
DEEP NUISANCE DISENTANGLEMENT FOR ROBUST OBJECT DETECTION FROM

UNMANNED AERIAL VEHICLES

A Thesis

by

KARTHIK SURESH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Zhangyang Wang
Committee Members, Ulisses Braga-Neto

Yoonsuck Choe
Head of Department, Dilma Da Silva

May 2019

Major Subject: Computer Engineering

Copyright 2019 Karthik Suresh



ABSTRACT*

Object detection from images captured by Unmanned Aerial Vehicles (UAVs) is becoming

dramatically useful. Despite the great success of the generic object detection methods trained

on ground-to-ground images, a huge performance drop is observed when these methods are di-

rectly applied to images captured by UAVs. The unsatisfactory performance is owing to many

UAV-specific nuisances, such as varying flying altitudes, adverse weather conditions, dynamically

changing viewing angles, etc., constituting a large number of fine-grained domains across which

the detection model has to stay robust. Fortunately, UAVs record meta-data corresponding to the

same varying attributes, which can either be freely available along with the UAV images, or easily

obtained. We propose to utilize the free meta-data in conjunction with the associated UAV im-

ages to learn domain-robust features via an adversarial training framework. This model is dubbed

Nuisance Disentangled Feature Transforms (NDFT), for the specific challenging problem of ob-

ject detection in UAV images. It achieves a substantial gain in robustness to these nuisances.

This work demonstrates the effectiveness of our proposed algorithm by showing both quantita-

tive improvements on two existing UAV-based object detection benchmarks, as well as qualitative

improvements on self-collected UAV imagery.

Reprinted with permission from the Abstract section of Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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NOMENCLATURE

CNN Convolutional Neural Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

FPN Feature Pyramid Network

UAV Unmanned Aerial Vehicles

NDFT Nuisance Disentangled Feature Transform

AP Average Precision

mAP Mean Average Precision
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1. INTRODUCTION*

Object detection has been studied extensively over decades. Most of the promising detec-

tors are able to detect objects of interest in clear images, such images are usually captured from

ground-based cameras. With the rapid development of technology, Unmanned Aerial Vehicles

(UAVs) equipped with cameras have been increasingly deployed in many industrial applications,

opening up a new frontier of computer vision applications in security surveillance, peacekeeping,

agriculture, deliveries, aerial photography, disaster assistance [1, 2, 3, 4], etc. One of the core fea-

tures of the UAV-based applications is to detect object of interests (pedestrians or vehicles). While

it is in high demand, object detection from UAVs is insufficiently investigated. In the meantime,

the large mobility of UAV-mounted cameras bring in greater challenges than traditional object de-

tection (using surveillance or other ground-based cameras). Some of the UAV-specific nuisances

are enumerated below.

• Variations in altitude and object scale: The scales of objects captured in the image are

closely affected by the flying altitude of the UAVs. For example, an image captured by a

DJI Inspire 2 series flying at 500 meters altitude [5] will contain very small objects, which

are very challenging to detect and track as compared to an image captured at an altitude of

say 50 meters. In addition, a UAV can be operated in a variety of altitudes while capturing

images. When shooting in lower altitudes, its camera can capture more details of objects

of interest. When it flies to higher altitudes, the camera can inspect a larger area and more

objects will be captured in the image. As a consequence, the same object can vary a lot in

terms of scale throughout the captured video, with different flying altitudes during a single

flight.

• Variations in view angle: The mobility of UAVs leads to video shots from different and free

Reprinted with permission from the Abstract section of Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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angles, in addition to the varying altitudes. For example, a UAV can look at one object from

the front view, side view, bird view, or a combination of the above views in a single video.

The diverse view angles cause arbitrary orientations and aspect ratios of the objects. Some

view angles such as bird view seldom occur in traditional ground-based object detection. As

a result, the UAV-based detection model has to deal with more different visual appearances

of the same object. Note that more view angles can be presented when altitudes grow higher.

Also, wider view angles often lead to denser objects in the view.

• Variations in weather and illumination: A UAV operated in uncontrolled outdoor envi-

ronments is very likely to fly under various weather and lighting conditions. The changes in

illumination (e.g. daytime and nighttime), as well as weather changes (e.g. sunny, cloudy,

foggy or rainy), will drastically affect the object visibility and appearance. Videos shot in

daylight introduce interference of shadows and videos captured in the night containing dim

street lamps are prone to missing important feature information. In the meantime, frames

captured during foggy weather lack sharp details resulting in the contours of the objects

vanishing in the background.

