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To mark the 15th anniversary of Nature Methods, we asked scientists from across diverse fields of 

basic biology research for their views on the most exciting and essential methodological 

challenges that their communities are poised to tackle in the near future.
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Credit: Andrew LaNoue

Polina Anikeeva: Neural engineering has benefitted from decades of innovation in micro- 

and nano-electronics, photonics, materials science, chemistry and synthetic biology. Our 

current ability to integrate these fields with each other and with neuroscience, however, pales 

in comparison with the scale and complexity of neuronal signaling. Understanding the 

nervous system in the context of health and disease will demand a paradigm shift, from 

refinement of individual device components to integration of multiple signaling capabilities, 

to address the richness of communication within neural circuits. Such a paradigm shift 

highlights the need for fluid exchange of ideas between the fields and demands 

understanding of fundamental physical principles at the core of each technology.
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Credit: Justin Knight

Edward Boyden: Over the last few decades, we have seen the invention of new 

technologies for imaging brain activity, controlling brain activity, and mapping the 

molecular composition and wiring of the brain. An important methodological challenge will 

be to optimize these technologies and incorporate them into a single workflow, so that 

scientists can systematically investigate how the molecular composition and wiring of the 

brain yields its emergent dynamics, which in turn generates behavior and pathology. For 

example, experimental workflows that enable imaging activity throughout a brain circuit, 

then perturbing its dynamics, and finally mapping the molecules and wiring throughout, may 

yield new insights into the mechanisms underlying complex brain functions and 

dysfunctions.
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Clifford Brangwynne: We have a detailed understanding of the conditions under which 

distinct states of non-living matter form, codified in phase diagrams that reflect underlying 

thermodynamic driving forces. Can we achieve a similar quantitative understanding of 

liquid–liquid phase separation within living cells? To truly understand intracellular self-

assembly, and its functional and pathological dysregulation in devastating diseases, the 

answer needs to be yes. New technologies are needed to probe and engineer intracellular 

phase behavior, and should interface with deep proteomics, metabolomics and genomics 

readouts of biological function. These technologies will also elucidate non-equilibrium 

driving forces within the complex intracellular milieu, and provide the foundation for a 

rigorous understanding of living matter.
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Credit: Matt Staley, HHMI/Janelia

Ibrahim I. Cissé: To detect a single fluorescent molecule, it must either be dilute or one 

must turn off any other nearby fluorescent molecule. Although the ability to localize 

individual fluorophores is advantageous and has led to development of super-resolution 

fluorescence microscopy, an implication of needing sparse fluorescent molecules is the 

concentration limit of a few nano-molar or less that it imposes. Practically, this means that, 

at molecular resolution, live-cell fluorescent microscopes only capture the more strongly 

interacting biomolecules, and are blind to most assemblies of weaker affinities. However, the 

growing appreciation for biomolecular condensates and in vivo phase transitions will likely 

force us to come up with clever ways to unveil the blind spots of in vivo single-molecule 

microscopy.

Anikeeva et al. Page 7

Nat Methods. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Oliver Fiehn: Metabolomics has become an integral cornerstone of biological research. 

Biological interpretations rely on accurate identification of metabolites. Yet, currently, 

compound annotations lack confidence scoring; this needs to change! Data reports should 

become more harmonized, with cloud processing for large data sets and kits of internal 

standards to assess metabolite levels. Even in-depth untargeted discovery assays should 

become cheaper and use fast-turnaround standardized protocols. Data needs to become 

findable, accessible, interoperable and re-usable for large-scale analyses. Metabolome 

atlases of compound levels in organs and cells are needed to compare individual studies 

against animal models and human population health data. Eventually, the community should 

tackle the biggest bottleneck: interpreting metabolomics data sets by extending database 

queries towards automatic literature text mining.
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Credit: Mary Zhu

Petra Fromme: Biological processes are highly dynamic, but most biomolecular structure 

determination approaches only show a static picture. X-ray-free electron lasers (XFELs) 

have revolutionized structural biology with femtosecond pulses: structures can be 

determined before destruction takes place, enabling the discovery of the dynamics of 

biomolecular reactions ‘on the fly’. However, access to XFELs is limited, with only five 

facilities in the world. Compact XFELs, which aim to shrink XFELs from 1 mile to 30 feet, 

could bring XFEL technology to the laboratory scale, opening the field to the broad 

scientific community. Combined with ultrafast spectroscopy, this will enable the 

determination of the dynamics of molecular and electronic structural transitions 

simultaneously, in real time, in the future.
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Credit: Annie Tong, Sinai Health System

