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A THEORY OF ACTIONS AND HABITS 2

Abstract13

Theories of instrumental actions assume the existence of multiple behavioral systems, one14

goal-directed which takes into account the consequences of actions, and one habitual that15

depends on previous reward history, both of which are predicated upon the notion of16

prediction-error to learn which actions should be performed. We present a model of17

free-operant instrumental actions in which goal-directed control is determined by the rate18

correlation between actions and outcomes whereas habitual responding is under the control19

of contiguous reward probability of an outcome, with these two systems interacting20

cooperatively and summating to control actions. The model anticipates the difference in21

performance between ratio and interval schedules and accounts for a number of additional22

phenomena such as the transition from goal-directed to habitual control with extended23

training and the persistence of goal-directed control under choice procedures and extinction.24

These results make the model unique in its joint predictions of behavioral control and25

performance for free-operant conditions.26

Keywords: actions, habits, dual-system theory, reward schedules, instrumental27

conditioning, reinforcement learning28
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A THEORY OF ACTIONS AND HABITS 3

A theory of actions and habits in free-operant behavior: The interaction of rate correlation29

and contiguity systems.30

Introduction31

Instrumental action instantiates a unique reciprocal relationship between the mind and32

the world. Through instrumental learning we bring our representations of the consequences33

or outcomes of our actions into correspondence with the causal relationships in the world,34

whereas through instrumental action we bring the world into correspondence with the35

representations of our desires. However, this reciprocity assumes that instrumental behavior36

is goal-directed in the sense that it is based upon an interaction between a belief about the37

causal relation between an action and its outcome and a desire for that outcome (Dickinson38

and Balleine, 1994; Heyes and Dawson, 1990). Over the last forty years a wealth of evidence39

has accumulated that not only are humans capable of goal-directed action in this sense but40

so are other animals.41

The canonical assay for the goal-directed status of instrumental behavior is the42

outcome revaluation procedure, which we shall illustrate with an early study by Adams and43

Dickinson (1981). They initially trained hungry rats to press a lever to receive either sugar44

or grain pellets with the alternative reward or outcome being delivered freely or45

non-contingently. The lever was then withdrawn and a flavor aversion was conditioned to46

one type of pellet by pairing its consumption with the induction of gastric malaise until the47

rat would no longer eat this type of pellet when freely presented. The purpose of this48

outcome devaluation was to remove the rat’s desire for this type of pellet, while maintaining49

the desirability of the other type. If lever-pressing was mediated by knowledge of the causal50

relationship with the pellet outcome, devaluing this outcome should have reduced the rat’s51

propensity to press when the lever was once again presented relative to the level of52

responding observed when the non-contingent pellet was devalued. This is exactly the result53
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A THEORY OF ACTIONS AND HABITS 4

they observed (Adams and Dickinson, 1981). More recently, the finding has also been54

documented in both humans (Valentin et al., 2007) and monkeys (Rhodes and Murray,55

2013). It is important to note that this test is conducted under an extinction procedure56

where the delivery of the outcome is suspended; any devaluation effect should therefore57

reflect knowledge acquired during training rather than during the test itself.58

Although research on the brain systems supporting goal-directed behavior has59

advanced during the last 20 years (for a review, see Balleine and O’Doherty, 2010), the60

nature of the psychological processes underlying the acquisition of action- or61

response-outcome knowledge remains relatively under-studied. This is in part because the62

psychology of learning has focused on the Pavlovian paradigm for the last 50 years or so63

given the greater experimental control afforded by such procedures. This research has64

generated a rich corpus of associative learning theories, all of which assume that learning is65

driven, in one way or another, by prediction errors (for a review, see Vogel et al., 2004). In66

the case of Pavlovian learning, these errors reflect the extent to which the conditioned67

stimulus fails to predict to the occurrence (or non-occurrence) of the outcome. In the most68

straightforward of these theories, the larger the prediction error on a learning episode the69

less predicted is the outcome and the greater is the change in associative strength of the70

stimulus. As a consequence, the prediction error is reduced appropriately on subsequent,71

congruent learning episodes (Rescorla and Wagner, 1972). Based on the idea that Pavlovian72

associative learning is controlled by prediction errors and the multiple phenomena that73

paralleled those found in instrumental learning, Mackintosh and Dickinson (1979) suggested74

such errors play an analogous role in both types of learning processes.75

Over the last decade or so, goal-directed learning has become increasingly couched in76

terms of computational reinforcement learning (RL). According to this approach (Daw et al.,77

2005; Maia, 2009; Sutton and Barto, 1998), goal-directed behavior is controlled by78

model-based (MB) computations in which the agent learns a model of the state transitions79
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A THEORY OF ACTIONS AND HABITS 5

produced by the instrumental contingencies and the value of each of the experienced states.80

At the time of performance, the agent searches the model to estimate the value of each of the81

actions available, and chooses the one that maximizes the outcome rate obtained over a82

number of episodes acting on the environment. Critically, what determines the value of each83

action in each state (or, alternatively, the probability of choosing each of the available84

actions in each state) is the probability that a rewarding outcome will be received given that85

the action is performed in each one of the states.86

Whatever the difference between the associative and RL theory accounts of87

goal-directed action, both of these approaches share the assumption that the probability of a88

rewarding outcome is a primary determinant of instrumental goal-directed action. The89

reward probability directly determines the strength of the response-outcome association90

according to associative theory (Mackintosh and Dickinson, 1979) and the estimated value of91

an action in the case of RL theory. For both approaches, instrumental performance should92

be directly related to these variables. However, ever since the initial studies of instrumental93

outcome revaluation using free-operant schedules we have known that reward probability is94

unlikely to be the primary determinant of goal-directed control.95

Ratio and interval contingencies96

The initial investigations of goal-directed free-operant behavior using outcome97

devaluation with rats were uniformly unsuccessful (Adams, 1980; Holman, 1975; Morrison98

and Collyer, 1974). In contrast to the successful demonstration of devaluation reported by99

Adams and Dickinson (1981), prior studies had all trained rats to press the lever on a100

variable interval (VI) contingency between the response and the outcome. This class of101

schedule models a resource, such as nectar, that depletes when taken and regenerates with102

time. In practice, a VI schedule specifies the average time interval that has to elapse before103

the next outcome becomes available. In contrast, Adams and Dickinson (1981) used a104
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A THEORY OF ACTIONS AND HABITS 6

variable ratio (VR) schedule, which models foraging in a non-depleting source so that each105

action has a fixed probability of yielding an outcome independently of the time elapsed since106

the last outcome obtained.107

In an experimental analysis of the ratio-interval contrast, Dickinson et al. (1983) used108

a yoking procedure to match the outcome probability on the two schedules. In one pair of109

groups, the master rats were trained in an interval schedule, whereas the yoked animals were110

trained on ratio schedules with outcome probabilities that matched those generated by the111

master rats. In spite of the fact that the outcome probability per response was matched112

between the groups, outcome devaluation reduced performance of the ratio-trained but not113

the interval-trained group, suggesting that ratio training more readily establishes114

goal-directed control than interval training. This conclusion was reinforced when the115

outcome rate was matched by yoking the rates of the interval-trained rats to those generated116

by master ratio-trained animals. Again, ratio-, but not interval-trained animals, were117

sensitive to outcome devaluation. As the interval-trained rats pressed at a lower rate than118

the ratio-trained animals, goal-directed control was observed in the ratio-trained group even119

under a lower outcome probability experienced by those rats. The impact of the training120

schedule on the outcome devaluation effect has now received extensive replication (see121

Gremel and Costa, 2013; Hilario et al., 2012; Wiltgen et al., 2012).122

The claim that ratio schedules more readily establish goal-directed control than does123

interval training finds further support by a study of the acquisition of beliefs about the124

effectiveness of an action in causing an outcome. Reed (2001) trained human participants on125

a fictional investment task in which pressing the space-bar on the keyboard acted as the126

instrumental response. Ratio training uniformly yielded higher judgments of the causal127

effectiveness of the key-press in producing the outcome than did interval training both when128

the probability and rates of the outcome were matched by within-participant matching.129
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A THEORY OF ACTIONS AND HABITS 7

Two properties of reward schedules130

This brief review raises the issue of the critical feature that determines the relative131

sensitivity of ratio and interval performance to outcome revaluation. There are two132

properties that distinguish the contingencies. The first is that interval contingencies133

differentially reward pausing between responses or, in the operant conditioning jargon, long134

inter-response times (IRTs). Having performed a response, and collected the outcome if135

available, the longer that the agent waits before performing the next response, the more136

likely it is that the resources will have regenerated so that the next response will be137

rewarded with an outcome. Figure 1a illustrates the relationship between the seconds138

elapsed since the last response has been performed and the probability of the next response139

being rewarded for different parameters of a random interval (RI) schedule under which140

there is fixed probability of an outcome becoming available in each second. As can be141

appreciated, the probability of reinforcement increases monotonically with the time between142

responses, with faster increases with shorter programmed intervals between rewards. In143

contrast, since the ratio between responses and outcomes required under a ratio contingency144

establishes a fixed probability of reward which is independent of the time elapsed since the145

last response, this probability is independent of the pause to the next response1.146

