure 4.19 shows the diagonal component, Pxx, of the TKE for the three different cases, in

a plane selected close to the wall of the simulation. For the lower Reynolds number, Fig 4.19a,
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.21: Pseudo color field of Pzz for the the plane [-2.9D, Y/D, Z/D].

little production is seen in the inter pebble regions. There is some production on the downstream

of a few pebbles. This is conclusive with the analysis that the flow is more vicious driven and lack

fluctuations. The flow is driven by the mean velocity that follows the path of least resistance and

is biased to larger flow paths. As the Reynolds number is increased, Fig 4.19b, an increase in TKE

production is seen in the areas behind pebbles.

Fick [1] found that an increase in production in the wake of his FCC spheres case was indicative

of flow recirculation zones. The enhanced TKE production in these areas is attributed to the strong

shear layer and flow deceleration between the fluid flowing in a positive and negative velocity in

these recirculation zones. This agrees to the presence of a low flow stagnation zones seen in Fig

4.15. For the largest Reynolds number, Fig. 4.19c, higher production is seen in these regions.

There is a significant increase in positive and negative production in the closed spaced inter-pebble

region.
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.22: Pseudo color field of Pxy for the the plane [-2.9D, Y/D, Z/D].

For the other latter component of the production Pyy, Fig. 4.20, higher magnitudes of produc-

tion is seen in the downstream region of spheres. These magnitudes are higher in the inter pebble

regions. Of particular interest are the regions of negative production on the downstream surfaces

of the upper pebbles. These are the region where the flow re-attaches to the surface of the pebbles.

Once again as the Reynolds numbers are the magnitude with these regions increases. Show that

the more turbulent flow is less driven by the strong mean flow, but that the secondary flows start

coming into consideration.

Figure 4.21, shows the stream-wise components of the production tensor. The production of

TKE is seen to increase in the wakes of the spheres as separation takes place. This is conclusive

with the flow rapidly decelerating as it approaches the recirculation or stagnation zone. As the

flow is forced laterally into the contractions and sped up, the production magnitude decreases

as the flow is more driven by the average flow rather than secondary fluctuations. For the low
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.23: Pseudo color field of Pxz for the the plane [-2.9D, Y/D, Z/D].

Reynolds number, Fig. Figure 4.21a, pockets of negative production are seen. Here TKE is taken

out of the fluctuations and returned back to the mean flow. With increasing Reynolds numbers

these zones decrease as more secondary flow paths are used and the influence of the averaged flow

is decreased.

The transverse component of the production tensor, Pxy, is shown in Fig. 4.22. For the low

Reynolds number, Fig. 4.22a, the little to no production is generated in the region leading to the

contraction where the recirculation zone. As the Reynolds number is increased, Fig. 4.22b, we see

the flow starting the accelerate to this region. as the flow is diverted around the bottom sphere a

local increase in both the minimum and maximum is seen. As the flow is being accelerated, the

larger increase in negative production is seen as energy is taken from the recirculation zone and

added to the mean flow. Finally, we see an even larger increase as the Reynolds number is in-

creased, Fig. 4.22c. The larger magnitudes on production is that allows for the smaller circulations
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.24: Pseudo color field of Pyz for the the plane [-2.9D, Y/D, Z/D].

zones to develop in Fig. 4.15c as energy is extracted from the mean flow and added to the eddies.

The out-of-plane components, Pxz in Fig. 4.23, shows fairly consistent results. Unlike the

results from Fick. [1], where these components had smaller magnitudes than the diagonal com-

ponents, the random case‘s magnitudes are similar to the in plane‘s. This means that due to the

random structure the flow has strong lateral components that add to the production as it is deceler-

ated and diverted around the spheres. These increases are mostly seen on the downstream surfaces

of the pebbles. As the Reynolds number is increased, Fig. 4.23b, the magnitude increase between

the smaller pebble regions. This is emphasized in the highest Reynolds number, Fig. 4.23c as the

flow can detach in between smaller gaps. With more lateral flow available the low-velocity zone

seen is filled with smaller eddies.

The in-plane diagonal component, Pyz in Fig. 4.24, once again shows maximized magnitudes

in the flow separation and shear layers behind pebbles. These magnitudes increase with an increase
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.25: Pseudo color field of εxx for the the plane [-2.9D, Y/D, Z/D].

in the Reynolds numbers. From these planes, the complex flow patterns through the random packed

pebble bed are emphasized. The same trends, as seen in Fick [1], where an increase in magnitude

in the flow separation and shear layers are observed. Due to the orientation of the plane, the peb-

bles and the flow through these pebbles, the structures exist in plains containing different normal

vectors.

For the in-plane diagonal component of the TKE dissipation tensor, εxx in Fig. 4.25, the highest

dissipation is seen on the upstream surfaces of the spheres. For the lowest Reynolds number, Fig.

4.25a, little dissipation is seen in the inter pebble regions where the flow is predominantly driven

by the mean flow. The highest dissipations are seen where the flow hits the upstream surface and is

then forced to change direction. For the intermediate Reynolds number, Fig. 4.25b, the regions of

dissipation do increase in size, but remains concentrated to the upstream surface of the spheres. As

the effects of the mean flow is decreased and more secondary flow paths utilized, some dissipation
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.26: Pseudo color field of εyy for the the plane [-2.9D, Y/D, Z/D].

occurs in the inter pebble regions close to the shear layer.

For the lateral component of the TKE dissipation tensor, εyy in Fig. 4.26, a similar trend as for

the in-plane component are seen. The regions of highest dissipation are located on the upstream

surfaces of the pebbles and the regions increase as the Reynolds number is increased from low,

Fig. 4.26a, to high, Fig. 4.26c. It is noted that for the region downstream of the recirculation zone

a small high dissipation region exists in the recirculation zone of the pebble in the Z = −2.0D

plane. As the Reynolds number increases this region decreases. For the higher Reynolds numbers,

the high dissipation does creep up the downstream surface to closer to the pebbles equator.

For the streamwise diagonal component, εzz in Fig. 4.27, a similar trend as in the production is

seen. Here the regions of higher dissipation follow the shear layer. For the low Reynolds number,

Fig. 4.27a, the mean driven flow paths can be clearly seen as there is little dissipation in the wakes

of the spears and inter pebble region. The largest dissipation is in the sheer layer of the pebble that
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.27: Pseudo color field of εzz for the the plane [-2.9D, Y/D, Z/D].

experience the bulk of the mean flow. Once again, as the Reynolds number is increased Fig. 4.27b,

more flow separation is seen from pebbles in close proximity to others. This is a result of the flow

utilizing more of the smaller flow paths. the general orientation of the shear layers can be seen in

Fig. 4.27b and 4.27c.

For the off-diagonal components of the dissipation tensor, the magnitudes are less than that of

the diagonal ones. It is also seen that regions of local minimum and maximum are generated on

the surfaces of the pebbles. For the transverse component, εxy in Fig. 4.28, a decrease in local

dissipation is seen as the magnitude of the bulk flow, Fig. 4.28a, is decreased with an increase

in Reynolds number, Fig. 4.28c, in the flow path at Z = −1.0D. As the Reynolds number is

increased regions of larger dissipation magnitudes are generated in the smaller flow paths region,

as the bulk flow through them is increased. The dissipation in the bulk flow is roughly zero. With

small magnitudes in the shear layers going to the recirculation zone.
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.28: Pseudo color field of εxy for the the plane [-2.9D, Y/D, Z/D].

