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Abstract: This paper reviews LiDAR ground filtering algorithms used in the process of 

creating Digital Elevation Models. We discuss critical issues for the development and 

application of LiDAR ground filtering algorithms, including filtering procedures for 

different feature types, and criteria for study site selection, accuracy assessment, and 

algorithm classification. This review highlights three feature types for which current ground 

filtering algorithms are suboptimal, and which can be improved upon in future studies: 

surfaces with rough terrain or discontinuous slope, dense forest areas that laser beams 

cannot penetrate, and regions with low vegetation that is often ignored by ground filters. 
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1. Introduction  

LIght Detection And Ranging (LiDAR) technology determines the distance between ground objects 

and sensors by measuring the time a pulse of transmitted energy takes to return to the LiDAR sensor. 

When coupled with a ground referencing system, LiDAR sensors make dense, geo-referenced point 

elevation measurements [1-3]. Compared with traditional surveying and mapping systems, including 

photogrammetric systems, LiDAR technology provides a fast and accurate alternative [4-6] for 
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mapping large areas at high resolution and is gradually being adopted as the primary technique to 

generate Digital Elevation Models (DEMs) [7-11]. The United States and some European countries 

have begun to utilize LiDAR systems to generate regional to national DEM products [1,12-14].  

LiDAR techniques are arguably superior to traditional methods (e.g., photogrammetric techniques 

or automated image matching and elevation extraction techniques) for generating DEMs for at least 

five related reasons. First, the dense LiDAR point clouds enable generation of highly accurate, high 

resolution DEMs. Second, surface features can be extracted based on a height context analysis of the 

LiDAR points [15-21], enabling accurate mapping of surface features like buildings, trees, and even 

power lines and pipelines [15,22]. Additionally, a high density dataset allows users to apply a  

multi-scale or multi-resolution strategy of feature identification [21]. Third, it is easier to identify 

slight elevation changes using dense LiDAR point clouds, making it easier to map regions with little 

textural variations, including variations in the surface of vegetation canopies [15,23]. Fourth, 

vegetation canopy structure can be determined because LiDAR pulses penetrate the canopy and create 

multiple returns [24-27]. Different multiple return patterns during different seasons can also facilitate 

vegetation classification [28]. Lastly, LiDAR can be used to map ground elevations even in regions of 

dense vegetation because of multiple returns [15]. 

A large number of value-added products make LiDAR data valuable outside the realm of DEM 

generation. LiDAR data has been used for hydrologic modeling, coastal monitoring, forest  

inventory [29-31], urban three-dimensional visualization [32,33], land-cover and land-use 

classification, and object detection [34-37]. Furthermore, the integrated analysis of optical and LiDAR 

data is becoming an important research topic [ASPRS/MAPPS 2009 Specialty Conference for digital 

terrain mapping]. Successful integration of different sensors operating at different spatial and temporal 

resolutions will undoubtedly increase the number of LiDAR applications.  

In nearly all LiDAR applications, ground filtering is a necessary step to determine which LiDAR 

returns are from the ground surface and which are from non-ground surface features. Distinguishing 

ground from non-ground can be a significant challenge in regions with high surface variability. 

Nevertheless, accurate DEMs can only be obtained if non-ground points are removed prior to 

interpolation to a raster DEM [2,12,38-40]. 

LiDAR is a relatively new technology, and users who are new to this data and ground filtering 

techniques often find it difficult to select from among the many ground filtering algorithms. Often, 

ground filtering algorithms perform best when specific surface conditions are met. Without 

understanding the assumptions of various ground filters, a new LiDAR data user will undoubtedly find 

it difficult to process LiDAR data. In this paper, therefore, we discuss criteria for selecting an 

appropriate ground filtering algorithm. We begin by discussing technical considerations for the 

development of ground filtering algorithms, including a general overview of filtering procedures, the 

role of study site characteristics in selecting a filtering algorithm, and methods used for accuracy 

assessment. Next, we review six categories of ground filtering algorithms and outline the factors that 

influence their accuracies. Lastly, we compare the accuracy of the Multi-directional Ground Filter 

(MGF) developed by the authors to published accuracy assessments of eight other filtering algorithms 

using standardized LiDAR datasets. We discuss the conditions that lead to the performance levels of 

each algorithm. This comparison and discussion is especially important for new users of LiDAR data 
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seeking to select an appropriate ground filtering algorithm and for developers seeking to  

improve algorithms. 

2. Technical Considerations for Ground Filter Development 

2.1. Ground Characteristics Used for LiDAR Ground Filtering 

LiDAR point measurementss are influenced by three components: bare ground, above-ground 

objects, and noise.  

Msensor = Eground + Enon-ground + Mnoise     (1) 

where Msensor is the measurements from the LiDAR sensor, Eground is the elevation of ground. Enon-ground 

is the height of objects above ground. Mnoise is the undesired measurements, such as the noise from 

sensors, airplanes, or birds.  

In LiDAR data, the ground points are the measurements from bare-earth terrain that are usually the 

lowest surface features in a local area. Non-ground points are the measurements from the objects 

above the bare-earth terrain, such as trees, buildings, bridges, and shrubs. In order to appropriately 

identify ground points, it is important to understand the physical characteristics of ground points that 

differentiate them from non-ground points. Ground surfaces can be divided into four categories based 

on their physical characteristics. 

1. Lowest Elevations. Ground surfaces are usually the lowest features in a local neighborhood. Many 

ground filtering methods based on this important characteristic search for the lowest elevations in a 

neighborhood to initialize the ground filtering process [1,21,38,41].  

2. Ground Surface Steepness. Surface slope is generally lower between two neighboring bare ground 

points than between one bare ground and one non-ground point [38]. Hence, many ground filters 

define a point with slope larger than the maximum ground slope as a non-ground point [2,38,42]. 

The slope threshold value that distinguishes ground from non-ground points will likely differ for 

each surface type. Relatively flat urban surfaces may have a low threshold value, such as 30°. 