Most off-the-shelf detectors are trained with usually less varied, more restricted-view data. In

comparison, the abundance of UAV-specific nuisances enumerated above will cause the resulting

UAV-based detection model to operate in a large number of different fine-grained domains. Here a

domain could be interpreted as a specific combination of nuisances, for example, the images taken

at low-altitude and daytime, and those taken at high-altitude and nighttime domain, constitute two

different domains. Therefore, our goal is to train a cross-domain object detection model that stays

robust to the massive number of fine-grained domains. Existing potential solutions include data

augmentation [6], domain adaption [7, 8], and ensemble of expert models [9]. However, none of

these approaches are easy to generalize to multiple and/or unseen domains [7, 8], and they could

lead to over-parameterized models which are not suitable for the UAV on-board deployments [6, 9].

A (Almost) Free Lunch: Fine-Grained Nuisance Annotations: Motivated by the previous dis-

cussion, we cast the UAV-based object detection problem as a cross-domain object detection prob-

2



lem with multiple fine-grained domains. The above UAV-specific nuisances constitute the domain-

specific nuisances that should be eliminated for transferable feature learning. However, the features

of the objects of interest in the image must be preserved across all transformations and nuisance

elimination for robust detection. For UAVs, the major nuisance types are known to be altitude,

angle and weather. More importantly in the specific case of UAVs, the nuisance annotations can

easily be obtained or can even be freely available. For example, a UAV can record its flying alti-

tudes as metadata by GPS, or more accurately by a barometric sensor. Taking weather as another

example, since it is easy to retrieve each UAV flight’s time-stamp and spatial location (or path),

one can easily obtain the weather information of the specific time/location.

Motivated by the above facts, we propose to learn an object detection model that maintains its

effectiveness in extracting task-related features while eliminating the known types of nuisances

across different domains (altitudes/angles/weather). We take advantage of the easy (or free) ac-

cess to the nuisance annotations. We are the first to adopt an adversarial learning framework to

learn task-specific, domain-robust features by explicitly disentangling task-specific features from

nuisance features in a supervised way. The framework, dubbed Nuisance Disentangled Feature

Transforms (NDFT) gives rise to UAV-based object detection models that can be directly appli-

cable not only to domains seen in the training data, but also to unseen domains without needing

any extra effort of domain adaptation or sampling/labeling. Experiments on real UAV datasets

demonstrate its effectiveness and robustness.

3



2. RELATED WORK*

2.1 Object Detection

Object detection has progressed tremendously thanks to the extensive study by the academia

and the emergence of benchmarks (i.e. MS COCO [10] and PASCAL VOC [11]). There are

primarily two main-stream approaches: two-stage detectors and single-stage detectors, based on

whether the detectors have a proposal-driven mechanism or not. Two stage detectors [12, 13,

14, 15, 16, 17], which contain a region proposal network (RPN), first generate regions within an

image which is likely to contain an object. The detector then localizes and classifies each of these

proposed regions into different categories. On the other hand, single-stage detectors [18, 19, 20,

21] apply dense sampling windows over object locations and scales and have no region proposal

stage. The single-stage detectors usually achieved high speed by directly exploiting multiple layers

in a deep CNN networks while the detection accuracy is compromised compared to two-stage

detectors.

Aerial Image-based Object Detection: Despite a few aerial image datasets (i.e. DOTA [22],

NWPU VHR-10 [23], and VEDAI [24] ) being proposed, the common practice to detect ob-

jects from aerial images is only to deploy off-the-shelf ground-based object detection models [25].

Moreover, these datasets only contain geo-spatial images (e.g., satellite) with bird-view small ob-

jects, which are not as diverse as UAV-captured images with greatly varied altitudes, poses and

weather conditions. Publicly available benchmark datasets were not available for UAV-based ob-

ject detection until recently. Two datasets, UAVDT [26] and VisDrone2018 [27], were released to

address this issue. Specifically, UAVDT consists of 100 video sequences (about 80k frames) cap-

tured from UAVs under complex scenarios. Moreover, it also provides full annotations for weather

Reprinted with permission from the submitted paper, Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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conditions, flying altitudes, and camera views in addition to the ground truth bounding box of the

target objects. VisDrone2018 [27] is a large-scale UAV-based object detection and tracking bench-

mark, which composed of 10,209 static images and 179,264 frames from 263 video clips. In this

work, these two benchmark datasets for UAV-based detection will be adopted as our test beds.

