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Abstract

By invoking Bogoliubov’s spectrum, we show that for the nonlinear Schrödinger equation, the

modulation instability of its n = 1 Fourier mode on a finite background automatically triggers a

further cascading instability, forcing all the higher modes to grow exponentially in locked-step with

the n = 1 mode. This fundamental insight, the enslavement of all higher modes to the n = 1 mode,

explains the formation of a triangular-shaped spectrum which generates the Akhmediev breather,

predicts its formation time analytically from the initial modulation amplitude, and shows that the

Fermi-Pasta-Ulam (FPU) recurrence is just a matter of energy conservation with a period twice

the breather’s formation time. For higher order MI with more than one initial unstable modes,

while most evolutions are expected to be chaotic, we show that it is possible to have isolated cases

of “super-recurrence”, where the FPU period is much longer than that of a single unstable mode.
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I. INTRODUCTION

The study of modulation instability (MI) in solutions of the nonlinear Schrödinger equa-

tion on a constant background has became a cornerstone of modern nonlinear physics, un-

derlying many of the advances in understanding deep water wave propagation [1–3], plasma

physics [4], light transmission in optical fibers [5], and the formation of optical rogue waves

[6, 7]. While directly solving the nonlinear Schrödinger numerically is a relatively simple

matter [3], exact solutions to the nonlinear Schrödinger equation on a finite background,

known as the Akhmediev [8, 9] and Kuznetsov-Ma [10, 11] breathers (ABs, KMBs), have

provided much insight into the subsequent evolution of MI in these solutions. In this work,

we seek to provide a more detailed understanding of the Akhmediev breather’s formation,

its fundamental structure and its remarkable mode of evolution.

Akhmediev breathers [8, 9] are exact solutions to the cubic nonlinear Schrödinger

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 (1)

on a finite background, |ψ(t→ ±∞)| → 1. In this work, we show that: 1) The modulation

instability of the n = 1 Fourier mode, automatically triggers a further cascading instability,

forcing all the higher modes to grow exponentially in locked-step with the n = 1 mode.

This results in a triangular spectrum [14], which is the signature of the Akhmediev breather.

The remarkable simplicity of the Akhmediev breather is that, once formed, this triangular

spectrum basically evolves intact, throughout its subsequent evolution, oblivious to any

nonlinear interactions. 2) By knowing the analytical form of the Fourier amplitudes from AB,

one can predict the time of the breather’s first formation. This formation time corresponds

to the maximum compression distance [15] in an optical fibre, and is an important design

parameter for breather productions. Our formation time is an improvement over that derived

in Ref.[15]; it is accurate even for purely real modulation amplitudes. 3) Since all higher

Fourier modes are “enslaved” [16] to the n = 1 mode, there is no freedom for the equal

partition of energy and no Fermi-Pasta-Ulam [17, 18] (FPU) paradox. The FPU recurrence is

then just a consequence of bound state energy conservation with a period twice the breather’s

formation time. 4) In cases of higher-order modulated instabilities, where there are multiple

initial unstable modes, super FPU recurrences are possible, but Fourier amplitudes beyond

the first AB-like peak are no longer predicted by the Akhmediev breather.
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II. ANATOMY OF THE AKHMEDIEV BREATHER

The Akhmediev breather [8, 9]

ψ(t, x) =
(1− 4a) cosh(λt) +

√
2a cos(Ωx) + iλ sinh(λt)√

2a cos(Ωx)− cosh(λt)
, (2)

is an exact solution to (1) parametrized by a single real positive parameter a, which fixes

the wave number Ω and the growth factor λ. In order to make clear the most fundamental

aspect of the solution, it is best to regard a as parametrizing the solution’s periodic length

L:

L =
π√

1− 2a
. (3)

For an AB, a ranges between 0 and 1/2; at a = 1/2 the Peregrine soliton [19] forms, with an

infinite periodic length. Given L, the spacing in k-space is ∆k = 2π/L, so that the allowed

k vectors are just

kn = n∆k for n = 0,±1,±2, · · · . (4)

The wave number Ω of the Akhmediev breather (2) then corresponds to the fundamental,

n = 1 mode

Ω = ∆k = 2π/L = 2
√
1− 2a, (5)

and the growth factor

λ =
√

8a(1− 2a), (6)

is due to the instability of this mode, as determined by the Bogoliubov spectrum [12].