It is unlikely, however, that this feature of interval contingencies reduces sensitivity to147

outcome revaluation because when an animal is trained with a choice between with two148

interval sources yielding different outcomes as opposed to a single interval source,149

performance is highly sensitive to outcome devaluation. Kosaki and Dickinson trained their150

hungry rats with a choice between pressing two levers (group choice), one yielding grain151

pellets and the other a sugar solution, both on interval schedules (Kosaki and Dickinson,152

1 Although it can be argued that some patterns of responding under ratio training can differentially reinforce
short IRTs—for example because of the development of response bursting—our assumption in this paper will
be that responding
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A THEORY OF ACTIONS AND HABITS 8

Figure 1 . Different properties of response-outcome reward schedules. (a) Probability of
obtaining and outcome after a pause between responses for different programmed inter-
reinforcement intervals under an interval schedule. (b) Functional relationship between
response rates and outcome rates for ratio schedules with different outcome probabilities
(1/ratio). (c) Functional relationship between response rate and outcome rates for interval
schedules under different interval parameters (or inter-reinforcement intervals).
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A THEORY OF ACTIONS AND HABITS 9

2010). In spite of this interval training, devaluing one of the outcomes reduced performance153

of the corresponding response on test even when there was only a single lever present during154

the test so that no choice was available at that time. This goal-directed control contrasted155

with the insensitivity to outcome devaluation following matched training with a single156

response. The second, non-contingent group of rats was trained with only a single lever157

present so that pressing yielded one of the outcomes on the interval schedule with the other158

being delivered at the same rate but independently, or non-contingently of the instrumental159

response. In contrast to the goal-directed control observed following choice training, lever160

pressing during the test was unaffected by whether the contingent or non-contingent161

outcome had been devalued. As the target responses were both trained under identical162

interval schedules, both of which should differentially reinforce long IRTs, it not clear why163

choice versus single response training should affect the degree of goal-directed control if IRT164

reinforcement is the critical factor affecting sensitivity to outcome revaluation under interval165

schedules.166

The second distinction between ratio and interval contingencies relates to their167

response-outcome rate feedback functions, which are mathematical descriptions of the168

empirical relationship between response rates and outcome rates (Baum, 1973; Baum, 1992;169

Soto et al., 2006). Figure 1b presents the feedback functions for typical ratio and interval170

schedules. Under a ratio contingency, the outcome rate rises linearly with increasing171

response rate, with the slope of the function decreasing systematically as the ratio parameter172

increases. The feedback function for ratio schedules can be described by a linear function of173

the form Y = nB, where Y is the outcome rate and B the response rate performed by the174

agent. The parameter n represents the inverse of the ratio requirement, or, equivalently, the175

outcome probability per response that the particular ratio schedule programs. By contrast,176

the feedback function for an interval schedule is nonlinear, with the outcome rate rising177

rapidly with increases in response rates when the baseline response rate is low and reaching178

an asymptote as soon as the response rate is higher than the rate at which the outcomes179
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A THEORY OF ACTIONS AND HABITS 10

become available (Baum, 1992; Prelec, 1982). At this point, variations in response rates do180

not have an effect in the outcome rate 2.181

In his correlational version of the Law of Effect, Baum (1973) suggested that the182

difference between the ratio and interval feedback functions can be captured by the linear183

correlation between the response and outcome rates established by the schedules, which in184

turn led Dickinson (1985; see also Dickinson and Perez, 2018) to argue that185

response-outcome learning is driven by the rate correlation experienced by the agent: the186

greater the experienced rate correlation, the stronger is the response-outcome learning.187

Rate Correlation Theory188

Baum (1973) illustrated the empirical application of his approach to the Law of Effect189

by dividing the time-line in an experimental session into a number of successive time samples190

and displayed the rate correlation by plotting the number of responses in each sample191

against the number of outcomes in that sample. In the present approach, however, we192

develop rate correlation theory in terms of psychological processing and assume that the193

agent computes the rate correlation at a given point in time by reference to the contents of a194

number of immediately prior samples of responses and outcomes held in memory.195

Figure 2a illustrates a schematic representation of the time-line divided into different196

samples in memory of our model. At the end of each cycle, the number of responses and197

outcomes in that sample is registered in memory and the content of the memory is recycled.198

Given that the memory has a limited capacity, for simplicity we assume that this recycling199

2 Although the exact analytic form of the feedback function for interval schedules is still a matter of debate
(see Baum, 1992), it is well accepted that this function needs to flatten once response rates attain a
sufficiently high level, which depends on the outcome rate programmed by the schedule. A widely-accepted
form of this function is Y = B

tB+a , where t is the interval parameter and a is a parameter that depends on
the conditions of the experiment, and which affect the animal’s pattern of responding independently of the
outcome rate generated by the schedule.
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A THEORY OF ACTIONS AND HABITS 11

involves not only the registration of the contents of the next sample but also the erasure of200

the oldest sample in memory. Figure 2a displays a memory of four samples. The initial201

memory cycle involves the first four samples, the second memory cycle involves the second to202

fifth samples, and so on. In general, cycle k involves the deployment of the contents of203

memory from samples Sk, Sk+1, ..., Sk+(n−1), where n is the memory size deployed by the204

agent. In the following simulations, we assume that the memory size is the same for all205

subjects.206

t

Responses: 
Outcomes: 

Response rate 

O
ut

co
m

e 
ra

te
 

a

b

Response rate Response rate 

S1 S2 S3 S4 S5 S6
Cycle 1

Cycle 2

Cycle 3

Cycle 1 Cycle 2 Cycle 3

Figure 2 . Memory model for a rate-correlation approach to instrumental actions. (a) In this
simplified illustration, each memory cycle is comprised by four time-samples. The romboids
represent response events and the outcomes are represented by red stars. (b) Different
experienced rate correlations for each of the memory cycles exemplified in (a).

Following each mnemonic recycle, we assume that the agent estimates the207

response-outcome rate correlation based upon the current contents of the memory. For208
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A THEORY OF ACTIONS AND HABITS 12

simplicity, we assume that the agent computes a standard correlation coefficient which,209

psychologically speaking, accounts for the agent’s experienced linear relationship between the210

action and outcome rates. More formally, if bi and ri represent, respectively, the number of211

responses and outcomes in the i− th sample in memory, then each sample can be212

understood as an ordered-pair (bi, ri), i = 1, ..., n, from which the agent computes the rate213

correlation by the following expression:214

rbr =
m∑
i=1

(bi − b̄)(ri − r̄)
msbsr

= cov(b, r)
sbsr

(1)

where cov(b, r) is the covariance between b and r, b̄ and r̄ the average responses and215

outcomes per sample, and sb and sr the standard deviations of b and r, respectively.216

Let k be the current memory cycle and let gk the strength of the rate correlation217

system in each cycle. The simplest model would assume that response strength during the218

following cycle k + 1 is determined in this system by the rate correlation computed on the219

basis of the memory contents at the last cycle, that is, gk+1 = f(rk) = rk. However, there are220

two concerns about this simple algorithm. First, the algorithm is sensitive solely to the221

currently experienced rate correlation and so gives no weight to prior experience.222

Second, and most importantly, if the memory contains no events, either outcomes or223

responses at a cycle, the rate correlation is undefined. Under these circumstances, it would224

seem reasonable to assume that the agent needs to rely on its prior experience to determine225

responding in the current cycle. To determine the rate of responding, we assume that each226

cycle in the past has an effect on the current level of responding, with the effect being227

discounted with time. A typical function representing the discounting for previous cycles is228

given by θ = λe−λd, which assigns the importance to the cycles according to how far back229

they are in time (d). For a given value for d, different values of λ will yield different weights230

to the cycles. We use the discrete version of this function (Killeen, 1994). According to an231
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A THEORY OF ACTIONS AND HABITS 13

exponential weighted moving average (EWMA) model, the agents compute the232

rate-correlation for each cycle and uses this value to generate responding according to233

gk+1 = θrk + (1− θ)r̄k (2)

where r̄ is the average experienced rate correlation across the previous k − 1 cycles,234

computed in each memory cycle k as235

r̄k = r̄k−1 + β(rk − r̄k−1) (k > 3) (3)

where β = 1/k is the learning rate in each cycle and r̄1 = r1, by definition. The236

parameter θ is a weighting parameter that represents the importance of the current rate237

correlation on responding for the next cycle. If θ = 1, all the weight is put on the current238

cycle; if θ = 0, responding is driven only by the average experienced rate correlation; other239

values of θ will give different degrees of importance to the history of rate correlation on240

current performance.241

Simulations of a rate-correlation theory242

We first investigated the robustness of a correlation coefficient in this model with243

respect to variations in the sample duration parameter. To this end, we probed the effect of244

varying the sample duration between 10 and 120 s on the rate correlation generated by245

random ratio (RR) 5-to-50 and RI 5-to-90 s schedules with response rates varying between246

