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The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure con-
taining Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to
exhibit a helical antiferromagnetic (AFM) structure below TN = 66.5 K with the helix axis along
the c axis and with the ordered moments aligned within the ab plane. Here we report crystallogra-
phy, electrical resistivity, heat capacity, magnetization and magnetic susceptibility measurements on
single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical
Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-
field magnetization and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤ TN

with the predictions of our recent formulation of molecular field theory. Values of the Heisenberg
exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat
capacity ∼ T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to
be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2

and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and
16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced
by a factor of ∼ 2.5 above those found from DFT electronic structure calculations for the two com-
pounds. The calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane
and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the
MFT analysis of χab(T ≤ TN).

I. INTRODUCTION

Above the transition temperature of an antiferromag-
net (AFM, Néel temperature TN) or a ferromagnet (FM,
Curie temperature TC), the magnetic susceptibility χ of a
Heisenberg spin system is given within the Weiss molec-
ular field theory (MFT) by the Curie-Weiss law [1, 2]

χ ≡ M

H
=

C

T − θp
, (1)

where M is the magnetization of the system induced in
the direction of a small applied magnetic field H , C is
the Curie constant reflecting the magnitude of the mag-
netic moments and θp is the Weiss temperature reflecting
their interactions. Using the same MFT, the χ parallel
and perpendicular to the easy axis of a collinear AFM
containing identical crystallographically-equivalent spins
was calculated, where the Heisenberg exchange interac-
tions are the same between a spin and its nearest neig-
bors and zero otherwise [3, 4]. This led to the unique
prediction [4] f = −1 for the ratio

f ≡ θp
TN

, (2)
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but this prediction is rarely observed quantitatively in
real Heisenberg AFMs.

MFT calculations of the anisotropic χ(T ≤ TN) and
other properties of a noncollinear “proper” helix AFM
structure, shown schematically in Fig. 1, were later car-
ried out [5]. The helix is a structure in which the ordered
moments that are FM-aligned within the xy plane rotate
their direction along the helix (z) axis by a fixed angle kd
between adjacent planes of spins with the tips of the mag-
netic moment vectors tracing out the ridges on a screw.
On the other hand, when the wave vector of the helix is
in the xy ordering plane of the magnetic moments, the
AFM structure is termed a cycloid structure [5], as shown
in Fig. 1 of [6]. The above MFT results have been lit-
tle used by experimentalists to fit their χ(T ≤ TN) data
for collinear, helical or cycloidal AFMs because of the
difficulty of generalizing the theoretical predictions. A
comprehensive review of the theory of helical spin order-
ing as of 1967 is available [7].

We recently reformulated the Weiss MFT for identi-
cal crystallographically-equivalent Heisenberg spins that
generalizes the calculations of χ(T ) and magnetic heat
capacity Cmag(T ) for AFMs at temperatures T ≤ TN

to both collinear and coplanar noncollinear AFMs with
general sets of exchange interactions including geomet-
ric and bond frustrating interactions. This formulation
can accommodate the large range of the allowed f ratio
in Eq. (2) for AFMs given by −∞ < f < 1 [8, 9]. This
formulation does not utilize the concept of magnetic sub-
lattices usually used previously for AFMs but is instead
formulated in terms of the angles in the magnetically-
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FIG. 1: (Color online) Generic helix AFM structure [8]. Each
arrow represents a layer of moments perpendicular to the
z axis that are ferromagnetically aligned within the xy plane
and with interlayer separation d. The wave vector k of the
helix is directed along the z axis. The magnetic moment
turn angle between adjacent magnetic layers is kd. The ex-
change interactions Jz1 and Jz2 within the J0-Jz1-Jz2 Heisen-
berg MFT model are indicated.

ordered or paramagnetic (PM) state between a central
moment and its neighbors with which it interacts to cal-
culate the thermodynamic properties. This feature al-
lows both collinear and noncollinear AFMs to be treated
on the same footing. Another attractive feature of the
MFT is that its final formulation is in terms of directly
measurable quantities instead of in terms of the molecular
field coupling constants or Heisenberg exchange interac-
tions as done previously.

The prototype for a noncollinear AFM structure is the
helix shown in Fig. 1. When the MFT was reformulated
[8, 9], there were no reported experimental anisotropic
χ(T ≤ TN) data on single crystals of a material show-
ing a helical AFM structure that satisfied the assump-
tions of the MFT with which to test our MFT predic-
tions. These assumptions are that the spin S is large
to suppress quantum fluctuations, that there is no FM
component to the ordering, and that there is no change
in the magnetic structure below TN. However, a 1992
neutron diffraction study of the body-centered tetrago-
nal compound EuCo2P2 found that the Eu spins S = 7/2
exhibit helical ordering with no change in the magnetic
structure from TN down to at least 15 K [10]. This result
motivated us to grow crystals of EuCo2P2 and measure
their properties to test the applicability of our MFT to
a helical AFM.

EuCo2P2 has the ThCr2Si2 structure with space group
I4/mmm [11]. Magnetic susceptibility χ measurements
versus temperature T of a polycrystalline sample [12]
as well as the neutron diffraction measurements on a

single crystal [10] and other measurements [13] demon-
strate AFM ordering of the Eu+2 spins S = 7/2 at
TN = 66.5(5) K with no contribution from the Co atoms.
The χ(T > TN) follows the Curie-Weiss law (1) with
θp = 20(2) K indicating dominant ferromagnetic interac-
tions [12].
The ordered moment of EuCo2P2 at 15 K from the neu-

tron diffraction study is 〈µ〉 = 6.9(1) µB/Eu [10], which
agrees with the saturation moment µsat = gSµB/Eu
= 7µB/Eu expected for Eu spin S = 7/2 and g = 2.
Here µB is the Bohr magneton and g is the spectroscopic
splitting factor. The authors discovered that the mag-
netic structure is a planar helix with the Eu ordered mo-
ments aligned in the ab plane of the tetragonal struc-
ture, with the helix axis along the perpendicular c axis.
The observed ab-plane alignment of the ordered moments
is consistent with the prediction of the moment align-
ment from magnetic dipole interactions between the Eu
spins [14]. The incommensurate AFM propagation vec-
tor changed by 2.1% from k = [0, 0, 0.834(4)]2π/c at
T = 64 K to [0, 0, 0.852(4)]2π/c at T = 15 K, where
c is the c-axis latttice parameter of the body-centered
tetragonal Eu sublattice. Since d = c/2 is the distance
along the helix c axis between adjacent layers of FM-
aligned moments, the turn angle kd between the ordered
moments in adjacent layers is

kd(64 K) = 0.834(4)π, kd(15 K) = 0.852(4)π. (3)

These values with π/2 < kd < π indicate that the domi-
nant interlayer interactions are AFM [8, 9], and the above
θp = 20(2) K [12] together with Eq. (33c) below therefore
indicate that the dominant intralayer interactions must
be FM. The radius of nonmagnetic Sr+2 and magnetic
Eu+2 are similar, and it is important in the present con-
text to note that neither SrCo2P2 [12, 15] nor SrCo2As2
[16] exhibit long-range magnetic order.
Experiments on EuCo2P2 at high pressure reveal a

first-order tetragonal to collapsed-tetragonal [17] tran-
sition and associated valence transition from Eu+2 to
nonmagnetic Eu+3 at ∼ 3 GPa [18, 19], together with
a change from Eu(4f) local moment to Co(3d) itiner-
ant magnetic ordering [19]. In the isostructural com-
pound EuCo2As2, a continuous tetragonal to collapsed-
tetragonal transition occurs at a pressure of≈ 5 GPa [20],
whereas in SrCo2As2 a first-order tetragonal to collapsed-
tetragonal transition is observed at about 6 GPa [21].
Herein, we report room-temperature crystallography

results for crushed EuCo2P2 single crystals together with
electrical resistivity ρ, heat capacity Cp, M and χ mea-
surements versus T andH for single crystals. We analyze
the magnetic data in terms of the MFT predictions for a
helical AFM structure. We conclude from these results
that EuCo2P2 is a model molecular-field helical Heisen-
berg antiferromagnet. Ab initio electronic structure cal-
culations in the generalized gradient (GGA) approxima-
tion are presented that support this conclusion.
The experimental details are given in Sec. II. The

structural refinement of EuCo2P2 is presented in Sec. III
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which confirms previous results [11]. The in-plane
ρ(H,T ) data are presented in Sec. IV and the Cp(T,H)
results in Sec. V. The M(H) isotherm and χ(T ) data
are presented in Sec. VI. The Heisenberg exchange inter-
actions in EuCo2P2 are estimated in Sec. VII. We also
obtain an estimate of the classical ground-state energy of
the helix. In Sec. VIII we study the spin-wave spectrum
in the absence of an anisotropy gap and determine the
low-energy anisotropic spin-wave velocities in the helix.
We then calculate the T 3 spin-wave contribution to the
low-temperature Cp(T ) and find that it is comparable to
the lattice contribution. The electronic structure calcula-
tions are presented in Sec. IX. A summary of our results
and conclusions is given in Sec. X.