For the out-of-plane components, Fig. 4.29, the local maximums are actually located on the

downstream surface of the pebbles This is were the recirculation zones are present due to the flow

detachment. The local minimums are seen on where the flow re-attaches the pebble surface. For

the low Reynolds number, Fig. 4.28a there is strong out of plane flow in the inter pebble region

between the upper pebbles. As the stream-wise mean flow velocity is decreased to the increase in

Reynolds number, Fig. 4.28a, more lateral flow is seen and the increase in maximums are seen

in on the right-hand side surfaces of the pebbles. A further increase is witnessed for the highest

Reynolds number, Fig. 4.28c, indicating that cross and lateral flows starting being more relevant

in the flow as the smaller bypass regions are being utilized. When looking at the bounding wall

region, at the edge of the plotted domain, some positive dissipation is seen as the flow is redirected

by the walls.

For the in-plane components, Fig. 4.30, is much lower than the other two components. This
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.29: Pseudo color field of εxz for the the plane [-2.9D, Y/D, Z/D].

is due to the fact that this velocity competent is directed into the bounding wall direction. this is

expected as we have seen that the low-velocity recirculation zone is located. The flow in these

plane tends to be slowed down as it approaches the wall due to the local wall effects. The local

maximum and minimum are found as pairs on the pebble surfaces. In the inter pebble region, Fig.

4.29a, more local minimum regions are seen in the upstream surface of the pebbles. For the higher

Reynolds numbers, Fig. 4.29a, these zones are increasing as well an increase in the shear later

regions between the bulk and recirculation zones.

From the graphs plotted thus far, the complexity of the geometry and the interpretation of the

flow is evident. Ideally one would want to utilize symmetry, as in the FCC cases of Fick [1], but

the geometry does not allow it. The other option would be to have planes orthogonal to two pebble

centers, to investigate the inter pebble region, but again finding these regions, due to the random

packing is extremely difficult, if they exist at all in the near wall region.
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.30: Pseudo color field of εyz for the the plane [-2.9D, Y/D, Z/D].

From Eq. 2.20 it is seen that the triple product of the fluctuating velocity components is re-

quired in the calculation of the turbulent diffusion tensor. The nature of the triple product results in

this term taking the longest to reach statistical stationarity. From the diagonal components of the

term, Fig. 4.31, 4.32 and 4.33, it is seen that for the lowest Reynolds number the flow is station-

ary in the averaged time period. As the Reynolds number is increased the intermediate and high

Reynolds number, which contains more fluctuations, seems to not be completely stationary. Even

with that said, the structures and region of local maximum and minimum can still be distinguished.

In the higher Reynolds number plots, non-physical flow features are seen. This is due to the numer-

ical formulation of the SEM where velocity components are continues over element boundaries,

where the derivatives are not. The orientation of the initial tetrahedral elements and the subsequent

hexahedral conversion also affects these manifestations, depending on how the intersection plane

intersects these elements.
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.31: Pseudo color field of turbulent diffusion tensor in the, x-component, for the the plane
[-2.9D, Y/D, Z/D].

For the x-component, Fig. 4.31, the difference between the more viscous driven flow, Fig.

4.31a, and momentum driven, Fig. 4.31c is clearly seen. For the vicious driven flow, only small

fluctuations exist as the bulk flow are concentrated to the larger flow paths. As the Reynolds

number is increased, Fig. 4.31b the increase in the TKE diffusion is seen as more fluctuations are

present in the flow. These flow structures are persistent with the flow separation in the shear layers.

With more out of plane flow with the higher Reynolds numbers, the characteristics side-by0side

positive and negative valued regions are seen. Indicating higher flow lateral flow rates propagating

into the random pebble bed from the wall.

The transverse component, y-component Fig. 4.32, the same effects are seen. Here a large

magnitude region is present in the inter pebble region of the low Reynolds number, Fig. 4.32a.

There is also large magnitude region on the upstream surface of the pebble downstream of the
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.32: Pseudo color field of turbulent diffusion tensor in the, y-component, for the the plane
[-2.9D, Y/D, Z/D].

recirculation zone. As the Reynolds number is increased one can see more turbulent diffusion in

the recirculation zone as smaller secondary zones are generated and the TKE is diffused in this

region. This results in a decrease of the zone on the pebble surface for the increased Reynolds

numbers, Fig. 4.32b and 4.32c. This is accompanied by the magnitude increase in the inter pebble

region as the flow is accelerated. once again the characteristic side-by-side positive and negative

zones are seen as the flow becomes more turbulent and secondary flow regions see more flow.

Finally for the streamwise component, z-component Fig. 4.33, some prominent structures

arise. For the recirculation zone, the single side-by-side structured is seen for the low Reynolds

number, Fig/ 4.33a. As the flow gets diverted around the top pebble high magnitude zones are

also seen close to the wall was the flow is being split after separating from the pebble. As the

Reynolds number is increased and the circulation zone shrinks, Fig 4.33b and 4.33c, more side-by-
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(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.33: Pseudo color field of turbulent diffusion tensor in the, z-component, for the the plane
[-2.9D, Y/D, Z/D].

side structures form matching the increased number of secondary resuscitation zones seen in Fig

4.15c. This indicates more fluctuations in the transverse and later planes as the bulk mean velocity

decrease to the secondary flows increasing. This can clearly be seen in the inter pebble region of

the high Reynolds number, Fig. 4.33c as multiple side-by-side structures developed, indicating

complex flow separation in the shear layer.

The viscous diffusion tensor is shown in Fig. 4.34. Due to the viscous action dominating

in the boundary layer the figures focus on the inter pebble region. As the viscous term is most

dominating in the boundary layer, we see it maximized here, close to the pebble surfaces. For the

lower Reynolds number, Fig. 4.34a, the effects of the term is seen further from the surface as the

flow is more viscous driven. As the Reynolds number is increased, the areas of local maximum

decreases, but the magnitude remains the same. Only the x-component of the diffusion tensor is

73



(a) Re=430 (b) Re=740 (c) Re=1050

Figure 4.34: Pseudo color field of viscous diffusion tensor in the, x-component, for the the plane
[-2.9D, Y/D, Z/D].

plotted, but the y- and z-components have the same trend. Due to the evaluated Reynolds number

being significantly lower than that of Fick [1], we see a tensor with almost zero magnitude in the

main flow regions. The FCC case localized maximums and minimums were scattered in the free

stream region as well.

4.3.3 Experimental cross-verification

Due to the nature of the random-packed pebble bed, no q-DNS data is available to do cross-

verification as for the FCC case done by Fick [1]. The experimental work can be found in the work

done by Nguyen [41]. The experiments were run co-current with the DNS study. Even though

quantitative line out comparisons was not present, qualitative contour plots in the plane of interest

were available. Figure 4.35 shows a side by side, pseudo-color plot of the experimental and DNS

time-averaged results at the Z = −2.285D plane.

Comparing the geometry from the experimental PIV and DNS study, the uncertainties in find-

ing the pebble locations from the PIV planes, as mentioned earlier in the chapter, is evident.