30 and 150 responses per minute. These two types of schedules assign, respectively, a247

probability of an outcome being delivered for each response and a probability of the outcome248

becoming available in each second. Once the outcome was available, it remained so until249
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A THEORY OF ACTIONS AND HABITS 14

collected by a response. Those simulations showed that, for the range of response rates that250

we tested, the experienced rate correlation is not significantly affected by the size of the251

sample deployed by subjects. So we choose a value of 20 s for the time samples in a memory252

cycle, primarily to limit the total duration of the agents’ memory to a few minutes. But it is253

important to note that using different sample lengths will not affect the results reported in254

this paper. As the simulations were run with a memory size of 20, the total memory255

duration was 400 s. For simplicity, we also limited the agent to perform a maximum of 60256

responses per min (i.e. a maximum of 1 response per second) by arranging for the257

probability of a response in each second to be g. In what follows, we show the results for the258

EWMA model with theta set at .5, but note that the same results hold for the other values259

of θ tested in our simulations (see Supplemental Material).260

Ratio-interval effects261

We investigated the rate correlation model by running simulations under variations in262

outcome probability using RR schedules and variations of outcome rate using RI schedules.263

Our initial reason for investigating the role of rate correlation in goal-directed learning arose264

from the fact that ratio schedules establish responding that is more sensitive to outcome265

devaluation than does interval training even when the outcome probability is matched by266

yoking (Dickinson et al., 1983). Within our rate correlation theory, g is the agent’s learned267

representation of the strength of the causal relationship between action and outcome.268

However, as g also determines the probability of responding, the theory predicts concordance269

between judgments of the strength of the response-outcome relationship and the rate of270

responding.271

The most direct evidence for such concordance comes from a study by Reed (2001),272

who reported the performance of human participants on ratio and interval schedules with273

matched outcome probabilities. Not only did he find that ratio training yielded higher causal274
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A THEORY OF ACTIONS AND HABITS 15

judgments of the effectiveness of the action but also higher response rates, but also that the275

performance under ratio training was higher than under interval training. To investigate276

whether a rate-correlation model could reproduce these data, we simulated training on a277

master RI 20-s schedule, which was the temporal parameter employed by Reed (2001), and278

then used the outcome probability generated by each master subject to determine the279

parameter for a yoked subject trained under a ratio schedule. The initial response rate during280

the first cycle was 10 per min, and we trained the simulations across 3 sessions, each of which281

terminated after 13 outcomes, in an attempt to match the training received by participants282

in Reed’s (2001) experiment. Figure 3 shows the data obtained by Reed (left panel) and the283

simulations produced by the rate-correlation model of the response strength, g, during the284

last 50 cycles and averaged across 100 replications of each simulation. As can be appreciated285

in the right panel of Figure 3, the model generated lower response-outcome rate correlation286

values following interval rather than ratio training with matched outcome probabilities.287

Figure 3 . Simulations of a rate correlation model for ratio and interval schedules with
matched reward probabilities. The left panel shows the data obtained by Reed (2001) in a
human causal judgment experiment. The right hand panel show the simulations produced by
a rate correlation model.
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A THEORY OF ACTIONS AND HABITS 16

Outcome probability288

Having established that rate correlation theory can reproduce the ratio-interval289

difference, we investigated whether the theory could simulate the general effects of the major290

variables determining free-operant performance. From these simulations we report the291

response strength, g, during the last 50 cycles from the 2000 cycles of each simulation292

averaged across 100 replications of each simulation.293

We have already noted that both associative and model-based RL theories of294

goal-directed behavior predict that instrumental performance should be determined—either295

because an outcome follows from its execution or because its value is determined by reward296

prediction-error—by the outcome probability (Mackintosh and Dickinson, 1979; Sutton and297

Barto, 1998). This prediction was confirmed empirically by Mazur (1983), who trained298

hungry rats to press a lever on a RR schedule under different ratio requirements. To ensure299

that the motivational state was kept relatively constant, Mazur scheduled a limited number300

of food outcomes per session in an open economy 3. To assess performance only during301

periods of engagement in the instrumental action, he also removed the outcome handling302

time by assessing the rate following the first lever press after an outcome delivery. The left303

panel of Figure 4 shows a relevant selection of the response rates obtain by Mazur.304

To investigate the response rates generated by a rate correlation model when the305

outcome probability was varied, we replicated a similar design by simulating performance on306

RR schedules with ratio requirements varying between 10 and 30. Figure 4 shows that the307

likelihood of responding decreased systematically when outcome probability was reduced by308

increasing the ratio parameter, correctly predicting the pattern of results obtained by Mazur309

in his parametric investigation of ratio performance in rats.310

3 In an open economy, the animal is also fed in the home cage with a different food to the one earned by the
instrumental response during training, so that its weight remains constant throughout the experiment.
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A THEORY OF ACTIONS AND HABITS 17

Figure 4 . Simulations of rate correlation models for ratio training with different outcome
probabilities (the inverse of the ratio requirement). The left panel shows the results obtained
by Mazur (1983) in a within-subject study in rats. The right panel shows the simulations of
a rate correlation model.

Outcome rate311

Herrnstein and his colleagues have argued that instrumental performance on interval312

schedules is systematically related to the outcome rate, such that longer intervals between313

reinforcers should bring about lower performance than shorter ones (Herrnstein, 1969;314

Herrnstein, 1970). This prediction has been confirmed multiple times in different species.315

One example, shown in the left panel of Figure 5, was provided by Bradshaw et al. (1981),316

who trained hungry rats to lever press for milk and reported that there was a systematic317

decrease in the response rates as the interval was increased except at high rates of rewards318

when outcome handling time may well have interfered with lever pressing. A selection of319

their results for intermediate intervals are shown in the left panel of Figure 5. To match the320

conditions of this experiment, we repeated the simulation procedure used for outcome321

probability but with RI schedules and interval parameters varying between 30 and 90 s. As322
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A THEORY OF ACTIONS AND HABITS 18

Figure 5 . Simulations of a rate correlation model for interval schedules with different interval
parameters. The left panel shows the results obtained by Bradshaw et al. (1981) in rats.
The right panel shows simulations of a rate correlation model using parameters similar to the
ones used by these authors.

the right panel of Figure 5 shows, all values produced a systematic decrease in responding as323

the outcome rate was reduced by increasing the temporal parameter of the interval schedule,324

replicating the pattern of results obtained by these authors.325

Outcome delay326

Baum (1973) noted that his correlational Law of Effect anticipated the fact that327

delaying the outcome following the response that generated it will have a deleterious impact328

on the acquisition of instrumental responding. For example, the left panel of Figure 6329

illustrates the terminal rates of lever pressing by hungry rats obtained by Dickinson et al.330

when each lever press produced a food outcome after a delay of 16, 32, or 64 s (Dickinson331

et al., 1992). With the 16-s delay and a 20-s memory sample used in our model, only332

outcomes generated by responses during the first 4 s of a sample occur in the same sample as333
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A THEORY OF ACTIONS AND HABITS 19

their responses, whereas with the 32-s and 64-s delays all the outcomes occur in a different334

sample, thereby reducing the experienced rate correlation. The simulations displayed in the335

right panel of Figure 6 confirm this intuitive prediction. Following a similar reasoning to that336

of causal judgments for ratio- and interval-trained responses, these simulations anticipate a337

similar result for the acquisition of a causal belief when outcomes are delayed. This338

prediction has been confirmed by Shanks and Dickinson (1991) using fictitious credits as the339

outcome and key presses as the instrumental response in human participants. Moreover, the340

impact of outcome delay on goal-directed behavior has been more recently confirmed by341

Urcelay and Jonkman (2019), who reported that delaying the food outcome by 20 s342

abolished sensitivity to outcome devaluation compared to a group that underwent training343

with no delay between the response and the outcome.344

Figure 6 . Simulations of rate correlation models for delayed rewards. The left panel shows
the data obtained by Dickinson et al. (1992) in rats. The right panel shows simulations of a
rate correlation model for the same delay parameters used in the original paper.
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Contingency degradation345

At first sight, the most direct evidence for a rate correlation approach to instrumental346

learning is the sensitivity of free-operant performance to the action-outcome contingency, in347

that a correlation provides a measure of this contingency. However, the strength of the causal348

relationship between action and outcome can be varied not only by changing the probability349

of a contiguous outcome as in Mazur’s (1983) experiment, but also by varying the likelihood350

that the outcome will occur in the absence of the action or, in other words, the probability of351

non-contiguous outcomes. When the contiguous and non-contiguous probabilities are the352

same, the agent has no control over the number of outcomes received in any given time353

period. Hammond (1980) was the first to study the effect of such manipulation in a354

free-operant procedure. Using rats, Hammond fixed the probability of a contiguous outcome355

for the first lever press in each second while varying the probability of delivering a356

non-contiguous outcome at the end of any second without a lever press. Non-contingent357

schedules, in which the contiguous and non-contiguous outcomes probabilities were the same,358

failed to sustain lever pressing initially established without the non-contiguous outcomes.359