II. EXPERIMENTAL DETAILS

Single crystals of EuCo2P2 were grown in Sn flux as
described previously [10] whereas a polycrystalline sam-
ple of BaCo2P2 was prepared by solid state reaction.
Rietveld refinement of powder x-ray diffraction (XRD)
data for BaCo2P2 with the ThCr2Si2 structure yielded
a = 3.8057(2) Å, c = 12.4115(5) Å and zP = 0.3565(4).
Semiquantitative chemical analysis of the EuCo2P2 crys-
tals was performed using a JEOL scanning electron mi-
croscope (SEM), equipped with an EDX (electron dis-
persive x-ray spectroscopy) analyzer. The EDX measure-
ments showed the expected 1:2:2 stoichiometry. Room-
temperature powder XRD measurements with Cu Kα ra-
diation were carried out on EuCo2P2 crushed crystals
with a Rigaku Geigerflex x-ray diffractometer. The data
were analysed by Rietveld refinement using FullProf soft-
ware [22]. Magnetization data were obtained using a
Quantum Design, Inc., magnetic properties measurement
system (MPMS) and a vibrating sample magnetometer
in a Quantum Design, Inc., physical properties measure-
ment system (PPMS) for high-field measurements up to
14 T, where 1 T ≡ 104 Oe. A PPMS was also used for
Cp(T ) and ρ(T ) measurements. The Cp(T ) was mea-
sured by the relaxation method and the ρ(T ) was mea-
sured using the standared four-probe ac technique.

III. CRYSTALLOGRAPHY

The powder x-ray diffraction (XRD) pattern of
EuCo2P2 at room temperature is shown in Fig. 2.
The Rietveld refinement confirms that EuCo2P2 has
the ThCr2Si2-type crystal structure with space group
I4/mmm. The crystal structure data and refinement
parameters obtained are summarized in Table I. The lat-
tice parameters are in good agreement with previously-
reported values [11]. The XRD pattern also reveals the
presence of metallic Sn impurity that arises from a small
amount of adventitious Sn flux on the surfaces and/or
embedded in the sample which is accounted for using the
two-phase refinement in Fig. 2.
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FIG. 2: (Color online) Powder XRD pattern of EuCo2P2 at
300 K. The solid line through the experimental points is the
two-phase Rietveld refinement fit calculated for the ThCr2Si2-
type crystal structure (space group I4/mmm) including the
bct β-Sn impurity phase structure (space group I41/amd).

TABLE I: Crystal and refinement parameters and atomic
coordinates obtained from Rietveld refinement of room-
temperature powder XRD data of crushed EuCo2P2 crys-
tals with the ThCr2Si2-type crystal structure, space group
I4/mmm and Z = 2 formula units per unit cell.

Atom Wyckoff position x y z

Eu 2a 0 0 0

Co 4d 0 1/2 1/4

P 4e 0 0 0.3558(5)

Lattice parameters

a (Å) 3.7597(3)

c (Å) 11.3369(4)

c/a 3.015(3)

Vcell (Å
3
) 160.25(3)

Rietveld fit parameters

χ2 3.15

Rp (%) 11.9

Rwp (%) 16.4

IV. ELECTRICAL RESISTIVITY

The ab-plane ρ(T ) of an EuCo2P2 crystal at H = 0 T
and 10 T measured in the temperature range 1.8 to
300 K are shown in Fig. 3(a). The ρ(T ) shows a metal-
lic behaviour with a residual resistivity ratio RRR ≡
ρ(300 K)/ρ(2K) = 39.4. The large RRR and the small
value of ρ(2 K) = 1.3µΩcm indicate that the crystals
are of high quality. The ρ(T ) shows a sudden increase of
slope upon cooling below TN = 66(1) K, indicated by an
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FIG. 3: (a) In-plane electrical resistivity ρ(T ) of EuCo2P2 in
the temperature T range 1.8 to 300 K for H = 0 T and 10 T
applied parallel to the c axis. The vertical arrow indicates the
AFM transition. (b) ρ(T ) of EuCo2P2 in H = 0. The curve is
the fit of Eqs. (4) to the data above 70 K and is extrapolated
to T = 0. The spin-disorder scattering resistivity ρSD(T )
plotted as filled diamonds is obtained from Eqs. (5).

arrow in Fig. 3(a), which we ascribe below to a reduction
in spin-disorder (SD) scattering. Our ρ(T ) data are very
similar to those presented previously for a single crys-
tal of EuCo2P2[13]. The TN determined from our ρ(T )
data agrees with that found from our Cp(T ) and χ(T )
data below and with literature values [10, 12, 13]. From
Fig. 3(a) the magnetoresistance is negligible from 2 K to
300 K in a field of 10 T.
The ρ(T ) data in H = 0 are shown separately in

Fig. 3(b). We assume the validity of Matthiessen’s
rule [23–25] and three contributions to ρ: (i) ρ0 due
to T -independent impurity scattering, (ii) ρBG(T ) due
to electron-phonon scattering using the Bloch-Grüneisen

prediction, and (iii) ρSD(T ) due to SD scattering.
In the high-T regime with T ≥ TN where ρSD is as-

sumed to be a constant ≡ ρSD0, we have

ρ(T ≥ TN) = ρ0 + ρSD0 + ρBG(T ), (4a)

where [23, 24, 26]

ρBG(T ) = F

(

T

ΘR

)5 ∫ ΘR/T

0

x5dx

(1− e−x) (ex − 1)
, (4b)

F is a numerical constant that describes the T -
independent interaction strength of the conduction elec-
trons with the thermally excited phonons and contains
the average atomic mass and conduction carrier Fermi
velocity, and ΘR is the resistively-determined Debye tem-
perature. The representation for ρBG(T ) used here is an
accurate analytic Padé approximant function of T/ΘR

[26]. We fitted the data for T ≥ TN (70 K ≤ T ≤ 340 K)
by Eq. (4b) as shown the black curve in Fig. 3(b), where
an extrapolation of the fit to T = 0 is shown for which
the y intercept is ρ0 + ρSD0 since ρBG(T = 0) = 0. The
parameters found from the fit are

ρ0 + ρSD0 = 10.5(7) µΩcm, ΘR = 264(6) K. (4c)

In the low-T range with 0 ≤ T ≤ TN, we first carried
out a quadratic fit to the ρ(T ) data from 1.8 to 15 K and
obtained

ρ0 = 1.3(1) µΩcm. (5a)

Then the spin-disorder scattering is obtained from

ρSD(T ) = ρ(T )− ρ0 − ρBG(T ). (5b)

A plot of the ρSD versus T data is shown as the filled
diamonds in Fig. 3(b). The data below TN do not follow
a single power law.

V. HEAT CAPACITY

The Cp(T ) data for EuCo2P2 and for the reference
compound BaCo2P2 measured in the temperature range
from 1.8 to 280 K are shown in Fig. 4(a). A sharp peak is
seen in Cp(T ) of EuCo2P2 at TN = 65.7(1) K. The Cp(T )
of BaCo2P2 is typical of a nonmagnetic metallic material.
The low-T Cp(T ) data for EuCo2P2 and BaCo2P2 in the
insets of Fig. 4(a) were fitted over the temperature range
from 1.8 to 5 K by the expression [27]

Cp(T )

T
= γ + βT 2, (6)

where γT is the electronic contribution and βT 3 contains
the lattice contribution to Cp(T ). The fits are shown by
straight lines in Fig. 4(a) insets (1) and (2) for EuCo2P2

and BaCo2P2 respectively, and the fitting parameters γ
and β for each compound are listed in Table. II.



5

120

100

80

60

40

20

0

C
p 

(J
/m

ol
 K

)

300250200150100500
T (K)

 EuCo2P2

 BaCo2P2

(a)

150

100

50

0C
p/

T
 (

m
J/

m
ol

 K
2 )

40200
T

2
 (K

2
)

Data
 Fit

(a)

50

25

0C
p/

T
 (

m
J/

m
ol

 K
2 )

6040200
T

2
 (K

2
)

  Data
  Fit

(b)

120

100

80

60

40

20

0

C
p 

− 
γT

 (
J/

m
ol

 K
)

300250200150100500
T (K)

 EuCo2P2

 BaCo2P2

 Debye Fit

(b)

FIG. 4: (Color online) (a) Temperature dependence of the
heat capacity Cp for EuCo2P2 and BaCo2P2 in H = 0. In-
sets (1) and (2): Cp/T versus T 2 for EuCo2P2 and BaCo2P2,
respectively, where the straight lines are fits of the data be-
tween 1.8 K and 5 K by Eq. (6). (b) Cp − γT versus T for
EuCo2P2 and BaCo2P2. The black curve is a fit of the data
between 200 and 280 K by the Debye lattice heat capacity
model in Eqs. (9).