Complex surfaces such as mountain terrain or high relief forest canopy surfaces will have steeper 

slopes and may require a higher threshold to accurately distinguish ground from non-ground.  

3. Ground Surface Elevation Difference. Because most bare-ground surfaces have few sharp changes 

in elevation, the elevation difference from a ground point to neighboring ground points is usually 

lower than the difference to neighboring non-ground points. Therefore, points having an elevation 

difference higher than a location specific threshold are probably non-ground points, such as shrubs, 

trees, or buildings [12,38,43,44]. 

4. Ground Surface Homogeneity. Ground surfaces are relatively continuous and smooth. Trees and 

buildings are the main non-ground features that should be removed from the measurements. But 

trees are usually less smooth in texture than bare ground and buildings [38] and may be removed 

based on morphologic characteristics [24]. 

These are the common characteristics that become assumptions of many ground filters. In some 

cases, ground surfaces may not have all of these characteristics, and filters may mislabel points as  
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non-ground. For example, cliffs have sharp elevation changes and many filters fail to label them  

as ground.  

2.2. Difficult Ground Features for LiDAR Ground Filtering 

LiDAR ground filtering algorithms make different assumptions about ground characteristics to 

differentiate between ground and non-ground features. In reality, ground surfaces may have unique 

characteristics that confound certain ground filters depending on the location and terrain conditions. 

The following features often confound some ground filtering algorithms:  

1. Shrubs, especially those below one meter 

2. Short walls along walkways 

3. Bridges 

4. Buildings with different size and shape 

5. Hill cut-off edges 

6. Complex mixed covering 

7. Areas combined with low and high-relief terrains 

8. Lack of reliable accuracy assessment 

Shrubs are common error points mis-labeled as ground surfaces. Shrub heights are usually less than 

one meter and so slope and elevation difference between the shrub and neighboring ground points are 

similar to those between ground points and neighboring ground points in variable terrain. Shrubs in 

urban areas are usually found as small patches dotting the ground. Similarly, short walls along steps, 

bridges, or fences in high relief areas, and other features often present in high-resolution urban LiDAR 

images are hard to distinguish from ground points. For certain filters (e.g., one-dimensional scanning 

filters), bridges may also cause difficulty because they are smoothly connected with ground surfaces. 

Variable building sizes may cause problems for certain filters. Ground filters based on roving 

windows sometimes have difficulties removing large or small buildings. This difficulty arises because 

the filters separate points based on a comparison between the measured value and the estimated value 

within a certain neighborhood. If a large building completely contains a roving window, the points in 

the middle of the building may not be recognized as part of the building since there is no difference 

between the measured and estimated values.  

Jagged hilly edges are difficult to identify for many ground filters. Although many natural surfaces 

have no sharp change in slope or elevation, certain terrain features do, like cliffs, shores, and 

riverbanks. Filters based on slope may mislabel ground with slopes larger than the maximum ground 

slope threshold as non-ground points. Likewise, areas of mixed low and high relief are challenging for 

ground filters because of the difficulty of selecting appropriate slope and elevation thresholds. 

Furthermore, most urban environments have a complex matrix of surface features that confound 

ground filtering algorithms, including buildings, trees, shrubs, bridges, short walls, and even wires.  

2.3. General Ground Filtering Procedures 

The four main procedures in LiDAR-based DEM generation are outlined below: 

1. Error Filtering: Local LiDAR point outliers are often randomly distributed over a study area. 
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Outliers may be caused by airplanes, birds, or the sensor itself. These points have unreasonably high 

or low elevation values and must be removed during preprocessing [1,24,45-47]. The simplest way 

to identify these outliers is to examine the frequency distribution of elevation values [1,21,24]. Less 

obvious random errors can be identified by comparing each point to a local elevation  

reference [1,24]. Often Delaunay Triangulation [1,24] is used to determine these less obvious 

outliers. Manual examination of the dataset is another viable option [47].  

2. Interpolation, Resampling, or Reorganizing: Creating a raster dataset from the LiDAR point cloud 

is a necessary procedure for certain ground filtering algorithms. When a dataset is comprised of 

multiple flight lines of irregularly spaced LiDAR points, searching for neighboring points is a 

computationally intensive process [48]. Sometimes the search for neighboring points can be 

accelerated by creating a Triangulated Irregular Network (TIN) [1,21], but more often than not the 

point cloud is rasterized so that the dataset can be searched with simple kernels [1,49-53]. As 

mentioned previously, certain LiDAR filtering algorithms rely on raster-based search logic [50].  

Multiple methods for rasterizing the LiDAR point cloud may be used depending on the local 

environmental conditions and the purpose of analysis. Simple methods assign the lowest  

point [53,54], or the nearest point [1,21,24], within an area to the pixel value. Other methods 

interpolate the pixel value [48,55,56] using rectangular [38], or circular [12,38] kernel functions. 

TINs have also been used to define neighbors for interpolation [1,21,24].  

3. Ground Filtering: Ground filtering is the process of separating ground and non-ground points or 

pixels [1,47]. A variety of methods are used, depending on the local environmental conditions. 

Directional scanning [1,2,24], morphology-based [46,61-63], interpolation-based [50,64-67], and 

segmentation-based [34,68-70] algorithms are fully discussed in the following sections and 

comparisons are made between them and the newly developed Multi-directional Ground Filtering 

(MGF) algorithm.  

4. Generate DEM: A DEM is generated through interpolation of the ground points identified in the 

previous step [71,72]. Examples of popular interpolation methods include Inverse Distance 

Weighting [73], AMLE [74], Kriging [73,74], and hybrid methods that combine linear and  

non-linear interpolation [75]. Studies prove that complicated interpolation methods may not 

generate better results than simple ones [73]. 

Some researchers may not follow all the procedures outlined above depending their purpose, data 

characteristics and data quality. For example, if a user receives LiDAR data as well-interpolated raster 

images, they may not mention what kind of preprocessing they have done or what kind of method they 

use to interpolate the surface. Similarly, many filters combine the second and third procedures 

together, and some even combine the last three procedures together, which means they use the 

interpolation method to generate DEM and remove non-ground points while iterating through  

this process.  