Anne-Claude Gingras: Proteomics research is currently undergoing a burst of exciting 

technical developments, in terms of improving throughput, quantification and the ability to 

analyze very small samples by mass spectrometry. These improvements are already being 

applied to profile protein abundance, but they can also be employed in functional 

proteomics. Coupled with, for example, CRISPR technologies and advances in protein 

labeling and crosslinking techniques, advanced proteomics methods will provide fine details 

of cellular organization, as well as of changes in the association, localization and functions 

of proteins following perturbations. This will require the acquisition of multi-faceted 

datasets, and one of the next challenges will be to develop tools to facilitate their 

visualization and re-use by the broader scientific community.
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Credit: Anna Greene

Casey S. Greene: We are generating data at an unprecedented scale and at levels of 

resolution ranging from environmental sensors to molecular profiling of individual cells. It 

can be tempting to search through large-scale datasets to identify results that support 

existing notions. A near-term challenge is to develop techniques that integrate data to 

illuminate under-studied processes or reveal relationships that are at odds with our 

expectations. Uniting machine learning methods with representations of biomedical 

knowledge that account for the complexity of living systems will be critical to designing 

computational techniques that can overturn our existing understanding and sidestep 

confirmation bias in this era of abundant data.
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Credit: Institut Curie

Edith Heard: Thanks to revolutionary chromosome conformation capture and imaging 

technologies, we are attaining an unprecedented understanding of genome architecture. The 

structures of many of the protein complexes that sculpt, read or duplicate the genome have 

been characterized at the atomic level, and the CRIPSR–Cas9 genetic engineering revolution 

has helped dissect their functions. These technologies provide profound insights into how 

genome structure relates to genome regulation and gene expression. The main technological 

challenge today is to follow the dynamics of genome folding and function over time in living 

cells, integrating imaging and genomic data. We also have to address the behavior and role 

of the repetitive portion of the genome, which may dictate many of its architectural and 

regulatory features. The repeat fraction of the genome has been somewhat of a blind spot for 

the analysis of genome architecture, yet it may contain key architectural and regulatory 

features.
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Stefan W. Hell: Now that the ultimate resolution limit in fluorescence microscopy—that is, 

3D resolution of the size scale of a molecule—has been reached with MINFLUX, we should 

seriously think beyond fluorescence. Coming up with molecular signals that are as specific 

as fluorescence but do not require labeling with reporter molecules; that would be 

something.
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Credit: Eileen Barroso

Elizabeth Hillman: The latest microscopes are revealing the inner workings of living 

organisms like never before: dynamics of motion, high-speed signaling, connectivity, and 

molecular and genetic identity, all in the context of function. Seeing is believing, and what 

used to be inferred can now be directly observed. However, better ways to extract 

quantitative information from these datasets are urgently needed. Brilliant biologists with 

novel specimens need both new expertise and accessible analysis tools to move beyond 

beautiful visualizations to find patterns, trends and answers. Artificial intelligence will 

surely help, but deeper interdisciplinary training of our next generation of life scientists will 

also be essential.
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Grant Jay Jensen: The history of cell biology has been punctuated by major advances in 

imaging technology. Cryo-EM imaging methods have recently enjoyed an amazing 

‘resolution revolution’. In the future, the range of samples that can be imaged will expand to 

both much smaller and much larger targets. For imaging macromolecules, electrons have 

profound advantages over X-rays in that they can be focused to high resolution, revealing 

phases as well as amplitudes. Because of this, and because imaging in 3D is better than 2D, 

the way of the future will be to image macromolecules using cryoelectron tomography. 

