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A static domain wall with infinitesimal thickness is obtained in the theory of a scalar

field coupled to gravity with the dilaton, i.e. the Jordan-Brans-Dicke gravity. The value

of the dilaton is determined in terms of the Brans-Dicke parameter ω. In particular the

metric for the wall becomes flat and the dilaton, though nontrivial, has vanishing kinetic

energy (i.e. ω = 0) so that there is no gravitational effect due to such a dilatonic domain

wall. Some remarks on possible thick domain walls are given too.

PACS numbers: 04.60.+n, 04.50.+h, 98.80.-k, 11.10.-z, 11.30.Er, 11.17.+y

06/92

∗ e-mail address: hsla@phys.tamu.edu, hsla@tamphys.bitnet

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/232286704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-ph/9207202v2


It is interesting to observe the fact that most of gravitational theories known so far

allow extended objects as their classical solutions[1][2], although the chances of actual

existence are not necessarily high. Nevertheless, the properties of such extended objects

can often provide constraints on various aspects of phenomenological implications of the

theories. Theories which undergo phase transition via spontaneous symmetry breaking are

particularly interesting because they become building blocks of cosmological models and

often provide topological defects, e.g. monopoles, cosmic strings, domain walls, etc.[1].

Such defects in principle can be formed in the early universe[3].

In this letter we shall investigate the structure of (infinitesimally thin) domain wall

solutions in the Jordan-Brans-Dicke (JBD) theory, which is a gravitational theory with

the dilaton in the four-dimensional space-time. From the string theory’s point of view, the

JBD theory with a specific Brans-Dicke (BD) parameter is a natural effective gravitational

theory before the dilaton freezes up. Furthermore, a cosmological model can also be built

based on the JBD theory[4]. Thus it is worth while to investigate the existence of extended

objects in this context. Cosmic string solutions in this theory were previously studied in

ref.[5].

We shall consider the action for the JBD theory

S =

∫
d4x

√
−g̃e−2φ̃

(
R̃ − 4ω∂µφ̃∂

µφ̃
)
+ SM [g̃µν ], (1)

where ω is the BD parameter of the theory. In particular the ω = −1 case corresponds to

the action of the dilaton gravity from string theory[6]. For our purpose we take SM as the

action for the real scalar field with a double well potential:

SM = −1

2

∫
d4x

√
−g̃

(
∂µΦ∂

µΦ+ λ(Φ2 − η2)2
)
. (2)

SM in particular has a discrete symmetry Φ → −Φ. In the static case, this discrete

symmetry is equivalent to the time reversal symmetry. This is why the domain wall

structure is related to the CP phases[7][8]. For convenience we redefine the variables as

ω =
1

4β2
− 3

2
, e−2φ̃ =

1

16πG
e−2βφ, g̃µν = e2βφgµν , (3)

then the action now becomes

S =
1

16πG

∫
d4x

√−g(R− ∂µφ∂
µφ) + SM [e2βφgµν ]. (4)
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Setting φ = 0, this action reduces to that of a real scalar field coupled to the Einstein

gravity, in which case a static thin domain wall solution is known to exist, although it

is gravitationally unstable[9]. In this letter we shall present a stable domain wall, which

is a static classical solution of eq.(1). In our case although g̃µν is a physical metric of

the space-time, eq.(4) is very convenient for practical purposes. Although φ̃ is the actual

dilaton, we will call φ a dilaton too since they are related by a simple field redefinition.

By varying eq.(4) with respect to the new metric gµν , we obtain

Rµν = ∂µφ∂νφ+ 8πG(Tµν − 1

2
gµνT ), (5)

where the “energy-momentum” tensor is given by

Tµν = − 2√−g

δSM

δgµν
= −1

2

[
e2βφgµνg

αβ∂αΦ∂βΦ− 2e2βφ∂µΦ∂νΦ+ gµνe
4βφλ(Φ2 − η2)2

]
.

(6)

Note that Tµν is not conserved due to the dilatonic contribution. The physical energy-

momentum tensor T̃matter
µν + T̃ φ̃

µν satisfies the gravitational equation of motion for JBD

theory[10],

R̃µν − 1

2
g̃µνR̃ = 8πe2φ̃

(
T̃matter
µν + T̃ φ̃

µν

)
, (7)

where ∇µT̃matter
µν = 0 and

T̃ φ̃
µν =

1

8π
e−2φ̃

(
2∂µ∂ν φ̃+ 2Γ̃α

µν∂αφ̃+ 1

2
e2φ̃g̃µν ˜

2
e−2φ̃

)

− ω

2π
e−2φ̃

(
∂µφ̃∂ν φ̃− 1

2
g̃µν∂

αφ̃∂αφ̃
)
.