2.4. Study Site Selection Considerations for Ground Filtering 

LiDAR ground filtering methods may have variable performance when applied to different areas 

and terrain conditions. Therefore, carefully selecting study sites is critical to adequately evaluate the 
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performance of ground filtering algorithms. Table 1 shows the characteristics of numerous study sites 

used in different studies. Most filters in Table 1 work on the first return, and five filters function on the 

first or last return. The cell size is the resolution of interpolated datasets based on density and space 

between points. Most researchers developing and testing ground filters choose at least two study sites 

to assess the accuracy and reliability of their filters in different contexts.  

Table 1. Comparative table of the selection and description of study sites. 

Example Return Density 

(points/m2) 

Cell 

size 

(m) 

Area 

(km2) 

Context Data selection Site 

Number 

[2] First 
Site 1: 0.13 

Site 2: 0.72 
- - Low and high relief 

Low-relief urban + sites with complex 

covering with a maximum 44.3º slope 
4 

[38] First - 1 

Site 1: 1.6 

Site 2: 3 

Site 3:- 

Urban, coastal, and 

high-relief forest 

sites 

Site 1: low relief  

Site 2: coastal barrier island 

Site 3: high-relief forest 

3 

[39] First 1 1 
Site 1: 1.3 

Site 2: 1.8 

Site 1: urban  

Site 2: forest 

Site 1: low-relief urban 

Site 2: high-relief forest 
2 

[12] First 5.6 - - 
Low-relief rural 

sites 
Low-relief areas with vegetation 2 

[44] First - - - Urban and forest 

Site 1: flat, undulated terrain 

Site 2: undulated terrain  

Site 3: rough terrain, bushes+buildings 

3 

[65] First - - - 
Low-relief forest 

and railway 
Forest areas with railways 2 

[54] - >10 - 

Site 1: - 

Site 2: 

0.01 

High- resolution 

LiDAR data 

Site 1: two buildings and forest 

Site 2: roads, street lamps, an underpass, 

and a small vegetation area  

2 

[76] - 0.16 - - 
Low-relief with 

trees and buildings 

Site 1: urban with large buildings 

Site 2: low-relief, buildings and trees 
2 

[42] Second 2-16 - 0.01 
High-resolution 

LiDAR data 

Site 1: roads, street lamps, and underpass, 

and a small vegetation area  

Site 2: forest site 

2 

[58] 
First 

or last 
0.77 - 0.65 Forest Forest with trees and buildings 1 

[64] 

Site 1: 

last 

Site 2: 

first+last 

Site 1: 0.23 

Site 2: 0.81 
- 

Site 1: 50 

Site 2: 

6.25 

Low-relief with 

different features 

Low-relief with trees, buildings, and 

railways 
2 

[66] First+last - - - Forest Forest site 1 

[43] 
First + 

last 
0.477 - 0.34 

Low-relief urban 

and forest sites 
Urban and forest sites 

2 

[1] first - 1~2 - 
Various surfaces 

from ISPRS 

Urban and rural 

 
15 

[21] first - 1~2 - 
Various surfaces 

from ISPRS 

Urban and rural 

 
19 

 

8
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The following elements are considerations for selecting study sites to test the reliability of  

ground filters.  

1. Slope and Elevation Difference: Most filters make decisions based on a set of location specific 

thresholds. For example, the thresholds for the slope and elevation difference in low-relief urban 

areas are usually much smaller than those in high-relief forest area. If possible, researchers should 

test filters in both low- and high-relief areas.  

2. Size of Objects: If the filters are sensitive to the size of objects, users can test the flexibility of filters 

using different object sizes such as large coastal boundaries and large or small buildings. 

3. Surface Covering: It may be relatively easier to separate ground from non-ground in relatively flat 

areas covered with ground, trees, and buildings. However, an image containing a mixture of brush, 

short walls, and bridges can be much more troublesome. The complexity and spatial arrangement of 

objects covering the ground is another factor to consider when testing ground filter performance.  

4. Density: It will likely be more difficult to identify ground points in an area covered by dense urban 

features, such as electric poles, flags and cars.  

5. Size of Study Area: There are no criteria or restrictions in selecting the size of study sites, but areas 

that are too big may computationally too expensive to obtain optimal results. Study sites that are too 

small may overestimate filtering performance and mislead potential users of the filters. Table 1 

indicates that areas around 1.5 km
2
 for one-meter resolution images may be an adequately  

sized area.  

6. Number of Study Sites: Testing ground filtering algorithms in various conditions is critical for a fair 

evaluation. Most researchers listed in Table 1 selected at least two study sites with different 

characteristics for assessing performance. If developers test only one image, they should choose a 

relatively larger area to cover different terrain conditions. 

2.5 Accuracy Assessment 

Accuracy assessment plays an important role in both ground filtering applications and algorithm 

development [77]; however, quantitative accuracy assessment has been a challenge for LiDAR ground 

filtering due to the lack of ground truth data. Some researchers utilize visual inspection and others 

apply an approach similar to random sampling and cross-tabulation done in land-cover and land-use 

classification studies. Recent experiments, however, prove that accuracy assessment based on random 

sampling may lead to overestimating of ground filtering performance since most errors are distributed 

on object boundaries [1,57]. Hence, a review of accuracy assessment methods utilized in current 

publications is essential for the reference of future LiDAR data users.  