The density of conduction carrier states at the Fermi
energy EF for both spin directions as measured by Cp,
Dγ(EF), is obtained from γ according to [27]

Dγ(EF) =
3γ

π2k2B
, (7a)

which gives

Dγ(EF)

[

states

eV f.u.

]

=
1

2.359
γ

[

mJ

molK2

]

. (7b)

TheDγ(EF) values calculated for EuCo2P2 and BaCo2P2

from the γ values in Table II using Eq. (7b) are listed

TABLE II: Parameters γ and β obtained by fitting the zero-
field Cp(T ) data of EuCo2P2 and BaCo2P2 in the temperature
range 1.8 to 5 K by Eq. (6). Also listed are the Debye tem-
perature ΘD obtained from β according to Eq. (8) and the
density of states at the Fermi energy Dγ(EF) obtained from
γ via Eq. (7b). Another value of ΘD for both EuCo2P2 and
BaCo2P2 is obtained by fitting the Cp − γT data between
200 and 280 K in Fig. 4(b) by the Debye model according to
Eqs. (9).

γ β ΘD Dγ(EF)

compound (mJ/mol K2) (mJ/mol K4) (K)
(

states
eV f.u.

)

EuCo2P2 23.7(5) 2.8(1)a 151(2)a 10.0(2)

480(6)b

BaCo2P2 37.3(3) 0.21(1) 359(6) 15.8(2)

aThe β value is too large to come completely from lattice vibra-
tions. We infer that there is a large contribution to β from AFM
spin waves of the helix, and hence the derived ΘD is too small. See
Sec. VIII.
b200–280 K fit by Eqs. (9).

in Table II. These values are large even for transition
metals. A calculation of Dγ(EF) for isoelectronic non-
magnetic SrCo2As2 was carried out using density func-
tional theory, yielding Dγ(EF) = 4.0 states/eV f.u. for
both spin directions [28], which is large but only 40% of
our measured value.
From the values of β, we estimate the Debye temper-

atures ΘD for the two compounds from the expression
[27]

ΘD =

(

12π4Rn

5β

)1/3

, (8)

where R is the molar gas constant and n = 5 is the
number of atoms per formula unit (f.u.). The value ΘD =
151(1) K for EuCo2P2 is much smaller than the value
of 359(2) K for isostructural BaCo2P2. The value for
EuCo2P2 is also much smaller than the value of 348 K
obtained previously for the similar compound SrNi2P2

[29]. Therefore it is likely that the β value measured for
EuCo2P2 contains a significant contribution from three-
dimensional AFM spin waves associated with the ordered
Eu moments which also give a T 3 contribution to Cp.
This inference is supported by the spin-wave calculations
in Sec. VIII.
We used the Debye model for the lattice heat capacity

to fit the Cp(T )−γT data for EuCo2P2 and BaCo2P2 in
Fig. 4(b) by

Cp − γT = nCVDebye, (9a)

where CVDebye is the Debye lattice heat capacity per
mole of atoms given by [27]

CVDebye = 9R

(

T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx. (9b)
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The representation of the Debye function used here is an
accurate analytic Padé approximant function of T/ΘD

[26]. The fit of the Cp(T ) − γT data for EuCo2P2 and
BaCo2P2 in Fig. 4(b) by Eqs. (9) over the temperature
range 200 to 280 K is shown by the black curve with
the fitting parameter ΘD = 480(6) K as listed in Ta-
ble II. This value of ΘD is much larger than the value of
359 K obtained from the fit to the Cp data for BaCo2P2

at low T . Furthermore, the fit of the Debye model to
the data in Fig. 4(b) is poor below 200 K, suggesting
that the density of phonon states versus energy in the
Debye model (∝ ω2) is a poor approximation to those
in EuCo2P2 and BaCo2P2. It is also conceivable that
the Co atoms have a significant magnetic contribution
to Cp(T ) even though they show no long-range magnetic
order in our temperature range.
In order to estimate the magnetic contribution

Cmag(T ) of the Eu spins to the Cp(T ) of EuCo2P2, we
used the Cp(T ) data for BaCo2P2 as a reference. Be-
cause the two compounds have different γ values (Ta-
ble II), the Cp data were corrected for the respective
electronic γT terms as shown in Fig. 4(b). One sees that
the Cp − γT data for the two compounds are now nearly
identical above ≈ 100 K. To eliminate the residual av-
erage deviation of the data between the two compounds
in the 100–300 K temperature range we multiplied the
Cp − γT data for EuCo2P2 by 1.0046. Then taking the
difference between the resulting data for EuCo2P2 and
the Cp − γT data for BaCo2P2 yields the magnetic heat
capacity Cmag(T ) for EuCo2P2 in Fig. 5(a). The nonzero
Cmag for TN < T . 100 K is due to weak dynamic short-
range magnetic ordering of the Eu spins above TN.
The magnetic entropy Smag(T ) is calculated using

Smag(T ) =
∫ T

0
[Cmag(T )/T ]dT and the result is shown in

Fig. 5(b). The high-T limit for a mole of spins S = 7/2
is R ln(2S + 1), as shown by the horizontal dashed line
in Fig. 5(b). One sees that the high-T Smag(T ) data for
EuCo2P2 closely approach this value. The small resid-
ual deviation is likely due to a small inaccuracy in the
background Cp subtraction. The short-range magnetic
ordering seen in Cmag at T > TN in Fig. 5(a) represents
only a small fraction of the total entropy of the disor-
dered spin system, since the change in Smag from TN to
100 K is found from Fig. 5(b) to be only about 7% of the
disordered entropy R ln(8).
We also measured the Cp(T ) data for a single crystal of

EuCo2P2 in the T range from 1.8 to 80 K in various mag-
netic fields applied along the c axis, as shown in Fig. 6.
It is seen that the Cp(H,T ) shows a decrease in TN by
only ≈ 3 K upon varying H from 0 to 7 T. The inset
of Fig. 6 shows the H-T phase diagram determined from
the H dependence of TN and the solid blue curve is a fit
of the data by the empirical function

Hc(T ) = H0

(

1− T

TN

)1/2

(T → TN), (10a)

where TN is fixed to the above value 65.7 K. The fitting
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FIG. 5: (Color online) (a) Magnetic contribution Cmag(T ) of
the Eu spins in EuCo2P2 obtained after subtraction of the
contribution Cp(T ) of BaCo2P2, between 1.8 to 150 K. The
MFT prediction for Cmag(T ) with S = 7/2 and TN = 65.7 K is
shown as the black solid line. (b) Magnetic entropy Smag(T )
calculated from Cmag(T ). The horizontal dashed line is the
theoretical high-T limit Smag = R ln(2S+1) = 17.29 J/mol K
for S = 7/2.

parameter is

H0 = 36 T. (10b)

From Eq. (10a) one can invert the axes to obtain TN(H)
as

TN(H) = TN(0)

[

1−
(

H

H0

)2
]

(T → TN). (11)

According to MFT [9], for fields applied along the c
axis, which is perpendicular to the plane of the ordered
moments in H = 0, the AFM-PM phase boundary Hc(t)
is given by

Hc(t) = Hc(0)µ̄0(t), (12a)
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FIG. 6: (Color online) Heat capacity Cp versus T of EuCo2P2

at various H ‖ c, Cp(H,T). Inset: Magnetic H-T phase di-
agram for EuCo2P2 as determined from Cp(H,T ) measure-
ments. The solid blue curve is a fit of the four data points by
Eq. (10a).

where

µ̄0(t) =
µ0(t)

µsat

=
µ0(T )

gSµB

, t =
T

TN

, (12b)

µ̄0(T ) is the reduced AFM ordered moment in H = 0
which equals unity at T = 0, µsat = gSµB is the satura-
tion moment of the spin S and t is the reduced temper-
ature. For t → 1, one obtains [9]

µ̄0(t) =

√

10/3 (1 + S)√
1 + 2S + 2S2

(1− t)1/2 (t → 1). (12c)

Then Eq. (12a) becomes

Hc(t) = Hc(0)

√

10/3 (1 + S)√
1 + 2S + 2S2

(1− t)1/2 (t → 1).

