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Summary 

Decisions in complex environments rely on flexibly utilizing past experience as required 
by context and instructions. This process depends on medial frontal cortex (MFC) and the medial 
temporal lobe (MTL), but it remains unknown how these structures interact during memory 
retrieval. We recorded single neurons in MFC and MTL while human subjects switched between 
making memory and categorization-based decisions. Here we show that MFC rapidly implements 
changing task demands by utilizing different subspaces of neural activity during different types of 
decisions. Choices requiring memory retrieval selectively engaged phase-locking between theta-
frequency band oscillations in MTL and MFC neurons. Choice neurons signaled decisions 
independent of output modality. In contrast, no effect of task demands was seen locally in the 
MTL. This work reveals a mechanism for selectively engaging memory retrieval and shows that 
unlike perceptual decision-making, memory-related information is only represented in frontal 
cortex when choices require it. 
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Introduction 

Behavior in complex environments requires decisions that flexibly combine stimulus 
representations with context, goals, and memory.  Two key aspect of such cognitive flexibility are 
the ability to selectively utilize relevant information depending on task demands, and to retrieve 
information from memory when needed. The neural mechanisms that underlie flexible decisions 
are beginning to be understood in the case of perceptual decision-making [1-3], with evidence for 
both early gating mediated by top-down attention [4] and late selection of relevant features in 
prefrontal cortex (PFC) [2]. In contrast, little is known about the mechanisms of decisions that 
depend in addition also on associated category knowledge and memory, an ability that humans 
exhibit ubiquitously. In particular, it remains unknown how memory retrieval is selectively 
engaged when decision-relevant information needs to be actively searched for in memory [5]. 

The medial frontal cortex (MFC) is critical for complex behavior, and registers cognitive 
conflict, errors, and choice outcomes [6-8]. In particular, the MFC supports flexible decision 
making in two ways: i) by representing task sets [9, 10] and context [11], and ii) by selectively 
engaging memory retrieval through functional interactions with the amygdala and hippocampus 
[12-17] (henceforth referred to jointly as the medial temporal lobe, MTL). A mechanism that 
facilitates such MFC-MTL interactions is phase-locking of MFC activity to oscillations in the 
MTL, a mode of interaction that has been extensively investigated in rodents during spatial 
behavior [18-20] and fear conditioning [21, 22], but whose broader role remains poorly understood 
[23], particularly in humans. Similarly, findings from human neuroimaging indicate that the MFC 
is involved in memory search [17, 24-28] , but the mechanisms by which such control is 
implemented are unknown. In particular, it remains unknown what features of decisions and 
context are represented in human MFC; whether MTL-dependent memory retrieval selectively 
engages synchrony between the two structures, and if synchrony can be engaged dynamically 
when required. Our lack of knowledge about the nature of representations in human MFC stands 
in stark contrast to the patent behavioral ability of humans to flexibly recruit memory processes in 
everyday life [29, 30] and to our detailed knowledge of memory representations in the human 
MTL, where cells are known to represent aspects of declarative memories such as the familiarity 
and the identity of a stimulus [31-33]. This gap in knowledge motivated our study: how are MTL-
based representations recruited depending on task demands through interactions with the MFC? 

To address these open questions, we utilized simultaneous recordings of single neurons 
and local field potentials in the human MFC and MTL. We showed images to subjects and asked 
them to provide a "yes" or "no" answer, with either a button press or eye movement, for one of 
two possible tasks: a visual categorization task [1] or a new/old recognition memory task [31] (Fig. 
1A,B). Subjects received no training and were informed explicitly of the type of task and response 
modality to use before the start of every block. This approach allowed us to isolate the effects of 
explicit task demands from sensory stimuli and motor response type. Based on a combination of 
single-neuron, population, and spike-field coherence analysis, we found that task demands reshape 
the representational geometry formed by MFC but not MTL neurons, that persistently active MFC 
context cells encode the currently active task, and that memory retrieval is accompanied by phase-
locking between local field potentials in the MTL and spikes of memory-choice cells in MFC. 
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Results 

Task and behavior 

We recorded from 1430 single neurons across four brain areas (Fig. 1C-D; see Table S1; 
33 sessions in 13 subjects): n=203, 460, 329, and 438 neurons from anterior hippocampus, 
amygdala, dorsal anterior cingulate cortex (dACC) and pre-supplementary motor area (pre-SMA), 
respectively. We refer to hippocampus and amygdala combined as MTL (n=663 cells), and to 
dACC and pre-SMA combined as MFC (n=767 cells).  

Subjects viewed a sequence of 320 images, grouped into 8 blocks of 40 images each, in 
each session (Fig. 1A-B). Subjects were instructed at the beginning of each block which decision 
to make and which response modality to use to communicate their decision. Subjects made a “yes” 
or “no” decision for each trial to either indicate whether an image belonged to a given visual 
category (“Categorization Task”) or whether an image had been seen before in the task or not 
(“Memory task”); no feedback was provided (see Fig. 1A legend and Methods for details on the 
task). Each image shown belonged to one of four visual categories: human faces, monkey faces, 
fruits, or cars. In each block, half of the images shown were repeated and half were novel (except 
in the first block, in which all images were novel). For the categorization task, the target category 
(“yes” response) was chosen randomly to be either human faces, monkey faces, fruits, or cars.  

Choices were indicated either using saccades (leftward or rightward saccade) or button 
press with central fixation (Fig. 1E-F; mean ± s.d., 94 ± 15% of all gaze positions fell within the 
image shown). Reaction times (RT) were significantly longer in the memory compared to the 
categorization task (Fig. 1G, mean RT of 1.48s ± 1.1 vs. 1.19s ± 1.2 respectively, p<1e-20, 2-
sample KS test, mean ± s.d. across all trials in a given task). Subjects had an average accuracy of 
97 ± 6% vs. 71 ± 6% in the categorization and memory task, respectively (mean ± s.d. across n = 
33 sessions). This difference in accuracy remained after we matched for RT between the two tasks 
(96 ± 6% vs. 72 ± 8% with matched RT of 1.23s±0.60 vs. 1.24s±0.60 for the categorization and 
memory task, respectively; see methods for matching procedure; also note that even without 
matching trials by RT, the initial response in terms of arousal was not different between tasks as 
assessed by pupillometry, see Fig. S1J-L). In the memory task, accuracy increased as a function 
of how many times an image had been shown (Fig. 1H, βappearances = 0.56, p <1e-20, mixed effects 
logistic regression; also see Fig. S1C-D for effect of target vs. non-target on memory 
performance).  Lastly, subjects had shorter RTs on “yes” (seen before) decisions than on “no” 
(novel stimulus) decisions in the memory task (Fig. S1A, see legend for statistics). Together, the 
behavior of our subjects is as expected from an MTL-dependent recognition memory task [31] .  

 

Effects of task type and response modality in the medial frontal cortex 

 Instructions about the type of task (memory or categorization) and response modality 
(button press or saccade) were shown at the beginning of each block (Fig. 1A, B). Cells showed 
significant modulation of their firing rate during the baseline period as a function of task type (Fig. 
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2A-B shows an example in pre-SMA). At both the single-neuron and population level, significantly 
more task-type information was available in the MFC compared to MTL (25% of MFC cells vs. 
12% of MTL cells, 165/767 vs. 79/663, χ2-test of proportions, p = 1.5e-6; Fig. 2C, population 
decoding accuracy of 98% vs. 69% in MFC and MTL, respectively, p<1e-5, Δtrue = 29% vs. 
empirical null distribution, see Methods). Similarly, more information about response modality 
was encoded by MFC vs. MTL cells during the baseline period (Fig. S2E shows  an example; 14% 
vs 10% of cells; 84/593 vs. 59/586 in MFC and MTL respectively; χ2-test of proportions, p = 0.03; 
see; population decoding performance 84% vs. 65%, Fig. 2D; p<1e-5, Δtrue = 19% vs. empirical 
null distribution). Together, these results show that abstract contextual information is represented 
in the MFC during the inter-trial baseline periods. 

After a task switch, contextual signals emerged rapidly within 1-2 trials in the new context 
(Fig. 2H).  Task switching costs are also reflected in the subjects’ longer reaction times shortly 
after a change in task or effector type (Fig. S2A). Furthermore, task type representations during 
the baseline period were stronger on trials where the subject produced a fast response versus those 
where the response time was slow (Fig. 1I), indicating behavioral relevance. Lastly, we tested 
whether the two types of contextual signals were sufficiently robust to avoid interference with one 
another, using a cross-condition generalization decoding analysis [34] (Fig. 2E). We first trained 
a decoder to discriminate task type on trials where the subject was instructed to reply with a button 
press, and then tested the performance of this decoder on trials where the subject was instructed to 
use saccades (and vice-versa). This analysis revealed that the two neural representations generalize 
in the MFC but not in the MTL (Fig. 2F-G). Together, this shows that the contextual signals in 
MFC were behaviorally relevant. 