In the near wall region the pebble locations do match, the only difference is the pebble-pebble

contact region, at [−2.5D, 0.5D]. When moving further into the domain the pebble located at

[−1.25D,−1.0D] seems to be higher positioned in the DNS than in the experimental set-up.
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(a) Re = 430 (b) Re = 430

(c) Re = 740 (d) Re = 740

(e) Re = 1050 (f) Re = 1050

Figure 4.35: Qualitative comparison between experimental, reprinted from [41] (left, averaged for
11s) and DNS study (right, averaged for 115CU ) at Z = −2.285D.
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Some further minor differences can be seen where the close proximity pebble assumption dur-

ing the moving boundary method was applied. These uncertainties are due to the numerical error

in the determination of the pebble locations and meshing strategy. Other unquantified uncertainties

such as experimental vibrations during operation and the subsequent pebble movement can only

be quantified once the experimental results are published and available for comparison.

For the flow comparisons, we see the same structures in the DNS as in the experimental set-up.

It should be noted that the snapshot shown for the experimental set-up was only averaged over

11 seconds, where the DNS study was averaged over 115 CU. For the DNS results, the statistics

were not converged after 11 CUs of averaging. For the near wall region, where the two pebbles

are touching, it is seen that the flow does not penetrate the all the way to the contact point, as the

wall and viscous effects stop the flow. This is seen for all three experimental Reynolds numbers.

For the DNS where the pebble-pebble contact is approximated as a cylindrical contact the size

of the boundary layer, the same effect is seen. This gives confidence that pebble-pebble contact

approximation is satisfactory. For the close proximity approximation, larger flow paths are present

in the DNS, due to the element movement being suppressed here. These larger flow paths to allow

some flow through and some higher velocity differences are seen where these approximations are

made.

For the low Reynolds number, Fig. 4.35a and 4.35b, the magnitudes between the experiment

and DNS are fairly similar. As the Reynolds numbers are increased, Fig 4.35c to 4.35e, the DNS

results do show lower values in the near wall region. This can be attributed to the experimental

averaging time. For the low Reynolds number, the 11 seconds averaging window seems to be

sufficient, but as the Reynolds number is increased and the fluctuations increase more averaging

time is required for these statistics to converge. This trend was seen in the DNS as the lower

Reynolds number‘s first and second order statistics converged in less CUs that the higher ones.

4.4 Conclusion

In this section, the DNS analysis for the flow through a randomly packed pebble bed was

shown for three different experimental Reynolds numbers. The new meshing methodology used
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to mesh the randomly packed pebble bed was discussed. The spatial and temporal resolution of

the mesh was tested to the Kolmogorov time and length scales. From the DNS conformance test,

an adequate spatial discretization where chosen that yielded the best resolution and computational

effort. This served as a rude grid convergence study as performing a complete one would have

been computational to expensive. This was done on the bases of Fick [1] that showed that the

Kolmogorov scales can be used as an explicit test of DNS conformance.

Due to the random packing nature, no temporal instabilities were found in the flow and the

turbulence statistics converged after 23 FTTs. As no instabilities were found, POD was not im-

plemented as an analysis tool. The analysis of the flow was focused on a region closes to where

the PIV measurements were taken to allow for quantitative comparisons once experimental data

was available. In this region, a low-velocity recirculation zone was found in the wake of a pebble

close to the wall. The TKE budget terms were investigated and discussed in this region for all three

Reynolds numbers.

Lastly, a qualitative comparison between the DNS and available experimental data was done.

Due to the complexity and difficulty of the experimental, some discrepancies between the exper-

imental and DNS geometry was observed. Even with the minor geometric deviations, the same

flow structures were observed in the majority of the investigated plane.
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5. NUMERICAL EXPERIMENT III: RANDOM PACKED PEBBLE BED - REDUCED

DOMAIN

This section corresponds to the final work done for the dissertation research. A large amount

of computational resources required to perform DNS on the random packed pebble bed was high-

lighted in the previous chapters. The work presented in this study was to investigate how simpli-

fying the geometry would affect the flow dynamics and TKE of the random packed pebble bed in

the near wall region. The goal was to investigate the validity of employing geometric symmetry as

exploited in other CFD studies, such as PWR fuel assemblies and prismatic block cores, to reduce

the computational cost. To the authors best knowledge, no literature existed that perform this study

on random packed pebble bed geometries. Due to the random nature of the pebble bed, the effects

of decreasing the domain is unknown.

The insight gained from the previous study‘s practical consideration regarding the size and

associated computational burden was the drive for the study. For practical reactor simulation as

many near wall pebbles need to be simulated in the stream-wise the direction, while keeping the

azimuthal angle as small as possible without introducing significant error to the results. This will

decrease the computational burden required while still retaining accuracy.

This section follows the same layout as the previous with a background, methodology, results

and discussion and ended with a conclusion.

5.1 Background

It was found, that most of the literature pertaining to the turbulent flow through pebble beds

were focused on idealized structured packing away from bounding walls, i.e in the center of reactor

cores away from the reactor vessel walls. A series of papers where published by Shams et al. [9, 31,

38, 11, 42] on structured pebble beds as well as an LES study on a random packing [10]. Further

studies were that of Hassan [32, 12] and few thesis [1, 18, 43, 44]. Only limited experimental work

has been found such as the work done by Nguyen [45, 41].
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Literature investigating the effect of wall effects on the flow over bluff bodies were singled out

to a fundamental investigation. Some experimental work include [46], where some single sphere

[47], two spheres [34] and hemisphere [48] investigations were performed. Fick [1] expanded on

this by having an expanded FCC case that is wall bounded at one side. The results from these

works indicate the effect that the wall has on the flow. Most of these flows assumed periodic flow

conditions for the non-bounded faces.

These studies showed that low-velocity recirculation regions from behind spheres. These pat-

terns are repeated in structured cases. In practical reactors systems, such stagnation regions would

have reduced convective heat transfer, resulting in significant temperature gradients on both the

fuel and bounding wall. Thermal fatigue can cause decreased safety margins in these regions, that

can ultimately effect long term operations.

To develop DNS flow data for an entire pebble bed reactor, with current computing resources

available, is impossible. Having done DNS on a full segment of the experiment, it poses an ideal

opportunity to see how decreasing the domain and employing symmetry assumptions would affect

the flow fields. This will allow confidence in modeling more pebbles in the stream-wise direction

allowing to better quantify the wall effects in random packed pebble cases. This will also provide

reference data that can be used in lower fidelity RANS based simulations.

This study presents how reducing the domain to a quarter segment of the full geometry affects

the DNS and TKE results of the random packed pebble bed.

5.2 Methodology

This section will discuss the methodology used during the study. The case outline and sim-

plification steps made will be listed, along with flow and boundary condition information. The

computational aspects of the simplification will be explained. The method of how the data was

interpolated will be viewed. How the simplification affected the flow and TKE will be highlighted

before the full case TKEs are given.
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(a) Sectional plain at Z/D = −2.285
showing the quarter domain. (b) Two-dimensional view of the interpo-

lation lines distributed at δ = 0.125D
from the wall.

Figure 5.1: Planar slices to show positions of interpolation lines.

5.2.1 Case Outline

The geometries presented in this section is the same random pebble configuration treated in

the previous section. The computational domain was reduced to a quarter of the full domain by

removing a 90◦ wedge from the full geometry. The cut was made ±45◦ from the negative x-axis,

resulting in a domain size of [x/D ≤ 0,−3.15 ≤ y/D ≤ −3.15,−5 ≤ z/D ≤ 1] as seen in

Fig. 5.1a. The same meshing strategy and assumptions have been applied to this case as in the full

experimental case. This resulted in a mesh resulting in 278, 738 elements, which is roughly four

times smaller than the full geometry.