While the general Benjamin-Feir [1] instability is known since 1967, the modulation insta-

bility of the cubic nonlinear Schrödigner equation is known from Bogoliubov’s work on the

uniform Bose gas [12, 13] since 1947. This is because a uniform Bose gas can be described by

the Gross-Pitaevskii equation [13, 20], which is just the cubic nonlinear Schrödinger equation

with a uniform background.

Bogoliubov’s spectrum [12, 13] for the elementary excitations of a uniform Bose gas is

given by

εk =
√

Ek(Ek + 2U) (7)

where Ek = k2/2 is the free-particle energy and U = g|ψ|2. In the repulsive (defocusing)

case of g = +1, all elementary excitations are stable. In the attractive (focusing) case of
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g = −1, all k-modes with plane-wave eikx are unstable if Ek+2U < 0. In the latter case, for

a constant background |ψ|2 = 1, the n = ±1 modes are unstable with imaginary frequencies

ε±1 = ±i
√

∆k2

2
(2− ∆k2

2
) = ±i

√

8a(1− 2a) = ±iλ, (8)

and the modulus of the amplitudes A±1 grows in time as

|A±1| ∝ e∓iε±1t = eλt. (9)

Thus, the instability of the n = ±1 modes determines the growth factor λ. More generally,

since a k-mode is unstable for Ek−2 < 0, this means that all modes with kn < 2, or nΩ < 2,

are unstable. For 1 < Ω < 2 only one mode is unstable. If Ω < 1, then there will be more

than one unstable mode with more than one growth factor. The case of Ω = 1 corresponds

to a = 3/8 = 0.375, hence there will be multiple unstable modes initially if a > 0.375.

When starting with a constant background of ψ = 1, with A0 = 1 and An 6=0 = 0, any

minute perturbation which triggers the instability of the n = 1 mode will cause it to grow

exponentially, according to (9). This is the standard Benjamin-Feir [1] scenario. What has

not been explicitly stated prior to this work is that, for the nonlinear Schrödinger equation,

this growth of the n = 1 mode will automatically trigger a cascading instability of all the

higher modes, causing all to grow exponentially, locked to the fundamental mode. This is

because the Bogoliubov spectrum is obtained by linearizing

|ψ|2 = |A0 + A1e
i∆kx + A−1e

−i∆kx|2 (10)

to leading orders in A±1. The final equation is of the form

i∂tA±1 ∝ A±1, (11)

which results in an exponential growth factor. Doing the same expansion for A±2 in

|ψ|2 = |A0 + A1e
i∆kx + A−1e

−i∆kx + A2e
i2∆kx + A−2e

−i2∆kx|2 (12)

now yields leading order contributions of the form

i∂tA±2 ∝ A2
±1A

∗
0 + 2A0A±1A

∗
∓1, (13)

which are simply proportional to a product of two A±1. This is because the amplitudes A±2

are just starting to grow from zero, and are much smaller than the constant A0 ≈ 1 and the
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FIG. 1. (color online) Density |ψ(t, x)|2 plot of the numerical solution of the cubic nonlinear

Schrödinger equation (1) using a second-order splitting method with ∆t = 0.0001 for a = 3/8 and

initial profile (17).

already growing A±1. Thus A±2 are given by a simple time integration,

A±2 ∝
∫

(A2
±1A

∗
0 + 2A0A±1A

∗
∓1)dt (14)

resulting in

|A±2| ∝ |A1|2 ∝ e2λt. (15)

Repeating similar argument for A±n (n 6= 0) then yields

|A±n| = Cne
|n|λt = Cn|A1||n|. (16)

Therefore the growth of the entire spectrum is dictated by the growth of |A1|. If Cn does not

grow exponentially faster than n, then at t < 0, ln(|A±n|) ∝ −|n|, which is triangular-shaped

spectrum [14] in n.
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FIG. 2. (color online) The first breather’s numerical spatial profile from the calculation of Fig. 1

as compared to the analytical form of |ψ(0, x)|2 from Eq. (2).