 

Cross-condition generalization of memory and image category 

 We next asked whether the neural representations of image category and familiarity are 
sensitive to task demands. At the single-unit level, we examined visually-selective (VS) cells [32], 
whose responses are thought to reflect input from high level visual cortex, and memory-selective 
(MS) cells [31], whose response signals stimulus familiarity (Fig. 3A-B shows examples). 40% of 
MTL cells were visually selective (264/663) and 11% (73/663) were memory selective. By 
comparison, in the MFC, 13% (103/767) of the cells were visually selective and 11% (84/767) 
were memory selective. We first performed single-neuron analysis of the selected MTL cells and 
found that both visual and memory selectivity was present in both the memory and categorization 
blocks (Fig. S3D,E and S3G-I; only selected cells were used for training the decoder). We next 
took a population-level approach (without selection) to answer the question whether the same or 
different groups of cells represent visual-and memory information across tasks (Fig. 3C-H). We 
used decoding accuracy based on condition averages to quantify the extent to which a particular 
type of information was represented (see Methods). In both MTL and MFC, image category could 
be decoded well above chance (Fig. 3C, 100% and 58% in MTL and MFC respectively, chance 
level = 25%). In the MTL, the ability to decode category was not affected by the task (Fig. 3C, 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/809673doi: bioRxiv preprint first posted online Oct. 18, 2019; 

http://dx.doi.org/10.1101/809673


Page 5 of 28 

100% for both tasks). In contrast, in the MFC, decoding accuracy for image category was 
significantly higher in the memory task (Fig. 3C, 72% vs. 43%).  Similarly, memory (i.e. new vs. 
old) was decodable in both the MTL and MFC (Fig. 3D, 80% vs. 84% respectively, chance level 
= 50%), with no significant difference in decoding accuracy between the two tasks in MTL (Fig. 
3D, 79% vs. 80% in categorization and memory trials respectively) and significantly better 
decoding ability in MFC in the memory task (Fig. 3D, 96% vs. 73%).  

These results indicate that information about familiarity and stimulus category in the MTL 
is independent of task demands, whereas it is sensitive to task in the MFC. To gain insight into the 
geometry of the population-level representations, we next assessed whether the decoders trained 
to report familiarity and the category of the stimuli in one task they would generalize to the other 
task. This would indicate that familiarity and category are represented in an abstract format, as 
defined in [34]. (Fig. 3F). The cross-task generalization performance is reported for image 
category in Fig. 3G and for familiarity in Fig. 3H. First, cross-task generalization performance 
was greater in the MTL than MFC for both image category (100% vs. 54%, averaged across the 
two cross-condition decoding performances) and familiarity (79% vs. 67%). This suggests that the 
degree of abstraction of these two variables is higher in the MTL than in the MFC. Note that in the 
MTL, familiarity decoding was supported by amygdala but not hippocampal neurons (Fig. S4). 
Second, to help understanding the geometry of these representations, we projected the average 
MTL and MFC population activity for all possible pairings of familiarity, image category, and task 
(8 different conditions) into a 3D state-space using multi-dimensional scaling. For illustration 
purposes, we show this for the two image categories (fruits, faces) for which memory performance 
was the best (for all other analyses, we used all image categories). This revealed that in the MTL 
(Fig. 3E, left), the relative positions of a “new face” with respect to an “old face” is preserved 
across tasks (shown as different colored planes). The relatively parallel location of the subspace of 
neural activity occupied by the two tasks permits across-task generalization. This geometry is 
similar to the one observed in monkeys in a different task and discussed in [34]. In contrast, in the 
MFC (Fig. 3E, right), the relative positions of the four conditions are not preserved, which is 
consistent with the context sensitivity in MFC but not in MTL (Fig. 4G, H), suggesting a reason 
for the cross-task generalization performance. Together, these analyses show that the 
representation of image category and memory is the same across tasks in MTL, whereas in MFC 
representations were sensitive to task demands, a phenomenon that we investigated next in more 
detail.  

 

Representation of choice in the MFC 

We next investigated how the subject’s choice (yes or no) is represented. Cells in the MFC 
show modulation of activity with the subject’s choice (Fig. 4A shows examples). This signal was 
prominent in the MFC, with average population decoding performance of 89% in the MFC 
compared to 68% in the MTL (Fig. 4B, “yes” vs. “no” decoding). Choice decoding in the MFC 
was strongest for choices made during the memory task (Fig. 4B; 96% vs. 88% in the memory and 
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categorization task, respectively). To assess whether MFC neurons encoded the subject’s choices 
(yes vs. no) or the underlying memory (ground truth; new vs. old) during the memory task, we 
decoded choice and new/old from a subset of trials chosen such that 50% were correct (where 
choice equals memory) and 50% were incorrect (where choice is orthogonal to memory). This 
analysis revealed that decoding accuracy for choice was significantly larger than that for ground 
truth (84% vs. 63%, respectively, p<1e-5, Δtrue = 21% vs. empirical null distribution; Fig. 4G). 
Thus, MFC neurons represented choices during the memory task. 

The choice signal in both tasks was more strongly related to stimulus onset rather than 
response: decoding accuracy aligned to response time (button press or saccade) was significantly 
lower than when aligned to stimulus onset (Fig. S7A, B). As a control for potential confounds due 
to RT differences between tasks (see Fig. S1A), we acquired data from a separate control task in 
which we eliminated RT differences behaviorally by adding a waiting period (6 sessions in 5 
subjects; n=180 and 162 neurons in MTL and MFC, respectively; see Methods and Fig. S6). Like 
in the original task, MFC cells represented the subject’s choice (Fig. S6C-G), thereby confirming 
that this separation is not due to RT differences. As before, we used multi-dimensional scaling to 
visualize the population activity for the eight combinations of choices, task types, and response 
modality (Fig. 4C, see Methods). The resulting geometrical configuration indicates that choice 
decoding generalizes across response modality (Fig. 4C, top) but not across task types (Fig. 4C, 
bottom). We confirmed this hypothesis using cross-condition decoding, which shows that the 
choice signals did not generalize across tasks both across time (Fig. 4F) and in a single post-
stimulus time bin (Fig. 4E). To avoid confounds due to response time differences, we performed 
the fixed window analysis (Fig. 4E) only for the control task, where the timing between tasks was 
identical (Fig. S6B). Importantly, while the choice signal did not generalize across task types, it 
did so across response modality (Fig. 4D). In summary, population-level readouts of choice in the 
MFC were task specific because decoders trained on one task did not generalize to the other. 

We next examined whether the population-level analysis relied on different sets of neurons 
to decode choice in each of the two tasks. We did this by determining how individual cells are 
recruited by a linear decoder [34, 35]. For each cell, we quantified its importance [35] (see 
methods) for decoding choice in the memory and categorization task separately (Fig. S7C). Each 
cell can then be represented as an ordered pair of coordinates, where the x-value represents its 
importance in decoding choice from the categorization task and the y-value represents the same 
but for the memory task. Cells that report choice independently of task should lie on the diagonal 
(i.e. an angle of π/4). If we consider only the cells with an importance index that is in the 25th 
percentile of either task, we find that the distribution of angles is significantly bimodal across all 
cells (Fig. S7C, inset plot, p<1e-5, Hartigan dip test), with modes centered away from the diagonal. 
Despite this bimodality and the lack of cross-task generalization, groups of highly specialized cells 
for one task can still be used to decode choice in the other, albeit with significantly reduced 
performance. Note, however, that this requires training a new decoder since decoders don’t 
generalize between task. For example, training a separate categorization task choice decoder 
performs relatively well on cells selected to be strong memory-choice cells and vice-versa (Fig. 
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S7D).  

 It’s possible that any task the subject engages in might yield a unique choice axis that will 
not generalize to any other task. To test this possibility, we considered the four subtasks that make 
up the categorization trials in a given session (the target category can be any one of the four 
possible image categories). We tested whether the choice signal generalizes across these subtasks 
by training and testing across blocks requiring different categorizations. We found that yes vs. no 
decoding generalized across all sub-tasks in the categorization task but not the memory task (Fig. 
4H), suggesting that the choice axis is the same across these subtasks. Taken together, these results 
reveal a task-dependent and highly flexible utilization of different subspaces of neural activity that 
represents choices in the MFC.  