(8)

The second term of eq.(8) is proportional to ω so that it vanishes if ω = 0, but the first

term is independent of ω.

The field equations for the dilaton φ is

2φ =
1√−g

∂µ(
√−ggµν∂ν)φ = −8πGβT (9)

and the scalar field satisfies

∂µ(
√
−ge2βφgµν∂ν)Φ− 2λ

√
−ge4βφΦ(Φ2 − η2) = 0. (10)

In general, domain wall solutions are obtained in theories where a discrete symmetry

is spontaneously broken. Note that the action eq.(2) for the matter field Φ has a discrete
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symmetry Φ → −Φ so that we can look for domain walls, when this symmetry is spon-

taneously broken. In the case where domain walls have infinitesimal thickness, we can

approximate the wanted scalar field to behave as

Φ(z) =

{
η if z > 0;
−η if z < 0.

Then we are interested in the the domain wall which separates a space of the Φ = η phase

from a space of the Φ = −η phase. Such an approximation is in fact reasonable for the

cases where the Compton wavelength of the test particle is much longer than the thickness

of the wall.

We shall try the following ansatz for domain wall solutions[11] [9]:

ds2 = A(|z|)(−dt2 + dz2) +B(|z|)(dx2 + dy2). (11)

Note that we have required the reflection symmetry between each side of the wall, which is

an infinite plane perpendicular to the z-direction at z = 0. In fact it turns out that this is

quite a general ansatz. Normally |z| is not analytic at z = 0, but we can use the following

prescription for |z| to avoid such a difficulty:

|z| = z[θ(z)− θ(−z)], (12)

where θ(z) is a step function defined by θ(z) = 1 for z ≥ 0, θ(z) = 0 for z < 0. Then

∂z|z| = [θ(z) − θ(−z)] + 2zδ(z). If we promise that ∂z|z| shall be multiplied with some

function of z that does not have a pole at z = 0, we can safely use an identification

∂z|z| ≡ θ(z)− θ(−z). Similarly, ∂2
z |z| ≡ 2δ(z). The reason we try to be careful about such

analyticity is to check the consistency of the solutions at the wall, which turns out to be

important to provide interesting constraints on the solutions.

Using this ansatz the field equations become

(
A′

A

)′

+
A′B′

AB
= −8πGλAe4βφ

(
Φ2 − η2

)2
, (13a)

(
B′

B

)′

+
B′2

B2
= −8πGλAe4βφ

(
Φ2 − η2

)2
, (13b)

A′B′

AB
−
(
A′

A

)′

−2
B′′

B
+
B′2

B2
=2φ′2+8πG

(
2e2βφΦ′2+λAe4βφ(Φ2−η2)2

)
, (13c)

B′

B
φ′ + φ′′ = 8πGβ

(
e2βφΦ′2 + 2λAe4βφ(Φ2 − η2)2

)
, (13d)

0 =
(
Be2βφΦ′

)′ − 2λABe4βφΦ(Φ2 − η2), (13e)
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For thin walls we have Φ2 = η2 and Φ′ = 0 away from z = 0 so that we shall first

solve the above equations away from z = 0, then shall check the consistency at the wall.

Solving eqs.(13a–d) for z 6= 0, we obtain

A(z) = (1 + κ̃|z|)α2− 1

2 ,

B(z) = (1 + κ̃|z|),

φ(z) = α ln(1 + κ̃|z|),

(14)

where κ̃ and the parameter α are yet to be determined, while the value of the dilaton at

z = 0 is taken to be zero.

Now let us check the consistency of the solution at the wall. Using the analytic

property eq.(12) we prescribed, eq.(13b) reduces to

κ̃2δ(z) = 8πGλ
(
Φ2 − η2

)2
, (15)

which leads to κ̃ > 0. Similarly, eq.(13a) reduces to

(
α2 − 1

2

)
κ̃2δ(z) = 8πGλ

(
Φ2 − η2

)2
, (16)

which together with eq.(15) implies that

α2 = 3/2 so that A = B.

This is a very strong constraint, which even the Einstein gravity case cannot satisfy1. Note

that κ̃ and η have mass dimensions and the Newton’s gravitational constant G has inverse

mass square dimension, while λ is a dimensionless coupling constant. Using a dimensional

analysis for a possible thick wall, if we have Gλη4 ≫ κ̃ η√
λ
and Φ(z = 0) = 0, the LHS

of eqs.(15)(16) are effectively comparable to the RHS by smearing out the delta function

Thus this is a good approximate solution and the condition in fact corresponds to the weak

gravitational field limit.