Eventually, this will be true across scales and context from crystals of small purified proteins 

to enormous macromolecular complexes inside tissues, but there are formidable technical 

challenges to be overcome in sample preparation, instrumentation and analysis.
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Rachel Karchin: Cancer researchers are working with high-dimensional data: genomic, 

transcriptomic, proteomic and epigenomic, from bulk sequencing to single-cell sequencing 

of tens of thousands of cells. New imaging technologies will provide 2D and 3D views of 

the cancer cells and their environments. Longitudinal studies will make it possible to model 

the dynamics of these changes in many dimensions. We imagine it will be feasible to 

associate the dynamics of omics measurements and imaging with clinical outcomes for a 

large population of patients, when machine-readable electronic medical records are adopted 

on a large scale. To support clinical decision making, we will need algorithms that can 

handle high-dimensional data and that provide interpretable results.
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Laura L. Kiessling: The surface of every cell is coated with glycans (glycoproteins, 

glycolipids and polysaccharides) that serve as the ‘face’ of the cell, reflecting its identity and 

state. In humans, glycans are critical for distinguishing foreign from self (for example, 

microbial versus human cells) and diseased from healthy cells. Still, we cannot yet 

determine a cell’s glycome. We must develop technologies that sensitively and accurately 

identify and sequence glycans. New methods to elucidate the relationship between genomic 

data and cell-surface glycans could transform our understanding of human health and 

disease. Such tools would also illuminate the basis for cell interactions in tissues, host–

microorganism interactions and mixed biological communities.
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Benjamin P. Kleinstiver: The unrelenting growth of the ‘CRISPR toolbox’ has 

fundamentally altered the type and scale of biological questions that the research and 

therapeutic communities can ask. Our ability to edit DNA sequences in virtually any 

organism has given humanity the technologies necessary to study life and potentially cure 

disease. We eagerly await answers from the first CRISPR-containing human clinical trials 

that utilize genome editing to augment immune-oncology and to treat inherited genetic 

diseases of the eye, blood, muscle and liver. Pending results that may motivate further 

tweaks and improvements to the technologies, the community may not need to ask what we 

cannot do with CRISPR for much longer, but instead might more seriously contemplate 

what we should not do.
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Credit: David Ahntholz

Rob Knight: The metagenomics community is poised to make three major advances. First, 

an accumulation of reference genomes (especially metagenome-assembled genomes) will 

make reference-mapping increasingly feasible for a wide range of environments, allowing 

easier estimation of which genomes are in each environment, and at what abundance, from 

cheap, short-read data. Second, an integration of genomic with chemical data (for example, 

short-chain fatty acids and other metabolites), especially in perturbation experiments, will 

greatly accelerate our understanding of which microorganisms produced which molecules. 

Third, improved tools for spatial mapping will enable visual analytics and deep learning of 

microorganism–molecule interactions, and improve our understanding of how 

microorganisms and their products exchange between hosts and environments.
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Philipp Kukura: Single-molecule methods have had a significant impact on the life 

sciences, ranging from imaging and structure determination to DNA sequencing. A central 

challenge for the field is applicability: transforming techniques used by specialists 

answering specific questions into those that are universally usable. There is something 

genuinely unique about being able to watch single molecules come together in space and 

time: the resulting images and movies directly reveal the mechanisms we draw when we try 

to conceptualise complex biomolecular processes. Key will be to connect the universality of 

our diagrams with the applicability of our technologies to enable the next generation of 

breakthroughs in the life sciences.
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Credit: MRC, Laboratory of Molecular Biology

Madeline A. Lancaster: The human brain, one of the final frontiers of exploration, still 

remains largely a mystery. How does such an otherwise indiscriminate lump of protoplasm 

carry out advanced human cognition? Brain organoids (models of the developing human 

brain) are now allowing us to embark on a new age of discovery in neuroscience. The next 

5–10 years will see a rapid succession of human neurological conditions modelled with this 

highly relevant and tractable system. In the long run, advancements in vascularisation and 

functional connectivity will push this technology further, and have the potential to answer an 

age-old question: what makes us human?
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Nicholas Loman: Recent advances in nanopore sequencing, combined with re-discovery of 

classical DNA extraction techniques and the gentlest of pipetting, have permitted ultra-long 

reads (over 100 kb and up to 2.3 megabases) to be generated from cell lines. This technique 

recently permitted the first telomere-to-telomere assembly of a human chromosome. The 

next big challenge is to make this approach applicable to human clinical samples containing 

much smaller amounts of DNA, and to find creative bioinformatics approaches that rapidly 

generate robust de novo genome assemblies and enable clinical interpretation both for 

human genomes and the microbiome! We are trying to tackle these problems as part of a 

global collaboration, so please join our Long Read Club.
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Credit: Matthew Staley, Janelia Research Campus