(12d)
Thus the temperature dependence of the experimental
data described by Eq. (10a) agrees with the MFT pre-
diction in Eq. (12d).
For S = 7/2, Eq. (12d) gives

Hc(t) = 1.441Hc(0) (S = 7/2, t → 1). (12e)

Comparing Eqs. (10) and (12e) gives

Hc(0) ≈
36 T

1.441
= 25 T for EuCo2P2. (13)

This value is reasonably close to the value of ≈ 28 T ob-
tained from a linear extrapolation of Mc(H,T = 2 K)
in Fig. 9 below from the maximum experimental field of
14 T to the field Hc at which the saturation magnetiza-
tion is attained.
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FIG. 7: (Color online) Zero-field-cooled (ZFC) magnetic sus-
ceptibility χ ≡ M/H of a EuCo2P2 single crystal in the tem-
perature T range between 1.8 and 320 K measured with mag-
netic fields H applied along the c axis (χc, H ‖ c) and in the
ab plane (χab, H ‖ ab) for (a) H = 1 T and (b) H = 3 T.
The insets in (a) and (b) show χab(T ) around TN = 66.6(2) K
and 65.3(1) K, respectively.

VI. MAGNETIZATION AND MAGNETIC

SUSCEPTIBILITY

A. Magnetic Susceptibility

The zero-field-cooled (ZFC) χ ≡ M/H of a EuCo2P2

single crystal as a function of T measured at H = 1 T
and 3 T applied along the c axis (χc, H ‖ c) and in the
ab plane (χab, H ‖ ab) are shown in Figs. 7(a) and 7(b),
respectively. As shown in the inset of Fig. 7(a), a sharp
cusp in χab is observed in H = 1 T at T = 66.6(2) K
that we identify as TN, a value in good agreement with
the previous reports [10, 12, 13]. The χab(T ) data for
H = 3 T in the inset of Fig. 7(b) shows a reduction of
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TN by about 1.3 K, consistent with that obtained from
Cp(T ) measurements in the inset of Fig. 6. The χc(T )
data in Fig. 7 shows an abrupt change in slope at TN

and becomes nearly T -independent at lower T . Further,
one observes from Fig. 7 that χab/χc ≈1.05 at T = TN

which arises from anisotropy in the system (see below).
Similar features have been reported in other collinear and
noncollinear AFM compounds [30, 31].
The anisotropy in the χ(T < TN) data in Fig. 7 indi-

cates that the ab plane is an easy plane. In addition, the
nonzero limit of χab(T → 0) indicates that EuCo2P2 is
either a collinear AFM with orthogonal domains or a pla-
nar noncollinear AFM structure [8, 9, 30]. The previous
neutron diffraction study on EuCo2P2 [10] showed that
the latter possibility is the correct one, namely an incom-
mensurate AFM helical structure in which Eu spins are
aligned ferromagnetically within the ab plane and where
the helix axis is the c axis.
The χ−1(T ) of EuCo2P2 measured in H=1 T and 3 T

applied along the c axis (χ−1
c , H ‖ c) and in the ab plane

(χ−1
ab , H ‖ ab) are shown in Figs. 8(a) and 8(b), respec-

tively. The high-temperature (100 < T < 320 K) mag-
netization data in the PM state are fitted by the Curie-
Weiss law (1), where the Curie constant is given by [27]

C =
Ng2S(S + 1)µ2

B

3kB
, (14)

where N is the number of spins. The Curie-Weiss fits
are shown as the straight lines in Figs. 8(a) and 8(b).
The fitted parameters C and θp together with TN and
f ≡ θp/TN are listed in Table III. The values of C are
same for both field directions and are within 1% of the
theoretical value 7.88 cm3 K/mol for Eu+2 spins with S =
7/2 and g = 2. This indicates negligible contribution
from the Co as also indicated from the previous neutron
diffraction study [10].
The difference

θab − θc = [23.0(3)− 18.2(3)] K = 4.8(4) K (15)

arises mainly from magnetic dipole interactions between
the Eu spins as discussed in Sec. VIC. The spheri-
cal average of the fitted Weiss temperatures is θp,ave =
21.4(3) K, in agreement with the previous result of
20(2) K (Ref. 12) for a polycrystalline sample and its
positive value indicates predominantly FM exchange in-
teractions between the Eu spins [9].

B. Magnetization versus Magnetic Field Isotherms

Isothermal M(H) data for EuCo2P2 measured at tem-
peratures from 2 to 300 K with H applied in the ab plane
(Mab, H ‖ ab) and along the c axis (Mc, H ‖ c) are shown
in Figs. 9(a) and 9(b), respectively. For clarity, the data
at T = 2 K are shown separately in Fig. 10, where the
Mc(H) data are nearly linear in field as predicted at
T ≪ TN by MFT for a helix with the applied field along
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FIG. 8: (Color online) Zero-field-cooled (ZFC) inverse mag-
netic susceptibility χ−1 for single-crystal EuCo2P2 in the tem-
perature T range from 1.8 to 320 K measured with magnetic
fields (a) H = 1 T and (b) H = 3 T applied along the c axis
(χ−1

c , H ‖ c) and in the ab plane (χ−1
ab , H ‖ ab). The straight

lines are respective fits of the χ−1(T ) data by the Curie-Weiss
law.

the helix axis [9]. s A linear extrapolation of the Mc(H)
data to the saturation magnetization Msat = 7 µB/Eu
yields the critical field Hc(T → 0) ≈ 28 T. As T in-
creases above TN, the Mc(H) data in Fig. 9(b) show a
small negative curvature at T = 60 K and 65 K. At even
higher temperatures, a proportional behavior of Mc(H)
is eventually observed.

On the other hand, the Mab(H) isotherms in Fig. 9(a)
for T ≤ 60 K show a metamagnetic transition at each
temperature, where the transition field decreases from a
maximum value of ≈ 7 T at 2 K to 0 at TN. A small hys-
teresis in Mab(H) at 2 K is observed upon field cycling as
shown in the inset of Fig. 10, suggesting a first-order tran-



9

TABLE III: AFM ordering temperature TN and parameters
obtained for EuCo2P2 single crystals obtained from fits from
100 to 320 K of the χ−1(T ) data in Fig. 8 by the Curie-Weiss
law. The parameter f is f ≡ θp/TN.

Field and TN C θp f (TN = 66.5 K)

direction (K) (cm3 K/mol) (K)

H = 1 T

H ‖ ab 66.6(2) 7.67(1) 23.0(3) 0.346

H ‖ c 66.6(1) 7.69(1) 18.2(3) 0.274

21.4(3)a 0.320

H = 3 T

H ‖ ab 65.3(1) 7.67(2) 22.8(3) 0.349

H ‖ c 7.69(1) 18(2) 0.276

aspherical average

sition. To more clearly study these transitions, dMab/dH
versus H isotherms obtained from the three 2 K to 60 K
isotherms in Fig. 9(a) and also from additional isotherms
not shown there are plotted in Fig. 11(a). The data for
T ≤ 60 K exhibit distinct peaks at fields Hpeak that de-
crease with increasing T and disappear at TN as shown
in Fig. 11(b). Four of the six peaks show two distinct
features at closely-spaced fields. The data in these fig-
ures suggest multiple changes in the AFM stucture with
increasing field.

C. Influence of Magnetic Dipole Interactions and

Single-Ion Anisotropy on the Weiss and Néel

Temperatures

Here we estimate the influence of magnetic dipole in-
teractions (MDIs) on the anisotropic Weiss temperatures
θpab and θpc and their influence on the Néel temperature
TN. The crystal for which the above magnetization mea-
surements were obtained was a nearly square flat plate
with dimensions (1.692× 0.46) mm3 for the ab plane and
c axis directions, respectively. From these dimensions one
obtains the magnetometric demagnetizing factors [32]

Nd ab = 0.183, Nd c = 0.634, (16)

which are defined here as in the SI system of units where
0 ≤ Ndα ≤ 1,

∑3
α=1 Ndα = 1, and α ≡ ab or c.

1. Weiss Temperatures

The contribution θMDIα of the MDIs to the Weiss tem-
perature measured in the α principal-axis direction is [14]

θMDIα =
C1

a3

[

λ0α +
4π

Vspin/a3

(

1

3
−Ndα

)]

, (17)

where λ0α is the eigenvalue of the MDI tensor for the
PM state with H ‖ α for the known c/a ratio of the bct
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FIG. 9: (Color online) Magnetization M versus applied mag-
netic field H isotherms for an EuCo2P2 crystal at the in-
dicated temperatures T for (a) H ‖ ab and (b) H ‖ c. The
isotherms in (a) for T < TN exhibit metamagnetic transitions.