To check the validity of this cascading scenario, we solve the nonlinear Schrödinger equa-

tion numerically using a second-order splitting method for the case of a = 3/8, L = 2π,

∆k = 1, Ω = 1, λ =
√
3/2, with an initial profile

ψ(0, x) = A0 + A1e
iΩx + A1e

−iΩx = A0 + 2A1 cos(Ωx), (17)

where A0 =
√

1− 2A2
1 and A1 = 10−4, so that wave function is normalized as in Ref. [8]:

1

L

∫

L

0
|ψ(0, x)|2dx = A2

0 + 2A2
1 = 1. (18)

The allowed k-modes are just integers k = n = 0,±1,±2, etc.. In Fig. 1, the resulting

density profile plot shows that the breather is first formed at t ∼ 10 and then recurs later

at intervals of t ∼ 20. To verify that the structure formed is precisely the breather of (2)

with a = 3/8, we compare in Fig. 2, the structure’s spatial profile at the formation time

with |ψ(0, x)|2 of Eq.(2). The agreement is exact.

6



0 2 4 6 8 10 12 14 16

−40

−35

−30

−25

−20

−15

−10

−5

0

5

t

lo
g(

|A
k|)

k=0

k=1

k=2

k=3

k=4

k=5

FIG. 3. The growth of the k = 1 − 5 Fourier amplitudes in time. Symbols are numerical results

from the calculation of Fig. 1. Solid lines are kλ(t− tc) with λ =
√
3/2 and tc = 10.6352.

In Fig. 3, the growth of |Ak| for k = 1− 5 is compared to the cascading prediction (16)

that |Ak| = ekλ(t−tc), with the prefactor Cn absorbed into the shift of the time origin tc. All

k = 1− 5 amplitudes can be well-fitted with a single cascading time of tc = 10.6352,

ln(|Ak|) = |k|λ(t− tc), (19)

where tc is the time needed for A1 to grow from an initial value of 10−4 to unity at the rate

of λ =
√
3/2,

tc = − ln(A1)

λ
= 10.6352. (20)

The excellent linear fits to the amplitudes in Fig. 3 are therefore parameter-free predictions

of the cascading instability. It only fails to describe the growth of the amplitudes near and

after the amplitudes’ peak, at which time the exact dynamics takes over. The breather’s
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actual formation time of

t0 = 10.4691 (21)

will be derived in a later section; the cascading time tc is just a first estimate of t0. Because

of the cascading instability, the growth of the amplitudes is best understood and plotted in

terms of ln(|Ak|) rather than |Ak| or |Ak|2.
Of course, this exponential growth in the amplitudes cannot continue indefinitely, since

it must be constrained by the unitary condition on the wave function:

|A0|2 + 2
∑

n>1

|An|2 = 1. (22)

If one assumes that the cascading spectrum (16) persists (setting Cn = 1) even when |A1|
can no longer be considered as “small”, then since |A0| can only be depleted to zero, the

maximum that |A1| can grow to is given by

∑

n>1

(|A1|2)n =
1

2
⇒ max(|A1|) =

1√
3

(23)

and max(|An|) = (1
√
3)n. As we will see in the later sections, after the amplitudes have

reached their maxima, by energy conservation, they must decline back to their starting

values, in a time-symmetric image of their rise.

To see how exactly the Akhmediev breather forms from this cascading scenario, we now

compute the exact amplitudes An(t) from the solution (2). From Eq. (2), we have

An(t) =
1

L

∫

L

0
ψ(t, x) cos(nΩx)dx,

=
1

2π

∫ 2π

0

(

1 +
2(1− 2a) cosh(λt) + iλ sinh(λt)√

2a cos(y)− cosh(λt)

)

cos(ny)dy,

=
1

2π

∫ 2π

0

(

1 +
2(1− 2a) + iλ tanh(λt)

