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1 Introduction and summary

This work relies on the interplay between different fields of research, including topology,

physics and number theory. As shown in figure 1, each of the three fields asks different

questions, brings in different results, and employs different techniques, which all turn out

to be related and in fact crucial for one and other. The central object is a certain family of

infinite q-series “Ẑb(q)”, which plays the role of supersymmetric indices, topological invari-

ants, and quantum modular forms in physics, topology, and number theory respectively.

We hope the results can be of interest to the corresponding communities. To facilitate this,

the introduction is written from three points of view. That said, the readers are encouraged

to read all of them to get a complete picture.
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Topology

PhysicsNumber
Theory

Why are quantum modular forms 
natural? 

What are the properties of 
3d N=2 theories? 

What are the quantum 
invariants of 3-manifolds? 

resurgence

3d-3d
WRT inv, 
Ohtsuki series

Figure 1. The different topics involved in this paper.

1.1 . . . for physicists

In the past two decades, tremendous progress has been made in understanding strongly

coupled supersymmetric (SUSY) quantum field theories, even to the extent that insights

coming from SUSY theories motivate progress in non-supersymmetric theories. In part,

this progress is based on rapid development of localization techniques in supersymmetric

theories [1], which can be used to compute various partition functions and indices —

including the ones of interest in this paper — exactly.

From the physics point of view, this paper is about a certain 3d analogue of the

famous elliptic genus [2]. More precisely, we study the combined index of a 3d N = 2

supersymmetric theory with a half-BPS boundary condition, originally introduced in [3].

While the elliptic genus of 2d N = (0, 2) theories is known to be related to the traditional

theory of modular forms, the combined 3d-2d index (sometimes called half-index or D2×qS1

partition function) will be shown to exhibit more subtle and interesting types of modular

behavior. Specifically, in section 2 we will discuss three types of modular-like behavior that

can be displayed by the half-indices, with an increasing degree of subtlety as the bulk 3d

theory becomes more and more non-trivial.

In the process, we also find a new and unexpected way in which 2d logarithmic con-

formal field theories (log-CFTs) can arise from supersymmetric quantum field theories, in

fact, from three-dimensional theories!

1.2 . . . for topologists

From the point of view of topology, the present paper aims to make progress on the follow-

ing long-standing problem: how can one extend Gk quantum group (Witten-Reshetikhin-

Tureav, or WRT in short) invariants of 3-manifolds away from roots of unity, to the interior

of the unit disk |q| < 1?

– 2 –
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Surprisingly, recent physics developments [4, 5], brought about by studying M5 branes

wrapped on 3-manifolds, predict that a solution to this problem involves not just one

function Z(q), but rather a collection of functions labeled by elements of the finite set

π0Mab
flat(M3, SL(2,C)) ∼= TorH1(M3,Z)/Z2 , (1.1)

written here for G = SU(2). Specifically, it was conjectured in [6] that there exist new

3-manifold invariants Ẑb(q) ∈ q∆bZ[[q]], which in practice can be computed for a large class

of 3-manifolds, such that

WRT(M3, k) =
∑
a

e2πikCS(a)

(
lim

q→ e2πi/k

∑
b

S
(A)
ab Ẑb(q)

)
, (1.2)

where the sum runs over the connected components of the moduli space of flat connec-

tions (1.1). Another form of this relation, with a few extra details, will appear below, in

section 3, where the role of the S-matrix S(A) will also be clarified. It has the following

explicit form

S
(A)
ab =

∑
a′∈{Z2-orbit of a} e(2λ(a′, b))√

|TorH1(M3,Z)|
, (1.3)

and only depends on basic topological invariants of the 3-manifold, such as H1(M3,Z) with

its inner inner product λ, on which the Weyl group Z2 acts by a 7→ −a.