We cannot be certain, however, that the low rate of lever pressing under the360

non-contingent schedules was due to the absence of a causal relationship between this action361

and the outcome. Inevitably, the non-contingent schedule greatly increases the frequency of362

the outcome and therefore the time required to handle and process the outcome with the363

result that the depression of responding under a non-contingent outcome may have been due364

to interference with lever pressing by the enhanced outcome handling and processing. One365

way of addressing this issue is to use a non-contingent schedule while varying the identity of366

the contiguous and non-contiguous outcome. When the contiguous and non-contiguous367

outcomes are the same, the agent has control over neither the outcome frequency nor its368

identity. However, when the outcomes are different, the agent can control the type of369

outcomes they received. By responding, the agent can increase the relative frequency of the370
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contiguous outcome.371

To illustrate the simulation of contingency degradation by the rate correlation model,372

we followed an experiment reported by Balleine and Dickinson (1998). Hungry rats were373

initially trained to lever-press for one of two different food outcomes on an RR 20 schedule374

so that the probability of the contiguous outcome was .05. The instrumental contingency375

was then degraded by delivering a non-contiguous outcome with a probability of .05 in each376

second without a lever press. As the left panel of Figure 7 shows, the rats pressed at a higher377

rate if the non-contiguous and contiguous outcomes were different rather than the same. The378

right panel illustrates that the rate correlation model can replicate this effect on the379

assumption that different outcomes receive distinct representations in memory with separate380

response strengths being calculated for each outcome type. Numerous studies have shown381

that human causal judgments of the response-outcome association and the rate of responding382

are lower when the contingency between the response and the outcome is degraded by383

increasing the probability of non-contiguous outcomes (Shanks, 1991).384

Interim summary385

In summary, this set of simulations demonstrate that a rate-correlation model can in386

principle provide an account of primary determinants of instrumental performance: the387

impact of outcome probability, rate and delay on instrumental performance. In addition, the388

model correctly anticipates the ratio-interval schedule effect when the outcome probabilities389

are matched, and the effect of degrading the causal contingency between the response and390

the outcome, both of which are prerequisites for any theory of goal-directed control.391

It is equally clear, however, that a further learning system is required for a complete392

account of instrumental behavior. To the extent that goal-direct learning is assigned to a393

rate correlation system, we are left with no account of sustained responding on an interval394
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A THEORY OF ACTIONS AND HABITS 22

Figure 7 . Simulations of a contingency degradation experiment. Left panel. Data obtained
by Balleine and Dickinson (1998) in rats. Group diff was given freely an alternative outcome
with the same probability as the outcome produced by the target action. Group same was
given freely the same outcome as that produced by the target action. Right panel. Simulations
of a rate-correlation model for a similar procedure.

schedule, given the low rate correlation experienced under this schedule. Furthermore,395

rate-correlation theory on its own provides no principled explanation of why responding396

extinguishes when outcomes are withheld. As we have noted, the rate correlation cannot be397

calculated at a recycle if no outcomes are represented in memory (as would be the case398

during extinction), and under this circumstance the response strength remains at the value399

computed at the last recycle in which the memory contained at least one outcome400

representation. A comprehensive account of instrumental action therefore requires an401

additional learning system.402

Dual-System Theories403

When Dickinson (1985) first argued that a rate correlation account of instrumental404

action could explain goal-directed learning, he embedded it within a dual-system theory to405
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A THEORY OF ACTIONS AND HABITS 23

explain instrumental responding that is autonomous of the current value of the outcome, as406

assessed by the outcome revaluation paradigm. He envisaged this second system as a form of407

habit learning that involved the acquisition of an association between the stimuli present408

during training and the instrumental response. This is, of course, the form of409

stimulus-response (S-R) learning envisaged by Thorndike in his original Law of Effect410

(Thorndike, 1911) more than a century ago. According to Thorndike, the occurrence of a411

contiguous attractive outcome following a response simply serves to strengthen or reinforce412

the S-R association so that the re-presentation of the training stimuli are more likely to elicit413

the response. However, because all information about the outcome is discarded once it has414

served its reinforcing function, any subsequent change in the value of the outcome cannot415

impact on instrumental performance without re-presenting the revalued outcome contingent416

upon responding. For this reason, to test whether an outcome representation exerts417

goal-directed control over responding, the outcome devaluation paradigm tests responding in418

the same training context but in the absence of the now-devalued outcome. Any decrease in419

responding under these conditions indicates that a representation of the outcome controls an420

action in accord with the current value of the outcome, thereby demonstrating its421

goal-directed status (Balleine and Dickinson, 1998; Dickinson and Balleine, 1993; Dickinson422

and Perez, 2018).423

To date, only RL theory has attempted to offer a computational account using a424

similar dual-system view of instrumental control. RL theory recognizes two types of systems425

that closely resemble the two psychological processes described by Dickinson (1985) in his426

original dual-system framework. Both RL systems aim to maximize the number of rewards427

obtained by the agent during a task (Daw et al., 2005; Dolan and Dayan, 2013; Keramati428

et al., 2011). Model-based (MB) computations learn a model of the environment by429

estimating the probability that an action in the current state will lead to each following430

state, and the probability of each action leading to a reward in each state. This431

"forward-looking" control is based on the online estimation of different state trajectories and432
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is therefore highly sensitive to abrupt changes in either the response-outcome contingencies433

or the motivational value of the outcome, and therefore resembles a goal-directed system as434

proposed by Dickinson and his colleagues.435

RL theory also recognizes another system that is relatively impervious to outcome436

revaluation. Model-free (MF) computations estimate the value of each action in each state437

(Q(action|state)) by simply caching the running average rate of rewards obtained by each438

action in a given state adjusting their value by reward-prediction error. Because all the439

history of rewards is collapsed in Q(action|state), the agent maximizes the outcome rate by440

simply selecting the actions with a higher Q−value. For this reason, MF computations are441

less computationally expensive and faster than MB computations. When an outcome is442

revalued, however, the MF computations can only adjust to outcome revaluation by443

re-experiencing the outcome as a contingent consequence of an action so that, in this444

important respect, the behavioral control exerted by a MF RL system is similar to habitual445

behavior.446

Because the estimations in MB and MF computations are updated by state and reward447

prediction-errors, respectively, the value of actions, and hence the probability of performing448

an action are ultimately determined by outcome probability. To capture the distinction449

between different reward schedules, RL needs significant modifications.450

To our knowledge, only a model proposed by Niv et al. (Niv et al., 2006) explicitly451

addresses free-operant performance within a RL framework. The normative approach452

proposed by Niv and colleagues (2005; 2007) distinguishes between the ratio and interval453

contingencies by deploying an economic argument that determines the rate of responding on454

the basis of the trade-off between the utility of obtaining more outcomes by responding455

faster and the cost of emitting those responses. This aim is achieved by choosing a456

behavioral strategy that obtains the most outcomes with the least effort. Such a point is457

reached when the marginal utility of increasing responding equals the marginal cost of such458
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increase (i.e., waiting, or performing other behavior), a point that is reached at a lower459

response rate on an interval as opposed to a ratio schedule. Critically, however, this account460

is a form of MF RL and therefore provides no explanation of the differential sensitivity of461

ratio and interval responding to outcome revaluation, which is the focus of our analysis4.462

In the following sections we formalize a dual-system model in which a goal-directed463

system based on the response-outcome rate-correlation interacts with a habit MF algorithm464

based on reward prediction-error. We show how this model can explain all the phenomena465

we have already noted, along with additional phenomena from the literature that are not466

currently fully captured by RL or associative models of instrumental learning.467

The Dual-System Model468

Having demonstrated that a goal-directed system based on rate correlation can capture469

the primary determinants of free-operant behavior, we now specify a habit algorithm that470

will integrate with the goal-directed system to explain both behavioral performance and471

control in free-operant training. To this end, we employ an algorithm similar to those472

employed in the RL literature to account for MF strategies, but modified so that it can473

account for free-operant data (Bush and Mosteller, 1951). The algorithm deploys a reward474

prediction-error to increase or decrease the likelihood of performing the response in a similar475

situation or context. Let ht denote habit strength at each time-step t. In our habit system,476

the acquisition and extinction of habit strength in cycle k follows the following equation:477

ht+1 =


ht + α+PEt if PEt > 0

ht − α−PEt if PEt < 0
(4)

4 An exception to this is a recent model by Miller et al. (2019). Although their model can predict different
sensitivities to devaluation for ratio and interval training, this is only achieved by importing arbitrary
assumptions rather than providing an account embedded within an integrated model.
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where α+ and α− are parameters between 0 and 1 and represent the learning rates for478

excitation and inhibition of the S-R connection, respectively 5 and PEt is the reward479

prediction-error at time-step t, defined as:480

PEt =


1− (ht + gk) if response is reinforced

(ht + gk) if response is not reinforced
(5)

Following on evidence showing that learning rates for rewarded and non-rewarded481

episodes are asymmetric (Behrens et al., 2007; Gershman, 2015; Lefebvre et al., 2017;482

Palminteri et al., 2017), we assume that the learning rate of a reinforced response is higher483

than the learning rate for a non-reinforced response (α+ > α−). This assumption is also484

necessary from a practical perspective: in a partial reinforcement schedule as the ones we485

have been simulating, the reinforced connection must be counteracting the effect of a much486

greater proportion of non-reinforced responses to sustain positive levels of responding. Under487

this algorithm, every reinforced episode strengthens the connection between the context and488

the instrumental response when the reward prediction-error, given by489

PEt = α+[1− (ht + gk)] is positive. Likewise, every non-reinforced episode weakens the490

strength by PEt = α−(ht + gk) 6.491

Similar to MF algorithms which assign the value Q(action|state) to a specific action in492

a given state, Equation 4 explains the change of response strength according to the value of493