Detecting Tiny Objects: A typical ad hoc approach to detect tiny objects is through learning rep-

resentations of all the objects at multiple scales. This approach is however highly inefficient with

limited performance gains. [28] proposed a super-resolution algorithm using coupled dictionary

learning to transfer the target region into a high resolution to “augment” its visual appearance. [29]

proposed to internally super-resolve the feature maps of small objects to make them resemble sim-

ilar characteristics as large objects. SNIP [30] showed that CNNs were not naturally robust to the

variations in object scales. It proposed to train and test detectors on the same scales of an image

pyramid, and selectively back-propagate the gradients of object instances of different sizes as a

function of the image scale during the training stage. SNIPER [31] proposed to process context re-

gions around ground-truth instances (chips) at different appropriate scales and further to efficiently

train the detector at multi-scales, which improved the detection performance on tiny objects.

2.2 Handling Domain Variances

Domain Adaptation via Adversarial Training: Adversarial domain adaptation [32] was pro-

posed to reduce the domain gap by learning with only labeled data from a source domain plus

massive unlabeled data from a target domain. This approach has recently gained increased atten-

tion in the detection field too. [33] learned robust detection models to occlusion and deformations,

through hard positive examples generated by an adversarial network. [8] improved the cross-

domain robustness of object detection by enforcing adversarial domain adaption on both image

and instance levels. [34] introduced a Siamese-GAN to learn invariant feature representations for

both labeled and unlabeled aerial images coming from two different domains. CyCADA [35] uni-

fied cycle-consistency with adversarial loss to learn domain invariance. However, these domain

adaption methods typically assume one (ideal) source domain and one (non-ideal) target domain.

The possibility of generalizing these methodologies to handling multiple fine-grained domains is

5



questionable. Once a new unseen domain emerges, domain adaptation needs explicit re-training.

In comparison, our proposed framework does not assume any ideal reference (source) domain,

but rather tries to extract robust features shared by many different “non-ideal” target domains.

The setting thus differs from typical domain adaptation and generalizes naturally to task-specific

feature extraction in unseen domains.

Data Augmentation, and Model Ensemble: Compared to the considerable amount of research

in data augmentation for classification [32], much less attention has been paid on other tasks such

as detection. Classical data augmentation relies on a limited set of known factors (such as scaling,

rotation, flipping) that are easy to invoke, and adopt ad hoc. The idea is to gain robustness to

minor variations such as scaling, rotating, or flipping which does not change the label of an input.

However, UAV images involve a much larger variety of nuisances, many of which are hard to

“synthesize”. A recent work [6] proposed novel learning-based approaches to synthesize new

training samples for detection. But it focused on recombining foreground objects and background

contexts, rather than recomposing specific nuisance attributes. Also, the (much) larger augmented

dataset adds to training burden and may cause over-parameterized models.

Another methodology was proposed in [9] to better capture the appearance variations caused by

different shapes, poses, and viewing angles. The authors proposed a Multi-Expert R-CNN consist-

ing of three experts, each responsible for objects with a particular shape: horizontally elongated,

square-like, and vertically elongated. This approach is apparently limited, since the model ensem-

ble quickly becomes computationally intractable as many different domains are involved. It further

cannot generalize to unknown or unseen domains.

Feature Disentanglement: Feature disentanglement [36] leads to non-overlapped groups of fac-

torized latent representations, each of which would properly describe corresponding information to

particular attributes of interest. It has mostly been applied to generative models [37, 38], and lately

to reinforcement learning [39]. In the image-to-image translation literature, a recent work [40]

also disentangled image representations into shared parts for both domains and exclusive parts for

6



either domain. NDFT extends the idea of feature disentanglement to learning cross-domain robust

discriminative models.
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3. FORMULATION OF NDFT*

Our proposed UAV-based cross-domain object detector can be characterized as an adversarial

training framework. Assume our training dataX is associated with an Object detection taskO, and

a UAV-specific Nuisance prediction task N . We mathematically express the goal of cross-domain

object detection as alternatively optimizing two objectives as follows (γ is a weight coefficient):

min
fO,fT

LO(fO(fT (X)), YO)− γLN(fN(fT (X)), YN),

min
fN

LN(fN(fT (X)), YN)

(3.1)

In (3.1), fO denotes the model that performs the object detection taskO on its input data. The label

set YO are object bounding box coordinates and class labels provided on X . LO is a cost function

defined to evaluate the object detection performance on O. On the other hand, the labels of the

UAV-specific nuisances YN come from metadata along with X (e.g., flying altitude, camera view

or weather condition), and a standard cost function LN (e.g., softmax) is defined to evaluate the

task performance onN . Here we formulate nuisance robustness as the suppression of the nuisance

prediction accuracy from the learned features.