α cos(y)− 1

)

cos(ny)dy, (24)

where we have defined

α =
√
2a/ cosh(λt) < 1,

and where
1

2π

∫ 2π

0

cos(ny)

α cos(y)− 1
dy = − 1√

1− α2

(

1−
√
1− α2

α

)n

. (25)

Therefore, one has

A0(t) = 1− 2(1− 2a) + iλ tanh(λt)√
1− α2

, (26)
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FIG. 4. The growth of the k = 0−5 Fourier amplitudes as compared to the exact amplitudes (26)

and (27). The numerical data are the same as those in Fig. 3. The plunging vertical line depicts

the total depletion of A0 (=0) at t = t0.

and for n 6= 0,

An(t) = −2(1− 2a) + iλ tanh(λt)√
1− α2

(

1−
√
1− α2

α

)|n|

. (27)

This derivation agrees with the original results of Akhmediev and Korneev [8] (up to an

overall sign) for a = 1/4, and with others [21], but not with the amplitudes given in Ref.

[14].

Equation (27) means that all amplitudes are phase-locked to that of A1(t) and their

magnitudes simply decrease geometrically with increasing n:

An(t) =
(

1−
√
1− α2

α

)|n|−1

A1(t). (28)

This affirms the cascading scenario, but the Akhmediev breather goes further in asserting

that all |n| > 1 amplitudes evolve in locked-step with A1(t) at all times. In 1981, Infeld
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[16] explained the success of his truncated three-wave model as due to the “enslavement” of

higher modes to the n = 1 modes. This conjecture is precisely confirmed by the Akhmediev

breather and is the basis for the qualitative success of all three-wave models [16, 22]. This

“enslavement” is a remarkably simple mechanism of nonlinear evolution.

Note that

A0(0) = 1− 2
√
1− 2a = 1− Ω (29)

and for n 6= 0,

An(0) = −2
√
1− 2a

(

1−
√
1− 2a√
2a

)|n|

. (30)

Therefore, the depletion of the background is maximal, A0(0) = 0, only for a = 3/8, Ω = 1.

We now plot ln(|Ak(t− t0)|) in Fig. 4, using the exact AB amplitudes of (26) and (27). The

exact amplitudes match the numerical data perfectly.

When the time origin is shifted by t→ t− t0, then for t << t0

α→ 2
√
2aeλ(t−t0) → 0

and

|An(t− t0)| → 2
√
1− 2a

(√
2aeλ(t−t0)

)|n|

. (31)

Therefore, at any a the Akhmediev breather will yield a growing triangular spectrum, as

predicted by the cascading instability, but with a known prefactor Cn.

III. THE FORMATION TIME

The excellent match in Fig. 4 between numerical data and theoretical results means that

one can track ln(|A1(t− t0)|) back to t = 0, and set it equal to the initial amplitude,

lnA1 = ln(|A1(−t0)|), (32)

and directly determine t0 from the initial amplitude! From Fig. 4, for A1 small it is clear that

ln(|A1(t− t0)|) is in the linearly growing region. There is no need to use the full expression

(27); the approximation (31)

|A1(−t0)| = λe−λt0 (33)

is sufficient. One then has an analytical form for the formation time:

t0 = − ln(A1/λ)

λ
= − ln(A1)

λ
+

lnλ

λ
. (34)
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FIG. 5. The corrected Akhmediev breather’s first formation times as functions of a for various

initial amplitudes parametrized as A1 = e−w. Crosses are numerical values; lines are analytical

estimates of (35). From the top to the bottom are results corresponding to w = 9− 2.

Setting A1 = 10−4 gives t0 = 10.6352 − 0.1661 = 10.4691, in exact agreement with the

observed formation time of (21).

The analytical formation time (34) is exact for A1 → 0. It is surprising to find that (34)

remains a good approximation at a = 3/8 even for A1 as large as ≈ 0.1. However, at larger

values of A1, there is not enough time for the cascading process to build up to the triangular

spectrum, and the resulting evolution is no longer described by the Akhmediev breather.

Thus, in order for the Akhmediev breather and (34) to be applicable, the smaller the initial

modulating amplitude, the better.