One of our main results in this paper is that q-series invariants Ẑa(M3) have a “hidden

structure,” namely the structure of a projective SL(2,Z) representation, distinct from the

role(s) modular group played in this context so far [4, 6]. This new structure leads to

powerful predictions:

• The hidden modular structure helps to determine Ẑa(M3) when Ẑa(−M3) is known

(section 7). For example, it leads to the following new prediction:

Ẑ1

(
−M

(
− 2;

1

2
,
1

3
,

1

2

))
= 2q

5
12 − q 9

24 + q
9
24

∑
n≥1

(−1)nqn

(−q; q)n

= 2q
5
12 − q 9

24
(
1 + q − 2q2 + 3q3 + . . .

)
(1.4)

which so far was not accessible by any other methods.

• It also provides a clear picture of what happens — at the level of q-series Ẑa(q) and at

the level of the underlying representation theory — when q approaches a root of unity,

cf. figure 4. In particular, it clarifies when and why one should expect “corrections”

at the roots of unity (section 3.2 and section 7).

• It suggests why and explains in what ways the underlying algebraic structure is more

delicate and interesting in the case of hyperbolic M3 (section 5).

• Finally, it provides a very simple “non-topological” way to determine pretty much

everything one wants to know about flat connections on a 3-manifold M3 (section 4.3

and section 6): the complete taxonomy, including the type, stabilizer group, values

of the Chern-Simons invariant, transseries coefficients, explicit computations of the

Ohtsuki series and asymptotic expansions around non-trivial flat connections, etc.

– 3 –
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The text contains various other advances, developed independently of modularity. For

example, computation of Ẑa(M3) for a large class of indefinite plumbings is developed in

section 6.1.

All values of the Chern-Simons functional in this paper are defined modulo 1.

1.3 . . . for number theorists

To number theorists, the problems discussed in this paper could serve as a “factory” that

produces infinitely many q-series of increasing complexity and potentially interesting subtle

modularity properties (see section 2). In particular, one rich family of examples which can

be handled explicitly is labeled by decorated graphs (graphs whose vertices are decorated

by integer numbers). Turning it around, the results from number theory find the following

important applications in topology and physics:

• making predictions on perturbative and non-perturbative three-manifold topological

invariants (section 4);

• shedding light on the resurgence property of half-indices (section 4);

• helping to determine the unknown Ẑb(q) whose computation is not accessible by other

methods at present (section 7).

When complexity is moderate, the resulting q-series expressions produced by our phys-

ical/topological “factory” turn out to be false theta functions, and their relevance to our

problems lies in their quantum modular structure. In this paper we mainly focus on this

situation. By scrutinizing these properties, we advocate the important role played by the

“false-mock” pair in the Ẑb(q) story. Physically and topologically, the crucial requirements

for the relevance of such a pair is

1. they are related by a q ↔ q−1 transformation in the appropriate sense;

2. they have the same transseries expression near q → 1 (or τ → 0), in order to be

consistent with requirements coming from Ohtsuki series/perturbative Chern-Simons.

Interestingly, in his famous last letter to Hardy in which he introduced the notion of

mock theta functions, Ramanujan wrote [7]

“I discovered very interesting functions recently which I call “Mock” theta func-

tions. Unlike the “False” theta functions they enter into mathematics as beau-

tifully as ordinary theta functions.”,

and went on to investigate their behaviour when q approaches roots of unity, a property

that is pertinent to the 2nd requirement above. At the same time, it is precisely these two

specific properties of the mock theta functions that he investigated — the q-hypergeometric

series expressions (section 7.2) and the radial limits, that led us to propose that false and

mock theta functions in fact form a pair playing a starring role in the problems outlined

in figure 1. To connect mock with false, based on earlier works [8–10] we demonstrate

– 4 –
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that mock modular forms and the corresponding Eichler integral give rise to the same

asymptotic series near a cusp (lemma 5), and show that a Rademacher sum defines a

function well-defined in both the upper and lower half of the plane and equal to the two

objects in question respectively (theorem 6). The relation among different modular objects

we discuss in this paper is summarised in figure 9.