There are three main categories of accuracy assessment methods, including visual inspection, random 

sampling of ground filtered data, and crosstabulation with classified ground truth data (Table 2). Visual 

inspection is a manual accuracy assessesment technique often used when ground truth data is 

unavailable. Visual inspection is appropriate for detecting obvious errors easily identifiable with the 

human eye. Visual inspection may vary by inspector. Some researchers utilize samples through visual 

interpretation or field survey to assist accuracy assessment. For example, studies have  
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sampled [2,38,39] ground and non-ground polygons from filtered LiDAR data and compared them to 

ground reference data. Often, homogenous patches of ground and non-ground are selected. This 

approach is fast and convenient, but homogeneous regions are mainly found within easily recognizable 

patches, not on the edges of patches where most errors occur. In fact, recent studies find that errors are 

mainly found in difficult to recognize features, such as the bushes, short walls, and on the boundaries 

of the ground and non-ground objects. Therefore, the random sampling approach may lead to an 

overestimation of ground filtering performances. An alternative approach is to select a relatively 

smaller study sites, and then classify every pixel into ground and non-ground based on  

segmentation [57], field survey and manual editing. The International Society for Photogrammetry and 

Remote Sensing (ISPRS) has followed this approach by providing a set of testing sites containing 

various ground elements and a set of classified ground truth data. Researchers have adopted these same 

test sites to compare and evaluate different ground filtering algorithms [1,21,60]. 

Table 2. Comparative table of accuracy assessment. 

Example Ground truth data Accuracy assessment 

[2] 
Selected homogenous ground 

and building polygons 
Quantitative analysis 

[44] - 
Quantitative analysis; total points; trend eliminated 

points; eliminated points; type I and type II errors 

[38] Random point samples Quantitative analysis 

[39] Random point samples 
Quantitative error analysis 

Type I and type II errors 

[1,21,60] 

 

Classified ground and non-

ground data for accuracy 

assessment 

Quantitative analysis 

Overall accuracy, Kappa co-efficient 

Type I and type II errors 

[12] No sample 

Quantitative approach based on the filter property 

that the classification results improve with the 

point density 

[43] No sample Visual comparison, profile 

[58] No sample Visual comparison 

[42] No sample Visual comparison 

[54] No sample Visual comparison, profile analysis 

[64] No sample Visual comparison 

[65] No sample Visual comparison 

[76] No sample Visual comparison 

[66] No sample Visual comparison 

3. Review of Ground Filtering Methods 

3.1. Ground Filtering Algorithms 

Researchers have developed a wide range of filters to separate ground from non-ground using 

LiDAR data [78]. Important considerations when selecting a ground filter include the number and type 

of LiDAR returns to use for ground filtering, the preprocessing steps, input data format, iterative 

characteristics, definition of neighborhoods, and other key factors applied in ground filtering process 
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(Table 3). In the following paragraphs, we further classify these algorithms into six categories based on 

the characteristics of ground filters.  

Table 3. Comparative table of key filter attributes. 

Publication Return Preprocess Input Filter Iterative Neighbor Key factors 

[2] First - Raw 
1-D and bi-directional 

labeling 
No 

along scan 

lines 

Slope 

Elevation 

[38] First 

Resampling 

to raster- 

lowest 

elevation 

Raw 

Compare three methods:  

1.elevation threshold 

with expanding window 

2.maximum local slope  

3. Progressive 

morphology 

Method 

1: yes 

Method 

2: no 

Method 

3: yes 

Method 1: 

increased 

mesh size 

Method 2: 

circle 

Method 3: 

increased 

windows 

Method 1: 

elevation 

Method 2: 

local slope 

Method 3: 

slope, 

elevation, cell 

size 

[39] First - Interpolated Progressive morphology Yes 
Increased 

windows 

Cell size, 

slope, elevation 

[12] First 
Delaunay 

triangulation 
Raw 

Erosion morphology and 

elevation 
No 

Predefined 

circle 

Elevation, 

slope 

[43] 
First 

+last 

Resampling 

to raster 
Raw Cluster No 

Voronoi 

Neighbor 
Elevation 

[44] First - Interpolated 

Linear Prediction of 

stationary random 

function after trend 

removal 

Yes 
2-D 

window 
Elevation trend 

 [58] 
First 

+last 
- Raw 

A despike VDF 

algorithm 

comparing local 

curvatures of point 

measurements 

Yes 
Predefined 

window 

Cell size, 

elevation  

[42] Second 

Resampling 

to raster-

lowest 

Raw 
Active contour and 

active shape model 
Yes 

Predefined 

window 

Slope, 

elevation,  

energy function 

[54] - 

Resampling 

to raster- 

lowest 

Raw 
Active shape model 

based on energy function 
Yes 

Predefined 

window 

Slope, 

elevation,  

energy function 

[64] 
First 

+last 
- Raw 

Iterative robust 

interpolation 
Yes 

Predefined 

window 

Elevation 

difference, 

weight 

assigned to 

points 

[65] first - Raw 
Iterative robust 

interpolation 
Yes 

Predefined 

window 

Elevation 

difference, 

weight 

assigned to 

points 



Remote Sensing 2010, 2              

 

 

842 

Table 3. Cont. 

[76] - - Raw 

A least-squares 

adjustment with robust 

estimation 

Yes 
Predefined 

window 

Slope, 

elevation, 

curvature 

[66] 
First 

+last 
- Raw 

A filter based on contour 

and interpolation 
Yes 

Predefined 

window 
elevation 

[21] First 

Error 

remove 

Interpolation 

Interpolated 
Multi-sale Hermite 

Transform 
Yes 

Predefined 

window 

Elevation, 

slope 

[1] First 

Error 

remove 

Interpolation 

Interpolated 

Multi-directional 

scanning combined with 

the roving window 

technique 

Yes 
Predefined 

window 

Slope, 

elevation, the 

nearest ground, 

the label of the 

previous pixel 

Note: Publication—citation of literatures; Return—which returns are used in the paper; Preprocess: the preprocess 

researchers have utilized in the paper; Input—does the filter use raw LiDAR dataset or interpolated raster imagery;  

Filter—general description of the filter characteristics; Iterative—does the algorithm utilize iterative approaches; 

Neighbor—neighborhood definition; Key factors—major ground characteristic parameters used by the algorithm. 