The above discussion for t0 is only for the case of a = 3/8, Ω = 1. It turns out that for

Ω 6= 1, another correction is necessary. This is due to the fact that for Ω 6= 1, the numerical

ln(|A1(t)|) will start out either steeper or flatter than the slope λ. In general, starting

11



a
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

t 0

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Numerical
Corrected Formula
Original Formula

FIG. 6. Comparing the original formula (34) and the corrected formula (35) for the formation time

t0 at A1=0.01.

with a finite A1 6= 0, unless the initial A1 is very small, ln(|A1(t)|) is not described by the

Akhmediev breather. But if we are using the straightline portion (33) of the Akhmediev

breather to determine t0 approximately, then we must use a value of |A1| logarithmically

higher or lower, to match the slope. The correction, found empirically, takes a very simple

form:

t0 = − ln[A1/(λΩ)]

λ
= − ln(A1)

λ
+

lnλ

λ
+

lnΩ

λ
. (35)

In Fig. 5, we compare the numerical formation time for various values of the modulating

amplitude A1 and a. At smaller values of A1, w = 7, 8, 9, the agreement is excellent even at

a > 0.375, where there are more than one initial unstable modes. Naturally, the analytical

estimates fail as one approaches a = 1/2, where the AB scenario is not applicable anymore

and the Peregrine soliton scenario takes over.

12



t
0 20 40 60 80 100

lo
g(

|A
k
|)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

FIG. 7. The evolution of the k = 0− 5 Fourier amplitudes (top to bottom) beyond the first peak.

At A1 = 0.01, we compare both (34) and (35) in Fig. 6 for all values of a. The old

formula (34) is only correct at one point, a = 3/8 = 0.375 or Ω = 1. The corrected formula

(35) is in excellent agreement with numerical results, even at this relatively large value of

A1. If one interprets t as z, the distance along the optical length, then t0 corresponds to

the distance at which A0 is maximally depleted. This is called the maximum compression

distance by Erkintalo et al. in Ref. [15]. They have also derived the formation time (34) by

an entirely different expansion method. Our use of the amplitude |A1(t)| from (31) seemed

more direct. Figure 6 is to be compared with Fig. 3 in Ref. [15].

IV. FERMI-PASTA-ULAM RECURRENCE

In Fig. 7, we show the continued evolution of the amplitudes for the case of a = 3/8

after the first peak. One sees that A1 decreases back to its initial value and repeats its

13
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FIG. 8. The kinetic energy (top) and the potential energy (bottom) of the nonlinear Schrödinger

equation with initial wave function (17). The line nearly identitical to -1/2 is the total energy.

initial growing pattern. This is the celebrated Fermi-Pasta-Ulam [17, 18] recurrence of the

nonlinear Schrödinger equation, known from the early experimental work of Lake et al.

[2] and the numerical calculations of Yuen and Ferguson [3]. As discussed earlier, in AB,

all higher amplitudes should rise and fall in locked-step with A1. However, due to the

algorithm’s error and limited numerical precision, this locked-step is difficult to maintain

when the amplitudes are near zero. (A2 is specially difficult here because it is neutrally

stable with a zero growth rate. It tends to drift more than other modes.) The exact AB

is of no help in explaining this recurrence, since the exact wave function (2) only describes

a single rise and fall of the breather. The key to understanding this recurrence is energy

conservation.

In Fig. 8 we, plot the kinetic energy T , the potential energy V , and the total energy

E = T + V of the nonlinear Schrödinger equation (1) as a function of t, where T and V are

14



defined by

T =
1

L

∫

L

0
dxψ∗(t, x)(−1

2
∂2x)ψ(t, x) =

∑

k

1

2
k2|Ak(t)|2,

V = −1

2

1

L

∫

L

0
dx |ψ(t, x)|4.

At the peak of the AB, (29) and (30) give A0 = 0 and

|Ak|2 =
1

3k
, (36)

and hence

T = 2
∞
∑

k=1

|Ak|2
1

2
k2 =

∞
∑

k=1

k2

3k
=

3

2
. (37)

This exlains why the kinetic energy peaks at 1.5.