 

Task-dependent spike-field coherence between MFC cells and MTL LFP 

It is thought that the selective routing of decision-related information between MTL and 
MFC is coordinated by inter-areal spike-field coherence [18]. We therefore next asked whether 
MFC neurons phase-lock to ongoing oscillations in the LFP in the MTL and if so whether the 
strength of such interactions is modulated by task demands. We performed this analysis for the 13 
subjects and 33 sessions for which we simultaneously recorded from both areas (Fig. 5A 
summarizes our approach; see methods for details on preprocessing of the data). In the following, 
we only utilize neural activity from the 1s baseline period that precedes stimulus-onset to avoid 
confounds related to stimulus-onset evoked activity. Individual cells in the MFC show strong task 
modulation of MFC to MTL spike-field coherence (Fig. 5B shows a single-cell example in the 
dACC). At the population level, MFC cells show significantly stronger theta-band coherence with 
MTL oscillations during the memory compared to the categorization task (Fig. 5C, 8822 cell 
electrode pairs; p = 1.3e-7, paired t-test, measured at 5.5Hz). This was the case for both MFC-
hippocampus, and MFC-amygdala interactions (Fig. 5D, n = 3939, p = 8.8e-4; n = 4884, p = 4.3e-
5 respectively, paired t-test). This effect was due to changes in phase preference as there was no 
significant difference in MTL LFP power between the tasks (Fig. 5E, p = 0.08, paired t-test of 
signal power at 5.5Hz, estimate across all 8822 cell-electrode pairs). Out of the 767 MFC cells, a 
significant subset of ~100 cells were phase-locked to the theta-band MTL LFP (Fig. S9A), with 
the largest proportion preferring 3-8Hz.  

We next examined whether there was a relationship between the tuning of cells in MFC to 
choices and their inter-area coherence with MTL. We selected for two types of choice cells: those 
signaling choices in the categorization and those in the memory task (see Methods for selection 
model; note selection controls for RT differences). This revealed that 101/767 and 82/767 cells are 
significantly modulated by choice during the memory and categorization task, respectively 
(p<0.001 vs. chance for both; see Fig. 4A Cell 2 and 1 for examples). Single-unit decoding showed 
that choice cells selected in the memory task did not carry information about the subject’s choice 
in the categorization task and vice-versa (Fig. S5A-D). In addition, the removal of the selected 
choice cells from a population decoding analysis with access to all recorded neurons significantly 
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diminishes decoding performance (Fig. S5F, G). There was good agreement between our 
population decoding and the single-cell selection because each of the selected cells has a high 
importance index (Fig. 5F). Considering only the MFC choice cells (selected in either task) 
revealed that this subset of cells increased their phase-locking during the memory task (Fig. 5G, 
top) in the theta-frequency range (fpeak = 5 Hz, p = 1e-6, paired t-test) similar to the analysis of all 
MFC cells (Fig. 5G). Both categorization and memory choice cells showed this pattern of 
modulation (Fig. 5G, bottom). In addition, memory choice cells also exhibited an increase in 
gamma band coherence (Fig. 5G, fpeak = 38.5Hz; p = 2e-6, paired t-test). This indicates that 
memory-choice cells are specialized in terms of their phase locking to MTL LFP. To further test 
this hypothesis, we next examined whether the strength of phase-locking was predictive of 
behavior. Indeed, we found that the degree of both theta-and gamma band phase locking of 
memory choice cells (during the baseline) was predictive of whether the answer was correct or 
incorrect for the stimulus shown in that trial (Fig. 5H, see legend for statistics).  

Lastly, to exclude the possibility that this inter-area effect was due to task-dependent 
changes within the MTL, we examined the phase-locking properties of MTL cells to their own 
locally recorded LFP (LFP and spiking activity is recorded on separate electrodes, see Methods).  
The spiking activity of 331/663 MTL cells is significantly related to the theta-frequency band LFP 
(Fig. 5I, shown for f = 5.5 Hz). The strength of this local spike-field coherence was, however, not 
significantly different between the two tasks (Fig. 5J; p = 0.61, paired t-test, n = 2321 cell-
electrode pairs). Together, this shows that MFC to MTL spike-field coherence is selectively 
increased during the memory relative to the categorization task in the theta band for all cells and 
specifically in the gamma band for memory choice cells, thereby showing that this mechanism of 
information routing can be selectively up-regulated by task demands.  

 

Discussion 

We investigated the nature of flexible decision making in the human brain by probing how 
the geometry [34] of neural representations of stimulus memory, stimulus category, and choice is 
modified when behavior switches between tasks. We found a striking difference between brain 
areas: In the MTL, representations of stimulus memory and stimulus category were task-demand 
independent, whereas in the MFC, representations of stimulus memory, stimulus category, and 
choices were all highly sensitive to task demands. A group of task-demand dependent cells in the 
MFC that we reveal here are choice cells, which signal yes vs. no decisions preferentially for either 
memory-or categorization decisions irrespective of output modality used and regardless of the 
correctness of the decision. At the population level, choices in both the memory and categorization 
task were decodable with high reliability, but these decoders did not generalize between the two 
tasks. This, from the point of view of downstream areas, neurons within MFC formed two separate 
decision axes: one for memory-based decisions and one for categorization-based decisions. 
Moreover, these two decision axes were instantiated selectively so that they were only present 
when the current task required them. 
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These findings contrast with prior work on task switching between different perceptual 
tasks, which found a single decision axis in monkey pre-frontal cortex, with task-irrelevant 
attributes also represented [36]. Here we show that memory-based choices add a second decision 
axis, which is present only when decisions engage memory retrieval processes. While task-
sensitive representations of choice have been shown in recordings from nonhuman primates during 
perceptual decision-making [1, 36, 37], our data for the first time find choice representations that 
specifically signal declarative memory-based choices. It has long been appreciated that the frontal 
lobes are critical for initiating and controlling memory retrieval [24, 38, 39], and it is thought that 
the memory retrieval network is a set of specialized processes separate from those utilized for other 
kinds of decisions [5, 40, 41]. The memory-choice axis we reveal here is direct evidence for this 
hypothesis and reveals a potential cellular substrate for this critical but poorly understood aspect 
of human cognitive flexibility. 

A second group of cells we characterized in MFC signal the currently relevant goal (signal 
task type and response modality) throughout the task. These cells switched their activity pattern 
when instructions indicated a change in task demands. While these switches were rapid, they were 
not instantaneous, likely reflecting the cost of switching between memory retrieval and 
categorization modes [42-44]. We hypothesize that these cells facilitate holding in working 
memory [45, 46] the active task set and configure brain networks in preparation for appropriate 
execution of the instructed task  [9, 47, 48]. Task switching costs are a much investigated aspect 
of cognitive flexibility [29, 42-44], but it remains little understood how they arise, and why some 
task switches are more difficult than others. The MFC cells we describe here offer an avenue to 
directly investigate these critical questions.  

Finally, we uncovered a possible mechanism by which memory-based information can be 
routed dynamically between MFC and MTL when a task requires memory retrieval.  Changing 
long-range synchronization of neural activity is thought to be a way by which functional 
connectivity between brain areas can be changed flexibly [49-52]. Here, we reveal a specific 
instance of this phenomenon at the cellular level in humans in the form of changes in the strength 
of cortico-MTL functional connectivity. While hippocampal-mPFC functional connectivity in 
rodents supports spatial working memory [18] and is prominent during both spatial navigation and 
rest [53-55], it remains unknown whether this pathway serves a role in long-term memory retrieval 
in primates and if so whether it can be engaged selectively. Here, we show that MFC-MTL theta-
frequency connectivity is selectively enhanced during memory retrieval. In addition, memory 
choice cells in MFC exhibited enhanced gamma-frequency band coordination of their spiking 
activity with the MTL LFP. This reveals a specific cellular-level instance of a role for gamma-
oscillation mediated coordinate of activity between distant brain regions [18, 56] in human 
memory retrieval. Disrupted MFC-MTL functional connectivity is a key feature of impaired 
executive control in psychiatric disease [57]and is a pertinent phenotype of genetic mouse models 
of human schizophrenia [19]. Our findings suggest the hypothesis that a specific impairment that 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/809673doi: bioRxiv preprint first posted online Oct. 18, 2019; 

http://dx.doi.org/10.1101/809673


Page 10 of 28 

might result from this impaired connectivity is an ability to selectively initiate memory retrieval 
when demanded by a task.  
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Figure legends 

Figure 1. Task, electrode locations, and behavior. (a) Task structure.  A session consisted of eight blocks 
of 40 trials each. The task switched with each block (blue=categorization, red=memory), and the response 
modality switched halfway within each block (saccade or button press; randomly assigned at the beginning 
of the block). The subject was explicitly instructed about the task at the beginning of each block (magenta 
arrow) and how to respond at the beginning and halfway point of each block (green arrow).  (b) Example 
of screens shown to subject. Two example trials are shown. The fixation cross epoch between stimuli 
corresponds to the baseline epoch we used in some of our analyses. (c-d) Electrode locations in the medial 
temporal lobe (c) and medial frontal cortex (d). Each dot is the location of a microwire bundle in one subject. 
(e-f) Example eye tracking data from one session from the button press (e) and eye movement (f) trials. (g) 
Reaction times as a function of task pooled across all sessions (memory condition, μ ± sem, 1.27±0.02s; 
category condition, 0.90 ± 0.02s; p =7.6e-228, 2-sample KS test). (h) Memory performance improves over 
the course of the experiment (β = 0.56, p=8.42e-130, logistic mixed effects model). See also Fig. S1 for an 
extended summary of the behavior.  