We seek a Nuisance Disentangled Feature Transform (NDFT) fT by solving (3.1), such that

• The object detection task performance LO is minimally affected when fT (X) is used instead

of X .

• The nuisance prediction task performance LN is maximally suppressed over fT (X), com-

pared to that of X .

In order to deal with the multiple nuisances case, we extend the (3.1) to multiple prediction tasks.

Reprinted with permission from the submitted paper, Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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Here we assume k nuisance prediction tasks associated with label sets Y 1
N , ..., Y

k
N . γ1, ..., γk are the

respective weight coefficients. The modified objective naturally becomes:

min
fO,fT

LO(fO(fT (X)), YO)−
k∑

i=1

γiLN(f
i
N(fT (X)), Y i

N),

min
f1
N ,...,fk

N

LN(f
i
N(fT (X)), Y i

N)

(3.2)

All modules, fT , fO and f i
Ns, participate in training and can be implemented by neural networks.

The object detection models (fO) used in this work are briefly described below.

• Faster-RCNN: Faster-RCNN [15] is a two-stage detector which is a standard benchmark in

the object detection community. It is a descendant of the RCNN family of object detectors

which have traditionally used a region proposal algorithm (such as Selective Search) to com-

puter probable object locations in an image. These probable object locations called regions

of interest are then passed on to a CNN to extract features, localize objects and classify the

objects in the image to different classes. Faster-RCNN came up with a novel Region Pro-

posal Network(RPN) which is nothing but a small object detector in itself to propose regions

of interest by classifying certain predefined boxes of varying sizes and aspect ratios into two

classes: object or no object. This RPN can be trained by backpropagation similar to the

main object detector using the classification and the localization losses. The ROI pooling

layer converts various different-sized regions of interest detected by the RPN into a fixed

size so that it can be further fed into the fully connected layers.

• Feature Pyramid Network: Feature Pyramid Networks [41] (FPN) is a feature extractor

designed to take advantage of the pyramidal shape of the convolutional feature maps to

extract better features and predict objects from each level of the feature pyramid. FPNs have

a bottom-up pathway which is similar to any feature extractor used in detection like VGG-16

or Resnet. The top-down pathway uses upsampling and element-wise addition to combine

two adjacent feature maps. The features extracted this way combine high resolution feature

maps in the beginning which has valuable low level information about small objects and

9



the low resolution feature maps which have a very high semantic content. This drastically

increases the performance of the detector on small objects [41].

10



4. IMPLEMENTATION AND TRAINING*

4.1 Architecture Overview of NDFT-Faster-RCNN

As an instance of the general NDFT framework (4.1), Figure 4.1 displays an implementation

example of NDFT using the Faster-RCNN backbone [15], while later we will demonstrate that

NDFT can be plug-and-play with more sophisticated object detection networks (e.g., FPN).

During training, the input data X first goes through the NDFT module fT , and its output fT (X)

is passed through two subsequent branches simultaneously. The upper object detection branch

fO, uses fT (X) to detect objects, while the lower nuisance prediction model fN predicts nuisance

labels from the same fT (X). Finally, the network minimizes the prediction penalty (error rate) for

fT , while maximizing the prediction penalty for fN , as shown in (4.1).

By jointly training T , fT and f i
Ns in the above adversarial setting, the NDFT module will find

the optimal transform that preserves the object detection related features while removing the UAV-

specific nuisances prediction related features, fulfilling the goal of cross-domain object detection

that is robust to the UAV-specific nuisances.

Choices of fT , fO and fN : In this NDFT-Faster-RCNN example, fT includes the conv1_x,

conv2_x, conv3_x and conv4_x of the ResNet101 part of Faster-RCNN (convk_x here indicates the

feature map output produced by the kth convolutional layer of the backbone network). fO includes

the conv5_x layer, attached with a classification and regression loss for detection. We further im-

plement fN using the same architecture as fO (except the number of classes for prediction). The

output of fT is fed to fO after going through the RoIAlign [42] layer, whereas it is fed to fN after

going through a spatial pyramid pooling layer [13].