5 Previous versions of this algorithm deployed only one connection for increasing and decreasing the
probability of responding. The original RL algorithm postulated by Bush & Mosteller had the form
ht+1 = ht + α+[1− (ht)]− α−(ht) and assumed that α = 0 when a response was not reinforced. The term
−α−(ht) can thus be regarded as reflecting an inhibitory potential present both in reinforced and
non-reinforced responses.
6 It should be noted that the PEs employ a summed prediction term by combining the current response
strengths generated by the goal-directed (gk) and habit systems. The rationale for this summed prediction
term lies with the fact that a PE is intended to capture the extent to which an outcome (or its omission) is
surprising or unexpected with respect to the predictions from both systems. In this respect, the rationale for
the summed PE is the same as that in the Rescorla-Wagner rule (1972) for determining associative strength
in Pavlovian Learning.
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ht, which completely summarizes the history of reinforcement in that particular state or494

context. Given that this algorithm is only driven by PEt, it does not explicitly model the495

information regarding the relationship between the response and the outcome or its current496

motivational value, making it insensitive to both outcome revaluation and manipulations of497

the causal relationship between and response and outcome. Such behavioral autonomy is the498

cardinal feature of habitual behavior (Dickinson, 1985; Heyes and Dawson, 1990).499

Given the above specifications for the habit and goal-directed systems, the next step is500

to specify the type of interaction between these systems that would explain total501

performance and behavioral control for different experimental conditions. To this end, we502

define a response function that jointly deploys both processes to explain total response503

strength for each memory cycle k. We denote this total response strength by pk.504

Our assumption regarding the interaction between the systems will be based on the505

data reported by Dickinson et al. (1983). As noted above, after having trained two groups of506

rats under interval and ratio schedules with matched outcome probabilities, Dickinson and507

colleagues devalued the outcome in half of the rats of each group by pairing it with toxicosis.508

After this devaluation manipulation, only the ratio-trained rats decreased responding (i.e.,509

were under goal-directed control); the performance of the interval-trained rats at test was510

unaffected by outcome devaluation. An interesting feature of these data is that the level of511

responding after devaluation in the ratio-trained group did not differ from that of the512

interval-trained group. Because the outcome probability was matched between the groups,513

the habit system’s contribution to responding should have been equal in both groups.514

Likewise, because by definition responding that is sensitive to devaluation must be515

attributed to the goal-directed component, the residual responding that was not affected by516

devaluation in the ratio-trained group must, by necessity, be attributed to the habitual517

component. Therefore, this study suggests that both systems were summing their relative518

strengths to determine the response probability p.519
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To transform response strengths into probabilities of responding, we assume that520

response probability in cycle k + 1, pk+1, is governed by a sigmoid function:521

pk+1 = s(Igk + hk) = 1
1 + e−τ(Igk+hk−C) (6)

where gk is the goal-directed strength in cycle k as defined above, hk is the habit522

strength accumulated by Equation 4 during the experiment, up to cycle k, and I is a523

variable representing the current incentive value of the outcome by taking the value 1 if the524

outcome is valued and 0 if the outcome is devalued (that is, we assume that the devaluation525

procedure successfully decreases the value of the outcome to zero). The parameter τ is an526

inverse temperature parameter that reflects how sensitive the agent is to increases in total527

response strength (Igk + hk)) and C is a parameter that determines the midpoint value of528

the function. Under this response function, the two systems sum to determine total529

responding, so that the response probability in the next cycle pk+1 reflects the relative530

contribution of each system (see Figure 8). In the following sections, we will discuss the531

implications of such an assumption for the type of behavioral control that should be532

expected after we present simulations for different experimental procedures.533

Ratio and interval training534

Initially we simulated goal-directed and habitual learning under interval and ratio535

contingencies using a RI 15-s master schedule. The outcome probability generated by each536

master interval simulation was then used to generate a yoked simulation on a ratio schedule537

with a parameter that yielded to same outcome probability. The initial response probability538

for the first session of training reflected one session of pretraining under RR-5 and each539

session terminated after 30 outcomes had been received. Panels a and b of Figure 9 display540

the mean values generated by 200 simulations under the master interval and yoked ratio541
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Figure 8 . Schematic representation of the dual-system model. For each cycle, the agents con-
currently computes the response-outcome rate correlation and habit strength is accumulated.
The strength of both systems is then summed and a response function produces the probability
of responding for the following cycle. The rate correlation on the goal-directed system is only
computed when both responses and outcomes are held in memory. (Illustrations courtesy of
Loreto Contreras.)

schedules, respectively. Shown separately are the response strengths generated by542

goal-directed and habit systems, g and h respectively, and the resultant probability of543

responding per 1-s time sample, p, produced by the interaction of these response strengths.544

The first point to note is that the model reproduces the differential sensitivity of ratio545

and interval performance to outcome devaluation early in training. For example, ratio546

training generates a goal-directed response strength, g, of about 0.4 by the third session,547

whereas the interval response strength is close to zero for equivalent training. As the model548
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assumes that outcome devaluation, if complete, abolishes the contribution of g to overall549

responding, the model naturally explains why devaluation has a greater impact on ratio than550

on interval responding early in training (Dickinson et al., 1983). This finding is summarized551

in Figure 9c in terms of a devaluation ratio, DR, defined as DR = s(Ig)
s(Ig+h) , where s is the552

sigmoid function defined in Equation 6.553

Figure 9 . Simulations of the dual-system model for the experiment reported by Dickinson
et al. (1983). (a) Strength from each system and response probability across 10 sessions of
interval training. (b) Strength from each system and response probability across 10 sessions of
training under yoked ratio training, matching outcome probabilities with the interval-trained
subjects. (c) Sensitivity to outcome devaluation for ratio and interval training as assessed by
a devaluation ratio early in training (Session 2); at mid-training (Session 5) and at the end
of training (Session 10). (d) Response probability per second for ratio and interval training
across different extensions of training.
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Development of behavioral autonomy554

Perhaps, however, the most notable feature of these simulations is the decline in the555

goal-directed response strength as the habit strength grows with training. This reduction in556

g reflects, at least in part, the reduction in the variance of the rate of responding across the557

time samples in memory as the overall response rate increases with the consequence that the558

experienced rate correlation, and therefore g, declines. Thus, according to our model,559

behavioral autonomy should develop as responding becomes stereotyped with more extended560

training. The reduction in sensitivity to outcome devaluation with training predicted by the561

simulations is documented in Figure 9c in terms of devaluation ratio.562

Adams (1982) was the first to report that behavioral autonomy developed with563

training on a variety of ratio schedules. Although the development of autonomy with564

training has been independently replicated multiple times (e.g., Dickinson et al., 1995;565

Holland, 2004; Killcross and Coutureau, 2003), a number of studies have reported566

goal-directed control after extended training. For example, de Wit et al. (2018) have567

documented two failures to replicate the development of behavioral autonomy observed by568

Tricomi et al. (2009) after training humans under an interval schedule (see Corbit et al.,569

2014; Nelson and Killcross, 2006). Similarly, Jonkman et al. (2010) found that rats remained570

sensitive to outcome devaluation throughout 20 sessions of training on an interval schedule.571

In interpreting these divergent results it is important to emphasize that it is not the572

type schedule (ratio versus interval) nor the amount of training per se that determines573

whether responding becomes behaviorally autonomous of the current outcome value, but574

rather whether the mechanism of memory recycling yields a low local rate correlation. For575

example, consider the case of extend training on fixed interval schedules (FI) in which an an576

outcome becomes available after a fixed interval between each obtained outcome. FI577

schedules have a similar overall functional relationship between response and outcome rates578

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/807800doi: bioRxiv preprint first posted online Oct. 17, 2019; 

http://dx.doi.org/10.1101/807800
http://creativecommons.org/licenses/by-nc/4.0/


A THEORY OF ACTIONS AND HABITS 32

as variable interval schedules (see Figure 1c). However, two types of schedule generate very579

different local rate correlations as represented in a memory cycle of our model. The RI580

interval schedule establishes a steady rate of responding that, in conjunction with the581

temporal constraint on the outcome rate, ensures the rate correlation encoded in memory582

cycle is low. By contrast, a fixed schedule produces a sustained variation in the local rate of583

responding in the form of a "scalloped" pattern in which responding is low immediately after584

the receipt of an outcome before increasing as the availability of the next outcome585

approaches in time. As a consequent, the contrasting response rates within the interval586

ensures that the agent continues to experience a local rate correlation however much training587

is given. Importantly, this prediction accords with the report by DeRusso et al. (2010) who588

reported that extended training on a RI schedule established behavioral autonomy, whereas589

FI responding remained sensitive to outcome devaluation after equivalent training.590