 

One of the first considerations when selecting a ground filtering algorithm is the optimal LiDAR 

return to use for filtering. Even when multiple LiDAR returns are available, most researchers choose 

the first return for ground filtering. Some forest researchers, however, choose the second return, last 

return, or a combination of the first and last returns because later returns penetrate the tree canopy and 

better represent the ground surface. 

The technique for searching a local LiDAR neighborhood is another critical consideration in order 

to capture the height context of ground features. The height context is defined by a local neighborhood 

function, including linear neighborhoods along a directional scan line [2], circular neighborhoods for 

searching proximate points [38], and rectangular windows [39]. Studies have proven that the size of a 

two-dimensional neighborhood is critical for ground filtering performance [39,79]. Kilian and others 

proposed a method that works with different window sizes and assigns weights to each point within a 

neighborhood to determine the height context [39]. Other researchers [39] developed a progressive 

morphology with a gradually increased window size. In practice, most filtering algorithms iteratively 

modify the neighborhood size to improve filtering accuracy [67,80].  

Table 4. Classification of ground filters. 

Class Key methods Examples 

Segmentation/Cluster 

Segmentation based on smoothness constraint [81] 

Segmentation-based classification [70,82] 

Segment-based terrain interpolation [68] 

Morphology 

Dual rank filter based on dilation and erosion [83] 

A morphological filer based on geodesic dilation [63] 

Progressive morphological filter [39] 

Directional Scanning Bidirectional labeling  [2] 
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Table 4. Cont. 

 Hybrid multi-directional ground filtering  [24,57] 

Contour 
Active contour and active shape model [42] 

Active shape model based on energy function [54] 

TIN 
Local curvatures of point measurements [58] 

The adaptive TIN model [40, 59] 

Interpolation 

The iterative robust interpolation [64,65,66,76] 

The multiscale curvature algorithm based on TPS interpolation [67] 

A facet model [50] 

Linear prediction [84,85] 

Segmentation- and Cluster-based Filters 

Segmentation and clustering are popular techniques for land-use and land-cover classification, and 

researchers have been trying to implement this approach to separate discrete LiDAR point  

clouds [69,81,86,87]. For example, Filin [82] performed a clustering classification to separate ground 

features into four types using point position information, elevation difference to neighbors, and 

parameter description from the point to its tangent plane. Jacobsen and Lohmann [70] applied the 

segmentation method from the e-cognition software to classify LiDAR data into seven classes to 

separate terrain points. Tóvári and Pfeifer [68] proposed a segmentation-based ground filtering method 

that includes two major steps. A segmentation process is first initialized by a region growing method 

from an automatically selected ground seed. Then the method gradually adds neighbor points based on 

three mathematical measurements of the points to the mathematical plane represented by points in a 

segment and eventually separates LiDAR point clouds into segments that are corresponding to surface 

objects. The second stage utilizes those segments as basic elements for a least-square linear 

interpolation by incorporating an adaptive weight function to minimize the weights for segments from 

non-ground objects. Experiments on a small and relative flat area with two buildings showed that this 

method overestimated non-ground surface by showing upward curve in building area. This was partly 

because non-ground objects participated in the surface interpolation with a smaller weight instead of 

being removed. Many segmentation and cluster-based filtering experiments are carried out on 

relatively flat ground surface [68,70,82,86]. Further experiments on more complicated surfaces with 

rough terrain are necessary to evaluate the performance because surfaces with less homogenous height 

texture could be challenging for these methods.  

Morphological Filters 

Mathematical morphology deals with object shape or shape measurement [88], and experiments on 

LiDAR data have shown that a morphological filter has the ability to remove non-ground objects, such 

as buildings and trees [24,39,46,61,63,83]. Typical processes include opening, closing, dilatation and 

erosion based on kernel operators [4,83]. For example, Lohmann [83] tested a dual rank filter [89] that 

involves morphological dilation and erosion to mask out non-ground candidate for removal. The 

authors reported promising results for this method but limitations for requiring knowledge for study 

sites and interactive process.  
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Many morphological filters suffered difficulties in removing different sizes of objects with a fixed 

widow size [38]. To solve the problem, Arefi and Hahn [63] developed a morphological method based 

on geodesic dilation and changing window sizes to gradually remove non-ground points and rebuild 

terrain surface. The results show that the selection of window sizes is critical to removing objects with 

different sizes, such as large buildings. Zhang et al. [39] proposed a progressive morphological filter 

by gradually increasing the size of the windows [39]. Another study [38] compared the algorithm with 

another maximum local slope filter and elevation-based filter with an expanding window. The results 

showed that the progressive morphological filter produced the least error among the three methods. 

The progressive morphological filter also demonstrated a better ability to preserve the boundary of 

objects that are larger than the window size [38]. Chen et al. [61] developed a morphology-based 

methods based on opening operation to gradually remove non-ground using a gradually increased 

window size. Additionally, the authors proposed a two step process to further minimize the limitation 

of window size. The algorithm first removes most forest points using a relatively small window 

iteration, then repeats the filtering process with larger windows to further screen large buildings.  

Directional Scanning Filters 

Most ground filters define neighborhood in a two dimensional space [12,38,39,58], but few methods 

calculate slope and elevation difference along a one-dimensional scan line. Shan and Sampath [2] 

developed a bidirectional algorithm to remove non-ground points based on slope and elevation 

difference calculated along the scan line with additional reference to the nearest ground-labeled point 

and the label of the previous point along the scan line. Instead of referring to the estimated values 

based on surrounding points, this bidirectional method compares points with their immediate neighbors 

and has been proven to be sensitive in removing low vegetation [57]. However, the directional 

methods are sometimes sensitive to sudden ground surface change and create artificial lines across 

ground surfaces [1,57].  