Loren Looger: Much progress has been made in the activation or silencing of genetically 

defined populations of cells with light, drugs, heat and sound. Methods for the control of 

specific proteins lag far behind. Ideally, techniques would: be at the protein, not nucleic acid, 

level; be essentially instantaneous and easily reversible; function on endogenous, not over-

expressed, protein; not disrupt function in the unstimulated state; and work in living animals 

and plants. For instance, the instantaneous, reversible ablation of a single transcription factor 

or receptor in genetically defined cells (or sub-cellular compartments) would reveal its 

contributions to cellular function and animal behavior in unprecedented detail.
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Credit: Markus Marcetic

Emma Lundberg: Measuring the expression of biomolecules in space and time at the single 

cell level will deepen our understanding of cell identity. Such studies of RNAs, proteins, 

lipids and metabolites are becoming increasingly feasible with advanced imaging, 

sequencing and mass spectrometry platforms. Exciting methodological challenges include 

the development of computational models of cells that integrate molecular and spatial 

information, and can represent cells as the dynamic and complex systems they are. Such 

single cell omics methods and computational cellular models have the potential to 

revolutionize our understanding of the normal states of human cells and trajectories into 

disease. By tuning the models to represent any cellular state, we should be able to infer the 

concerted changes that allow cells to perform their functions.
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Qingming Luo: Our knowledge of neuroscience is based on comprehensive identification 

and characterization of distinct neurons and neuronal circuits. Obtaining brain-wide 

mammalian brain atlases at single-neuron resolution with identified neuron morphology and 

entire neuronal circuits containing long projections is still challenging and requires the 

development of wide-field imaging techniques with high throughput and high voxel 

resolution, as well as intelligent high-throughput mass data processing techniques. Once we 

retrieve the entire set of projections of specific neuronal circuits as well as the affiliated 

functionally defined brain areas (which we call brainsmatics), it will be exciting to unravel 

mysteries such as the mechanisms of consciousness, dreams and cognition. Those 

discoveries will benefit our understanding of and development of therapy strategies for 

neurological disorders.
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Credit: RIKEN CBS

Atsushi Miyawaki: The introduction of functional probes may lead to either the up- or 

down-regulation of downstream intracellular signaling, and may perturb the cells we 

observe. Moreover, even with knock-in methods for probe introduction, a substantial amount 

of light or chemicals are absorbed by cells labeled with fluorescent or bioluminescent 

probes, respectively. Quantitative bio-imaging is expected to provide a methodological 

framework for simulating observation-dependent perturbation. Once we accept the idea that 

‘seeing is perturbing’, the visualization process will be regarded as a reaction towards 

objects, and our research efforts will lead us closer to real understanding. It is time to 

evaluate the assets of bio-imaging for their potential and limitations to truly benefit from this 

relatively new technology.
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Eugene W. Myers Jr: In genome sequencing, improvements in technology and computer 

algorithms will soon allow us to perfectly sequence a complex, multi-gigabase genome de 

novo at a modest price point, US$1,000 or less. This will herald an unprecedented 

exploration of ecosystems and the evolution of life. Many technical and methodological 

challenges must first be solved. In microscopy, microscopes are becoming increasingly 

programmable, and ‘smart’ devices and computational methods such as deep neural nets are 

enabling us to see further and more clearly into biological samples. A key challenge is to 

fully harness the power of adaptive optics, particularly in devices and samples where the use 

of fiducial markers and explicit measurement of the wave front are not possible.
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Garry P. Nolan: Single-cell phenotyping is moving towards generating tissue atlases and 

trekking inward towards establishing a 3D map of a cell’s constituents, simultaneously 

driving algorithmic development that enables mere humans to understand biology. The 

limitations of current marker technologies, including antibodies, chemical tags and gene 

fusions, beg the question of how do we measure everything? Inevitably, we need every 

atom’s position and identity, and from that atom cloud reconstruct the identities and 

positions of all cellular constituents. We are developing the concepts behind such an 

instrument to determine the positions of every atom in situ at sub-Ångstrom resolution. The 

field has spent so much time inferring, indirectly, a cell’s interior structure; why not just take 

a picture?
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Credit: Kaska Nowak