The case was restarted by interpolating the developed flow of the full case over the newly devel-

oped mesh. Due to the randomness of the pebbles periodic boundary conditions were not suitable

for this case. It was chosen to apply zero-slip wall boundary conditions to the new cut planes. The
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flow was allowed to develop for 5 FTTs before the mesh was tested for DNS requirements. As

expected the quarter case, meshed with the same parameters as for the full case, showed the same

trend for the Kolmogorov scales plotted in Fig. 4.9. The same polynomial order, N = 5, was thus

selected for the simplified case.

Besides applying a zero-slip wall boundary condition to the cut plain, a zero-gradient symme-

try condition was also applied for a different case. In this symmetry case the momentum equation

diverged in the wake of pebbles close to where the two symmetry plains intersected at [0, 0, Z/D],

due to the high curvature of the pebbles in the close proximity on the symmetric boundary con-

dition, combined with the recirculation zone in the wake of the pebbles. To make the simula-

tion stable the cut plane was split into two different boundary conditions. All the elements at

[x/D ≥ −0.1] was set to a zero-slip wall boundary condition, where the rest of the cut plain was

set to zero-gradient symmetric. This assumption allowed the flow to be developed, the same as

the wall case, without the results diverging. With this case being the same mesh, but different

boundary conditions, the Kolmogorov scales remains essentially unchanged.

5.2.2 Interpolation

From the full case, the complexity of representing the results was highlighted. For this com-

parison, it was decided to investigate the results on radial slices selected at a set distance, δ, from

the wall, as seen in Fig. 5.1a. The radial slice was dived into 1258 and 3200 equally spaced data

collection points over the arch and streamwise lengths respectively. This a resolution of 4 mil-

lion collection points over the radial surface. The angle, θ, is chosen as positive in the clockwise

direction, measured from the negative x-axis.

Figure 5.1b shows the positions of the interpolation lines along the arc length in the near wall

region. The arc is taken at δ = 0.125D from the wall. The rationale for the distance from the wall

will be discussed in a later subsection. The lines were chosen around the pebble in the center of the

plane shown in Fig. 5.1b. The first line was chosen at Z = −2D, which corresponds to roughly

the center of the particular sphere. From there the lines were placed at 0.125D increments in the

streamwise direction. The radial distribution of the lines was kept between −π/8 ≤ θ ≤ π/8, or
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(a) Line01 (b) Line08

Figure 5.2: Power spectrum taken in the center of the line location at [Z/D = −2.285].

until a line intersected another pebble surface.

5.2.3 Computational Consideration

The simplified domain consisted of 278, 738 spectral elements. Based on the scoping runs from

the full random packed DNS study, a polynomial order of N = 6 was chosen for the production

run. This resulted in a domain of roughly 34 million collection points.

The temporal stepping was done by employing a characteristics scheme, which allowed for a

stable time intergeneration with a CFL number of 3. This time step was smaller than the minimum

calculated Kolmogorov time scale for the case. The power spectrum of the streamwise fluctuating

component, uz, which is normalized by the TKE, is for the inter pebble gap in a near and far wall

region is plotted in Fig. 5.2. From the two power spectrum plots, it is observed that the energy

content of the high-frequency fluctuations are negligible at St ≥ 500, confirming that the case

conforms to the DNS requirements.

Both the wall and symmetric boundary condition cases utilized the same restart, averaging

and statistical stationarity routines discussed in the full DNS case. The cases were developed for

35 CUs before averaging were done. The cases were averaged for a total of 115 CUs, at N = 5,

and was found that the turbulence statistics showed adequate time independence after the averaging
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Table 5.1: Computational Parameters to calculate Kolmogorov scales for simplified Random
packed pebble bed with symmetric boundary conditions, Re = 1050.

Polynomial Degree
Parameter 5th 7th 9th

Time Step length 1× 10−4 5× 10−5 2.5× 10−5

GLL points 34.84× 106 60.20× 106 142.71× 106

Nodes (Cores) 512(8192) 1024(16384) 2048(32768)
Core Hours/FTT 98.30× 103 461.32× 103 1.98× 106

time. Table 5.1 shows the computational expenses of the highest Reynolds number of the simplified

case. For both the wall and symmetry boundary conditions the calculated core hours were almost

identical. When comparing the full and simplified case the decrease in core hours, although not

exactly 1/4th, is still witnessed. Not only was the simplified case capable of running on fewer

nodes, but due to the smaller node allocation, it could be run more frequently due to the way the

ALCF job scheduler worked.

5.3 Results and discussion

The following subsection discusses how the distance of the radial plain was selected. The ef-

fects of the simplified geometry on the first-, second-order statistics and TKE‘s are then evaluated.

The section is then finished by plotting the interpolated turbulence statistics and TKE in the near

wall region.

5.3.1 Plain selection

From the previous chapter, the complexity of the geometry was highlighted. In order to better

quantify the turbulence statistics, the DNS data has to be visualized in a different manner. The

analysis of the effects of the domain simplification will be done on a radial basis, as shown in

Fig. 5.1a. To get a better perspective of the geometry, different radial slices were taken. The

distance of the slices was measured from the bounding wall. Figure 5.3 shows three slices at

δ = 0.125D, 0.625D and 1.125D, resulting in the near wall region, half a pebble and a full pebble
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(a) δ = 0.125D (b) δ = 0.625D

(c) δ = 1.125D

Figure 5.3: Psuedo-color of the averaged stream wise velocity, 〈uz〉, for Re = 1050 to show the
radial distribution of pebbles at different distances from the bounding wall.

diameter from the wall respectively. These radial slices give a better overall prescriptive of how the

spheres are arranged in the near wall region, as well as identifying possible patterns in the random

packed geometry.

For the near wall region, Fig. 5.3a, clear large flow paths are seen as local voids are created

where the pebbles rest against the wall. As the focus is moved further away from the wall, Fig.

5.3b, the packing of the spheres are closer as the experiment was shaken to remove internal voids.

This results in fewer direct flow paths and more pebbles within close proximity can be seen. The

close-proximity approximation used when meshing the spheres in close proximity can be better

seen as all the pebbles are intersected approximately at the same radius. Moving a full pebble
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(a) The ratio of flow area to total arch length as the 
distance from the wall is increased.

(b) The averaged ratio of flow area to total arch
length as the distance from the wall is increased.

Figure 5.4: Porisity analysis of the random packed pebble bed.

diameter away from the near wall region, Fig.5.3c, the inter pebble regions open up to larger

cavities, but due to the angle, fewer spheres are present at this distance.

Due to the random packing nature of the pebble bed finding repeating patterns are challenging.

In order to see if the packing of the pebbles possesses any hidden repeating patterns, an effective

flow length was calculated as a function of the distance from the wall, Fig 5.4a. This ratio was

calculated by determining the total fluid region, along with the length of the arc at a set distance

from the wall, divided by the total length of the arc. This was done for −π/4 ≤ θ ≤ π/4 and

0 ≤ δ ≤ 2. A value of 1 corresponds to the arc containing only the fluid flow, to 0 containing

only the pebble. Figure 5.4a shows the ratio for different locations in the stream-wise direction.