The topological/physical “factory” also produces objects with higher complexity. At

present we do not have a complete picture of exactly which types of modular behaviour

they display. However we believe it should be a fruitful endeavor which could shed new

light on the novel modular objects or even lead to the discovery of new natural modular-

like structures.

Throughout the paper we use the standard notations:

H := {τ ∈ C|Imτ > 0}

for the upper-half plane, and

H− := {τ ∈ C|Imτ < 0}

for the lower-half plane, as shown in figure 8. Cusps refer to the natural boundary Q∪{i∞}
of H and similarly for H−. By mock modular forms we have in mind the modern definition

which defines them in terms of their non-holomorphic modular corrections (definition 3),

and by mock theta functions we mean the q-series that are mock modular forms with theta

function shadows up to the multiplication by some rational power of q [11].

2 From mock to modular, via 3d N = 2 theories

Topological phases of matter have been actively studied in recent years, especially in 2+1

dimensions where many interesting examples have been explored (quantum Hall effect,

topological insulators and superconductors, just to name a few). A prototypical example

of such a phase in 2+1 dimensions is a 3d system with a mass gap which is nevertheless

non-trivial and leads to gapless 2d excitations in the presence of boundaries.

A quantum field theory description of such topological phases often can be phrased in

terms of anomalies, which require 2d degrees of freedom to be present on the boundary in

order to compensate the anomaly of a 3d bulk theory. In turn, the anomalies as well as

the vacuum structure of a 3d gapped phase can be conveniently described by a topological

quantum field theory (TQFT) that encodes the effects of the topological order and long-

range entanglement.

A familiar example is the Chern-Simons gauge theory, which has no physical degrees

of freedom and can arise as a low-energy TQFT in a 2+1 dimensional physical system

with a mass gap. In the presence of a boundary, though, it requires 2d massless degrees of

freedom charged under the gauge group — the so-called “edge modes” — in order to make

the combined 2d-3d system non-anomalous.

In the present paper we will be interested in a supersymmetric version of this phe-

nomenon, where 3d theory with a mass gap has N = 2 supersymmetry and 2d “edge

– 5 –
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N =(0,2) boundary2d

condition

=23d N
theory

Figure 2. A 3d N = 2 theory with a 2d N = (0, 2) boundary condition Ba.

modes” on the boundary preserve 2d N = (0, 2) supersymmetry. The advantage of super-

symmetry is that it allows to study the dynamics of such combined 2d-3d system through

the quantities protected by supersymmetry. In the case of 2d N = (0, 2) system, the el-

liptic genus is a famous example of such a SUSY-protected quantity and will be our main

tool [2]. In our problem, illustrated in figure 2, the 2d elliptic genus has a natural exten-

sion [3] to the supersymmetric index of the entire 3d theory with a 2d supersymmetric

boundary condition Ba indexed by a label a,

Ẑa(q) = Z(D2 ×q S1;Ba) . (2.1)

A random choice of the 2dN = (0, 2) boundary condition Ba does not lead to a q-series (2.1)

with integer powers of q and integer coefficients. But for a particular choice of boundary

conditions — which correspond to degenerate critical points of the twisted superpotential

W̃ when the theory is put on a circle — the half-index (2.1) does exhibit non-trivial

integrality properties:

Ẑa(q) = q∆a
∑
n

anq
n , an ∈ Z (2.2)

In the context of 3d-3d correspondence, that is for 3d N = 2 theories associated with

3-manifolds, such expressions are sometimes called homological blocks since the integer

coefficients an are graded Euler characteristics of certain homology groups. One of our

goals in this paper is to study the modular properties of (2.2).

Not only supersymmetry allows to define a protected quantity, it also helps to compute

it, via localization techniques in the regime of weak coupling. This leads to an expression

for the half-index in terms of the contour integral (in the complexified Cartan of the

gauge group):

Ẑa =

∫
dx

2πix
F3d(x) Θ

(a)
2d (x) (2.3)

where the two factors in the integrand, F3d(x) and Θ
(a)
2d (x), correspond to the contributions

of 3d theory and 2d boundary degrees of freedom, respectively.