Choice training.591

The analysis of extended makes clear that, according to rate correlational theory, the592

conditions for developing behavioral autonomy are not directly determined by the operant593

schedule or the amount of training but rather by whether or not the agent experiences a594

correlation between the rates of responding and outcomes as represented within the memory595

cycle. To recap, embedding rate correlational theory within a dual-system model predicts a596

reduction in the experienced rate correlation through the development of invariant597

stereotyped responding with the growth of habit strength, an effect enhanced in the case of598

interval schedules by the temporal control of outcome availability.599

The cardinal importance of the experienced rate correlation is reinforced by the600

contrast between the single-response training, which has been our focus so far, and601

free-operant choice or concurrent training. It has long been known that responding remains602

sensitive to outcome devaluation when the training involves interleaved experience with two603
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different response-outcome contingencies (Colwill and Rescorla, 1985; Colwill and Rescorla,604

1988). However, of more directly relevance to the present analysis is the study by Kosaki and605

Dickinson (2010), which we have already discussed briefly with respect to the differential606

reinforcement of long IRTs, in that they directly compared behavioral autonomy after607

concurrent and single-response training.608

To recap, Kosaki and Dickinson (2010) trained rats on two RI schedules that were609

concurrently active during each session of training. In one group, the choice group,610

responding on different levers produced different outcomes. Another group of rats, the611

single-response group, received the same two outcomes, only that in this group one of the612

outcomes was earned by responding on one lever, whereas the other outcome was delivered613

non-contingently after the same average period of time as the contingent outcome but614

independently of responding. After 20 sessions, a contingent reward was devalued in both615

groups by aversion conditioning and responding tested in a subsequent extinction session .616

Kosaki and Dickinson observed that responding in the single-response group was insensitive617

to devaluation, whereas the choice group markedly reduced the rate of the response whose618

outcome was devalued. There are two points to note about this finding. First, the619

devaluation effect was assessed against control conditions in which the other outcome was620

devalued. As a consequence, any effects of contextual conditioning on general performance621

was equated across conditions. Second, the same devaluation effects was found whether or622

not the choice was tested with both levers present or just a single lever. Thus, the623

devaluation effect exhibited by the choice group arose from the training rather testing624

conditions. In conclusion, these results demonstrated that responding in the choice group625

was still under goal-directed control even when similar training extension rendered626

responding habitual in the single-response group.627

Recall that, according to the rate correlation component of our dual-system model,628

behavioral autonomy develops through extended training because responding becomes629
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stereotyped with little variation across time-samples, thereby yielding a low rate correlation630

within a memory cycle, an effect compounded by the intrinsic low correlation engendered by631

an interval contingency. However, response rate variation across time-samples is an inevitable632

consequence when the agent is engaged with two interval sources of reward. When engaged633

in one of the sources, the memory samples will register neither responses nor outcomes from634

the non-engaged source. Consequently, any memory cycle containing a switch with have635

some samples with no response nor outcomes representations of the switched-to-source and636

other samples containing these representations. And, of course, the same will be true of the637

switched-from-source. As a consequence, the agent will experience a sustained rate638

correlation for both responses, each of which will therefore sustained goal directed control.639

To substantiate this intuitive analysis, we simulated a concurrent choice procedure640

similar to that employed by Kosaki and Dickinson (2010) using our dual-system model. The641

simulations were run under the same conditions as the previous ones for interval training. It642

is well established that the probability of switching away from a source remains constant643

during responding to that source (Heyman, 1979) and so we programmed a fixed probability644

per 1-s time sample, pswitch, for a change-over between levers in the case of the choice group.645

Inspection of the authors’ original data-set revealed that their rats switched between levers646

on average every 10 s; we therefore set pswitch = .1 for the following simulations.647

Figure 10 shows the results of the simulation by the dual-system model for this choice648

experiment. As can be seen, similar amounts of training under a choice procedure yield649

significant contributions of the goal-directed system compared to single training. The result650

holds even when the amount of training is sufficient to drive the habit strength to asymptote,651

a factor that should reduced the experienced rate correlation, and hence goal directed control652

if only a single response was available. In summary, the model predicts that both systems653

should contribute to the control of responding under choice training, and therefore outcome654

devaluation should be effective in modulating responding under choice procedures, in line655
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with the results reported by Kosaki and Dickinson (2010).656

Figure 10 . Simulations Kosaki and Dickinson (2010), investigating sensitivity to reward deval-
uation in a choice procedure. The choice group was trained with two responses concurrently
available under an RI schedule.

One thing to note with regard to Kosaki & Dickinson’s (2010) study is that the657

outcomes produced by each response differed in their sensory properties, which is critical if658

the dual-system model is to predict devaluation sensitivity after overtraining. Using the659

same outcome for each of the responses effectively changes the schedule into a660

non-contingent one for both responses because the outcome rate when the agent is661

responding to one source would be the same as that when response are not directed at that662

source. Hence, the rate correlation for this response should be close to zero with the663

consequence that responding under such a schedule should be purely habitual. Holland664

(2004, Experiment 2) conducted an experiment where the same training regime was given to665

two different groups of rats under interval schedules, with two different responses and666

outcomes available in one group, and with two responses producing the same outcome in667

another group. After extended training, only the rats in the group trained with multiple668

outcome was sensitive to devaluation; using a single outcome even when two responses were669
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available made responding habitual, in line with the predictions of our model.670

Extinction.671

As it stands, the rate correlation system in our model makes what at first sight appears672

to be a highly problematic prediction: goal-direct control should never extinguish. Recall673

that the goal-directed system only computes the response-outcome rate correlation for674

memory cycles in which at least one response and one outcome are registered in memory.675

The consequence of this assumption is that goal-directed strength remains frozen throughout676

extinction at the the level attained during acquisition following the last memory cycle that677

contained an outcome representation.678

Although not generally acknowledged by RL theory, this prediction accords with a679

series of studies conducted by Rescorla (1993), who reported that the impact of the outcome680

devaluation is not reduced by extinction. In one of his experiments, Rescorla trained two681

responses each with a different outcome, and then one of the responses was extinguished682

before a final devaluation test. Rescorla found that devaluation one of the original training683

rewards produced a comparable reduction in performance of the associated response in684

extinguished and non-extinguished conditions, thereby demonstrating that goal-directed685

learning survived the extinction phase. The left panel of Figure 11 presents the comparable686

outcome devaluation effect observed by Rescorla (1993) in the extinguished and687

non-extinguished conditions. It should be noted that the relatively high response rates in the688

extinguished condition reflects the fact that responding was reacquired with a third outcome689

prior to the devaluation test to ensure comparable response rates at test. If the goal-directed690

system remains relatively unaffected by extinction procedures, what would then explain the691

systematic decrease in responding observed across extinction sessions? One possibility,692

originally suggested by Colwill (1991), is that the habit system inhibits the goal-directed693

system during the extinction phase, masking the contribution that would otherwise be694
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present during contingent response-outcome training.695

Our dual-system model anticipates the acquisition of this inhibitory habit strength696

during extinction. In our model, the prediction error term in the habit algorithm includes697

the total prediction determined by the habit and goal-directed strengths g and h,698

respectively. Assume that cycle k is the last one containing response and outcome events in699

memory (the last cycle in training, in this example). If g retains a positive value during700

extinction, because the response-outcome rate correlation is not computed in a memory cycle701

that does not contain any outcomes, then gk′ = gk = g0 for all cycles k′ in extinction. Then702

it follows that the prediction-error for h will be negative at each time step703

(PEt = −(ht + g0)) and hence there will be a systematic decrease of h during extinction.704

The reductions in h will in turn decrease p with training, and responding will eventually705

extinguish. Indeed, for complete extinction to occur, the habit strength, h, will have to706

become negative or inhibitory because g remains constant and positive throughout the707

extinction phase. To simulate extinction, we initially trained our virtual rats as in previous708

simulations and then suspended outcome delivery for 2000 memory cycles. As can be709

appreciated in the right panel of Figure 11, the model correctly predicts a systematic710

decrease in total responding while maintaining a positive goal-directed strength, thereby711

providing an account of the retention of goal-directed control reported by Rescorla 7.712

A different prediction in this regard can be made with respect to contingency713

degradation manipulations. Indeed, to reduce the goal-directed strength in our rate714

correlation system the agent would have to be transferred from a contingent to a715

non-contingent schedule in which outcomes occur independently of responding, and716

7 The decrease in p under the value of α− chosen for previous simulations made p decrease at a low rate and
remained at a positive and low value after 2000 memory cycles. Therefore, for illustrative purposes, in the
simulations shown in Figure 11 we employed a higher value for α− and kept everything else identical to
previous simulations (see Supplemental Material for the parameters used in each of the simulations shown in
the paper).
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responding should become insensitive to devaluation under these conditions. As far as we717

know, the impact of non-contingent training on outcome devaluation has not been reported 8.718

Figure 11 . Simulations of a devaluation manipulation after extinction. The left panel shows
the results reported by Rescorla (1993), which involved devaluation of one outcome for one
response after an extinction phase compared with a response for which the outcome was not
devalued. A control group had similar training but without undergoing an extinction phase.
The right panel shows the final values after 2000 cycles of extinction for the dual-system
model.