Paola Picotti: Proteomics can measure changes in the abundances of proteins for almost 

complete proteomes. However, a variety of molecular events can profoundly alter protein 

function without affecting protein levels. A key challenge for the future will be to find ways 

to simultaneously monitor all these events and thus provide a comprehensive picture of 

protein states. Protein structures integrate molecular cues such as chemical modification, 

conformational change, interaction with other molecules and cleavage, which all affect 

protein function. I propose that detecting protein structural changes on a global scale by 

mass spectrometry will provide novel ways to comprehensively detect protein functional 

changes, capture physiological and pathological alterations, and generate mechanistic 

hypotheses.
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Wolf Reik: We are witnessing an enormous revolution in single-cell genomics, which is 

being applied to millions of cells and giving rise to a new anatomy of the human body 

through the Human Cell Atlas and Human Developmental Biology initiatives. But there are 

many more layers of molecular information we can capture now and in the future in single 

cells, combining the transcriptome with DNA modifications and chromatin accessibility, 

histone marks and perhaps the proteome as well. An integration of time as a dimension in 

these measurements would be particularly exciting. Powerful machine-learning algorithms 

will connect these layers together and will be able to detect cell fate decisions, or cell fate 

change in disease, at an unprecedented level of precision. Eventually, single-cell editing may 

allow pathological changes in cell fate to be corrected, although this may take a little while 

yet.
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Markus Sauer: Super-resolution microscopy methods can provide spatial resolution that is 

well below the diffraction-limit of light microscopy, but they do not yet provide the 

molecular resolution required to understand how a cell functions and which mechanisms 

occur in the case of a dysfunction or disease. I anticipate that within the next years, 

combinations of methods such as expansion and super-resolution microscopy, supported by 

the development of intelligent dyes and labeling methods with minimal linkage error, will 

provide imaging of organelles and protein complexes with one to two nanometer resolution. 

By harnessing these tools, the future will allow us to decipher how nature encodes function 

at the molecular level.
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Credit: Juliana Sohn

Alex K. Shalek: Single-cell RNA-seq has transformed our ability to dissect cellular 

systems, enabling transcriptome-wide identification of cellular components and their 

molecular signatures. Yet, we still need to do more, such as: faithfully capture cell states at 

scale to decipher critical molecular attributes; comprehensively appreciate what a 

‘transcriptional snapshot’ can actually tell us about a cell’s past, present and future within a 

tissue; and systematically uncover the value derived from collecting and integrating 

additional data (for example, spatial position, dynamics, other omics, existing single-cell 

datasets, reference gene signatures and perturbations). Equally important, we must also 

empower global participation in the generation and analysis of these data to achieve broad 

mechanistic insights into human health and disease.
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Jay Shendure: This is a very exciting time for high-throughput functional genomic screens. 

The growing CRISPR toolset is enabling increasingly versatile experiments, for example, 

expanding the ‘targetable genome’ to noncoding regions. In my view, the primary challenge 

of the moment lies with expanding the range of phenotypes that are compatible with such 

screens beyond the typical ‘growth rate’ experiments. This includes, but is not limited to, 

whole transcriptional or epigenetic profiling, as well as imagingbased phenotyping, in 

association with each perturbation. Further challenges include achieving comprehensive 

pairwise interaction screens and moving functional genomic screens in vivo. Encouraging 

proof-of-concepts have recently been described for at least some of these goals.
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Credit: Ivana Dimitrova

Nikolai Slavov: Recently, mass-spectrometry methods have increased the specificity and 

throughput of quantifying proteins in single mammalian cells: we can now quantify 

thousands of proteins across hundreds of single cells. I am confident that soon we will 

extend these methods to quantifying metabolites, post-translational modifications, and the 

dynamics and spatial distributions of proteins and their complexes. Ultimately, the accuracy, 

completeness and throughput of these measurements will provide data for transitioning from 

descriptive classification of single cells to quantitative models of regulatory protein 

interactions. I believe these data and models will enable systematic inference of direct causal 

mechanisms that underpin biological functions.
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Amos Tanay: Epigenomics is moving toward single-cell resolution and is already 

facilitating unprecedentedly sharp descriptive analysis of multiple epigenetic scales, ranging 

from DNA methylation, through decorated nucleosomes, up to chromosomal topologies. But 

epigenetics regulates genes by changing their physical contexts rather than turning them on 

and off in a digital fashion. Understanding all its scales and layers, therefore, requires truly 

quantitative models that are based on millions of single-cell epigenomic profiles. Such 

models must go significantly beyond black-box machine-learning predictions. We will have 

to learn to use the new data to develop principled and interpretable tools, with a clear multi-

scale biophysical basis that can match the multi-scale biology of the genome and its 

regulation.
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Credit: Ruth Dannenfelser

Olga Troyanskaya: With the broad availability of whole genome sequencing, the promise 

of precision medicine relies on the comprehensive interpretation of these genomes. Recently, 

deep learning models enabled the prediction of regulatory effects for many genetic variants. 