To overcome this problem, Meng et al. [1,57] developed a multi-directional ground filtering (MGF) 

algorithm by combining the directional scanning with two-dimensional neighborhood searches after 

transforming point clouds into raster data. Therefore, this algorithm is actually a hybrid method of 

directional scanning and two-dimensional kernel-based approach. As a result, the experiments prove 

that the MGF algorithm has an improved ability to preserve object shape (i.e., reduce of errors within 

objects) and is sensitive to low vegetation yet robust to threshold selection [1,57]. Furthermore, this 

hybrid method overcomes the common problem of those methods that are based on two-dimensional 

estimation and require changing window sizes to remove objects with different sizes. An uncertainty 

test shows that the MGF algorithm works well under a three-by-three window and is not sensitive to 

building sizes [1,57]. 

Contour-Based Filters 

An active shape model is one of the methods used for contour mapping [90,91] and has been 

recently introduced to LiDAR-based terrain mapping through active contours [42,54]. This algorithm 

utilizes the active shape model to represent a three-dimensional contour, which functions like a net to 

gradually remove non-ground points based on force measurements such as gravitation and attraction. 
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The contour-based filters provide a unique alternative for LiDAR ground surface mapping; however, 

further steps should be taken to test their performance in various surface conditions and compare with 

existing algorithms.  

TIN-Based Filters 

An iterative TIN-based filter, called the despike Virtual Deforestation (VDF) algorithm, removes 

non-ground points based on the smoothness of ground [58]. This algorithm assumes that ground areas 

are usually smooth surfaces without sharp corners in bare terrain surfaces. Therefore, points with 

strong curvatures were defined as non-ground points. Based on a point database, this method first 

builds a TIN model and then makes two conversions. One is to convert the TIN model into a point 

database. The other is to convert the TIN model into a grid, calculate the mean value within a 3 × 3 

window, and assign the mean value to the central pixel. Curvatures were defined as the mean value 

minus the corresponding value in the point database converted from the TIN model. There are two 

thresholds, one of which is to eliminate those points above terrain that have a strong curvature, and the 

other one is for removing the ―negative blunders‖ [58]. Based on these thresholds, the filter labels the 

recognizable non-ground points for deletion and builds a new TIN based on the filtered ground points 

and repeats the labeling process until no more points are removed.  

This filter can utilize the first, last, or multiple returns. The results showed that the filter 

successfully removed small buildings and most bridges but failed to remove some large and low 

buildings. This was because the filter used a fixed window size to calculate the mean values and failed 

to remove those objects larger than the window size. It also failed to remove some ―negative blunders‖ 

that were usually extremely low values comparing to local points and are often removed as noise in 

some preprocesses.  

An active-TIN based model developed by Axelsson [40,59] recently draws attention through a 

comparative study based on eight ground filtering algorithms [60]. Similarly, this TIN-based method 

utilizes a TIN surface to iteratively estimate ground surface. The algorithm gradually removes  

non-ground points based on the elevation difference and angle to the closest triangle. Furthermore, the 

method generates adaptive thresholds based on the updated ground points for each iterative process 

instead of a global one [40,59,60]. The experiments based on fifteen study sites prove that this  

active-TIN based method present the best performance in terms of average overall accuracy [60]. 

Similar results were reported when comparing this method to two other methods [1,21].  

Interpolation-Based Filters 

The main principle of interpolation-based approaches is to compare the elevation of points with its 

estimated values through various interpolation methods. Researchers who adopt linear interpolation 

methods often need to apply an iterative processing strategy to minimize the influence of local  

non-ground points [83]. For example, Kraus and others [25,65,66] presented an iterative approach 

based on a linear least-square interpolation with a set of adaptive weight functions. The concept of 

changing weight supports its robust nature in various conditions. Researchers have successfully tested 

this filter in a mapping project [76], in applications with both forests and break lines [66] and build-up 

areas [64], and improved the filter for applications in forest areas [66]. Studies have reported limitation 
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when trying to apply these methods to surface with rough terrain and steep ground slope [4,84] and 

developed an improved version to suite steep areas [84].  

Another optional interpolation method is the thin-plate spline (TPS) model [92,93]. Evans and 

Hudak [67] incorporated a multi-scale iterative filtering process using the TPS interpolation by 

changing interpolation cell size. Results showed improvement in removing understory vegetation. A 

new method estimating ground elevations based on Hermite transformation applies the similar  

multi-resolution strategy through the iterative process [21]. Other interpolation methods include facet 

model [50] and statistics methods such as minimum values [38].  

3.2. Comparative Studies and the MGF Algorithm 

The number and variety of ground filters can make it difficult to select the best filter for a particular 

study site. To date, there has been relatively little comparison of ground filters because filters are often 

developed for particular study sites or terrain conditions. Many algorithms were originally tested on 

relatively small study sites with little topographic variation (Table 2) and their appropriateness for 

other regions is unclear [94]. An exception to this trend is the comparisons [1,21,60] made using the 

International Society for Photogrammetry and Remote Sensing (ISPRS) standardized LiDAR and 

ground reference data [1,21] for fifteen study sites with unique terrain conditions. Comparisons using 

these datasets are reviewed below and compared to the MGF algorithm developed by the authors using 

the ISPRS data. 

Sithole and Vosselman [60] tested eight ground filtering algorithms on twelve ISPRS datasets. They 

reported that most filters performed well on relative flat and smooth surfaces, but that all have 

noticeable errors in regions with urban structures or abrupt slope changes or a complex vegetation 

covering. Their findings indicate that performance evaluations based on simple sites are insufficient to 

prove the ability of ground filters. Three methods outperformed the other five filters in terms of 

average overall accuracy, including a linear prediction method, an adaptive slope filter, and a 

morphological filter [1,21]. Results from this report led to two other filter comparisons based on the 

same data [1,21]. These comparisons test the multi-scale Hermite transform (MHT) filter and the 

multi-directional ground filtering (MGF) algorithm. Another study applied three ground filters [95,96] 

based on five sites from the ISPRS websites. Their results showed that the performance varied with 

surface types and covering, but one of the methods generated highest type I errors (mis-label of ground 

as non-ground) in four of the five sites. 