Additional phenomena and some outstanding issues719

In spite of the wide range of phenomena that we have shown can be captured by this720

dual-system model, there still remain a number of outstanding issues that will need to be721

addressed in future refinements of the theory, and other phenomena that follow directly from722

the simulations presented in this paper. We discuss some of these below.723

8 Exposure to non-contingent outcomes does not reduce outcome-specific Pavlovian-instrumental transfer
(Colwill, 2001; Rescorla, 1994), which is thought to be unaffected by outcome devaluation. However, transfer
learning differs from that mediating goal-directed behavior (1994).
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Performance after extended training724

As Figure 9d clearly illustrates, the dual-system model predicts that a ratio schedule725

maintains a higher response rate than a comparable interval schedule early in training, as726

was originally observed by Dickinson et al. (1983). With more extended training, however,727

the difference in performance disappears as responding comes under habitual control. This728

prediction is clearly at variance with the sustained schedule effect on performance widely729

documented in the literature (e.g. Catania et al., 1977). We have already noted that interval730

schedules differentially reinforce long IRTs—the longer an agent waits before responding731

again, the more likely it is that a further outcome has become available with the resultant732

increase the probability of reinforcement (see Figure 1a). To the extent that habit learning is733

conceived of as a form of stimulus-response learning, we should expect this form of learning734

to be sensitive to the temporal cues registering the time since the last response and to come735

under the control of these cues with the resulting impact on the rate of responding. By736

contrast, on a ratio schedule the probability of reinforcement is independent of the IRT and737

responding should be independent of the size of the emmited IRTs (for a discussion, see738

Chapter 4 in Mackintosh, 1974).739

As the habit system does not incorporate a mechanism for the differential stimulus740

control of responding, we cannot use our model to assess impact of IRT reinforcement on741

responding. However, if this differential reinforcement could be removed while implementing742

the low rate correlation characteristic of interval contingencies, the model predicts that there743

should be no sustained ratio-interval performance effect. Kuch and Platt (1976) specified744

such a schedule, now referred to as a regulated-probability interval schedule (RPI). Without745

going into the implementation details, the RPI schedule sets the probability of reinforcement746

for the next response so that if the agent continues responding at the current rate, the rate747

of the outcome will match that specified by the scheduled interval parameter. As a748

consequence, variations in the rate of responding will have little impact on the obtained749
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outcome rate so that the schedule maintains the low rate correlation characteristic of a750

standard interval schedule. However, as the outcome probability for the next response is751

fixed at the time of the preceding response, the RPI schedule, like a standard RR schedule,752

does not differentially reinforce any particular IRT. Consequently, our dual system model753

predicts that there should be no difference in the sustained responding on ratio and RPI754

schedules with matched outcome rates or probability.755

The limited empirical evidence on this contrast is mixed. Neither Tanno and Sakagami756

(2008) nor Perez et al. (2018), who both trained hungry rats to lever-press for a food757

outcome, reported a sustained difference between responding on ratio and matched RPI758

schedules, while observing the reduced response on a standard matched interval schedule. In759

contrast, Dawson and Dickinson (1990) observed a higher response rate of chain pulling on a760

ratio schedule than on a yoked RPI schedule and, more recently, Perez and Soto (2019) have761

reported a similar result in humans. This remains an anomaly for our dual-system model.762

Discriminative control763

As it stands, our dual-system model offers no mechanism by which goal-directed764

responding can come under stimulus control as the goal-directed strength, g, is solely a765

product of the correlation between responses and outcomes. There is, however, extensive766

evidence such responding can come under discriminative control. The most compelling767

comes from an elegant biconditional discrimination studied by Colwill and Rescorla (1991).768

They trained rats with two different responses (R) and outcomes (O) and arranged for the769

different stimuli (S) to signal which outcome would be produced by each response. When S1770

was present, R1 led to O1 and R2 to O2 whereas the opposite relation held when S2 was771

present (R1 led to O2 and R2 led to O1). When one of the outcomes was then devalued, rats772

responded more in the extinction test during the stimulus that during training signalled the773

non-devalued outcome for the target response. As this design equates the S-O associations774
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across stimuli and the R-O association across responses, this devaluation effect requires the775

encoding of the triadic relationship between S, R and O, a representation that is not776

incorporated into our current formulation of rate correlation theory.777

There is evidence, however, that goal-directed responding does not spontaneously come778

under the control of the stimulus context in which the response-outcome contingency is779

experienced. Thrailkill and Bouton (2015) found that after limited instrumental training the780

magnitude of the devaluation effect shown by their rats was unaffected by a shift from the781

training context to another familiar context between the end of instrumental training and782

testing. It is unlikely that their rats did not discriminate between the contexts because with783

more extended training, when responding had become autonomous of outcome value, this784

context shift reduced overall responding. This pattern of results accords with the idea that785

with limited training responding is predominantly under goal-directed control that encodes786

only the response-outcome relationship and, consequently, this control transfers787

spontaneously across contexts as anticipated by our current formulation of rate correlation788

theory. However, when responding has become under habitual control with more extended789

training, a context shift automatically produces a response decrement because such control790

reflects the development of context (stimulus)-response strength.791

Motivational processes792

Different processes are involved in the motivation of habits and goal-directed action793

and so we shall consider each in turn.794

Motivating habits. Discriminative control, whereby a stimulus or context signals795

or "sets the occasion" for a response-outcome contingency, is not the only function by which796

stimuli and contexts impact upon free-operant responding. In accord with classic two-process797

theory (Rescorla and Solomon, 1967), it is well established that Pavlovian stimuli associated798
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with appetitive reinforcers motivate the performance of free-operant behavior reinforced with799

an appetitive outcome. Estes (1948) was the first to demonstrate this effect using what has800

come to be called the Pavlovian-instrumental transfer (PIT) effect. He initially established a801

Pavlovian stimulus as a signal for food before training his hungry rats to press a lever for the802

food. When he then presented the stimulus for the first time while the rats were803

lever-pressing, he observed an increase in response rate during the stimulus. Given this804

transfer, two-process theory assumes that the Pavlovian conditioning to contextual cues805

occurs concurrently with instrumental learning during standard operant training so that the806

context comes to exert a motivational influence on free-operant performance.807

The concordance between the impact of outcome rate on operant performance and808

Pavlovian responding accords with this two-process theory of instrumental motivation. It809

has long been recognized that an important variable in determining the rate of responding810

on interval schedules is the outcome rate rather than the outcome probability per response,811

and Killeen (1982; 1978) proposed that outcome rate has a direct motivational impact, so812

that higher outcome rates will have a general and sustained energizing effect on behavior.813

Indeed, this effect has been formalized by Herrnstein and collegues (Villiers and Herrnstein,814

1976) in terms of a hyperbolic function between response and reinforcement rates and, more815

recently, Harris and Carpenter (2011) have reported that the same function applies to816

Pavlovian conditioning of magazine approach in rats, consistent with the idea that the817

sensitivity of instrumental responding outcome rate reflects the motivational influence of818

Pavlovian contextual conditioning.819

This Pavlovian motivation modulates habitual rather than goal-directed behaviour.820

Holland (2004) reported that a larger PIT effect when behavioral autonomy had been821

induced by extended training, whereas Wiltgen et al. (2012) reported a similar association822

between the habitual status of responding and general PIT in mice by contrasting ratio and823

interval training. They observed greater PIT following interval training when performance824
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was impervious to outcome devaluation than following ratio training when responding was825

sensitive to the current outcome value. Further evidence that the target of Pavlovian826

motivation is habitual comes from the fact that the magnitude of PIT was unaffected by827

whether the outcome associated with the Pavlovian stimulus was the same as or different828

from the instrumental outcome 9.829

The most compelling demonstration of the generality of Pavlovian motivation comes830

from an irrelevant incentive study of PIT. Dickinson and Dawson (1987) trained hungry rats831

to lever-press for food pellet while also pairing one stimulus with the pellets and another832

with sugar water in the absence of the lever. When for the first time the rats were given the833

opportunity to press the lever during the stimuli while thirsty and in the absence of any834

outcomes, they did so more during the sugar-water stimulus than during the pellet signal.835

This finding establishes two important points. The first is the generality of the motivational836

influence which augments any prepotent habitual response even if that response was trained837

with a reinforcer that differs from that associated with the stimulus. Second, the Pavlovian838

motivational process can endow habitual responding with a veneer of goal-directedness. The839

shift of motivational state from training under hunger to PIT testing under thirst is an840

apparent outcome revaluation procedure in that the sugar-water reinforcer remained relevant841

to the test motivational state whereas the pellet reinforcer did not. However, this apparent842

outcome revaluation effect did not indicate goal-directed control because the revaluation did843

not operate through a representation of the action-outcome contingency in that lever844

pressing was trained with the food pellets (Corbit et al., 2007), not the sugar water. In845

conclusion, the sensitivity of this Pavlovian motivation to an outcome revaluation procedure846