From this, it is seen that on the wall, δ = 0, the ratio is approximately unity as the pebbles-wall

interaction approximation was used. As we move further from the wall all the Z/D locations

decrease steadily, with roughly the same gradient and same minimum. This indicates that the

distribution of the pebbles against the wall is roughly uniform, but as the distance from the wall is

increased, the packing truly becomes random.

Du Toit [49] found that calculating the averaged porosity of a PBR and plotting it as a function

from the wall a dampened oscillatory function is witnessed. He observed three distinct regions, the
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near wall region with large fluctuations in the porosity that is about two pebble diameters from the

wall. The transition region where the fluctuations are less as the packing becomes more random

for the next 3 pebble diameters. Finally, the bulk region where the porosity approaches a fixed

value and almost uniform structure. When calculating the averaged porosity of the experimental

bed, Fig. 5.4b, the same dampened oscillatory behavior is seen as was observed by Du Toit [49].

With the experimental set-up only being 6 pebble diameters in diameter it is seen that the center of

the experiment is in the transition zone and no bulk packing structure exists.

For the remainder of the study and this chapter the near wall region at δ = 0.125D, will be

investigated. This allows for the longest arch length and enough spheres from the cut plane to

see how the simplification propagates through the domain. The focus will also be directed to the

highest Reynolds number, Re = 1050, as it was found that the higher Reynolds number does not

only have more cross and lateral flows, but also will be closer to conditions actually found within

pebble bed reactors.

5.3.2 First-order statistics

For the first order statistics, all the cases were averaged for the same averaging window after

the flow was developed. Figure 5.5a, shows the averaged stream-wise velocity plot, 〈Uz〉, for,

Re = 1050 at δ = 0.128D. This corresponds to a radial porosity of 0.78. From here the low-

velocity recirculation zones, in the wake of the pebbles can clearly be seen. Two distinct packing

structures are visible, at θ ≥ 0 the pebbles close to the wall is mostly staggered, where θ ≤ 0 a

more in line arrangement can be seen. Large recirculation regions are seen around this flow path.

From this clear large flow areas of high averaged streamwise velocity is seen. For the staggered

configuration, the high velocities are only seen when the flow is accelerated around the pebbles.

Figures 5.5b and 5.5c, shows the difference in averaged stream-wise velocity, the full case

results minus the simplified case results, for the wall and symmetric case respectively. For the wall

case, Fig 5.5b, the largest difference is seen close to the edges of the domain, with smaller variation

as the distance from the wall is increased. The largest difference is seen at ±π/4, where the wall

boundary is located. This is seen where pebbles being intersected by the wall creates small flow
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈Uz〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.5: Psuedo-color of the averaged stream wise velocity, 〈Uz〉, for Re = 1050 to show the
effects of the boundary condition for the simplified cases.

paths where the flow is rapidly accelerated as the flow area decreases between the pebble and wall

boundary. For the symmetry boundary case, Fig. 5.5c, these higher velocities are not seen on the

boundary, however, the increase is rather seen on the downstream surface of the pebble located at

Z = −2.5D. This difference perturbs the flow field and results in larger deviations in the wake of

this pebble. It should be noted that some minor visualization artifacts are present in the results for

the symmetric case. This is attributed to the import of data into Matlab for this case.

When comparing the absolute maximum difference at each increment of θ, Fig. 5.5d, the
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Figure 5.6: Normalized interpolated line profiles for 〈Uz〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

difference is clear. For both cases, a large deviation from the full case can be seen near the edge

of the two simplified cases. For the wall case, the absolute difference decreases to almost zero in

the center of the domain, where for the symmetric boundary condition case the difference seems

to fluctuate around a set, higher average.

Figure 5.6 shows the interpolation line profiles for the streamwise velocity, 〈Uz〉, for all three

cases, full in solid black, the wall in dash red and symmetry in dotted blue, normalized by the

maximum value in the domain. The line-outs for the three cases all follow a similar trend indicating

that in the center of the domain, the streamwise velocity is not much affected by the boundary

conditions. It can be seen that the peak of maximum magnitude changes only slightly as the flow

paths contract. For the lines spanning large arch lengths, the two distinct peaks with a valley of

low velocity can be seen. Moving into the wake of the central pebble a stagnation point is seen on

the downstream surface of the pebble. The velocity increases as the distance from the pebble are

increased. The profiles also flatten out the further downstream they are. As we enter the contracted

area between the to downstream pebbles the same line profile as in the FCC case of Fick [1] can
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈Ux〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.7: Psuedo-color of the averaged in-plane velocity, 〈Ux〉, forRe = 1050 to show the effects
of the boundary condition for the simplified cases.

be seen, even though the pebbles are not completely in line.

For the averaged in-plane velocity, 〈Ux〉, is shown in, Fig. 5.7a. From this, the values of

negative magnitude can be seen on the bottom surfaces of the spheres as the flow gets accelerated

towards the wall. The large areas of positive in-plane flow show where the flow is coming off the

wall and moves towards the center of the domain. The positive structures are mostly seen in the

inter pebble regions downstream of pebbles. For the differences, Fig. 5.7b and 5.7c, some small

deviations from the full case‘s flow pattern can be seen between the pebbles, but most are once
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Figure 5.8: Normalized interpolated line profiles for 〈Ux〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

again visible near the boundary of the cases. When comparing the different flow fields, it appears

that the way the pebble is intersected by the cut plane has a role to play in the difference.

The interpolation line profiles for the in-plane flow velocity, 〈Ux〉 in Fig. 5.8, shows alternating

positive and negative flow. The positive values indicate flow moving away from the wall, where

negative values indicate flow towards the wall. For lines spanning larger gaps, the flow switches

magnitude more often with higher values at the pebble surfaces than in the mean flow region.

It is noted that in the contracted region, downstream stream of center pebble, these fluctuations

decrease as the flow is more mean flow driven. It is seen that for profiles on the downstream of

the pebble surface the flow gets diverted towards the wall, as the flow is accelerated close to the

sphere surface. The line-outs for the wall and symmetry cases follow the trend of the full case in

the contraction but do slightly overestimate the in-plane velocities. For the large gaps, the trends

are similar close to the sphere walls but deviate in the mean flow area.

For the cross-flow component, 〈Uy〉 in Fig. 5.9a, the positive-negative pairs are seen on the

upstream surfaces of the spheres as the flow gets diverted around them. For the wall and symmetry
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈Uy〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.9: Psuedo-color of the averaged cross-flow velocity, 〈Uy〉, for Re = 1050 to show the
effects of the boundary condition for the simplified cases.

cases, Fig. 5.9b and 5.9c, the largest variation from the full flow are once again seen near the walls.

For the absolute difference, Fig. 5.9d, the wall boundary case has again the lower values.

The interpolation line profiles for the cross-flow velocity, 〈Uy〉 in Fig. 5.10, shows less frequent

switch between positive and negative values. The results for the three cases all follow the same

trend, but with small variations on the local peaks of the plot. The highest values are seen on the

downstream surfaces of the spheres, as the flow gets diverted around the high curvature. In the

large inter pebble regions, one sees multiple sign changes in the flow. As the flow path contracts,
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Figure 5.10: Normalized interpolated line profiles for 〈Uy〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

the flow becomes more mean flow driven and fewer fluctuations are seen. Once again, a similar

profile as that seen in the cross-flow component for the FCC case of Fick [1].