Figure 2.  Representations of task type and response modality. (a) Example raster and PSTH of a pre-
SMA cell that shows a difference between the two task conditions. (b) Average firing rate during the 
baseline period (-1 to 0s relative to stimulus onset) for each of the eight blocks for the cell shown in (a). 
The bar plot shows the average baseline firing rate, collapsed across all blocks of the same type.  (c) 
Population-level decoding of task in MTL and MFC. The black lines denote the 95th percentile of the null 
distribution (computed by shuffling the condition labels). (d) Population-level decoding of response 
modality from the baseline activity of the MFC and MTL population. Much like task type decoding, 
response modality was more readily decoded from the MFC population than the MTL population. (e) 
Schema of the cross-condition decoding performance. Decoding of response modality during baseline was 
computed across task type (memory/categorization). Similarly, decoding of task type was computed across 
response modality. The background color denotes the type of trials that were used to train a given decoder. 
For example, in the top left case, we trained a decoder to classify button press vs. saccade trials using the 
categorization trials (blue). We then tested the accuracy of this decoder on the memory trials (red). (f) 
Cross-response modality decoding of task type from the baseline firing rate of all recorded cells. The 
background color denotes which trials were used to train the decoder. The color of the tick mark denotes 
which trials were used to test the decoder. (g) Cross-task decoding of response modality. (h) Decoding 
accuracy was lower for the first two trials after a task type context switch. Shown is decoding performance 
as a function of trial number relative to a task type switch (green arrows in Fig. 1a; transitions from 
categorization to memory and vice-versa were pooled). Error bars indicate standard deviation in all panels, 
with the exception of panel B where they indicate the standard error of the mean. (i) Task decoding on trials 
with short reaction times was more accurate than decoding on long reaction time trials. Shown separately 
for categorization and memory trials (p = 2e-11 and 7e-13 respectively, Wilcoxon rank sum test). Error 
bars in this case denote standard error in decoding accuracy across trials (80 trials in each of the 4 groups).  
See Fig. S2 for additional analyses that break down context effects by specific anatomical regions. 
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Figure 3. Task-independent representations of image category and familiarity (new/old). (a-b) 
Example cells. (a) Cells whose activity represents image category. The cell on the left was recorded in the 
MTL (amygdala) and the cell on the right was recorded in the MFC (dACC). (b) Cells whose activity 
differentiates between new and old stimuli. The MTL cell is recorded from the amygdala, MFC cell from 
the preSMA. (c) Decoding accuracy of image category from all recorded cells was significantly higher in 
the MTL (left) relative to MFC (right). Mean decoding accuracy ± std is shown for all trials (black tick 
mark), categorization trials (blue tick mark) and memory trials (red tick mark). Black lines show 95th 
percentile of the null distribution, constructed by shuffling the image labels. (d) Decoding of new vs. old 
was possible at similar accuracy in both MTL and MFC. Decoding accuracy is shown for all trials and 
separately for categorization and memory trials (using ground truth labels for all trials). Black lines show 
the 95th percentile of the null distribution. (e) Population activity of all MTL (left panel) and MFC (right 
panel) cells, collapsed to three dimensions using MDS (Euclidean distance). Individual points show the 
mean activity of the population for that specific condition. The highlighted plane contains all locations of 
state space occupied by a given task for the case of fruits vs. faces as the binary category distinction (for 
illustration only; all analysis uses all categories). Note how the geometry of the representation allows for a 
decoder that is trained on one task to generalize to the other task (see Fig. S4C for example decoder 
hyperplanes in this geometry). (f) A schematic of the approach used for the cross-condition generalization 
analysis. Color indicates task (blue=categorization, red=memory). (Top) We trained a decoder to 
discriminate between new vs. old trials on categorization trials and then tested its performance on new vs. 
old stimuli encountered during the memory condition (and vice-versa). (Bottom) Similarly, a decoder that 
is trained to discriminate between image categories (in this example face vs. fruits, all results include all 6 
possible pairs) on categorization trials, was tested on memory trials. (g) Cross-condition generalization 
performance for image category decoders indicates that category coding is independent of task type. The 
background color (blue or red) indicates the condition in which the decoder was trained. The color of the 
tick mark indicates the task on which the decoder was tested. The black lines indicated the 95th percentile 
of the null distribution, constructed by shuffling the image category labels. (h) Cross-condition 
generalization performance for decoders trained on new vs. old classification indicates task-independent 
encoding of familiarity only in MTL, but not MFC. 

 

Figure 4.  Task-specific representation of choice in MFC. (a) Responses of choice cells in the MFC are 
diverse. Shown are three example cells, split by choice (yes or no) and task. (b) Population choice decoding 
accuracy was significantly greater in MFC compared to MTL. (c) Population summary (neural state space) 
of choice-related activity in MFC, plotted in 3D space derived from MDS. Each point indicates the mean 
activity of a choice in one of the two tasks. (Top) Variability due to response modality. The highlighted 
planes connect the points of state space occupied by activity when utilizing button presses (purple) or 
saccades (green). The relative positions of the points stays the same, suggesting generalization of choice 
encoding across response modality. (Bottom) Variability due to task type. The highlighted plans connect 
the points of state space occupied by activity in the same task (red = memory, blue = categorization). The 
relative position of the 4 points is not preserved across the task planes, suggesting lack of generalization 
across task. (d) Decoding generalizes across effectors as suggested by panel c (top). Here, performance is 
shown averaged across categorization and memory choices (chance level = 50%); see Fig. S6C for decoding 
separately for each condition.. (e) Decoding does not generalize across tasks as suggested by panel c 
(bottom). To avoid reaction time confounds, this analysis is shown only for cells recorded in the control 
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task, in which RT was equated due to a go cue (see methods and Fig S9). (f) Same as (e), but as a function 
of time (500ms bin, 16ms step size). See Fig. S6 for results individually for dACC and pre-SMA. (g) MFC 
cells represent the choice during the memory trials and not the ground truth (new/old). We sampled an equal 
number of memory-task trials with the following label combinations of familiarity and choice: (1) new/no 
(correct), new/yes (incorrect), old/no (incorrect), old/yes (correct). Notice that in half the trials, familiarity 
and choice are congruent and in the other half they are incongruent. We fit separate decoders to read-out 
choice and new/old from the population. Choice can be decoded well above chance levels, whereas new/old 
cannot. (h) Generalization between different sub-tasks of the categorization task but not between task types. 
Average yes vs. no decoding performance for decoders trained in subsets of categorization trials (x-axis). 
The blue and red shading shows the range of the null distribution estimated by shuffling the labels. (D-H) 
is population decoding of all recorded cells. 

Figure 5.  Coherence between MFC spikes and MTL field potentials is modulated by task demands.  
(a) Schematic of the spike-field coherence analysis. (top) Example of LFP and spiking activity from the 
dorsal anterior cingulate cortex. (bottom) Example LFP recording from the hippocampus.  Inset illustrates 
that throughout this figure, only the spikes from the 1s long baseline period before stimulus onset were used 
for analysis.  (b) Example spike-field coherence for a dACC cell with all recorded channels in the ipsilateral 
hippocampus. Bottom shows average across all pairs separately for memory and categorization trials. (c) 
MFC cells increase their phase locking to MTL LFP during the memory relative to the category task. (top) 
Average inter-area pairwise phase consistency (PPC) of all cell-electrode pairs, split by task (red = memory, 
blue = categorization). (bottom) p-value as a function of frequency, testing differences between the two 
tasks. The peak difference between the two task conditions occurs as f = 5.5Hz. Dashed line shows the 
threshold we used (0.05/56 Bonferroni corrected). (d) Difference in average inter-area PPC, measured at 
5.5Hz, between the two task conditions. Here it is shown for all MFC and MTL cell-electrode pairs (n = 
8822; paired t-test, mem vs. cat, p = 1.3e-7), MFC-hippo (n = 3938; p = 8.8e-4), and MFC-amygdala (n = 
4884; p = 4.3e-5). The error bars denote the 95% confidence interval of the mean difference in PPC between 
the two tasks, as estimated via bootstrapping (n = 10000 iterations). (e) Average spike-triggered power for 
all cell-electrode pairs, shown separately for all trials, categorization trials, and memory trials. There is no 
difference in the spike-triggered power in the two task conditions (paired t-test, n = 8822 cell electrode 
pairs, p = 0.08). Error bars indicate the s.e.m. (f) Single-neuron analysis. Scatter plot of the normalized 
weight (importance index, see methods) assigned by the decoder to each cell when decoding choices in 
either the memory or categorization task choices. Memory and categorization choice cells are indicated in 
color (see Methods for the selection model that was used to identify these cells). (g) MFC-MTL spike-field 
coherence for choice cells. (top) Average PPC for all choice cells in MFC (209 cells, 2384 cell-electrode 
pairs) for memory-(red trace) and categorization trials (blue trace). As in (b), we use the spikes during the 
baseline period, in the 1-second window leading up to the stimulus onset. (bottom) Significance of PPC 
differences between the memory and categorization task as a function of frequency, shown separately for 
memory choice cells (purple trace; 1176 cell-electrode pairs) and categorization choice cells (green trace; 
906 cell-electrode pairs). Both memory and categorization choice cells show a strong theta-band difference 
in coherence between the two tasks, but only the memory choice cells show a difference in the gamma band 
(-6e-04 vs. 0.001 in categorization and recognition trials respectively, p = 2e-6, t-test). (h) Baseline PPC 
difference between correct and incorrect trials during the memory task shown for the theta (f = 5Hz; p = 
0.009, paired t-test) and gamma band (f = 38.5Hz; p = 0.002, paired t-test). The difference is computed for 
memory choice cells only (purple cluster from Fig. 5F). The error bars denote the 95% confidence interval 
of the mean difference in PPC as estimated via bootstrapping (n = 10000 iterations).    (i) Spike times of 
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MTL cells are coherent with local theta-band (3-8 Hz, centered at 5.5 Hz) LFP recorded in the same area 
in which a cell was recorded from. Shown is a histogram of the log of the Rayleigh z-value for all recorded 
MTL cells. We computed the spike-field coherence in the theta range (3-8Hz, center at 5.5 Hz; phase 
determined from extracted spike snippets) using all spikes of a cell during the entire experiment (see 
methods). (j) Average local PPC in the MTL did not differ as a function of the task in the MTL (f = 5.5Hz; 
p = 0.51, paired t-test, n = 2321 cell-electrode pairs). 
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Supplementary Figures 