9 This motivational effect of Pavlovian stimuli on instrumental responding is called general PIT, as it
increases the probability of responding for all the available responses and is thought to be mediated by a
general energizing effect of a stimulus that is associated with the motivational properties of the outcome.
This is in contrast with specific PIT, where responding is enhanced only to the response that predicts the
same outcome as in training and is thought to be mediated by the association between the stimulus and the
sensory properties of the outcome (see Cartoni et al., 2016 for a review).
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can easily lead to the erroneous attribution of goal-directed status. For example, Jonkman et847

al. (2010) reported that rate lever pressing remained sensitive to outcome revaluation even848

after extensive training on an interval schedule. It is very likely, however, that the apparent849

devaluation effect was mediated by Pavlovian contextual motivation of habitual responding.850

Extinguishing context conditioning prior to devaluation test significantly reduced the851

magnitude of the effect (see also Killcross and Coutureau, 2003).852

Recall that the performance function, Equation 6, which transforms response strengths853

into response probability, includes a term I that represented the current incentive value of854

the outcome and in product with g determines the contribution of the goal-directed system855

to performance. By analogy, we also include an additional parameter that reflects the856

motivational effects of appetitive Pavlovian stimuli on habitual performance. Following857

Hull’s (1943) classic nomenclature, we denote this parameter as D for drive, which multiplies858

the habit strength h to represent the contribution of the habit system to overall performance.859

Like the Hullian drive concept, D appears to exert a general motivational effect, at least860

within the appetitive domain, so that the complete response function has the form861

pk+1 = s(Igk +Dhk), where s is the sigmoid function as shown in Equation 6.862

Incentive learning. In contrast to the Pavlovian motivational control of habits,863

animals have to learn about the incentives value I of ouctomes, such as foods and fluids,864

through consummatory experience with these commodities if they are to function as goals of865

an instrumental action, a process that Dickinson and Balleine (1994; 2002) refer to as866

incentive learning. Moreover, they also also have to learn how these incentive value vary867

with motivational state. Dickinson and Dawson (1988; 1989) first reported the role of868

incentive learning in the motivational control of goal-directed action using an irrelevant869

incentive procedure similar to the one they had employed to investigate the Pavlovian870

motivation of habits, namely a shift from training under hunger to testing under thirst.871

Their rats were initially trained to lever-press and chain-pull, one for food pellets and the872
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other for sugar water, while hungry. Note that this training ensured that the contextual873

stimuli were equally associated with both outcomes whatever the action-outcome assignment,874

thereby equating any contextual motivation. During a subsequent extinction test, thirsty875

rats only preferentially performed the action trained with the sugar water if they had876

previously had the opportunity to drink the sugar water while thirsty, indicating that they877

had to learn about the incentive value of the sugar water when thirsty. Such incentive878

learning is required not only for shifts between motivational states but also variations with a879

motivational state, such as that between satiety and hunger (Balleine, 1992). Dickinson and880

Balleine (2019; 2009) have subsequenty argued that the assignment of incentive value to an881

outcome is based on the experienced hedonic reactions to, and evaluation of that outcome.882

In summary, the motivation of habits and goal-directed actions is varied and complex,883

even in the case of basic biological commodities, such food and fluids. Habits are motivated884

by a general appetitive drive conditioned to contextual and eliciting stimuli, whereas the885

incentive value of the outcome, which is learned, motivates goal-directed action. Habitual886

motivation is directly sensitive to shifts in motivation state, whereas the agent has to learn887

about incentive values of outcomes in different motivational states before they can control888

goal-directed action.889

Avoidance890

So far we have developed rate correlation theory within a dual-system framework by891

reference to positive reinforcement of free-operant behavior using appetitive or attractive892

outcomes. However, Baum (1973) also analyzed free-operant avoidance in terms of his893

correlational law of effect. Under a typical free-operant avoidance contingency, a response894

causes the omission or postponent of a future scheduled outcome with the consequence that895

our recycling memory model yields a negative goal-directed strength (g < 0), at response896

rates that do not avoid all the schedule outcomes in a memory cycle. On the assumption897
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that experience with the aversive outcome through incentive learning produce a negative898

incentive value, (I < 0), the product of the negative goal-directed strength and incentive899

value, Ig, will be positive and thereby contribute to the probability of a response being900

performed, p. Moreover, once the response rate is sufficient to avoid all schedule outcomes901

within a memory cycle, the goal-direct strength will remain frozen at the established g value902

and thereby produce sustained avoidance in the absence of the aversive outcomes. This903

simple mechanism would explain the persistence of avoidance actions in the absence of an904

explicit reinforcing event, which has been the subject of multiple discussions in the literature905

(for a recent review, see Gillan et al., 2016).906

The most radical aspect of this account is its assumption of goal-directed control of907

avoidance responding. Although there are precedents for a goal-directed account of908

avoidance (e.g. Seligman and Johnson, 1973), contemporary RL theory follows traditional909

two-process theory in assuming that avoidance responding is purely habitual or MF (see910

Maia, 2009). Although human discrete-trial procedures have demonstrated a reduction in911

avoidance following revaluation of the aversive outcome (Gillan et al., 2011), more critical for912

a rate correlation account of goal-directed avoidance is a demonstration by Fernando et al.913

(Fernando et al., 2014a) of an outcome revaluation effect using a a free-operant schedule.914

They trained rats to lever-press to avoid foot-shocks that were programmed to be delivered915

at fixed intervals. Their revaluation procedure consisted of non-contingent presentations of916

the shock under morphine, so that pain would be reduced and the aversive status of the917

shock devalued. During an extinction test, their rats decreased responding compared to a918

non-revalued control group, demonstrating that the their rats were performing the avoidance919

action to reduce the rate of an unpleasant outcome.920

In accord with our dual-system model, Fernando and colleagues (2014) also921

investigated the role habit learning in free-operant avoidance. An enduring problem for922

reinforcement theory is the absence of any event following an avoidance response that could923
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act as a reinforcer. However, Konorski and Miller discovered that avoidance training924

established performance of the response itself, or more strictly speaking the feedback stimuli925

generated by responding, as a conditioned aversive inhibitor and, subsequently, Weisman and926

Litner (1969) reported that an explicit aversive inhibitor can function as a conditioned927

reinforcer of free-operant avoidance responding by rats. Taken together, these results suggest928

that habitual responding may be reinforced by the feedback stimuli generated by responding929

itself. In accord with this analysis, Fernando et al. (2014) found that avoidance responding930

by their rats was enhanced by the presence of an explicit feedback stimulus and, moreover,931

this enhancement appeared to be habitual. Although exposure to the feedback stimulus932

under morphine enhanced its reinforcing property, the enhancement was not evident in an933

outcome revaluation test. This finding led Fernando and colleagues to conclude that the934

responding generated by the presence of the explicit feedback stimulus was habitual.935

In summary, free-operant avoidance, like its appetitive counterpart, is under joint936

control by goal-directed and habitual systems with the former reflecting rate correlation937

learning between the response and aversive outcome and the latter reinforcement by the938

aversive inhibitory property of response-generated feedback stimuli.939

Conclusions940

In this paper we have formalized a theory of instrumental actions and habits in941

free-operant conditions based on two different systems that concurrently control behavior.942

After discussing the multiple difficulties of theories based solely on outcome probability and943

reward prediction-error to explain instrumental control and performance, we presented an944

alternative theory of goal-directed control where agents compute a correlation between rates945

of responding and rate of outcomes in a fixed working memory to establish the casual946

association between their actions the outcomes and jointly determine the amount of947

responding and sensitivity to outcome revaluation under different reward schedules. We948
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showed how such a theory can capture instrumental performance under ratio and interval949

schedules when reward probabilities or rates are matched, how goal-directed control950

transitions to habits with extended training and a faster development of habits under951

interval than under ratio schedules. The model also explains why responding under choice952

procedures tends to remain goal-directed control in spite of the amount of training when953

different outcomes are employed. These results make our model unique in its joint954

predictions with respect to instrumental control and performance in free-operant training.955

Another aspect which is unique to the present model is that it provides a mechanism956

to explain the survival of goal-directed control across extinction. In our model, the reward957

prediction-error for the habit system includes the total prediction of both behavioral systems.958

This, together with the additional assumption that the goal-directed system can only959

compute a rate correlation when there are events in memory which can be processed, make it960

so that the habit system effectively inhibits the goal-directed system when the outcome is961

suspended in an extinction phase. The implication is that responding extinguishes because962

the sum of the strengths of the systems approaches zero, even though the goal-directed963

system remains active with the value of the last rate correlation experienced during964

instrumental training.965

In summary, the main contribution of our theory is extending the widely-held view966

that outcome probability and reward-prediction error are the cardinal determinants of967

instrumental behavior, to one in which agents’ computations are made simultaneously in968

correlational and contiguity systems to determine the decision to perform an instrumental969

action. Although there is some evidence suggesting that humans can compute a970

response-outcome rate correlation to inform their causal beliefs of a response-outcome971

association (Tanaka et al., 2008), the exact neural processes underlying this computation,972

and the way in which these computations are transferred to performance remain unknown973

(Perez and Soto, 2019). This is an under-studied area for which the predictions of the974
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present model might help our understanding of goal-directed and habitual processes, as clear975

evidence for arbitration between the systems in humans is still sparse.976
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