From the lateral and cross flow components of first-order statistics, it was concluded that for

pebbles with large inter pebble regions, a frequent change in sign occurs along the arc length and

as the arc length is decreased these changed reduce in frequency. It was also seen that for pebble‘s

whose center point is actually located outside of the domain the effects are relatively small, but

when the center is actually located inside the domain larger errors are expected. For the absolute

maximum difference, Fig. 5.7d, the same trend is seen where the wall-bounded case has a lower

error close to the center of the domain. It is seen that for the cross-flow component the error is

smaller for the symmetry plane than in the streamwise direction. From the first order statistics it

is also seen that the for the averaged velocities, all the simplifications gave similar results on the

center of the domain.
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈uzuz〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.11: Psuedo-color of the stream wise Reynolds stresses, 〈uzuz〉, for Re = 1050 to show
the effects of the boundary condition for the simplified cases.

5.3.3 Second-order statistics

The second order statistics in the near wall region gives the associated Reynolds stresses. These

are calculated from the time-averaged variance and covariance, which is dependent on the fluctua-

tions in the flow fields. For the streamwise Reynolds stresses, 〈uzuz〉 in Fig. 5.11a, a clear increase

in magnitudes are seen in the regions between the fast flowing mean driven flow and the recircula-

tion zones. For the rest of the domain, the stresses are near zero which means that there is little to
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no fluctuations on these regions.

Figure 5.12: Normalized interpolated line profiles for 〈uzuz〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

For the wall-bounded case, Fig. 5.11b, the largest location of variation occurs in the down-

stream regions behind the pebbles that were intersected by the cut plane. In the mean flow regions

itself, little variation is seen, but on the interface between the mean flow and recirculation zones,

the wall-bounded case show differences. This is attributed to some of the stream-wise flow, that

would have entered this domain due to the curvature of the intersected pebbles being lost.

For the symmetry case, Fig. 5.11c, smaller deviations are seen near the boundary of the case,

but the same structures are witnessed in the transition regions between the high velocity mean

driven flow and the recirculation zones.

When comparing the absolute maximum difference per angle, Fig. 5.11d, the wall-bounded

case shows an overall lower difference in the streamwise Reynolds stresses than that of the sym-
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈uxux〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.13: Psuedo-color of the stream wise Reynolds stresses, 〈uxux〉, for Re = 1050 to show
the effects of the boundary condition for the simplified cases.

metric case. For both cases, there is no significant error between the boundary and the center of

the domain. Even though the magnitude of the difference is low, this shows that the streamwise

fluctuations are somewhat affected by the flow in the rest of the domain.

The interpolation line profiles for the streamwise Reynolds stresses, 〈uzuz〉 in Fig. 5.12, shows

peaks in the magnitude within the shear layer as the flow detaches from the pebble surface. Regions

of high stress are also observed in the layer between the mean and stagnation zones. As the flow

path restricts and the flow gets accelerated fewer peaks are observed in the mean flow region,
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Figure 5.14: Normalized interpolated line profiles for 〈uxux〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

while the shear layer peaks are still visible. This indicates that little fluctuations occur as the

flow accelerates in the contracted region. When comparing the line-outs of the simplified cases

the results are similar except for the shear layer of the center pebble where the Reynold stress is

overestimated. In the contraction region, the same form is seen but the stress profiles seem to be

switched by 180◦.

For the in-plane component of the Reynolds stress, 〈uxux〉 in Fig. 5.13a, only small regions of

high stress is witnessed. This indicates that little fluctuations are present in this direction close to

the wall. This is due to the flow being mostly mean flow driven in the gaps between the pebbles

and little fluctuation is present as the flow is being accelerated. The wall bounded case, Fig. 5.13b,

underpredicts the lateral Reynolds stress near the wall, as the wall eliminates all flows close to

the wall due to the wall action and boundary layers. A bit into the domain the wall-bounded

cases overpredicts the stresses in the mean flow region. From Fig. 5.13c large regions of over-

predictions are seen in the inter-pebble regions. For the simplified case the in-plane Reynolds
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in 〈uyuy〉 between the full, wall and symmetric
cases at the specific angle.

Figure 5.15: Psuedo-color of the stream wise Reynolds stresses, 〈uyuy〉, for Re = 1050 to show
the effects of the boundary condition for the simplified cases.

stresses are overpredicted by both boundary cases, even though the same form is being followed.

The interpolation line profiles for the lateral Reynolds stresses, 〈uxux〉 in Fig. 5.14, shows large

fluctuations in the magnitude, with different peaks in the regions spanning a large θ. The smallest

values are located next to the wall, where the peaks are located in the shear layer as the flow gets

diverted around the pebble and detaches. In the contraction region, these peaks are smoothed out

and located more towards the center of the flow path.

From the absolute magnitude of the difference, Fig. 5.13d, the trend is seen. In the wall region,
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Figure 5.16: Normalized interpolated line profiles for 〈uyuy〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

θ ≈ π/4, the wall, and symmetric cases show similar differences. As one moves further from the

wall the absolute difference reduces for the wall case, where the symmetry case remains with fairly

large variation.

From the cross-flow component of the Reynolds stresses, 〈uyuy〉 in Fig. 5.15a, small regions of

high stress are seen in the wake pebbles of pebbles. This coupled with the lateral flow component

of the stress indicates that little to no flow or fluctuations happen in the recirculation zone of the

pebbles close to the wall.

The cross-flow component for the wall-bounded case, Fig. 5.15b, shows the same trend as

that for the lateral. The symmetric case, Fig. 5.15c, overpredicts the cross flow not only at the

boundary but within the domain as well. This indicates that the zero-gradient condition introduces

a significant cross-flow component to ensure the conservation of mass and momentum on the

boundary.

The interpolation line profiles for the cross-flow Reynolds stresses, 〈uyuy〉 in Fig. 5.16, shows
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in Pzz between the full, wall and symmetric
cases at the specific angle.

Figure 5.17: Psuedo-color of the stream wise Production, 〈Pzz〉, for Re = 1050 to show the effects
of the boundary condition for the simplified cases.

fluctuating magnitudes, with different peaks in the regions spanning a large θ. The smallest values

are located next to the wall, where the peaks are located in the shear layer as the flow gets diverted

around the pebble and detaches. In the contraction region, these peaks are smoothed out and

located more towards the center of the flow path. From the line outs, the wall-bounded case does

follow the trends of the full case but overpredicts the Reynolds stresses. For the symmetry case,

the stresses are underpredicted.

Due to the large amounts of data already presented the off-diagonal component discussion of
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Figure 5.18: Normalized interpolated line profiles for 〈Pzz〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

the Reynolds stress tensor was omitted for simplicity. The line outs can be found in Appendix A.

5.3.4 TKE

The streamwise component of the production tensor, Pzz in Fig. 5.17a, shows large values in

the shear layer between the mean and recirculation zone. Highest stream-wise production is seen

in the regions where the flow is decelerated. Large negative production is found on the upstream

surfaces of the spheres where the flow re-attaches and gets accelerated around the spheres. In the

recirculation zone, in the wake of the pebbles, little production is seen.

When comparing the differences between the wall, Fig. 5.17b, and symmetry case, Fig. 5.17a.