In the next decade, the challenge will be to integrate regulatory and coding variant effects 

across the whole genome to holistically predict phenotypic consequences for patients. This 

requires advances in modeling approaches as well as improved algorithmic efficiency, 

scalability and model interpretation. Critically, all progress relies on continued generation 

and sharing of experimental and clinical data. Integrative whole genome interpretation will 

deepen our understanding of genetics and can transform our ability to precisely diagnose and 

treat diverse diseases.
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David van Valen: The intersection of deep learning and biology is a very exciting space, 

particularly for those of us who work with biological images, as these methods are starting 

to provide robust solutions to long-standing problems such as image restoration, image 

segmentation and object tracking. To me, the most exciting aspect of this area is seeing the 

creative ways biologists are incorporating deep learning throughout their experimental 

designs and analytics pipelines. As deep learning methods become more commonplace, I 

think we are going to see a drastic increase in the pace of biological discovery.
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Hong-Wei Wang: Cryo-EM uses transmission electron microscopy to study frozen-

hydrated specimens at liquid nitrogen temperature to reveal the structures of 

macromolecules or cellular organelles in their relatively close-to-native states. The recent 

hardware and software breakthroughs in cryo-EM technology have transformed structural 

biology to a new phase, where macromolecule structure can be more robustly elucidated at 

near-atomic resolution. Instrumentation and computational developments of cryo-EM 

methods in the next decade will aim to solve structures at resolutions close to 1 Ångstrom, 

deciphering the dynamic conformational landscapes of macromolecules during reactions, 

revealing high-resolution molecular structures in situ, and directly correlating structures with 

functions in a broader cellular context.
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Chengqi Yi: Epitranscriptomic sequencing technologies that enable transcriptome-wide 

mapping of RNA modifications have added valuable knowledge about the role and 

regulation of RNA. Yet, there is an unmet biological need to quantify the absolute 

stoichiometry of the epitranscriptome. In addition, robust and sensitive methods that are 

highly reproducible and can serve as the gold standard of detection are still lacking for the 

majority of RNA modifications. Tools to specifically manipulate epitranscriptomic marks in 

spatially and temporally controlled manners are also urgently needed. Future challenges and 

exciting opportunities include epitranscriptome analysis at the single-cell and single-

molecule level, and in situ via the combination of sequencing and imaging.
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Credit: Seth Kroll

Peng Yin: DNA nanotechnology enables precise engineering of nanostrucures with user-

prescribed structural and dynamic properties, and has recently advanced diverse bioimaging 

approaches by providing enhanced resolution, signal amplification and multiplexing 

abilities, as well as methods in biosensing and single-molecule biophysics. More 

sophisticated nanodevices that perform in situ analysis of the molecular environment to 

generate real-time signal or action, or to encode spatial temporal features in DNA records, 

are particularly exciting for future development. Dare we even imagine molecular robots that 

survey an otherwise inaccessible molecular landscape, in a similar spirit as Web crawlers 

that index the internet or Mars rovers that inspect the planetary surface?
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Credit: David Glover

Magdalena Zernicka-Goetz: One of the most interesting challenges in my field would be 

to uncover the principles by which the embryo builds itself so that we can create embryo 

models from cultured stem cells. Such models, if successful, would provide powerful tools 

to understand the complexity of intrinsic interactions between the cells that are essential for 

the embryo-building process, with its distinct organs, as well as uncover how developmental 

defects arise and how we can prevent them. Of course, such research has to be bounded and 

guided by ethical considerations.
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Xiaowei Zhuang: With recent advances in imaging and genomics technologies, it is truly 

exciting to envision the possibility of two previously seemingly unreachable goals. The first 

is to generate a full census and atlas of cells for living organisms, including human beings. 

Although the scale may seem daunting — a human is made of tens of trillions of cells — the 

rapid development of single-cell omics methods, including image-based single-cell 

transcriptomics, will allow this goal to be achieved in the foreseeable future. The second is 

to generate a full molecular architecture of the cell. The advent of super-resolution imaging 

and genomic-scale imaging has led us closer to realizing this ambition, though major 

challenges still lie ahead, making this a longer-term goal.
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