Supplementary Figure 1. Additional behavioral results. (a) RT difference between “yes” and “no” 
responses for both tasks. RTs were significantly different for the memory task (p=3.4e-4; as expected from 
a declarative memory task [1] but not for the categorization task (p=0.21) task (t-test, light shading indicates 
± std, whereas darker shading indicates ± sem). (b) Performance on memory trials varied as a function of 
image category (1x4 ANOVA, p = 3.45e-19). (c) Making an image category the target on a categorization 
block did not significantly change recognition accuracy for that category on follow-up memory blocks (p 
= 0.97, t-test). (d) Same as (c) but shown separately for each category. Recognition performance increased 
significantly after being a target only for the monkey category (p = 0.02, t-test; uncorrected).  (e) 
Performance on the categorization trials did not significantly dependent on image category (1x4 ANOVA, 
p = 0.74). (f) ROC analysis of the performance on memory trials for the two best image categories (human 
faces and fruits). (g) ROC analysis of the performance on memory trials for the two difficult image 
categories (cars and monkeys). While the true positive rate (TPR) is not different between these two image 
groups, (p = 0.24, t-test), the subjects produced significantly more false positives for the more difficult 
group (p=1.2e-13, t-test). (h) The d-prime metric computed on each subject’s choices during the memory 
task as a function of block (4 memory blocks). The metric increased significantly across blocks (1x4 
ANOVA, p = 2.6e-11). (i) The response bias for each subject as a function of block. The response bias did 
not show any consistent changes across blocks (1x4 ANOVA, p = 0.6). (j) Example pupil response during 
a session. We focus on two measures: (1) the baseline size, measured shortly after image onset, and (2) the 
slow of the pupil response. The differences that emerge after 600ms are due to response time differences 
between the tasks (the image goes off the screen earlier for categorization trials).  (k) Scatter of the pupil 
size, measured shortly after image onset, for all sessions where we had stable pupilometry (25/28 sessions 
with eye tracking). We see no difference between tasks (p = 0.12, sign test). (l) Scatter of the slope size 
across sessions with good pupilometry (25/28 sessions with eye tracking). There is no significant difference 
between the tasks (p = 0.11, sign test). 

Supplementary Figure 2. Context information in the medial frontal cortex. (a) Average reaction time 
as a function of trial number, averaged across all subjects and block switches. Trial 41 marks the transition 
from a categorization task to a memory task. Halfway through each block, there is a change in response 
modality. Reaction time is smoothed with a 5-trial kernel. (b) The proportion of cells sensitive to either task 
type or response modality, as a function of hemisphere and area in the medial frontal cortex (L=left, 
R=right). The proportion of cells sensitive to context during the baseline period was significantly greater in 
the dACC than pre-SMA (χ2 test of proportions, p = 0.02). c) Selected cells are sorted into two groups, 
memory task-preferring or categorization task –preferring based on their firing rate during the baseline 
period. Shown here is a histogram of the modulation index, 𝑚𝑚𝑚𝑚 =  𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚−𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐

𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚+𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
.  (d) Context can be decoded 

from both the dACC and pre-SMA. For comparison shown is decoding accuracy for the control sessions 
(in which the response time does not differ between task types). The numbers indicate the number of cells 
that were included for each of the three decoders.  Bars are standard deviation of decoding accuracy across 
all iterations of the fitting procedure (n = 250). The dotted lines mark the 95th percentile of the null 
distribution of decoding accuracy, computed by shuffling the labels, and performing the fit 250 times. (e) 
An example cell recorded in the pre-SMA that shows baseline modulation of firing rate with effector type 
(left side) but not task type (right side).  

 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/809673doi: bioRxiv preprint first posted online Oct. 18, 2019; 

http://dx.doi.org/10.1101/809673


Page 19 of 28 

Supplementary Figure 3. Visually-and memory selective MTL cells are not sensitive to task demands. 
(a) Example visually selective cell recorded in the amygdala. The cell responds selectively to images of 
monkey faces with little activity for the other three image categories. (b) Average normalized response to 
preferred (blue) vs. non-preferred images for all visually selective cells in the MTL (n=264/663, see 
methods for selection criteria). (c) Breakdown of the preferred category of visually selective cells in the 
MTL. As previously reported, most cells respond to faces of conspecifics. (d) Trial-by-trial decoding of 
image category over the 8 blocks within a session. The gray shading indicates the standard deviation across 
200 iterations of the population decoder (see methods), using the [0.2 1.2s] time bin after stimulus onset. 
The decoder was trained using all trials. Shown here is the cross-validated accuracy of the decoder on each 
block separately, with categorization blocks in blue and memory blocks in red. The dotted black line shows 
the 95th percentile of the null distribution, computed by shuffling the labels. The chance level is 25%. (e) 
Same as in (d) but collapsed across task types.  The dotted lines once again indicated the standard deviation 
across 200 iterations of the decoder, using different subsets of cells and trials (see methods of details). (f) 
Example memory selective cell in the MTL. (g) Average AUC across all memory selective cells (n=73/663, 
see methods for model used to identify this cell type) for new vs. old stimuli, shown across all memory 
blocks. The number of new and old stimuli in each block is equal (20 of each). In light green, we show 
average AUC across all cells, for all the 4 image categories. New and old stimuli became more separable 
over the blocks (GLM, AUC ~ 1 + Block_Number, t-stat = 2.6, p = 0.01).  If the hardest category is removed 
(monkey images), the effect becomes more evident (t-stat = 3.32, p = 0.001). (h) Trial-by-trial population 
decoding of new vs. old across all blocks in the session. The first block is excluded because it does not 
contain “old” stimuli. The dotted line shows the 95th percentile of the null distribution of decoding 
performance (chance level is 50%). (i) Same as (f) but collapsed across task type.  

Supplementary Figure 4. Cross-task generalization of new/old and image decoding across the four 
brain areas studied. (a-b) Decoding accuracy in (a) hippocampus, (b) amygdala of new/old (left column) 
and image category (right column). Each decoder was trained on condition averages (see methods). We 
show the performance separately for all trials, categorization trials, and memory trials. (c) Rotated version 
of the MDS plots shown in Fig. 3E, with example decision boundaries for a new/old (left) and image 
category (right) decoder. The locations of the condition averages are computed from the population activity 
in the MTL, whereas the decision boundary is schematized to show an example decoder that would 
generalize well across tasks.  