Choices of LO and LN : In object detection, LO is the bounding box classification (e.g., softmax)

Reprinted with permission from the submitted paper, Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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Figure 4.1: Our proposed NDFT-Faster-RCNN network.

and regression loss (e.g., smooth `1) as widely used in traditional two stage detectors. However,

using−LN as the adversarial loss in the first row of (4.1) is not straightforward. If we choose LN as

some typical classification loss such as the softmax, then maximizing it directly is prone to gradient

explosion. After experimenting with several solutions such as the standard gradient reversal trick

[32], we decide to follow the suggestion of [43] to choose the negative entropy function of the

predicted class vector as the adversarial loss, denoted as Lne. Minimizing Lne will encourage the

model to make “uncertain” predictions (equivalently, as good as a uniform random guess) on the

nuisances.

Since we replace LN with Lne in the first objective in (4.1), it no longer needs YN . Meanwhile,

the usage of LN and YN remains unaffected in the second objective of (4.1). LN and YN are used

to keep f i
Ns as “sufficiently strong adversaries” throughout training, in order to learn meaning-

ful NDFT fT that can generalize better. The final NDFT framework alternatively optimizes the

following two objectives:

min
fO,fT

LO(fO(fT (X)), YO) +
k∑

i=1

γiLne(f
i
N(fT (X))),

min
f1
N ,...,fk

N

LN(f
i
N(fT (X)), Y i

N)

(4.1)

We also use YN to pre-train sufficiently strong f i
Ns at the initialization.
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4.2 Training Strategy

Just like training GANs [44], our training is prone to collapse and/or reach bad local minima.

We thus presented a carefully-designed training algorithm with three-module alternating update

strategy , which could be interpreted as a three-party game. The training procedure is summarized

in Algorithm 1, and is explained below.

Algorithm 1 Learning Nuisance Disentangled Feature Transforms in UAV-based Object Detection
via Adversarial Training

Given pre-trained NDFT module fT , object detection task module fO, and nuisances prediction
module f i

Ns
for number of training iterations do

Sample a mini-batch of n examples {X1, · · · , Xn}
Update NDFT module fT (weights wT ) and object detection module fO (weights wO) with

stochastic gradients:

∇wT∪wO

1
n

n∑
j=1

[
LO(fO(fT (X

j)), Y j
O) +

k∑
i=1

γiLne(f
i
N(fT (X

j)))
]

while at least one nuisance prediction task has training accuracy ≤ 0.9 do
. Avoid f i

Ns becoming too weak competitors.
Update nuisance prediction modules f i

N , . . . , f
k
N (weightsw1

N , . . . , w
k
N ) with stochastic

gradients:

∇wi
N

1
n

n∑
j=1

k∑
i=1

LN(f
i
N(fT (X

j)), Y j
N)

Restart f i
N , . . . , f

k
N every 1000 iterations, and repeat Algorithm 1 from the beginning. . An

empirical trick to alleviate overfitting.

For each mini-batch, we first jointly optimize fT and fO weights (with f i
Ns frozen), by minimizing

the first objective in (4.1) using the standard stochastic gradient descent (SGD). Meanwhile, we

keep “monitering” f i
N branches as fT is updated, such that if at least one of the f i

N becomes

too weak (i.e., showing poor predicting accuracy on the same mini-batch), another update will

be triggered by minimizing the second objective in (4.1) using SGD. The goal is to “strengthen”

the nuisance prediction competitors. Besides, we also discover an empirical trick, by periodically

re-setting the current weights of f 1
N , ..., f

k
N to random initialization, and then retraining them on

13



fT (X) (with fT fixed) to become strong nuisance predictors again. We again restart the above

alternative training process of fT , fO and f i
Ns. This restarting trick is also found to benefit the

generalization of the learned fT , potentially due to helping the learning process get out of some

trivial local minima.
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5. EXPERIMENTAL RESULTS*

Since public UAV-based object detection datasets (in particular those with nuisance annota-

tions) are currently of very limited availability, we design three sets of experiments to validate

the effectiveness, robustness, and generality of NDFT. First, we perform the main body of experi-

ments on the UAVDT benchmark [26], which provides all three UAV-specific nuisance annotations

(altitude, weather, and view angle). We demonstrate the clear observation that the more variations

are disentangled via NDFT, the larger AP improvement we will gain on UAVDT; and eventually

we achieve the state-of-the-art performance on UAVDT.

We then move to the other publicly available UAV-based detection benchmark, VisDrone2018.

Since nuisance annotations are not available on it, we utilize it as a transfer learning testbed.

fT shows strong transferability, and actually outperforms the best single-model method currently

reported on the VisDrone2018 leaderboard.