In our previous research [1], we developed the MGF algorithm and compared its performance with 

eight other methods based on published comparative results [60] using the fifteen standardized datasets. 

Figures 1, 2, and 3 are the MGF ground filtering results without an optimizing process on the fifteen 

study sites presented in our previous study [1] and demonstrate various ground characteristics and 

surface conditions. The average overall accuracy of the MGF algorithm is lower than Axelsson’s  

filter [40] but higher than the other seven algorithms (Figure 3). Four of the nine algorithms achieved 

accuracies above 70%. In testing the MGF algorithm, comparisons were made between filtering results 

obtained using one set of parameters and results obtained using unique parameters urban and forest 

sites. All accuracies were very high indicating that the MGF filter was robust to parameter selection 

and insensitive to the selection of scanning directions. Additionally, the MGF algorithm functions 
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especially well in urban areas because it is sensitive to short vegetations and other  

non-ground objects [1,57].  

Figure 1. Error distribution for city sites 1-4. Each image is displayed at a unique scale 

(source [1]). 
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Figure 2. Error distribution for forest sites 5-7. Each image is displayed at a unique scale 

(source [1]). 
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Figure 3. Kappa averages on fifteen sites for nine filters (source [1]). 
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Due to the variety of possible ground characteristics and complex surface coverings, statistics on 

average overall accuracy of ground filtering algorithms may not provide much guidance to users 

studying areas with dense vegetation or rough terrain. Therefore, we divide the fifteen ISPRS study 

sites into three groups (sites with rough slope and dense vegetation, sites with relatively flat urban 

areas containing objects of various size and shape, and sites with rough terrain and discontinuous 

surfaces like river banks and mining fields) and provide results for nine algorithm for each category of 

terrain (Figures 4-6). Figure 4 shows that in an environment with steep slope and trees, Axelsson’s 

filter generated the best performance on site 11 and 24 followed by the MGF algorithm. The MGF 

algorithm performs the best in site 41 that is an urban environment with dense trees and less-intensive 

slope. Site 54 is a relative flat urban environment with dense trees and is typical in residential areas in 

developed countries. The Axelsson’s filter produces the best result in this site. The MGF algorithm 

may produce comparable results if care is taken to accurately the necessary parameters. The decrease 

in the non-optimized applications of the MGF algorithm is caused by applying the same parameters to 

sub-sites 5 through 7. These results show that in an urban environment with dense trees and steep slope 

the Axelsson’s filter and the MGF filter provide more accurate results.  

Figure 5 shows the performance in a regular urban environment with less intensive slope and trees 

but more irregular ground surface covering. The accuracy results vary with surface cover conditions in 

each case, but three methods (Axelsson, Pfeifer, and MGF) generate comparable results on most urban 

sites. Additionally, the MGF algorithm provides the best performance in urban areas with long linear 

features like bridges and railroad stations (see sites 21 and 42). Figure 6 shows the performance in 

environments with abrupt ground slope changes and discontinuous surfaces. Axelsson’s filter 

dominants each ground filtering test on five sites and the performance of the remaining filters varies 

with surface conditions. The Sohn, MGF, Pfeifer, and Roggero filters provide comparable results for 

surfaces with abrupt slope and discontinuous. 
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Besides LiDAR ground filtering algorithm comparison, comparative studies between difference 

sensors are critical issues for LiDAR industry and user guidance. Typical topics include the 

comparison between LiDAR, traditional photogrammetry, and SAR [15]. Habib et al. [15] provided an 

overview of the general comparison between LiDAR and photogrammetry in various aspects from 

sensor or mission design to critical elements in applications. This comparative study analyzed the 

strengths and weaknesses for both approaches and concluded that both techniques were fairly 

competitive and the integration of both approach might improve accuracy or generate new  

products [15]. Zhang and Whitman [38] compared an elevation-based filter using gradually increased 

window sizes, a slope-based method, and a progressive morphology method through urban and coastal 

sites. The experiments showed that the morphology filter performed better in the coastal site, and all 

three filtering methods were mostly sensitive to the slope parameter. 

Figure 4. Accuracies of nine ground filters on sites with steep slope and trees. 
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Figure 5. Accuracies of nine ground filters on relative flat urban sites that contain objects 

with various size and shape. 
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Figure 6. Accuracies of nine ground filters on sites with rough terrain or discontinuous surfaces. 
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3.3. Factors Affecting Accuracy of Ground Filtering or Terrain Modeling  

Interpolation Methods 

Interpolation methods are one of the major sources that contribute to the accuracy of ground surface 

estimation [97,98], which affect either point-raster transformation through preprocess or terrain 

interpolation based on ground-labeled points or pixels [1,57]. An interpolation comparative study [97] 

based on points from field survey on a bare ground smooth surface evaluated six types of interpolation 

methods and found that the spline interpolation produced the best results. Smith et al. [99] studied the 

influence of different interpolation methods to digital surface modeling (including objects above 

terrain) based on LiDAR dataset. Such experiments are useful guidance for the selection of 

interpolation preprocess. Their results indicated that the nearest neighbor interpolation generated the 

highest overall error for surface modeling and introduced sudden ground surface changes that might 

not present in original data. Furthermore, ordinary kriging interpolation presented more errors than 

bilinear and cubic methods and showed limitation in urban areas with man-made objects. Negative 

results for biharmonic spline showed overshooting problem for areas with low point density, especially 

on edges. 

Resolution 

In order to examine the influence of cell size to terrain estimation, Kienzle [100] conducted DEM 

interpolation experiments using ground elevation point samples (100-meter space) derived from 

photogrammetry to interpolate DEMs with 5 to 100-meter resolutions. The results showed that DEMs 

with 5 to 20-meter resolution better represented local elevation. Another study showed that increasing 

DEM cell size can reduce errors of the products generated from the DEM [101] while losing  

detail information.  
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Density and Data Reduction 

LiDAR data with high density point clouds provide more detailed information for ground features; 

however, the massive information sometimes create problems for data storage and feature extraction, 

which is similar to the problem with high-resolution photogrammetry [73,102,103]. Hence, some 

LiDAR applications require data reduction to reduce data size while keeping comparable  

accuracy [102,103]. 