It is seen that the large differences are not only isolated to the boundary of the domain, but also

in the shear layers. This is because the production is calculated by the gradient of the average

velocity and the associated Reynolds stresses. From the previous subsection, it was seen that the

simplification did not affect the averaged velocities much, but did the Reynolds stresses. The
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in Pxx between the full, wall and symmetric
cases at the specific angle.

Figure 5.19: Psuedo-color of the in plane Production, Pxx, for Re = 1050 to show the effects of
the boundary condition for the simplified cases.

absolute magnitude in the difference, Fig. 5.17d, can be seen to highlight the matter.

The interpolation line profiles for the streamwise production component, Pzz in Fig. 5.18, the

high peaks in the shear layer is seen. For the first few lines covering a larger span, numerous peaks

are witnessed as the flow from the upstream pebbles get combined. Little to no production is seen

in the wake region of the center pebble. As the flow path contracts the production flattens out and

the peaks are only seen in the shear layer. On the upstream surface shear layer, negative production

is seen as the flow re-attaches to the surface and gets accelerated. When the flow detaches past the
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Figure 5.20: Normalized interpolated line profiles for Pxx. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

equator of the pebble the interaction between the recirculation zone and the mean flow generates

the production of TKE. The line outs for the simplified cases do follow the same trend as the full

case, but the peaks are over estimated.

The in-plane component of the production tensor, Pxx in Fig. 5.19a, has negative production

on the upstream surfaces where the flow gets accelerated around the spheres. A large positive

cell is seen in the wake of the pebble located at [−π/4,−2.5D], under further inspection of the

geometry it was seen that a sphere is located just off the plane where the flow is being decelerated

against causing a low-velocity region. For the wall case, Fig. 5.19b, the difference in results are

located to wake region of this sphere and minor deviations in the shear layers. For the symmetry

case, Fig. 5.19c, the production is overestimated in the shear layers between pebbles. The absolute

difference, Fig 5.19d show that both the wall and has a large variation in the results at θ ≈ π/4.

The symmetry has high peaks area throughout the domain.

The interpolation line out profiles for the in-plane component of the production tensor is shown
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in Pyy between the full, wall and symmetric
cases at the specific angle.

Figure 5.21: Psuedo-color of the cross flow Production, Pyy, for Re = 1050 to show the effects of
the boundary condition for the simplified cases.

in Fig. 5.20. The clear overestimation of the production is seen in the profiles for the wall and

symmetry case. For the large span profiles, the trends match up close to the pebble surfaces but

deviate further from the wall. In the contraction, the production does not match up at all.

The cross-flow component, Pyy in Fig. 5.21a, shows negative production in the shear layer of

the flow and upstream surfaces of the spheres as the flow is accelerated around the sphere. The

wall bounded case, Fig. 5.21b, shows positive-negative pairs in the wakes of pebbles. These over

and underestimations are larger for the symmetric case, Fig. 5.21c.
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Figure 5.22: Normalized interpolated line profiles for Pyy. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

The interpolation line-out profiles for the cross-flow component of the production tensor is

shown in Fig. 5.22. For the full case, the highest production is located in the contraction between

the two spheres. The simplification wall bounded case captures the trend, but the symmetric case

fails to capture the production. For the other line profiles, the wall case overestimates the peaks

of the production, but the general trend is pretty much satisfied. The symmetric case struggles to

match the profiles of the full case.

The streamwise component of the dissipation tensor, εzz in Fig. 5.23a, shows high dissipation in

the boundary layer on the upstream surfaces of the pebbles where the mean flow re-attaches. Some

lower dissipation regions are seen in the shear layer of the pebbles. Most of the dissipation occurs

on pebble surfaces where the flow reattaches. The wall bounded case, Fig 5.23b underpredicts the

dissipation in the shear layer and greatly overpredicts the dissipation on the pebble surfaces. The

symmetric case, Fig. 5.23c shows the same trend. This can be seen when comparing the absolute

magnitude difference, Fig. 5.23d, where both cases have similar values and peaks.
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute dif-
ference in εzz between the full, wall and symmetric
cases at the specific angle.

Figure 5.23: Psuedo-color of the stream wise Production, εzz, for Re = 1050 to show the effects
of the boundary condition for the simplified cases.

When comparing the interpolation line profiles, Fig. 5.24, it is seen that little dissipation oc-

curs in the mean flow region. High dissipation is seen on the surface of the spheres where the

flow reattaches. Even though the symmetry and wall-bounded cases capture the mean flow region

dissipation well, they greatly overpredict the dissipation on the walls of the spheres.

The in-plane component of the dissipation tensor, εxx in Fig. 5.25a, shows very little dissipation

in the domain, Most of the high dissipation regions are once again found on the upstream surfaces

as the flow reattached and gets directed towards the wall. The high pocked of dissipation in the
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Figure 5.24: Normalized interpolated line profiles for εzz. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

wake of the right pebble is seen as the flow comes off the pebble that is just out of the plane. The

wall bounded case, Fig. 5.25b, have some deviation on near the wall and the upstream surfaces of

pebbles close to the wall. The symmetric case, Fig. 5.25c sows large regions of overprediction.

The absolute magnitude difference, Fig. 5.25d, shows the lower error of the wall-bounded case to

that of the symmetric one.

The interpolation lines of the in-plane component, Fig. 5.26, shows the same trend as the

streamwise. The inter pebble dissipation is closely matched by the simplified cases but is overes-

timated near the walls.

The cross-flow component, εyy in Fig. 5.27a, follows the same trend of the previous two

components. The maximum values are seen on the upstream surfaces of the spheres and little

to no dissipation the rest of the domain. For the wall-bounded case, Fig. 5.27b the dissipation

on the pebble surfaces are overestimated. There is also a large variation on the region close to

the boundary. The symmetric case, Fig 5.27b shows large regions of underestimation around the
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute differ-
ence in εxx between the full, wall and symmetric
cases at the specific angle.

Figure 5.25: Psuedo-color of the in plane Production, εxx, for Re = 1050 to show the effects of
the boundary condition for the simplified cases.

upstream surfaces of the spheres, as well as the shear layer between the pebbles. From the absolute

magnitude difference, Fig. 5.27d, both cases follow the same trend with the symmetry case having

fewer fluctuations and larger peaks.

The interpolation profiles for the cross-flow component, Fig. 5.28, shows that the wall-bounded

case overestimates the peaks of the dissipation, but follows the profile. The symmetric case, on the

other hand, underestimates the cross-flow component in the contraction region between the two

pebbles.
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Figure 5.26: Normalized interpolated line profiles for εxx. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

With the diagonal components of the wall and symmetry cases deviating from the full case,

it was found redundant to show the off-diagonal components as well, as these follow the same

trend. Because the dissipation is calculated from the gradient of the fluctuations small deviations

introduced to the fluctuations based on the boundary conditions resulted in deviations presented in

this subsection. The other TKE budget terms were omitted from this section as the data presented

already become overwhelming and repetitive. These terms were also omitted as they do not play a

big role in the lower fidelity schemes.

The omitted off-diagonal components of the production and dissipation term line outs can be

found in Appendix B.

5.4 Conclusions

This section detailed the effects simplifying the domain and the resulting influence the bound-

ary conditions has on the first- and second order statistics, as well well as the TKE for a randomly
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(a) Full geometry (b) Difference between full and wall case.

(c) Difference between full and symmetry case.
(d) Line plot showing the maximum absolute dif-
ference in εyy between the full, wall and symmetric
cases at the specific angle.