Eqs.(13c, d) in turn require that

(Φ′)2 =
κ̃

4πG
δ(z) (17)

1 α = 0 corresponds to the Einstein gravity case. This also confirms that there is no static

(stable) thin domain wall in this case. Note that this does not imply that there is no domain wall

solution in the Einstein gravity. It is known that there exits a time-dependent thin wall solution:

A. Vilenkin, Phys. Lett. 133B (1983) 177; J. Ipser and P. Sikivie, Phys. Rev. D30 (1984)712.
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and

2βα2 + α = 0. (18)

Thus 2αβ + 1 = 0 and that eq.(13e) is also satisfied. For α2 = 3/2, β2 = 1/6, which leads

to the BD parameter ω = 0 for eq.(3).

Finally, κ̃ can be determined from the “energy” density as follows: Using eqs.(15)-(18)

we can compute the “energy-momentum” tensor eq.(6) as

Tµν =
κ̃

4πG
δ(z)diag(1,−1,−1, 0), κ̃ > 0. (19)

Note that this is not the physical energy-momentum in eq.(7) so that getting negative

“energy” density does not imply the instability of the wall.

Here we would like to call the readers attention to the fact that we have differential

equations with the Dirac delta-function. Some may find that this is unreasonable be-

cause after all the Dirac delta-function is not a function but a distribution. But this is not

completely unreasonable in field theory when we often need to be careful about the analyt-

icity. The main intention is not to solve the differential equations in question but to check

the consistency between equations. In this sense this is a sufficiently good approxima-

tion. In fact one can be more careful about this situation and can introduce distributional

energy-momentum tensor in terms of delta-function from the beginning[12]. The result

however is more or less equivalent because we also have derived the distributional “energy-

momentum” tensor using our prescription eq.(12). We can also further clarify the result

by introducing infinitesimal thickness of the wall and taking approximation around z = 0,

although we cannot determine the shape of the solution within this thickness exactly2.

Now the physical metric can be obtained by multiplying the conformal factor (see

eq.(3)) as ds̃2 = e2βφds2 so that we obtain

ds̃2 = (1 + κ̃|z|)2αβ+α2− 1

2 (−dt2 + dz2) + (1 + κ̃|z|)2αβ+1(dx2 + dy2). (20)

Since 2αβ + 1 = 0, we have ω = 0, then the physical metric becomes nothing but the

Minkowski metric

ds̃2 = −dt2 + dz2 + dx2 + dy2. (21)

2 For example, we can cut off the solution for |z| > ǫ for infinitesimal ǫ. Although we are not

able to solve the equations exactly in the region |z| < ǫ but at least we know Φ(0) = 0 and A,B, φ

should be continuous. Then we can check the consistency of the solution eq.(14) at z = 0 because

as ǫ → 0 the leading order of the solution should not be much different from this. In fact we only

need to use the property A = Bα2
−1/2 and φ = α lnB. Thus it is a good approximation.
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The success of the prescription eq.(12) indeed suggests that we should be able to

get thick wall solutions by replacing the step function θ(z) with a smeared θ-function[13]

Thick wall solutions we are really interested in nevertheless should approach to our thin

wall solution asymptotically as |z| → ∞. Also in the the small β approximation, if β → 0,

ω → ∞, and that φ → 0, it should recover a thick domain wall in the Einstein gravity

case. But solving eq.(13a− e) for an arbitrary β and a wall thickness seems to be fairly

complicated, though it may not be impossible.

Discussion

Needless to say such a thin dilatonic domain wall is gravitationally stable because it

does not carry any gravitational energy-momentum (see eq.(8)). The dilatonic contribution

to the energy-momentum tensor precisely cancels the matter part of the energy-momentum

tensor to make the space-time flat. It should be important to further look for time-

dependent or thick wall solutions to check if such a result survives in these cases too.

This result can be very significant in the following sense:

First, such a dilatonic domain wall may not be seriously harmful with respect to the

strong CP problem. The domain wall problem in the strong CP problem is generated by

the existence of a domain wall that carries too much energy. But the dilatonic domain

wall we have at hand does not carry any gravitational energy so that it can exist without

ruining the standard cosmology paradigm.

Second, it has been speculated that the extended object in string theory, in par-

ticular, the fivebranes[14][15], can appear as a two-dimensional extended objects in the

four-dimensional space-time after compactifications[16]. The metric given in ref.[16] for

the sine-Gordon fivebrane is in fact flat because the curvature vanishes. Since the dilaton

gravity is a natural gravitational theory from the string theory’s point of view, the domain

wall for this theory, if it ever exists, may be in such a form. Domain walls in string theory

context were also formerly studied in other aspects[17] so that it would be interesting to

further study with such an expectation presented here.

From such a point of view one may be tempted to speculate that there may not be a

domain wall problem in string theory, although a domain wall exists. Since our conclusion

can be applied to a possible thick domain wall case far away from the wall, if such a

domain wall exists, say, near the horizon of the universe, we certainly cannot observe any

gravitational effects due to the wall.
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