Eu sublattice, Vspin is the volume per spin and C1 is the
single-spin Curie constant

C1 =
g2S(S + 1)µ2

B

3kB
. (18)

The values of λ0α for c/a = 3.014 and ka = 0.880π rad for
EuCo2P2 calculated by direct summation for neighboring
moments within a radius of 100a of the central moment
(2,779,450 neighboring spins) are

λ0ab = 4.5058, λ0c = −2λ0ab. (19)

The most positive eigenvalue corresponds to the lowest-
energy moment direction, which here lies within the
ab plane, consistent with the helix AFM structure of
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FIG. 10: (Color online) Isothermal magnetization M of
EuCo2P2 versus magnetic field H at T = 2 K for H ‖ ab
and H ‖ c. Inset: expanded view of hysteresis in the Mab(H)
data.

EuCo2P2 below TN. Then using Vspin = a2c/2, g = 2
and the lattice parameters in Table III gives

θMDIab = 1.41K, θMDIc = −2.82K,

θMDIab − θMDIc = 4.23K. (20)

The value of θMDIab − θMDIc is slightly smaller than the
measured value of 4.8(4) K in Eq. (15).
Another source of anisotropy is single-ion (SI)

anisotropy of the Eu+2 spins-7/2 with a contribution to
the Hamiltonian written as −DS2

z , where the z axis is
the uniaxial c axis here and D is the anisotropy constant
which is negative for planar anisotropy. The anisotropy
and Zeeman parts of the Hamiltonian are

H = −DS2
z + gµBS ·H (21)

for H = Hx î or H = Hzk̂. Diagonalizing the Hamilto-
nian matrix for S = 7/2 for the two field directions and
calculating the anisotropic χ at high T therefrom, we find
the contributions to the anisotropic Weiss temperatures
arising from the SI anisotropy to be

θSIab = −2D

kB
, θSIc = −2θSIab,

θSIab − θSIc = −6D

kB
. (22)

In order to explain the small difference ∼ 0.6 K be-
tween the θab − θc values in Eqs. (15) and (20) requires
D/kB ∼ −0.1 K, i.e., a planar anisotropy. This D value
seems reasonable. For example, using ESR measure-
ments similar magnitudes |D|/kB ∼ 0.1–0.3 K have been
inferred for Gd+3 with S = 7/2 in Gd2Ti2O7 (Ref. 33)
and Gd2Sn2O7 (Ref. 34) for Gd+3 with S = 7/2.

8
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FIG. 11: (Color online) (a) Derivative dM/dH versus H for
several temperatures T as indicated. (b) Magnetic peak fields
Hpeak of the dM/dH data in (a) versus T . Four of the plots
in (a) have two peak temperatures associated with them at
a higher (upwards pointing filled triangle) and lower (down-
wards pointing filled triangle) fields. The other two curves
only show a single peak at each temperature (filled circles).

2. Néel Temperature

The contribution TNMDI from MDIs to the Néel tem-
perature for AFM ordering is [14]

TNMDI =
C1λkα

a3
, (23)

where k is the AFM wave vector and α = ab is the or-
dering plane for a helix. Taking k = 0.855(2π/c)ĉ for the
helix wave vector one obtains

λk ab = 4.51. (24)
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Using Eq. (23) then gives

TNMDI = 1.11 K. (25)

The contribution TNSIab of the single-ion anisotropy to
the measured TN for half-integer spins and AFM ordering
in the ab plane with D/(kBTN) ≪ 1 is obtained as

TNSIab = −DS(S + 1)

3kB
, (26)

where D < 0 for in-plane ordering as discussed above.
Using S = 7/2 and D/kB = −0.1 K from the previous
section gives

TNSIab = 0.5 K, (27)

which is smaller than the contribution from MDIs. Thus
the total enhancement of TN due to both the MDIs and
single-ion anisotropy is about 1.6 K, or about 2% of TN =
66 K.

D. Fit of χab(T ≤ TN) by Molecular Field Theory

In order to fit the ab-plane susceptibility by the MFT
for Heisenberg AFMs in Refs. 8 and 9, it is convenient
to first remove the influences of the various anisotropies
(shape, MDI and SI anisotropies) on χ. In general, the
contribution χJα of Heisenberg interactions to the χα(T )
(α = ab or c) in the presence of these anisotropies is given
by

1

χα(T )
=

1

χJα(T )
+Aα, (28a)

yielding

χJα(T ) =
χα(T )

1−Aαχα(T )
. (28b)

where Aα is a T -independent constant for each α. Since
the net magnetic anisotropy tensor is traceless, one has

2Aab +Ac = 0, or Aab = −Ac/2. (28c)

From Eqs. (28) one obtains

1

χc
− 1

χab
=

1

χJc(T )
− 1

χJab(T )
+Ac −Aab

=
1

χJc(T )
− 1

χJab(T )
+

3

2
Ac. (29)

In the Curie-Weiss temperature regime (& 100 K for
EuCo2P2 where the AFM spin correlations are suffi-
ciently weak), the χJ (T ) is isotropic [χJab(T ) = χJc(T )],
so Eq. (29) becomes

1

χc(T )
− 1

χab(T )
=

3

2
Ac, (30)

FIG. 12: (Color online) (a) χ−1
c − χ−1

ab versus temperature T
obtained from the data for H = 1 T in Fig. 8(a). (b) χJ (T )
versus T for H ‖ ab and H ‖ c in H = 1 T after correction for
the anisotropies. The fit of χJab(T ) for T ≤ TN by the MFT
prediction for a helix in Eqs. (32) is shown as the blue curve.

where the difference on the left-hand side is thus tem-
perature independent. Shown in Fig. 12(a) is a plot of
χ−1
c (T ) − χ−1

ab (T ) versus T obtained from the data for
H = 1 T in Fig. 8(a). One indeed sees that the dif-
ference is nearly independent of T above 100 K with an
average value 3

2
Ac = 0.584(6)mol/cm3, yielding

Ac = 0.389(4)
mol

cm3
, Aab = −0.195(2)

mol

cm3
, (31)

where we used Eq. (28c) to obtain the latter equality.
Using the experimental χα data in Fig. 7(a) and

Eqs. (28b) and (31), we obtained the Heisenberg con-
tributions χJc(T ) and χJab(T ) shown in Fig. 12(b). For
T . 100 K, χJab starts to become less than χJc due
to dynamic short-range AFM ordering above TN. Below
TN = 66.5 K, χJc becomes nearly independent of T as
expected from MFT for a c-axis helix [8, 9].
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The normalized χJab(T ≤ TN)/χJ(TN) for a helical
Heisenberg AFM is given by [8, 9]

χJab(T ≤ TN)

χJ (TN)
=

(1 + τ∗ + 2f + 4B∗)(1 − f)/2

(τ∗ +B∗)(1 +B∗)− (f +B∗)2
,

(32a)
where

B∗ = 2(1− f) cos(kd) [1 + cos(kd)]− f, (32b)

t =
T

TN

, τ∗(t) =
(S + 1)t

3B′
S(y0)

, y0 =
3µ̄0

(S + 1)t
, (32c)

the ordered moment versus T in H = 0 is denoted by µ0,
the reduced ordered moment µ̄0 = µ0/µsat is determined
by solving µ̄0 = BS(y0), B

′
S(y0) = [dBS(y)/dy]|y=y0

and
our unconventional definition of the Brillouin function
BS(y) is given in Refs. 8 and 9.
We fitted the χJab(T ) data in Fig. 12(b) by Eqs. (32)

using S = 7/2 and f = 0.346, which is slightly larger than
the value fave = 0.320 in Table III. For kd(T ) we used
the neutron diffraction value kd(T = 64 K) = 0.834π
from Eq. (3) [10]. In order to fit the lowest-T data in
Fig. 12, we used kd(T = 0) = 0.88π, which is comparable
to the value at 15 K in Eq. (3) [10]. For intermediate
temperatures we linearly interpolated kd between these
two values. The χab(T ≤ TN) thus obtained from our
MFT is plotted as the solid blue curve in Fig. 12(b).
The T dependence of the fit is seen to be in excellent
agreement with the data.

VII. HEISENBERG EXCHANGE

INTERACTIONS

We now estimate the intralayer and interlayer Heisen-
berg exchange interactions within the minimal J0-J1z-J2z
MFT model for a helix in Fig. 1 [7], where J0 is the sum of
all Heisenberg exchange interactions of a representative
spin to all other spins in the same spin layer perpendicu-
lar to the helix (c) axis, J1z is the sum of all interactions
of the spin with spins in an adjacent layer along the he-
lix axis, and J2z is the sum of all interactions of the spin
with spins in a second-nearest layer. Within this model
kd, TN and θp are related to these exchange interactions
by [8, 9]

cos(kd) = − Jz1
4Jz2

, (33a)

TN = −S(S + 1)

3kB

[

J0 + 2Jz1 cos(kd)

+ 2Jz2 cos(2kd)
]

, (33b)

θp = −S(S + 1)

3kB
(J0 + 2Jz1 + 2Jz2) , (33c)

where a positive (negative) J corresponds to an AFM
(FM) interaction. Using S = 7/2, TN = 66.5 K, θp =

JB

Eu

JC

JA

FIG. 13: (Color online) Body-centered Eu sublattice, where
c/a = 3. The Heisenberg exchange interactions JA, JB and
JC are defined in the figure.