Supplementary Figure 5. Choice cells in medial frontal cortex are sensitive to task demands – 
additional single-cell analysis. (a) Average PSTHs for memory choice cells (green, n = 101/767) and 
categorization choice cells (yellow, n = 82/767), shown separately for the two tasks. Memory and 
categorization choice cells were selected independently using trials from the corresponding task (see 
methods for selection model).  Omitted from this visualization are choice cells that were selected in both 
task conditions (n=26/767). (b) Population summary. AUC values were computed separately for response 
made during the memory and categorization condition. A negative AUC value indicates a preference for 
“yes” responses and a positive one indicates a preference for “no” responses. Yellow indicates 
categorization choice cells, green indicates memory choice cells, and purple indicates cells that signal 
choice in either task. (c) Single cell decoding across all memory choice cells (101/767). Decoding 
performance is shown for choice during the memory trials (green), new vs. old during the memory trials 
(cyan), new vs. old during the categorization trials (purple), and choice during the categorization trials 
(yellow).   (d) Single cell decoding across all categorization choice cells (82/767). Decoding performance 
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is shown for choice during the categorization trials (yellow), image category during the memory trials 
(orange), and choice during the memory trials (gray). (e) Comparison of choice decoding (collapsed across 
both tasks) performance between response modalities. There was no significant difference. (f-g) Population 
decoding performance as a function of time during the memory (g) and categorization (h) task. Performance 
was reduced significantly after choice cells were removed from the population. (h) Proportion of selected 
choice cells in medial frontal cortex, separated by area and hemisphere. The proportion of choice cells 
found is greater in the pre-SMA than dACC (χ2 comparison of proportions, p = 0.004). (i) Trial-by-trial 
choice decoding at the population level. The decoder was trained on equal examples from the following 
memory trials: (1) yes-correct,  (2) yes-incorrect, (3) no-correct, (4) no-incorrect. Cells were included in 
the analysis only if there were at least 10 instances of each of the four trial types (n=347 cells). Choice can 
be decoded from the MFC population both for correct and incorrect trials.  

Supplementary Figure 6: Choice signals during a non-reaction time control task.   (a) Task layout for 
the non-reaction time control task. Subjects are instructed to wait until the response screen comes up before 
registering their response with a button-press or a saccade. The stimulus length is fixed at 1 second, for 
both the categorization and memory trials. (b) The response times between the categorization and memory 
trials are no longer different (mean ± std, 0.67 ± 0.57s and 0.72 ± 0.77s for categorization and memory 
trials respectively, p = 0.1, 2-sample t-test). (c-d) Raster plots and PSTH of two example choice cells 
recorded in the dACC (C) and pre-SMA (D) during the standard task (left panel) and control task (right 
panel). Notice that there is no button press or saccade prior to 1.5 second during the control task.   (e-f) The 
preferred response for the cell shown in C (“no” during categorization) and the cell shown in D (“no” during 
memory condition) split up by effector type, with saccade responses in green and button press in purple. 
(g) Average PSTH for preferred and non-preferred responses across all the choice cells identified in the 
control task. Top row shows the preferred vs. non-preferred response of memory choice cells during the 
memory task (left panel) and categorization task (right panel). The same is shown for categorization choice 
cells in the bottom row.  

Supplementary Figure 7. Cross-task generalization of choice signals by area. (a) Population-level 
decoding of choice during the categorization trials (left) and memory trials (right) using firing rates that are 
aligned to the response time instead of stimulus onset. Compare with Figure 4f-h. (b) Cross-task 
generalization of choice decoding in the dACC (left) and pre-SMA (right) shown as a function of time. This 
is the same analysis as that in Figure 4f, but shown separately for the two areas. (c) Scatter plot of the 
decoder weight assigned to each cell in decoding choice during the categorization task (x-axis) and memory 
choice (y-axis). To determine if choice cells specialize for one task or the other, we look at the cells that 
have a high weight index, specifically those that are in the top 25-percentile (shown in black). For these 
cells, we plot the angle created by the vector [𝜔𝜔𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐,𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚] with respect to the x-axis. The inset shows a 

histogram of all the angle values for the cells shown in the scatter in black. If there were no specialization, 
then we would expect most cells that are recruited for choice decoding, to lie along the diagonal, with an 
angle of π/2. Instead, what we see is a bimodal distribution (Hartigan dip test, dip = 0.05, p<1e-5), 
suggesting that there are two non-overlapping populations of cells that are independently recruited for 
choices during the memory and categorization task.  

Supplementary Figure 8: Comparison of task and choice cells using assigned decoder weight. (a) 
Scatter plot of the weight assigned by a decoder to each cell in decoding categorization choice (y-axis), and 
task (x-axis). The features for the choice decoder are firing rates across the entire MFC population in the 
[0.2 1.2s] window after stimulus onset. The features for the task decoder are firing rates computed during 
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the pre-stimulus baseline period, [-1 0s] with respect to image onset. As in Figure S6, the decoder weight 
is converted into a normalized measured (importance index).  Superimposed are the populations of 
categorization choice cells and task cells, as identified by the choice and task selection models described in 
the Methods section. (b) Same as in (a), but shown for memory choice decoding and task decoding. 
Highlighted in green are the memory choice cells, and in pink are the task cells (see Methods for selection 
model). The cells that qualify as both are shown in blue. (c) Similar to Figure S6D, we look at the cells that 
have a high weight index for either categorization-choice or task decoding. Specifically, we take the union 
of the sets of cells whose weight index is in the top 25th percentile for either task or categorization-choice 
decoding. For these cells, we plot the angle created by the vector [𝜔𝜔𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜔𝜔𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐] with respect to the x-axis 

(i.e. the task axis). We test for bimodality with a Hartigan dip test (dip  = 0.053, p<1e-5), the result of which 
suggests that these are largely different populations of cells. (d) Same as (c) but in this case we measure the 
overlap between memory choice cells and task cells. The histogram shows two modes, suggesting non-
overlapping populations of cells (dip = 0.047, p = 3.3e-5). (e) Decoding of image category from the MTL 
population is a good example of a case where the same cells are recruited for decoding in the memory and 
categorization task. Shown in light gray is the weight index for all MTL cells, computed separately for the 
categorization and memory task. The dark dots indicate the union of the sets of cells that have a weight 
index top 25th percentile for either task. (f) Hartigan dip test for the weight index pair assigned to each cell 
in black from (e). The distribution is centered at π/4, which suggests that the same cells are recruited to 
decode image category during the memory and categorization tasks (dip = 0.016, p = 0.99).  

Supplementary Figure 9: Controls for inter-area spike filed coherence between MFC cells and MTL 
local filed potential. (a) Proportion of MFC cells that are coherent with hippocampal oscillations using 
spikes from the inter-trial period of all trials. Coherence was determined using the Rayleigh test for non-
uniformity of a circular distribution. Since the comparison was done across many electrodes (Nchannels can 
be anywhere from 0 to 16, depending on the number of LFP recordings accepted after screening for artifacts, 
see Methods), the significance threshold was corrected appropriately for multiple comparisons using FDR 
(false discovery rate). (b) Same as Fig. 5C, with task cells removed (n=165/767). A cell was labeled as a 
task cell (see Fig. S2 and Methods for selection) if it should  significant modulation of firing rate as a 
function of task type.  
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Methods   
1. Subjects 

Subjects were 13 adult patients being evaluated for surgical treatment of drug-resistant epilepsy that 
provided informed consent and volunteered for this study (see Table S1). The institutional review boards 
of Cedars-Sinai Medical Center and the California Institute of Technology approved all protocols. We 
excluded potential subjects who did not have depth electrodes in medial frontal cortex, or whose recorded 
data did not yield any clear single-unit activity. 

2. Electrophysiology 

We recorded bilaterally from the amygdala, hippocampus, dACC, and preSMA using microwires embedded 
in hybrid depth electrodes[1]. From each micro-wire, we recorded the broadband 0.1-9000Hz continuous 
extracellular signals with a sampling rate of 32 kHz (ATLAS system, Neuralynx Inc.). Only patients with 
clearly distinguishable spiking activity on at least one electrode were included.   

3. Spike sorting and single-neuron analysis 

 The raw signal was filtered with a zero-phase lag filter in the 300-3000Hz band and spikes were detected 
and sorted using a semi-automated template-matching algorithm [2, 3]. All PSTH diagrams were computed 
using a 500ms window with a step-size of 7.8ms. No smoothing was applied.   

4. Electrode localization (relevant for Figure 1) 
 
 Electrode localization was performed based on post-operative MRI scans that were performed immediately 
after implantation of the electrodes. These scans were registered to pre-operative MRI scans using 
Freesurfer’s mri_robust_register [4] to allow accurate and subject-specific localization. To summarize 
electrode positions and to provide across-study comparability we in addition also aligned the pre-operative 
scan to the MNI152-aligned CIT168 template brain [5] using a concatenation of an affine transformation 
followed by a symmetric image normalization (SyN) diffeomorphic transform [6]. This procedure provided 
the MNI coordinates that are reported here for every recording location. 
 
5. Eye tracking (relevant for Figure S1) 
 
 Gaze position was monitored using an infrared-based eye tracker with a 500Hz-sampling rate (EyeLink 
1000, SR Research). Calibration was performed using the built-in 9-point calibration grid and was only 
used if validation resulted in a measurement error of <1 dva (average validation error was 0.7 dva). We 
used the default values for the thresholds in the Eyelink system that determine fixation and saccade onsets.  
 