One immediately recognizes that energy patterns in Fig. 8 are typical of a bound state

collision with a hard-wall potential, like that of a bouncing ball released from rest at a given

height, then falling to the ground. When the ball hits the ground, its velocity and kinetic

energy are at their respective maxima. When the ball begins to bounce back elastically, its

velocity reverses direction and both its magnitude and the kinetic energy decrease back to

zero. When the ball reaches back its original height with zero kinetic energy, it begins to fall

again. Thus every kinetic energy peak is a moment of impact. The FPU period is therefore

just the period of the bouncing ball, which is twice the time for it to fall to the ground.

Hence,

tFPU = 2t0 = 2
(

− ln[A1/(λΩ)]

λ

)

. (38)

This is clearly seen in the first optical observation of the FPU recurrence [23].

In the original observation of Yuen and Ferguson [3], recurrence in the nonlinear

Schrödinger is liken to the work of Fermi-Pasta-Ulam [17], because it was thought that

energy is being distributed from A0 to infinite-many higher Fourier modes. If all these

higher modes interact independently, then the energy will thermalize and impossible to

reassemble back to A0. From AB, we now have a simple explanation of this recurrence: All

higher modes are locked-in, to rise and fall with A±1(t) at all times. There are therefore

no infinite number of degrees of freedom to distribute energy, no entropy to destroy time-

reversal symmetry. Recurrence is just a matter of simple energy conservation for basically

two degrees of freedom, A0(t) and A1(t), similar to that of a two-body collision problem.

15
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FIG. 9. The Fermi-Pasta-Ulam recurrence period tFPU as determined by a second (stars) and a

fourth-order (circles) splitting scheme with ∆t = 0.01 to 0.0001 at a = 3/8 for an initial amplitude

of A1 = 10−4. The horizontal red line is the predicted FPU period of 2t0.

If one were to numerically determine the period of the bouncing ball accurately, then

the ball must be able to return to its original height accurately. In other words, energy

conservation is paramount. For the wave function (17), the sum of kinetic and potential

energy initially is

E0 = A2
1 −

1

2
− 4A2

1 + 7A4
1. (39)

Since A4
1 = 10−16, the total energy is near the limit of double-precision. For A1 < 10−4,

the total energy would be beyond the limit of double-precision and cannot be accurately

conserved numerically (unless higher precision software is used).

To demonstrate the importance of energy conservation, we plot in Fig. 9, the FPU

recurrence period using a second and a fourth-order splitting algorithm with ∆t = 0.01

to 0.0001. With decreasing ∆t, as the second algorithm is increasingly more accurate,
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FIG. 10. Density |ψ(t, x)|2 plot for a = 55/128.

its numerical FPU period approaches the expected value of 2t0 from below, and does not

converge until ∆t < 0.002. However, the same converged value can be obtained by using a

fourth-order algorithm at step size as large as ∆t = 0.008. Also, as shown by the second

order algorithm, when energy conservation is less accurate, the FPU period tends to shorten.

V. HIGHER-ORDER MODULATION INSTABILITY

After understanding simple FPU recurrences in the last section, we can now tackle the

more complicated case of higher-order modulated instablility, with multiple initial unstable

modes.

Consider the case of a = 55/128 = 0.4296875, where the fundamental wave number
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FIG. 11. Evolving amplitude plot for a = 55/128 with the super-recurrence period most clearly

seen in the oscillation of the n = 2 amplitude.

Ω1 = 3/4 and its first harmonic Ω2 = 3/2 are both unstable, according to the Bogoliubov

spectrum, with respective growth factors λ1 = 0.6953 and λ2 = 0.9922. This is the case

studied in Ref. [24]. In Fig.10, we show the resulting density plot when the initial modulating

amplitude A1 is 0.01. A short simulation with t < 15 would only show one breather near

t ∼ 5 and two breathers near t ∼ 10. However, the long time simulation of Fig. 10 reveals

that there is “super-recurrence” with the period tFPU ∼ 40! This is more clearly shown in

Fig. 11, where for clarity, we only plotted the amplitudes of the first three modes. The

longer period of tFPU ≈ 38.4 is clearly visible in the oscillation of the n = 2 amplitude.