Lastly, we present the detection examples where the NDFT model directly learned on UAVDT, is

adapted to our self-collected UAV imagery using a DJI Phantom 4 Pro, showing its remarkable

generalization ability to real-world UAV videos.

5.1 Improving UAV-based Object Detection on UAVDT: Results and Ablation Study

Problem Setting: The image object detection track on UAVDT consists of around 41k frames

with 840k bounding boxes. It has three categories: car, truck and bus, but the class distribution

is highly imbalanced (the latter two occupy less than 5% of bounding boxes). Hence, following

the convention of the authors in [26], we combine the three into one vehicle class and report AP

based on that. All frames are also annotated with three categories of UAV-specific nuisances:

flying altitude (low, medium and high), camera views (front-view, side-view and bird-view), and

Reprinted with permission from the submitted paper, Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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weather condition (daylight1, night). We will denote the three nuisances as A, V, and W for short,

respectively.

Implementation Details: We first did our best due diligence to improve the baseline (without con-

sidering nuisance handling) performance on UAVDT, to ensure a solid enough ground for NDFT.

The authors reported a AP of 20 using a Faster-RCNN model with the VGG-16 backbone. We

replace the backbone into ResNet-101, and fine-tune more hyperparameters such as anchor scale

(16,32,64,128,256). We end up with an improved AP of 44.04 (using the same IoU threshold =

0.7 as the authors) as our baseline performance. We also communicated with the authors of [26] in

person and they acknowledged this improved baseline. We then implement NDFT-Faster-RCNN

using the architecture depicted in Figure 4.1. We denote γ1, γ2 and γ3 as the coefficients in (5.1),

for the Lne loss terms for altitude, view and weather nuisances, respectively.

Table 5.1: Learning NDFT-Faster-RCNN on altitude nuisance only, with different γ1 values on the
UAVDT dataset.

γ1

A
Low Med High Overall

0.0 63.04 48.62 13.88 44.04
0.01 69.01 50.46 14.63 45.31
0.02 66.97 46.91 16.69 44.17
0.03 66.38 53.00 15.69 45.92
0.05 61.14 49.71 18.70 44.64

Results and Analysis: We unfold our full ablation study on the UAVDT dataset in a progressive

way. We first study the impact of removing each individual nuisance type (A, V, and W and then

gradually proceed to removing two and three nuisance types simultaneously, and show the resulting

consistent performance gains.

Tables 5.1, 5.2, and 5.3 show the the benefit of removing flying altitude (A), camera view (V) and

weather condition (W) nuisances one at a time. That could be viewed as learning NDFT-Faster-
1We discard another “foggy” class because its overly small number of samples; and those sample are mostly taken

in nighttime.
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Table 5.2: Learning NDFT-Faster-RCNN on view angle nuisance only, with different γ2 values on
the UAVDT dataset.

γ2

V
Front Side Bird Overall

0.0 44.36 66.94 25.03 44.04
0.01 57.45 67.61 25.60 46.16
0.02 61.49 66.85 24.93 45.73
0.03 54.55 68.22 23.07 45.42
0.04 65.82 65.23 26.77 45.14

Table 5.3: Learning NDFT-Faster-RCNN on weather nuisance only, with different γ3 values

γ3

W
Day Night Overall

0.0 43.56 46.39 44.04
0.01 45.18 59.66 46.62

0.025 43.72 57.41 44.43
0.05 45.61 56.14 46.03
0.1 44.28 48.78 43.60

CNN (Figure 4.1) with only the corresponding one γi (i = 1, 2, 3) to be nonzero. The baseline

model without nuisance disentanglement could be viewed as γi = 0, i = 1, 2, 3.

As can be seen from Table 5.1, compared to the baseline (γ1 = 0), increasing γ1 gradually enables

and enforces the disentanglement ofA, which leads to a consistent superiority over the baseline. As

Table 5.1 shows, under all γ1 > 0 values tested, the overall AP always improves, and so are most

single-class APs. The peak AP gain is obtained at γ1 = 0.01, where we achieve a AP improvement

of 1.88. The low, medium and high-altitude class APs increase by 3.34, 4.38 and 1.81 over the

baseline case respectively.