6. Task  

Each session consisted of 8 blocks in fixed order, each of 40 trials in randomized order. At the beginning 
of each block, an instruction screen told subjects verbally the task to be performed for the following 40 
trials (categorization or recognition memory), the response modality to use (button presses or eye 
movements), and which visual category is the target (for categorization task only; either human faces, 
monkey faces, fruits, or cars; order was pseudo-random so that each image type was selected as the target 
at least once) (see Figure 1). The task to solve was either “Have you seen this image before, yes or no?” or 
“Does this image belong to the target category, yes or no”. Odd-numbered blocks (1,3,5,7) were 
categorization blocks; even numbered blocks were memory blocks (2,4,6,8). Button presses (yes or no) 
were recorded using a response box (RB-844, Cedrus Inc.). Eye movements to the left or right of the image 
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served as responses in the eye movement modality (left=yes, right=no). The mapping between button and 
screen side and yes/no responses was fixed and did not change; “yes” was on the left and  “no” was on the 
right. Subjects were reminded that left = yes, and right = no, at the beginning of each of the 8 blocks. In the 
first block, all images were novel (40 unique images). In all subsequent blocks, 20 new novel images were 
shown randomly intermixed with 20 repeated images (the “old set”). The 20 repeated images remained the 
same throughout a session. We used entirely non-overlapping image sets for patients that completed 
multiple sessions. The response modality (button presses or eye movements) was selected randomly 
initially and switched in the middle of each block (an instruction screen in the middle of each block showed 
the response modality to be used for the remainder of the block). In sessions where eye tracking was not 
possible due to problems with calibration (5 sessions in 3 patients; see Table S1), all trials used the button 
presses as the response modality. No trial-by-trial feedback was given. In between image presentations, 
subjects were instructed to look at the fixation cross in the center of the screen. 

7. Control Task (relevant for Figure S6) 

In 5 of the 13 subjects in this dataset (6/33 sessions), we ran an additional control task in order to help 
determine if neural responses reflected processing of stimuli, of decision variables, or of motor response 
plans. Unlike the standard task where the subjects could respond at any time after the stimulus onset (thus 
making it difficult to distinguish decision from choice), in this control task the subjects were instructed to 
wait until the response cue in order to register their answer, either with a button press or with a saccade. 
The stimulus was presented for a fixed amount of time (1s duration) and after a 0.5 – 1.5s delay period, the 
subjects were asked to respond to the question relevant for that 

8. Mixed-effects modeling of behavior (relevant for Figures 1, S1) 

 For the group analysis of behavior, we used mixed-effects models of the form 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 +  𝜀𝜀, where y 
is the response, X is the fixed-effects design matrix, 𝛽𝛽 is the fixed-effects coefficients, Z is the random-
effects design matrix, b is the random-effects coefficients, and 𝜀𝜀 is the error vector. In all analysis, we used 
a random intercept model with a fixed slope. The grouping variable for the random-effects was the session 
ID. The reported p-values in the main text correspond to the fixed-intercept for the relevant variable. In the 
case of measuring the effect of number of expositions (i.e. number of times an image was seen) on the 
subject’s accuracy during the memory trials, we used a mixed-effects logistic regression with the 
independent variable as an ordinal-valued whole number ranging from 1-7. The response was a logical 
value indicating success or failure on each memory question. Prior to running any analysis of reaction time 
data, we excluded outliers from the distribution using the following procedure: a sample was considered an 
outlier if it was outside the 99th percentile of the empirical distribution.  

9. Reaction time matching procedure (relevant for Figure S5) 

As a control, we matched for RTs between the two tasks (categorization and memory) to exclude for 
potential differences due to difficulty. To achieve this, we first added noise to all reaction times (s.d. = 
1ms), followed by locating pairs of trials with RTs that were equal to within a tolerance of 0.1s. Matching 
pairs were then removed and this procedure was repeated iteratively until no further matches could be 
found. Unmatched trials were excluded (resulting in reduced statistical power due to fewer trials available). 
We only used the resulting match if the RTs between the two groups were not significantly different. If not, 
the procedure above was repeated. 

10. Selection of visually (VS) and memory-selective (MS) cells (relevant for Figure S3) 
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A cells was considered to be a VS cell if it successfully passed an initial ANOVA (1x4, p<0.05) screening. 
For each selected cells, the preferred image category was set to be the image category for which the mean 
firing rate of the cell was the greatest. All trials were used for this analysis. MS cells were selected using 
the following linear model: 

frcell ~ 1 + β1category + β2new/old + β3rt 

where category is a categorical (1x4) variable, new/old is a binary variable, and rt is a continuously valued 
variable. A cell was determined to be memory selective if the t-statistic for β2 was significant with p<0.05. 
We excluded the first block of trials (40 images) from the analysis, in order to keep the number of new and 
old stimuli the same. A spike counts were computed in the [0.2 1.2] second window relative to stimulus 
onset.  

11. Selection of choice cells (relevant for Figure S5) 

 Choice cells were selected using a regression model applied to the firing rate in a 1s size window starting 
200ms after stimulus onset. We fit the following regression model:  

frcell ~ 1 + β1Response + β2Response + β3rt 

 where the response is binary (yes or no), category is a categorical variable with four levels, and RT is the 
reaction time. We fit this model separately to trials in the memory-and categorization condition, assuring 
independent selection of cells. RT was included as a nuisance regressor to control for reaction time 
differences between the two possible responses. Reaction time differences between response type (i.e. “yes” 
vs. “no”) were more pronounced during the memory condition than the categorization condition (see Figure 
S1a). A cell qualified as a choice cell if the t-statistic of the β1 term was significant at p<0.05 for at least 
one of the two task conditions. The response preference of significant cells for either yes or no was 
determined based on the sign of β1 (positive = yes, negative = no).  Notice that the selection process uses 
separate trials for memory choice cells and categorization choice cells. All trials regardless of whether the 
answer was correct or incorrect were used for the selection process. To estimate the significance of the 
number of selected cells, we generate a null distribution by repeating above selection process 1000 times 
after randomly re-shuffling the response label. We estimated this null distribution separately for choice 
cells in for the memory-and categorization condition and used each to estimate the significance of the 
number of selected cells of each type.  

12. Chance levels for cell selection (relevant for Figure S2, S3, S5) 

 To estimate the chance levels for cell selection, we repeated above procedures for selection of visual 
category, memory selective, and choice cells after randomly scrambling the order of the labels determining 
the category membership being selected for (yes/no response, visual category, and new/old ground truth, 
respectively). We repeated this procedure 1000 times.  

 

13. Single-cell decoding (relevant for Figures S5) 

Single-cell decoding (such as that seen in Figures S5C, D, E) was done using a Poisson naïve-bayes 
decoder. The features used were spike counts in a 1-second window, in the interval [0.2 1.2s] relative to 
stimulus onset. The decoder returns the probability of a class label, given the observed spike count. The 
class label in our case was binary, being either a “yes” or a “no” response. The model assumes that the 
spike count is generated by a univariate Poisson distribution, and a separate mean rate parameter (λ) is fit 
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to each feature-class pair. For a new observation, class membership is determined on the likelihood value. 
Notice that we used a single spike-count as a feature, so the naïve assumption of the decoded is no longer 
relevant in this case.    