TABLE IV: Exchange constants between Eu spins JA, JB and
JC in Fig. 13 determined by fitting the χab(T ≤ TN) data by
MFT and from electronic band structure (EBS) calculations
for Eu spins S = 7/2 using Eqs. (53 ). Negative J values are
FM and positive values are AFM. Also shown are the Weiss
temperatures θp in the Curie-Weiss law (1) calculated from
Eq. (54) and the listed J values. The MFT value of θp is
equal to the observed value by construction.

method JA/kB JB/kB JC/kB JB/JC θp

(K) (K) (K) (K) (K)

MFT −2.39 0.535 0.594 0.90 21.5

EBS

S2
eff = S(S + 1) −2.20 1.35 1.49 0.91 −26.1

S2
eff = S2 −2.82 1.74 1.92 0.91 −20.3

θp ave = 21.4 K, the average kd = 0.857π of the two kd
values in Fig. 12(b) and solving Eqs. (33) for the three
exchange constants, one obtains

J0/kB = −9.55 K, Jz1/kB = 2.14 K, (34)

Jz2/kB = 0.594 K,

where the variation in kd with T for 0 < T < TN is found
to have a minimal effect on the derived J ’s. As antici-
pated in Sec. I, from the FM-like θp the net exchange
constant J0+2Jz1+2Jz2 = −4.08 K is FM, and the out-
of-plane exchange constants Jz1 and Jz2 are both AFM.
The bct Eu sublattice of EuCo2P2 is shown in Fig. 13,

where the measured ratio c/a ≈ 3 is to scale. Assuming
that the exchange interactions JA, JB and JC in the figure
are the only ones present, in terms of the interactions in
the J0-Jz1-Jz2 model one has

J0 = 4JA, Jz1 = 4JB, Jz2 = JC. (35)
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Then using Eq. (34) one obtains the MFT J values listed
in Table IV.
The Hamiltonian associated with a single spin in a spin

system in H = 0 with no anisotropy and containing iden-
tical crystallographically-equivalent spins is

Hi =
1

2

∑

j

JijS(Ri) · S(Rj), (36)

where the factor of 1/2 arises because the energy of an
interacting spin pair is equally shared between the two
spins in the pair, the sum is over the neighbors S(Rj)
of the given central spin S(Ri) and the Jij are the
Heisenberg exchange interactions between each respec-
tive spin pair. Here we only consider Bravais spin lattices
where the position of each spin is a position of inversion
symmetry of the spin lattice such as the body-centered-
tetragonal (bct) spin lattice in Fig. 13. We further re-
strict our discussion to coplaner AFMs in which the or-
dered moments in the ordered AFM state are aligned in
the xy plane.
The expression for the classical ground-state energy

per spin obtained from Eq. (36) is

Ei =
S2

2

∑

j

Jij cosφji, (37)

where cosφji = Ŝ(Ri) · Ŝ(Rj) and φji is the azimuthal
angle within the xy plane between S(Rj) and S(Ri). One
can write φji as

φji = Q ·Rji, (38)

where Rji = Rj − Ri. Then for a system containing
N spins Eq. (37) becomes

E(Q) =
NS2

2

∑

j

Jij cos (Q ·Rji) =
NS2

2
J(Q), (39a)

where

J(Q) =
∑

j

Jij cos (Q ·Rji) (39b)

is the cosine Fourier transform of the position-dependent
exchange interaction. Thus the Q with the lowest alge-
braic J(Q) is the classical ground-state AFM ordering
wave vector.
In the present system EuCo2P2 with a helical ground

state, one has

Q = (0, 0, kave), (40a)

where from Fig. 12(b), the average k between T = 0 and
TN is

Qz = kave = 0.857
2π

c
. (40b)

From Fig. 13, Eq. (39b) yields

J(Q) = JA

4
∑

j=1

cos(Q ·RAji) + JB

8
∑

j=1

cos(Q ·RBji)

+ JC

2
∑

j=1

cos(Q ·RCji) (41)

where the first, second and third sums are over spin
neighbors Sj connected to Si by interactions JA, JB and
JC, respectively. From the spin positions in Fig. 13 one
obtains

J(Q) = 2

{

JA[cos(Qxa) + cos(Qya)] (42)

+ 4JB cos

(

Qxa

2

)

cos

(

Qya

2

)

cos

(

Qzc

2

)

+ JC cos (Qzc)

}

Inserting Q = (0, 0, Qz) with Qz from Eq. (40b) into
Eq. (42) and using the exchange interactions in Table IV
gives J(Q)/kB = −12.7 K. Hence Eq. (39a) gives the
ground state energy of the helix in EuCo2P2 with S =
7/2 as

E[Q = (0, 0, kave)]

NkB
= −78 K. (43)

The magnitude of this quantity is of order TN = 66.5 K
for this compound.

VIII. SPIN WAVES AND MAGNETIC HEAT

CAPACITY AT LOW TEMPERATURES

The value of β in Eq. (6) describing the T 3 contribu-
tion to the low-T heat capacity of EuCo2P2 is found to
be too large to arise from lattice vibrations. We there-
fore infer that the excess contribution is due to thermal
excitations of three-dimensional AFM spin waves in the
helix with a T 3 contribution. To calculate that contribu-
tion, we first calculate the spin wave dispersion relation
ω(q) with wavevector q = (qx, qy, qz) propagating along
the x = a, y = b and z = c axes. In the absence of an
anisotropy energy gap, the nondegenerate spin-wave dis-
persion relation for a helical AFM ground state is given
from linear spin-wave theory as [7]

~ω(q) = S

{

2

[

J(Q)− 1

2
[J(Q+ q) + J(Q− q)]

]

× [J(Q)− J(q)]

}1/2

, (44)

where ~ is Planck’s constant divided by 2π and the vector
function J(x) is given in Eq. (42). Plots of ω(q) about q
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FIG. 14: (Color online) Spin-wave dispersion relation ω versus
q in the ab plane and along the c axis for the helix wave vector
given in the figure.

= 0 for spin waves propagating in the ab plane and along
the c axis are shown in Fig. 14 obtained using the helix
wave vector in Eqs. (40), Eqs. (42) and (44), the MFT J
values in Table IV, and the lattice parameters in Table I.
One observes from Fig. 14 that ω ∝ q for small q in

each of the principal axis directions as expected for AFM
spin waves in the absence of an anisotropy gap. In this
limit of small q one has

ω =
√

v2ab(q
2
a + q2b ) + v2cq

2
c , (45)

where vab and vc are the spin-wave velocities (speeds) in
the ab plane and along the c axis, respectively. For a
helix wave vector Q = (0, 0, Qz) where Qz > 0, Eqs. (42)
and (44) yield

vab =
4aSkB

~
sin

(

Qzc

4

)

{

−
[

JA + JB cos

(

Qzc

2

)]

×
[

2JB + JC + JC cos

(

Qzc

2

)]

}1/2

(46a)

and

vc =
4cSkB

~
sin

(

Qzc

4

)

(46b)

×
{

−
[

JB cos

(

Qzc

2

)

+ JC cos(Qzc)

]

×
[

2JB + JC + JC cos

(

Qzc

2

)]

}1/2

.

Inserting Qz from Eq. (40b), the MFT Jα values from
Table IV and the lattice parameters from Table I into
Eqs. (46) yields

vab = 1.21× 103 m/s, vc = 0.72× 103 m/s. (47)

The spin-wave velocity is thus 70% larger in the ab plane
than along the c axis.
The contribution of the spin waves to the low-T molar

heat capacity of EuCo2P2 is CSW = βSWT 3, where βSW

is obtained from Eq. (73) in Ref. 35 as

βSW =
π2Rk3BVspin

15~3v2abvc
, (48)

which is a factor of four smaller than in Eq. (73) in Ref. 35
due to a fourfold reduction in the spin-wave degeneracy in
the present case. Here we use SI units and Vspin = a2c/2
is the volume per spin, yielding

βSW = 0.92
mJ

molK4
. (49)

This is a significant fraction of β = 2.8 mJ/(molK4)
measured for EuCo2P2 as given in Table II. Thus the
Debye temperature of 151 K obtained from the β value
for EuCo2P2 as listed in Table II is substantially underes-
timated. Furthermore, in view of the small energy width
of ω(qc) in Fig. 14, the spin-wave contribution to Cp at
low T is likely larger than calculated here.