Table 5.2 shows the performance gain by removing the camera view (V) nuisance. At γ2 = 0.01,

a large overall AP improvement of 2.12 is obtained. On the front-view frames, the AP increases

by 8.09. Similar positive observations are found in Table 5.3 as well: γ3 = 0.01 results in an

overall AP boost of 2.58 over the baseline, with daylight and (the more challenging) night class
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(a) Baseline F-RCNN (b) NDFT-Faster-RCNN (A)

(c) NDFT-Faster-RCNN (A+V) (d) NDFT-Faster-RCNN(A+V+W)

Figure 5.1: Example showing the benefit of the proposed NDFT framework for object detection
on the UAVDT dataset

APs increased by 1.62 and 12.74, respectively.

Table 5.4 shows the full results by incrementally adding more adversarial losses simultaneously

into training. For example, A + V +W stands for simultaneously disentangling flying altitude,

camera view and weather nuisances. When using two or three losses, unless otherwise stated, we

apply γi = 0.01 for both/all of them, as discovered to give the best single-nuisance results in Tables

5.1 - 5.3.

As a consistent observation throughout the table, the more nuisances removed through NDFT, the

better AP values we obtain (e.g.,A+V outperforms any of the three single models, andA+V +W

further achieves the best AP among all). To conclude on UAVDT, removing nuisances using NDFT

evidently addresses the tough problem of object detection on high-mobility UAV platforms. Fur-

thermore, taking a closer look the final best-performerA+V +W , we are encouraged to discover it

improves the class-wise APs with noticeable margins on some most challenging nuisance classes,
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such as high-altitude, bird-view and nighttime. These observations can be clearly observed look-

ing at Figure 5.1. Going from Figure 5.1(a), the result for the Faster-RCNN [15] baseline, to

gradually (b) disentangling the nuisances of altitude (A), to (c) disentangling the nuisances of

both altitude (A) and view angles (V), to (d) disentangling all the nuisances of altitude (A), view

angles (V), and weather (W), the detection performance gradually improves from (a) to (d) with

disentanglement on all the nuisances (red rectangular boxes denote new correct detections beyond

the baseline).Improving object detection in those cases can be significant for deploying camera-

mounted UAVs to uncontrolled, potentially adverse visual environments with better reliability and

robustness.

Adapting Stronger Backbones-FPN: Besides, we observe the performance gain by NDFT does

not vanish as we adopt more sophisticated backbones, e.g. FPN [41]. Training FPN on UAVDT

leads to the baseline performance improved from 44.04 to 49.05. By plugging FPN into the pro-

posed NDFT-Faster-RCNN training pipeline, the resulting model learns to simultaneously disen-

tangle A+ V +W nuisances (γi = 0.005, i = 1,2,3). We are able to further increase the overall AP

to 52.03, showing the general benefit of NDFT regardless of the backbone choices.

Table 5.4: UAVDT NDFT-Faster-RCNN with multiple attribute disentanglement.

Baseline A V W A+V A+V+W
Flying Altitude

Low 63.04 66.38 71.09 75.32 66.05 70.33
Med 48.62 53.00 52.29 51.59 54.07 54.10
High 13.88 15.69 16.62 16.08 18.60 18.87

Camera View
Front 49.36 53.90 57.45 62.36 61.23 56.88
Side 65.29 67.41 67.61 68.47 68.82 68.18
Bird 24.03 24.56 25.60 23.97 24.43 28.80

Weather Condition
Day 44.37 47.32 45.30 45.18 46.26 45.94

Night 46.92 45.82 56.70 59.66 59.16 60.29
Overall 44.04 45.92 46.16 46.62 46.88 47.07
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5.2 Transfer Learning to VisDrone2018

Problem Setting: The image object detection track on VisDrone2018 provides a dataset of 10,209

images, with 10 categories of pedestrians, vehicles and other traffic objects annotated. Unfortu-

nately, it does not provide nuisance annotations, so directly training NDFT here is not feasible.

However, we use it as a testbed to showcase the superior transferablity of NDFT features. Ac-

cording to the leaderboard [45] and the workshop technical report [46], excluding top-performer

ensemble models, the best-performing single-model approach is DE-FPN, which utilized FPN (re-

moving P6). We hence choose DE-FPN as the comparison subject here and implemented a few

more tricks to ensure that our model is as good as the best single model baseline.

Implementation Details: We implement DE-FPN by identically following their method descrip-

tion in [46]. It is trained on VisDrone 2018 training set and tested on the vehicle category of

validation set (since the testing set is not publicly accessible). We then train the same DE-FPN

backbone on UAVDT with three nuisances (A+V+W) disentangled, with γ1 = γ2 = γ3 = 0.005.