Figure 5.27: Psuedo-color of the cross flow Production, εyy, for Re = 1050 to show the effects of
the boundary condition for the simplified cases.

packed pebble bed. From the literature review, no work has been done to investigate the effects

of reducing the domain. The focus of the study was on the near-wall region in the center of the

domain. The results obtained was compared to that of the full geometry DNS data.

It was found that for the first order statistics the simplification cases produced results that were

within reasonable margins of the full geometry. For the second order statistics, that is dependent on

the fluctuations in the flow, it was found that the results obtained from the simplified cases deviated

too much from the full geometry. Lastly, diagonal components of the production and dissipation
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Figure 5.28: Normalized interpolated line profiles for εyy. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

tensor were compared to one another. For the streamwise components the results between the three

cases matched within a good margin. The in-plane and cross flow components, on the other hand,

deviated drastically.

From this study, we can conclude that the streamwise results of the first and second order stat-

ics, as well as the streamwise components of the production and dissipation tensor, is not affected

by the reduction of the case nor the boundary conditions. For the other components, only those of

the first order statistics provided acceptable results after the simplification.
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6. CONCLUSIONS

In this section, conclusions from the different numerical experiments are used to for an over-

arching set of conclusions. The goal of each numerical investigation is restated in the preceding

subsections. The study is then finished off by discussing the conclusions for each objective.

6.1 Conclusions

The conclusions are drawn as they were presented in the results section of each chapter.

6.1.1 Numerical Experiment I

• Verify the simulation and meshing methodology by using the available numerical simulation

from previous research.

DNS data, from the previous study done by Fick [1], on the flow past two spheres in a free

stream as used to verify the correct implementation of the case. The time-averaged flow fields,

associated second-order statistics, POD and axial center-line velocities were used to draw compar-

isons. Form these almost exact comparisons were obtained for the same pebble spacing.

It was paramount that the simulation methodology is confirmed before the pebble spacing was

varied and the focus ultimately be moved to the random packed case. Since the objective of varying

the pebble spacing for the free stream flow would help identify flow behaviors in the random

packed bed.

• Confirm the increase in meta-stable behavior with varying pebble spacing

Comparing the first- and second order turbulence statistics and the respective components for

the TKE transport equation, it was observed that a critical pebble spacing exists that maximized

the asymmetry and magnitude of the time-averaged flow. This is consistent with the varying results

obtained from the random packed experimental case.
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6.1.2 Numerical Experiment II

• Mesh generation for a random packed pebble bed.

The boundary layer projection, developed by Argonne and modified for the random pebble case,

showed to have decreased the number of elements per pebble by almost a factor of 10. This new

method allowed for adequately meshing the complex and high curvature geometry of a random

packed pebble bed for the use of SEM methods. The boundary layer extrusion took care of the

pebble-pebble interaction, while the close proximity stopped element movement where pebbles

are to close to one another.

• Generate a high-fidelity database of time-invariant flow data.

Three different Reynolds numbers were simulated to investigate the flow behavior of the

random packed pebble bed. From these simulations a high-fidelity time-invariant database

for the flow near the wall was generated for:

– First- and second-order turbulence statistics

– Turbulent kinetic energy budget terms.

The results presented in Chapter 4 was tested for DNS requirements by calculating the Kol-

mogorov scales for different polynomial orders. From these criteria, the data conforms to

the requirements of DNS.

The data of the fifth-degree discretization showed the complexity of the flow through the

random packed pebble and the computational cost associated with DNS. For practical ap-

plications, it is important to show that once DNS requirements are met the results do not

change, but the associated computational cost for higher polynomial orders increases. Thus

first- and second order statistics do not require high polynomial orders Due to the packing of

the bed no temporal oscillations were found.
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6.1.3 Numerical Experiment III

• Investigate reduced domain approximation.

When reducing the full geometry to a quarter it was found that the cut plane caused numerical

instability near the center of the domain, a small wall bounded section needed to be included to

ensure the solutions does not diverge. It was observed the spheres whose centroid was located

just inside the cut plane introduced numerical instabilities due to the high curvature and small flow

paths created for the zero-gradient condition. For both the wall and symmetric boundary condition

the computational cost was reduced by almost a factor of 4. This reduction in computational cost

can allow for bigger streamwise geometries to be investigated.

• Generate first of its kind DNS results.

The purpose of this study was to investigate how the simplification of the geometry affected the

turbulence statistics in the near wall region of the unstructured pebble bed. The statistics were

observed a set radial distance from the wall. In this region, different wall packings were observed

with more dominant flow channels. It was found that in the contraction between pebbles the flow

relaminarize. Multiple stagnation zones have been observed in the wakes of the spheres next

to the wall. As stated, these stagnation zones can have significant effects on the heat transfer

characteristics on a practical system, as the convective heat transfer is significantly reduced in

these regions resulting in large temperature gradients. These potential thermal stresses, combined

with long core operating time can result in a decrease in structural integrity.

For the simplification cases, it was seen that both the wall and symmetry case provided adequate

first order statistics in the near wall region in the center of the region of interest. For the second

order statistics, only the streamwise component did not deviate from the full case. The cross and

lateral flow Reynolds stresses were not adequately captured by the simplification which indicates

that these components are dependent on the rest of the geometry. The TKE budgets were shown

that the streamwise components’ profiles were captured, but the magnitudes were overestimated

by the simplified cases.
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6.1.4 Future Work

Based on the finding of this study, a number of subsequent studies may be initiated to expand

upon the analysis presented. Future and proposed work can include:

• The addition to heat transfer to characterize the effects of varying fluid temperatures and

properties has on the flow and temperature distribution in the random and random packed

geometries. It would be recommended that conjugated heat transfer be used for such a

study. The study can first be performed with constant fluid properties to before temperature

dependent properties are introduced for comparison between iso-thermal, iso- and varying

properties.

• Investigate the effects of larger flow domains. As this study only covered a small section of

the experimental random packed pebble bed it is proposed to increase the domain high, say

duplicating the geometry in the stream wise direction. That way better comparisons on the

domain independence can be drawn as a repeating pattern will be present.

• Investigate the effects of simulating higher Reynolds numbers that is actually found during

reactor operations.
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APPENDIX A

REYNOLDS STRESSES

This appendix contains the line-out plots for the off diagonal terms of the Reynolds stress that

was omitted from chapter 5.

Figure A.1: Normalized interpolated line profiles for 〈uxuy〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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Figure A.2: Normalized interpolated line profiles for 〈uxuz〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)

Figure A.3: Normalized interpolated line profiles for 〈uyuz〉. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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APPENDIX B

TURBULENT KINETIC ENERGY

This appendix contains the line-out plots for the TKE budgets that was not presented in Chapter

5.

B.1 Production

The line-outs of the TKE production‘s off diagonal components are presented here.

Figure B.1: Normalized interpolated line profiles for Pxy. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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Figure B.2: Normalized interpolated line profiles for Pxz. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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Figure B.3: Normalized interpolated line profiles for Pyz. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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B.2 Dissipation

The line-outs of the TKE dissipation‘s off diagonal components are presented here.

Figure B.4: Normalized interpolated line profiles for εxy. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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Figure B.5: Normalized interpolated line profiles for εxz. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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Figure B.6: Normalized interpolated line profiles for εyz. (Full: solid black, Wall: dash red,
Symmetry: dot blue)
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