IX. ELECTRONIC STRUCTURE

CALCULATIONS

In order to check the accuracy of the MFT model
for EuCo2P2 and for a more complete understanding of
this interesting system, we performed ab initio total en-
ergy and electronic band structure calculations for sev-
eral spin structures. Density functional theory (DFT) is
so far the only approximation which allows such simu-
lations for generic macroscopic systems within a reason-
able computing time. DFT has some drawbacks since the
nonlocal part of the exchange interaction is not explic-
itly considered [37]. However, it has been found to give
rather good estimates of electronic properties, far from
metal-insulator transitions [38]. In this work, we em-
ployed the DFT implementation known as Dmol3 [39–
41]. Dmol3 offers the combination of Becke’s exchange
[42] with the One-parameter Progressive correlation-
functional [43], which provides a better representation
of equal- and opposite-spin correlations (in comparison
with the standard Perdew-Burke-Ernzerhof functional).
In addition, Dmol3 uses a linear combination of atomic
orbitals as basis set and therefore does not require the
replacement of the true lattice potential with pseudopo-
tentials. It also allows us to treat core and valence elec-
trons on an equal basis, including scalar-relativistic cor-
rections.

A. Heisenberg Exchange Interactions

Binding energies of EuCo2P2 with four symmetry-
inequivalent spin structures are needed for the calcula-
tion of the three isotropic exchange constants JA, JB, and
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FIG. 15: (Color online) Magnetic unit cells of ferromagnetic
(FM) and three antiferromagnetic (AFM) ordered Eu spin
lattices for which the total energies were calculated. The
solid blue and black spheres correspond within these collinear
structures to Eu spins up and spins down, respectively. The
solid green circles represent As atoms and the smaller solid
brown circles represent Co atoms. The collinear ordering axis
of the Eu spins is arbitrary with respect to the present DFT
calculations.

JC in Fig. 13. We took the FM configuration (spin lat-
tice symmetry group I4/mmm, No. 139, tetragonal), and
three AFM structures (in the following referred as AFM1,
AFM2 and AFM3) corresponding to ordered spin-lattice
symmetries in the respective space groups P4/mmm,
No. 123, tetragonal; Pmmn, No. 59, orthorhombic; and
P4/nmm, No. 129, tetragonal. In AFM1, the spin at
the center of the body-centered tetragonal magnetic unit
cell is oriented opposite to the spins on the cell corners.
AFM2 is obtained from the chemical cell by doubling ei-
ther the a or the b axis and inverting the image spins.
AFM3 is obtained similarly to AFM2, but doubling the
cell along the c axis. A picture of these ordered-moment
structures is shown in Fig. 15. Since the calculations only
include scalar-relativistic corrections, spin-orbital effects
are not included. Hence the easy ordering axis of the Eu
spins is undetermined for the FM and AFM structures in
Fig. 15. The mapping of the total energies per Eu onto
a set of exchange constants is achieved with the set of

equations

EFM = E0 + S2
eff (2JA + 4JB + JC) (50a)

EAFM1 = E0 + S2
eff (2JA − 4JB + JC) (50b)

EAFM2 = E0 + S2
effJC (50c)

EAFM3 = E0 + S2
eff (2JA − JC) , (50d)

where S2
eff is related (but not necessarily equal) to the

square of the spin quantum number.
To ensure the accuracy of our results we performed

several runs for each spin configuration with increasing
resolution in k space, starting with a distance of |∆k| <
0.04 Å

−1
between k points. We found that already for

|∆k| = 0.025 Å
−1

and |∆k| = 0.015 Å
−1

the differences
in total energy could be discounted; i.e., these were all
less than 10−4 eV. The magnetic interactions are two
orders of magnitude larger and therefore the calculated
exchange constant are numerically precise within 1%.
Since the squared spin is not a conserved quantity in

general within DFT calculations of periodic quantum sys-
tems, the determination of exchange constants from total
energies is (in principle) an ill-posed problem. It is not
clear which value should be assigned to the effective con-
stant S2

eff in Eqs. (50). Therefore, we made estimates
taking S2

eff equal to the classical S2 and the quantum
S(S+1) values; however, it should be noted that these are
just bounds for the orders of magnitude and signs. The
calculated local spin of an Eu+2 ion was, in all structures,
equivalent to the theoretical value (S = 7/2) within 1%,
in agreement with the present and previous [10, 12] ex-
perimental results. The polarization of Co and P ions
was also found to be negligible in all four spin structures,
which supports the use of the Heisenberg model (with lo-
calized Eu+2 spins) and agrees with previous conclusions
that the Co atoms do not contribute to the observed he-
lical AFM structure of EuCo2P2 [10, 12].
The calculated total energies satisfy the relation

EAFM1 < EAFM3 < EAFM2 < EFM . (51)

AFM1 is, among the chosen collinear configurations, the
closest to the observed noncollinear helical ground state
and the energy differences per Eu atom for the other
structures are

(EAFM3 − EAFM1)/kB = 38.1K, (52a)

(EAFM2 − EAFM1)/kB = 154K, (52b)

(EFM − EAFM1)/kB = 170K. (52c)

The resulting exchange constants are

S2
effJA/kB = −34.6K, (53a)

S2
effJB/kB = 21.3K, (53b)

S2
effJC/kB = 23.5K. (53c)

Thus, interactions in the ab plane are predicted to be FM
(negative sign of JA) and the interplane ones are AFM,
in agreement with the values in Table IV obtained from
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the MFT fit of the experimental χab(T ≤ TN) data. Fur-
thermore, the calculated ratio JB/JC = 0.91 is very close
to the value of 0.90 obtained from the MFT fit. This
ratio determines the turn angle of the helix between ad-
jacent FM-aligned planes of spins perpendicular to the
helix wave vector and is therefore also in excellent agree-
ment with the observed [10] AFM ground state.
Concerning the absolute J values, we find that the JA

values computed from Eqs. (53) using S2
eff = S(S+1) and

S2 are similar to the MFT-fitted result as shown in Ta-
ble IV. However, the calculated interplane constants (JB
and JC) are about twice as large as the MFT-fitted ones
as also shown in Table IV. For instance, JB/kB = 1.35K
for S2

eff = S(S + 1) while the MFT-fitted value 0.535K
is 2.5 times smaller. These differences may have vari-
ous origins. One possibility is the inexact representation
of exchange interactions within DFT. Another is the ne-
glect of spin fluctuations within mean-field models, which
results in the need of smaller exchange constants for a
given critical temperature [37, 38]. Thus, it is likely that
the actual magnetic interactions are stronger that those
obtained from the MFT fit. Yet another possibility is
that Heisenberg interactions other than those shown in
Fig. 13 are important. All interactions between spins
within a layer and between spins in a layer and those
in first- and second-neighbor layers are all taken into ac-
count in the J0-Jz1-Jz2 MFT model, but not when as-
signing these interactions to only JA, JB and JC for both
the MFT model and the DFT calculations.
A diagnostic for the last possibility is a calculation

of the Weiss temperature θp in the Curie-Weiss law (1)
using the band-structure exchange constants and com-
paring the result with experiment. Referring to Fig. 13,
within the JA-JB-JC Heisenberg model one has [8, 9]

θp = −S(S + 1)

3

∑

j

Jij
kB

= −S(S + 1)

3

(

4
JA
kB

+ 8
JB
kB

+ 2
JC
kB

)

, (54)

where the sum is over neighors j of a representative cen-
tral spin i. The results of this calculation for both the
MFT and DFT values of JA, JB and JC are shown in
Table IV. The MFT value of +21.4 K agrees with ex-
periment by construction. However, one sees that the J
values from the DFT calculations lead to θp = −26 K and
−20 K for Seff = S(S+1) and S2, respectively, which are
both of the correct magnitude but of the wrong (negative)
sign, suggesting dominant AFM interactions rather than
dominant FM interactions as required from the observed
value of θp. This disagreement in turn suggests that addi-
tional exchange interactions between the Eu spins beyond
JA, JB and JC are present in EuCo2P2. For instance,
FM exchange interactions among next-nearest neighbors
within the ab plane (diagonals) presumably play a role.
The addition of this new (JD) coupling to Eqs. (50) does
not alter the ratio JB/JC and increases the absolute value
of the JA + JD sum. The numerical determination of JD
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FIG. 16: Electronic band structure for the calculated ordered
spin structures. Upper left, FM; upper right AFM1; lower
left, AFM2; and lower right, AFM3. Spin up (down) states
are drawn in blue (red). For the AFM figures, the blue curves
are largely obscured by the red ones.

would require the calculation of the total energy for an-
other spin structure but it can already be inferred from
Eqs. (50) that it would bring the calculated thetap closer
to the experimental value.