The learned fT is then transferred to VisDrone2018, by only re-training the classification/regres-

sion layer while keep other featured extraction layers all fixed. In that way, we focus on assessing

the learned feature transferablity using NDFT. Besides, we repeat the same above routine with

γ1 = γ2 = γ3 = 0, to create a transferred baseline model without nuisance disentanglement.

We denote the two transferred models as NDFT-DE-FPN(r) and DE-FPN(r), respectively. Since

vehicle is the only shared category between UAVDT and VisDrone2018, we compare average pre-

cision on the vehicle class only to ensure a fair transfer setting. The performance of DE-FPN,

NDFT-DE-FPN(r) and DE-FPN(r) are compared on the VisDrone 2018 validation set.

Table 5.5: Comparison on the VisDrone2018 validation set.

DE-FPN DE-FPN(r) NDFT-DE-FPN(r)

76.80 75.27 79.50
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(a) DE-FPN (b) NDFT-DE-FPN(r)

Figure 5.2: Benefit of the NDFT approach on the VisDrone2018 dataset.

The qualitative results for the performance of NDFT on Visdrone dataset can been seen in Figure

5.2(a) and 5.2(b).

Green boxes are the correct boxes predicted by both models. Red boxes highlight the local regions

where NDFT-DE-FPN(r) is able to detect substantially more vehicles than DE-FPN (the state-of-

the-art single-model method on VisDrone2018).

Results and Analysis As observed in Table 5.5. directly transferring DE-FPN from UAVDT

to VisDrone2018 (with fine-tuning on the latter) does not give rise to competitive performance,

showing a substantial domain mismatch between the two datasets (even we only compare on their

shared object category). However, transferring the learned NDFT to VisDrone2018 leads to a

much boosted result, with a 4.23 AP margin over the transfer baseline without nuisance disentan-

glement, and a 2.70 margin over DE-FPN. It demonstrates that NDFT accounts for eliminating

domain nuisances that potentially hurt transfer, and provides a powerful tool for cross-domain

object detection.

5.3 Qualitative Results on In-House UAV Videos

We finally test our algorithm on real-world UAV video captured by our own platform (a DJI Phan-

tom 4 Pro), in uncontrolled outdoor environments. Those flights were for agriculture planning

proposes, and vehicle is one of the main categories of interest. We directly apply the NDFT-

Faster-RCNN trained on UAVDT, with default γ1 = γ2 = γ3 = 0.1, without any tuning or do-
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(a) Faster-RCNN

(b) NDFT-Faster-RCNN

Figure 5.3: Examples showing the benefit of learning NDFT for object detection on our self-
collected UAV video.

main adaption. We also compare it with the baseline UAVDT model without disentanglement

(γ1 = γ2 = γ3 = 0). Figure 5.3 clearly manifests that NDFT-Faster-RCNN picks up more chal-

lenging objects, e.g., small vehicles from non-front view angles.
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6. CONCLUSION AND IMPACT*

This work investigates object detection from UAV-mounted cameras, a very useful and under-

studied problem. The problem appears to be more challenging than standard object detection,

due to many UAV-specific nuisances, such as varying flying altitudes, adverse weather conditions,

and dynamically changing viewing angles. We propose to gain in robustness to those nuisances, by

explicitly learning a Nuisance Disentangled Feature Transforms (NDFT), utilizing the “free” meta-

data as auxiliary attributes. Extensive results on real UAV imagery endorse its effectiveness. Our

future interests will be devoted to generalizing NDFT to semi-supervised and weakly supervised

training, to alleviate the dependence on annotated datasets.

Our approach has multiple highlights:

• Our proposed approach has high practical impact since we are the first to fully utilize the

freely-acquirable attributes (meta-data).

• NDFT is the first approach aiming to learn robust feature w.r.t domain variation in object

detection on UAV collected images, and it is extensible to multiple UAV-specific nuisances.

• The proposed alternative training strategy among the three modules stabilizes the adversarial

training.

• We have tried multiple forms of the adversarial loss, including negative cross entropy be-

tween prediction and true label, KL divergence between prediction and uniform label and

negative entropy. We have empirically found the negative entropy to work the best.

Reprinted with permission from the submitted paper, Deep Nuisance Disentanglement for Robust Object Detec-
tion from Unmanned Aerial Vehicles by Zhenyu Wu†, Karthik Suresh†, Priya Narayanan, Hongyu Xu, Heesung Kwon,
Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review).

† indicates equal contribution
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