14. Population decoding (relevant for Figures 2, 3, 4, S2, S3, S4, S5, S7, S8) 

Population decoding was performed on a pseudo-population assembled across sessions[7]. In this paper, we 
present decoding results for a variety of task variables: (1) image category, (2) new vs. old, (3) choice during 
memory trials, (4) choice during categorization, (5) task, and (6) response type. In order to estimate the 
variance of the decoding performance, on each iteration of the decoder (minimum of 250 iterations), we 
randomly selected 75% of the cell population that was being analyzed. For example, to measure the choice 
decoding in MFC (as shown in Figure 4), we would randomly select 575/767 cells on each iteration of the 
decoder. The total number of available cells depended on the variable that was being decoded. For response 
type decoding for example, the number of cells in MFC was 593, since 28/33 sessions included both response 
types.  We measured decoding performance in one of two ways: (1) on a trial-by-trial basis, or (2) using 
condition averages. For trial-by-trial decoding, we matched the number of trials per condition contributed by 
each cell that was selected to participate in the population decoding. For most task variables (image category, 
new/old, context, effector-type) the number of samples from each cell was equal since the task structure 
remained the same across all subjects and sessions. For choice decoding however, the number of instances 
varied, since the subjects were free to respond with a “yes” or a “no” for each stimulus. We therefore matched 
the numbers for the smallest group across all subjects. We avoided making the number of trials dynamic in 
order to have equal contribution of trials to the pseudopopulation across all selected cells. In the cases where 
we used condition averages (as in Fig. 2C, D for example), the “trials” that were used to train the decoder, 
represented average firing rates computed on subsets of trials available for that cell. The trials that were 
averaged together to create a pseudotrial, were always unique (i.e. we never resampled trials). To illustrate 
this procedure, let’s consider the decoding results presented in Figure 3 as an example. In Figure 3, we show 
decoding and cross-task generalization of new/old information as well as image category. The combination 
of task type, image category, new/old, and effector type, gives us 2422 =32 possible combinations. Note 
that these trial combinations contain non-overlapping sets of trials. For each cell, we compute the average 
firing rate for each of the 32 possible combinations. These 32 estimates then serve as the “trials” on which we 
train and test the decoder. For new vs. old decoding for example, we have 16 training samples for “new” and 
16 samples for “old”. The advantage of using condition averages is two-fold: (1) we have a more robust 
estimate of the underlying firing rate of the cell for a given condition (ex. mean firing rate for the “new” class), 
(2) it allows us to circumvent any imbalances in the number of trials available for each cell, as was the case 
with the choice trials mentioned above. The disadvantage is that we lose trial-by-trial resolution. The 
following decoding results were computed on condition averages: Fig. 2C-D, F-G; Fig. 3C-D, G-H; Fig. 
S4A, B. All other decoders were trained on individual trials, and tested on a left-out set of trials. A series of 
pre-processing steps were carried out before training the decoder. Firing rates for each cell were first de-
trended (to account for any drift in the baseline-firing rate) and then normalized (z-scored) using the mean 
and standard deviation estimated from the training set. We then performed 10-fold cross validation using a 
linear support vector machine (SVM) decoder to estimate performance, as implemented by the ‘fitecoc’ 
function in MATLAB. The function ‘fitecoc’ supports a variety of binary and multiclass decoders, of which 
we only used the SVM, with a linear kernel and a scale of 1. Here we report decoding results as measured 
over time, or in a fixed window. Time-resolved decoding was done on spike counts measured in 500ms 
moving window, with a 16ms step size. For fixed-window decoding, we used spike counts in a 1-second 
window. The location of the window depended on the analysis we wanted to do. In Figure 2 for example, we 
used a [-1, 0] relative to stimulus onset for task type and response type decoding. In Figure 3, we used spike 
counts in [0.2, 1.2] relative to stimulus onset, for decoding image category and new/old.  
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15. Null models for testing significance of decoding performance 

Throughout the manuscript, we compare the performance of our decoders against the 95th percentile of a null 
distribution. The way that this null distribution is generated depends on the variable being decoded. For 
variables such as image category, new vs. old, and response (i.e. yes vs. no), we used a simple shuffling 
procedure for the labels. For variables such as task-type, which had structure over time (memory blocks were 
always preceded by categorization block), any small drift in firing rate of the cells (that was not removed by 
the de-trending procedure described above) would lead to artificially high decoding accuracy. Therefore, for 
such variables, the shuffling of the variables was done in such a way as to preserve their temporal relationship. 
Specifically, we offset (i.e. circular shift) the labels by a random integer value (sampled from the range ±10 
– 20 trials).  In the case of task decoding from the baseline firing rate, this is a very conservative measure of 
the null decoding performance since many trials retain their original label, thereby inflating the accuracy. This 
also means that the mean performance of the null distribution will not be the theoretical chancel level. In the 
case of task decoding, the theoretical chance level is 50%, since it’s a binary classification problem. Using the 
circular shift method for scrambling labels, shifts the mean of the null distribution to nearly 60%. To compare 
the performance between different decoders, for example MTL vs. MFC, we constructed an empirical null 
distribution from the pairwise differences in decoding accuracy estimated using the shuffled trial labels. To 
use the case of the task decoder as an example, we estimate the null distribution of the MFC decoder by 
shuffling the labels at least 250 times and estimate the performance for each shuffle. We do the same for the 
MTL decoder. We then compute the pairwise differences between the 250 values from the MFC decoder and 
the MTL decoder, for a total of 62500 pairwise differences. We can then estimate the likelihood of occurrence 
of the true difference in performance vs. this empirical null distribution. The number 250 is a representative 
value here and generally served as a minimum number of iterations. For lower p-values, more iterations were 
used.  

16. Multidimensional scaling (relevant for Figures 3, 4) 

Multidimensional scaling (MDS) was used only for visualization. We computed MDS using Euclidean 
distances (MATLAB function mdscale) on z-scored spike count data in the [0.2 1.2s] window relative to 
image onset. In Figure 3E for example, MDS was computed on the activity across the entire population of 
MTL and MFC cells, averaged across the 8 conditions plotted (new/old ⨂ task ⨂ image category, where ⨂ 
denotes the Cartesian product). Here the image category was restricted to images of human faces and fruits, 
for visualization purposes. For the cross-condition generalization performance, we use all four image 
categories. In Figure 4C, we compute MDS on the population of MFC cells, averaged across 8 conditions 
(response ⨂ task ⨂ effector, where ⨂ denotes the Cartesian product). In all cases, we use MDS to map the 
neural activity to a 3-dimensional space.    

17. Normalized weight metric (relevant for Figures 4, S7, S8) 

The normalized weight metric is computed from the weight that a decoder assigns to a particular cell 
for a given classification. This weight is denoted as 𝑤𝑤𝑖𝑖

𝑡𝑡, where the index i denotes the cell and the 
index t, denotes the condition (for example, categorization or memory). The weight is converted into 
a normalized measure called an importance index, defined as: 

      𝜔𝜔𝑖𝑖
𝑡𝑡 =  �𝑤𝑤𝑖𝑖

𝑡𝑡�
∑ �𝑤𝑤𝑖𝑖

𝑡𝑡�𝑛𝑛
1

 

 

18. Spike-field coherence analysis (relevant for Figures 5, S9) 
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a. LFP preprocessing 
The local-field potential recordings were highpass filtered at 1Hz. The raw recordings, sampled 
at 32kHz, were then downsampled to 500Hz. The downsampling procedure was done with the 
‘resample’ command in MATLAB, which applies the appropriate antialiasing filter prior to 
reducing the sampling rate. For each session, we screened all MFC and MTL electrodes in 
order to make sure that there were no artifacts that could contaminate the spike-field metrics. 
We excluded all electrodes with interectal discharges (IEDs) visible in the raw trace (by visual 
inspection). Specifically, in screening for IEDs, we looked for large stereotyped, recurring 
transients in the raw recording that did not correspond to cellular spiking activity. The presence 
of such transients would disqualify an electrode from further consideration.  

b. Spike-field coherence (SFC) 
All spike-field coherence analysis was performed on snippets of the LFP extracted around the 
spike. We extract snippets for every cell-electrode pair. For example, in measuring inter-area 
SFC between a single cell in preSMA and MTL oscillations, we will extract n snippets each (n 
= number of spikes) from the 8 ipsilateral electrodes in hippocampus and 8 electrodes in the 
ipsilateral amygdala. For sessions where we used a local reference (i.e. bipolar referencing), 
we exclude the reference wire. For inter-area coherence (ex. MTL spikes to MTL field) we also 
exclude the wire on which the cell was recorded to avoid contamination by spike waveform. 
For each snippet and for each cell-electrode pair, we compute the spike-triggered spectrum 
using the FieldTrip ‘mtmconvol’ method, which computes the Fourier spectrum of the LFP 
around the spikes using convolution of the complete LFP traces. The spectrum was computed 
with a single ‘hanning’ taper, at 56 logarithmically spaced frequencies ranging from 2 Hz on 
the low end, to 125 Hz on the high end. The length of the snippet window was dynamic as a 
function of the frequency examined; the snipped length was set to equal to two cycles of the 
underlying frequency at which the spectrum was  estimated (i.e. 2 Hz  2 second snippet). We 
estimate the phase for each snippet and for each of the 56 frequencies from the complex-valued 
Fourier coefficients (i.e. phasor). We use the pair-wise phase consistency (PPC) metric as the 
measure of coherence. For the spike-triggered power, we compute the magnitude of the spectral 
coefficients returned by the Fourier transform (also computed for each cell-electrode pair) for 
each snippet and averaged the spectra. Unless otherwise stated, all SFC results in the paper are 
based on spikes recorded during the baseline period between trials (1s window preceding 
stimulus onset).  

c. Group comparisons using the SFC metric 
When comparing two or more groups using the PPC metric (such as memory vs. 
categorization), we balanced the number of spikes between the two groups. To reduce bias 
involved in subsampling the larger group, we resampled the spikes from the two groups 200 
times, and computed the PPC metric on each iteration. The final coherence measure for a given 
cell-electrode pair was an average across all 200 iterations.  

 

19. Pupilometry (relevant for Figure S1) 

To test whether levels of engagement and arousal varied between tasks, we used pupillometry (pupil size; 
see Figure S1J for an example session). We compared two metrics, the baseline pupil size (0-100ms after 
stimulus onset, Figure S1K) and the slope of the pupil as it responds to the stimulus on the screen (measured 
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from 350-600ms, Figure S1L). Neither metric showed a significant modulation as a function of task (p = 
0.12 and p = 0.11 for size and slope respectively, sign test), thereby indicating that levels of arousal were 
similar for the two tasks. This analysis is based on 25 of the 28 sessions where we measured eye movements. 
The remaining 3 sessions were not used because the measurement of the pupil was determined to be too 
noisy.  
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