B. Electronic Band Structure

The electronic band structures for the calculated spin
symmetries are shown in Fig. 16 and the correspond-
ing contributions of d and p orbitals to the density of
states (DOS) are given in Fig. 17 as described in the cap-
tion. The less energetically advantageous structure (FM)
shows flat bands and no crossing of the Fermi energy EF

in the segments along the z direction in reciprocal space
(X-P and Z-Γ segments). The parallel orientation of
spins connected by the JB (diagonal) and JC (along c)
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FIG. 17: Electronic partial density of states (PDOS), show-
ing s, p, d and f contributions in red, blue, green and cyan,
respectively, for the four spin structures for which LDA cal-
culations were done. Also shown is the total DOS (black) and
the total contributions of the Eu atoms (black thick dotted
curves). The zero of energy is EF (horizontal dotted lines).

interactions causes confinement of the electrons to the
ab planes. Because of the geometrical arrangement, Eu
spins can only interact via conduction electrons. The ef-
fective exchange couplings must be due to a minimization
of the kinetic energy of the conduction band. Stronger
confinement means higher kinetic energy. One sees that
the conduction bands are flat along X-P and Z-Γ for the
FM structure, so the collinear alignment of spins con-
fines the electrons to the ab planes. The RKKY interac-
tion changes sign and, depending of the distance between
the spins, FM or AFM alignment is favored, otherwise
the conduction electrons are scattered (localized). In all
cases, the Eu 4f bands are well below EF and the contri-
bution to the conduction bands is mainly due to Co 3d
states.

For EuCo2P2 we find the DOS at EF to be between
3.5 an 4.1 states/eV f.u. (both spin directions) for the

four considered magnetic structures whereas the DOS
at EF is ≈ 3.2 states/eV f.u. (both spin directions) for
BaCo2P2. A puzzling aspect of the comparison of the-
ory with experiment for EuCo2P2 is the high DOS at
EF in Table II derived from the above Cp(T ) measure-
ments, which is 2.5 times larger than the calculated value
of ≈ 4 states/(eV f.u.) (both spin directions) in the
magnetically-ordered state for all four magnetic ordering
configurations. A similar disagreement between theory
and experiment is found for the PM state of the analo-
gous compound BaCo2P2, which suggests that the cause
of the measured high DOS for both compounds is not
interactions of the current carriers with the Eu spin he-
lix. For all four spin configurations for EuCo2P2 con-
sidered, as well as for BaCo2P2, the DOS versus energy
shows a sharp maximum (with the required height) just
above EF. Thus, it is possible that smearing effects on
the DOS due to correlations which are neglected in DFT
could move part of the DOS maximum down to EF. The
electron-phonon interaction and many-body effects prob-
ably also contribute significant enhancements of the DOS
compared with the GGA band-structure values for the
two compounds.
Regarding a comparison of the band structure of

EuCo2P2 with that previously determined for isostruc-
tural and isoelectronic SrCo2P2 [28], the main important
difference is the contribution of Eu states at EF (about
20% of the total DOS). For SrCo2P2, Sr states are prac-
tically absent at EF. The Eu s and d states bridge the
electronic transport along the c direction and allow the
establishment of a magnetic long-range order, which is
absent in SrCo2P2 [12, 44]. Although Sr and Eu are
quite similar in size and valence states, Eu is known to
be more electronegative, which translates into a larger
participation of its valence states.

X. SUMMARY

The structural refinement of trigonal EuCo2P2 con-
firms previous results [11]. The ab-plane ρ(T ) data show
that EuCo2P2 is metallic. These data also show a sharp
increase in slope upon cooling below TN = 66 K, in agree-
ment with a previous report [13]. The magnetoresistance
at H = 10 T is negligible over the measured temperature
range 1.8 K ≤ T ≤ 300 K.
The magnetic contribution Cmag(T ) to the mea-

sured Cp(T ) is extracted using our measured Cp(T )
for BaCo2P2 as a reference compound. We find that
Cmag(T ) for T < TN is in good agreement with the
prediction of MFT. A small contribution to Cmag(T )
above TN from dynamic short-range AFM order is found
up to ∼ 100 K, amounting to only ≈ 7% of the disor-
dered entropy R ln(2S + 1). Cp(T,H) measurements in
the ranges 1.8 K ≤ T ≤ 80 K and 0 T ≤ H ≤ 7 T
exhibit a reduction in TN with increasing H that agrees
with the MFT prediction. The density of states at the
Fermi energy of EuCo2P2 and BaCo2P2 are found from
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the heat capacity data to be large, 10 and 16 states/eV
per formula unit for EuCo2P2 and BaCo2P2, respectively.
These values are enhanced by a factor of ∼ 2.5 com-
pared to those found from our DFT band-structure cal-
culations.
After correcting for the influences of sample-shape,

magnetic-dipole and single-ion anisotropies, the χab(T ≤
TN) arising from Heisenberg interactions is well fitted by
our MFT with the helix pitch close to that found from
neutron diffraction measurements [10]. The Mc(H) data
at 2 K are nearly linear in field up to H = 14 T, where
H is parallel to the helix axis, again in good agreement
with the MFT for a helical AFM structure. The extrap-
olated critical field for the second-order transition from
the canted AFM state to the PM state is estimated as
Hc ∼ 28 T, in approximate agreement with the extrapo-
lated value Hc ∼ 25 T obtained from the Cp(H,T ) mea-
surements up to H = 7 T. With the field in the ab plane
of the ordered moments, a metamagnetic transition was
found at H ≈ 7 T at T = 2 K with structure suggesting
spin-reorientation transitions occur with increasing field
as previously predicted for a helix [7, 36]. The metam-
agnetic transitions occur at decreasing H with increas-
ing T . It would be interesting to further investigate the
field dependence of the AFM structure.
The Heisenberg exchange interactions in EuCo2P2

within the J0-Jz1-Jz2 MFT model in Fig. 1 are obtained.
The dominant Eu–Eu exchange interactions J0 are within
the ab plane Eu layers and are FM, consistent with ex-
pectation from the positive Weiss temperature θp. The
interactions Jz1 and Jz2 between Eu spins in nearest- and
next-nearest-layers are both AFM. From these interac-
tions, we estimated the exchange interactions between
first-, second- and third-nearest-neighbor Eu spins. The
signs of these interactions are confirmed from our DFT
calculations. We also obtain an estimate of the classi-
cal ground-state energy of the helix from the MFT. The
spin-wave spectrum was studied and the low-energy spin-
wave excitations of the helix calculated. From this in-
formation, we obtain the coefficient of the spin-wave T 3

contribution to the low-temperature Cp(T ) and find that
it is comparable with the lattice contribution.

Thus the experimental Cmag(T ≤ TN), χab(T ≤ TN),
χc(T ≤ TN) and Mc(H,T = 2 K) data for EuCo2P2

crystals are all in good agreement with the corresponding
predictions of MFT, where the pitch of the helix needed
to fit the χab(T ≤ TN) data agrees well with the result
obtained from neutron diffraction measurements [10].
DFT electronic structure calculations confirm the FM
Eu–Eu interactions within the ab plane and the AFM
interactions between Eu spins in adjacent Eu layers and
in next-nearest Eu layers as inferred from MFT. Thus
we conclude that EuCo2P2 is a model molecular-field
helical Heisenberg antiferromagnet.

Note added — A helical AFM ground state was recently
reported for the Eu spins in the related isoelectronic
and isostructural compound EuCo2As2. The helix has a
c-axis wave vector and TN = 47 K as determined from
neutron diffraction measurements [45] that are similar
to those in EuCo2P2. This study found no observable
moment on the Co atoms in the ordered state, consistent
with our data and previous results [10, 12] on EuCo2P2.
Also reported were anisotropic χ data for single crystals
of EuCo2As2 [45] resembling our data for EuCo2P2.
These χ(T ) data [45] are in turn comparable to earlier
χ(T ) data for single-crystal EuCo2As2 [46].

Acknowledgments

The research at Ames Laboratory was supported by
the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineer-
ing. Ames Laboratory is operated for the U.S. Depart-
ment of Energy by Iowa State University under Con-
tract No. DE-AC02-07CH11358. The financial support
of E.C.R. by SCCER Storage/Mobility is gratefully ac-
knowledged. E.C.R. also thanks the Small Molecule
Crystallographic Center at ETH Zürich for computa-
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