Even for A1 = 0.01, the cascading instability still enslaves all the higher modes, including

the unstable n = 2 mode. This is because under the cascading instability, the n = 2 mode

will grow at a rate of 2(0.6953) = 1.3906, which is faster than its own rate of 0.9922. As a
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FIG. 12. Comparing amplitude intensity of the Akhmediev breather (lines) with numerical results

(stars) for a = 0.45.

consequence, an Akhemdiev breather will form at

t0 = − ln(A1)

λ
+

lnλ

λ
+

lnΩ

λ

= 6.6233− 0.5227− 0.4138 = 5.6868. (40)

This is in reasonable agreement with the observed value of t0 = 5.759, given the fact that

A1 = 0.01 is not small enough for the analytical formula to hold. This time difference at

a ≈ 0.43 is already noticeable in Fig. 6.

After the first peak, all amplitudes decline, as in an Akhemdiev breather, but since the

n = 2 mode is intrinsically unstable, it starts to grow at its own rate while A1 is still

declining. The result is the formation of a twin-peak breather near t ≈ 9.9, where n = 2

has the largest amplitude. Wabnitz and Akhmediev [25] have noted that this can be an

efficient way of transferring power from the pump or the background to the n = 2 mode.

After this peak, the amplitdues decline and rise again, to form another Akhemdiev breather
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near t ≈ 19.2. This peak is at mid-period, and the A1 amplitude retrace its step back to its

starting value at the “super-recurrence” period of tFPU ≈ 38.4. This period is even more

clearly seen in the n = 2 amplitude, where it is the time at which A2 declines back to zero.

It would be of interest to see whether this super-recurrence period can be seen analytically

in the solutions obtained by Darboux transformation in Ref. [24].

Because of its instability, the amplitude of the n = 2 mode after the first peak is markedly

different from that of an Akhmediev breather. In Fig. 12, we compare AB at a = 0.45 with

numerical results for A1 = 0.01. This case has three unstable initial modes. The evolution

before the first peak, because of the cascading instability, remain AB-like, however, after

the peak, numerical results for the intensity of the n = 1 and n = 2 mode are below and

above that of AB’s profile respectively. This is to be compared with Fig. 3 of Ref. [21].

Hammani et al. [21] are correct in asserting that AB dynamics remained qualitatively useful

in describing various mode intensities in approaching the first peak. However, their Fig.

3 also clearly shows that their data after the intensity peak, while still in agreement with

numerical solutions of the nonlinear Schrödinger equation similar to our Fig. 12, are no

longer quantitatively described by the Akhmediev breather. Thus, while there are many

areas where AB can give an excellent account of light propagation and generation [26], AB

dynamics is insufficient to describe higher-order modulation instabilities beyond the first

peak. With more than two unstable modes, that dynamics fast becomes chaotic.

VI. CONCLUSIONS

In this work, we have exposed in detail the anatomy of producing the Akhmediev breather,

that it is basically the result of a cascading instability, which enslaved all higher modes to

evolve in locked-step with the n = 1 mode. This at once makes plain that FPU recurrence is

just a necessary consquence of energy conservation. By giving an analytical formula for the

breather’s first formation time beyond that of AB, we have also derived an accurate analyti-

cal estimate of the FPU period. In cases of higher-order modulation instability, where there

are multiple unstable initial modes, we showed that due to the interplay between and among

various unstable modes, super-recurrences are possible. However, such recurrences are be-

yond the simple description of AB (2) and may require the use of Darboux transformations

[24] to give an analytical account of such periodicities.

20



Because of the cascading instability, we were led to plot not the mode intensities |An|2

themselves, but ln(|An|). As evident from Figs. 3, 4, 7 and 11, these log-plots of amplitudes

give the clearest description of the nonlinear evolution of ABs of the Schrödinger equation.

This will be equally useful for understanding other modulation-instability related nonlinear

evolutions. Further work is necessary to understand the higher-order MI of ABs, as well as

the emerging complex dynamics associated with MI of Peregrine and of KMBs.
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