Anderson et al. [102] evaluated the influence of point density to DEMs with 5-, 10-, and 30-meter 

cell sizes based on five subset point clouds reduced to 1–50 percent. Results showed that DEMs with 

higher resolutions were more sensitive to LiDAR point density, which meant requiring higher density 

for optimal performance. The authors found these evaluations useful to determine the minimum point 

density given selected DEM resolution. Another experiment [73] examined the influence of point 

density to linear interpolation methods such as inverse distance and kriging interpolation. The results 

proved that it was possible to reduce point density but maintain a satisfactory DEM estimation, and 

complicated interpolation methods do not necessary produce superior results. Liu et al. [103] extended 

this discussion by combining similar analysis with data storage and computing time. Results showed 

that data with 50% reduction provided compatible surface estimation but significantly reduced half of 

the processing time and storage space. Sithole and Vosselman [60] examined the influence of data 

reduction to the performance of eight ground filtering algorithms in terms of type I and type II errors. 

The results did not show universal patterns between rates of reduction and accuracies, rather the effects 

varied with the characteristics of ground filters. Furthermore, the results showed that data reduction did 

not necessarily cause lower accuracies. 

Post-Spacing 

Raber et al. [104] evaluated the influence of LiDAR post spacing to hydrological modeling. Results 

showed that the flood zone base terrain showed no significant change but the flood plain boundary 

calculation was more sensitive to post spacing.  

Original Data Error Caused by Instrument, Sensor or Non-surface features 

Some random errors from original LiDAR data may come from instruments such as cameras and 

GPS, or other non-surface features such as birds and some floating objects [105]. The possible source 

of errors are commonly discussed during error filtering preprocess [1,21,57]. Besides, systematic error 

may occur in interpolated DEM as artificial lines due to the height difference of flight lines [106]. 

Hyyppä et al. [106] also pointed out the significant shift of systematic errors between different returns.  

Use of First or Last Return for Ground Filtering 

One important debate for ground filtering is the selection of LiDAR first or last returns for ground 

filtering [21,24,57,106]. Some researchers select the last return because the last pulses reach deeper in 

vegetated areas and hence are closer to ground surface [43,58,66]; while others argue that some pulses 

from the last return may reach lower part of objects instead of ground, which will introduce errors 
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when wrongly classified as ground [1,24,57]. Such concern is less significant in urban studies and 

more substantial in forested areas as demonstrated in Table 1. 

4. Conclusions 

LiDAR analysis has attracted much attention in recent decades, and ground filtering is the primary 

step required for DEM generation or ground feature identification. Numerous researchers have 

developed algorithms to identify ground surfaces, but until now no comprehensive comparative review 

of available methods has been made to guide potential users in selecting a proper method for a specific 

study site. This paper not only categorizes LiDAR ground filtering algorithms for various applications 

and surface types, but also outlines common processes and critical considerations that users face 

during practical implementations.  

Current ground filters commonly utilize four ground characteristics to separate ground from  

non-ground features: lowest feature in a specific area, ground slope threshold, ground surface elevation 

difference threshold, and smoothness. LiDAR ground filters commonly build upon the ground slope 

and ground elevation difference thresholds. Some directional filtering methods make additional 

references to the label of previous points in a scan line and the elevation of the nearest ground points 

found in previous iterations. Many iterative algorithms require a ground seed as a primary ground 

elevation reference to initiate the filtering process, and researchers commonly utilize the lowest feature 

characteristic to locate these ground seeds. When utilizing such filters, special concern should be given 

to error filtering to remove potential outliers with unreasonably low values. If this preprocessing step is 

not taken, the algorithms may end up finding no ground points as the slope and elevation are much 

higher than the defined thresholds.  

Whether to perform ground filtering based on the first or last return is another critical decision to 

make in most LiDAR applications. Some researchers prefer the last return for ground filtering because 

laser beams penetrate deeper in vegetated areas, but others worry that the last return may introduce 

errors from the returns of lower parts of vegetation. This review finds that most urban applications are 

less concerned about this issue and simply using the first return since less trees are usually present in 

an urban setting compared to a forest. Forest researchers, however, use the last return because it 

penetrates the tree canopy and more points returns from the ground surface. Additoinally, quantitative 

accuracy assessment remains a challenging task due to the fact that most ground filtering errors are 

located on object boundaries. As a result, visual inspection and accuracy assessment based on 

traditional random sampling may overestimate ground filtering performance. Thus, most LiDAR data 

users are faced with manually generating classified ground truth data based on image interpretation and 

field surveys. Because this approach is time-consuming for large areas, the ISPRS provides several 

reliable sites with ground truth data to test algorithms in different surface conditions. Once validated, 

algorithms can be applied to other study sites.  

Future LiDAR studies need to focus on the development of methods that resolve three remaining 

ground filtering challenges. Ground filtering algorithms continue to have difficulty performing well 

with three ground surface types: (1) surfaces with rough terrain or discontinuous slope, (2) dense forest 

canopies that reduce the penetration of laser beams [107], and (3) regions with low vegetation that is 

often ignored by many ground filters [1,47,57,108,109]. Researchers have suggested that large 
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footprint LiDAR may be one of the solutions for terrain mapping in dense forested areas because those 

laser beams have higher chance to reach ground [107]. For some deciduous forests, seasonal difference 

in LiDAR data or data collected during the leaf-off period might be worthwhile for improving terrain 

mapping in dense forests [28]. Empirical analysis regarding the selection of the first or last returns for 

forest studies is necessary to determine which return is optimal. Additionally, more algorithm 

comparative studies and uncertainty analysis should be carried out in more specialized areas such as 

low vegetation and coastal areas to provide clearer guidance for specific users since comparative 

studies based on mixed surface types often exhibit mixed spatial patterns and LiDAR signals. 
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