2.1 The half-index and three-manifolds

Now let us take a closer look at the definition and the structure of the vortex partition

function / half-index (2.1), especially for those boundary conditions Ba which lead to a

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
0

(time) x

Figure 3. A homological block (a.k.a. half-index) counts BPS states of 3d N = 2 theory on

(time)× (cigar).

power series in q with integer powers and integer coefficients. Such special boundary con-

ditions were classified in [6] and the corresponding half-index of the combined 2d-3d system

in such cases is known as the homological block (for its relation to homological invariants).

Indeed, when Ẑa(q) has a q-series expansion (2.2) we can interpret it as a trace over

the Hilbert space Ha of the combined 2d-3d system on R2 ∼= (cigar) (times the “time

circle”) with boundary condition Ba, as illustrated in figure 3. Note, the integrality of the

coefficients in (2.2) is crucial for this interpretation.

This interpretation of the supersymmetric partition function Ẑa(q) is completely anal-

ogous to a similar interpretation of the 3d N = 2 superconformal index which, likewise, can

be formulated as a supersymmetric partition function à la (2.1) where the 3d space-time

D2 ×q S1 is replaced by S1 × S2:

I(q) := trHS2 (−1)F qR/2+J3 = Z(S2 ×q S1) (2.4)

In fact, these two supersymmetric indices/partition functions are closely related.

Conjecturally,

I(q) =
∑
a

|Wa| Ẑa(q)Ẑa(q−1) ∈ Z[[q]] (2.5)

where |Wa| are certain symmetry factors [6] and Ẑa(q
−1) is an appropriate extension of

Ẑa(q) to the region |q| > 1 (or, equivalently, to Im(τ) < 0). Mathematically, the existence of

such extension across the border Im(τ) = 0 is completely non-obvious, but from the physics

perspective can be understood as a result of orientation reversal (parity) transformation

on one of the hemispheres D2 that upon gluing produce a 2-sphere S2:

I(q) = A − twistA − twist
_

(2.6)

As we shall see in this paper, the question about extending Ẑa(q) across the border

Im(τ) = 0 and the search for Ẑa(q
−1) is deeply inter-related to the (quantum) modu-

lar properties of the original q-series (2.2). The latter, in turn, are determined by the

physical properties of the combined 2d-3d system. There are roughly three qualitatively

distinct cases one might consider, which correspond to progressively more delicate modular

properties:

• 3d “bulk” theory is completely gapped and its contribution to the half-index (2.1)

is trivial, F3d(x) = 1. In this case, (2.3) basically computes the elliptic genus of

– 7 –
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the 2d N = (0, 2) boundary theory Ba and has the standard modular properties of

a 2d elliptic genus. In particular, it involves the ordinary modular forms familiar

from textbooks. Examples of this type abound; any (non-relative) 2d N = (0, 2) or

N = (2, 2) theory, together with the trivial 3d theory, is an example.

• The next case is when 3d N = 2 theory is gapped but nevertheless is in a non-trivial

topological phase, as described in the introduction. In this case, the “dominant”

contribution to the half-index (2.1) still comes from 2d massless degrees of freedom,

but the nice modular behavior of the 2d elliptic genus is “spoiled” by the non-trivial

contribution F3d(x) 6= 1 of the 3d N = 2 theory. This case of intermediate complexity

in its modular properties is the main subject of the present paper; in this case, the

relevant modular objects are false theta functions and mock modular forms, as well as

their close generalisations. All examples in this paper apart from those presented in

section 8 are of this type. In particular, in section 6 and section 7.5 we present many

explicit examples of half-indices Ẑa for 3d N = 2 theories T [M3] that correspond to

simple 3-manifolds.

• Finally, the most general case that one can consider is when both 2d boundary

condition Ba and 3d N = 2 theory have massless degrees of freedom (i.e. no mass

gap). In this case, the standard modular properties of the 2d elliptic genus of Ba
are considerably distorted by non-modular behavior of the 3d bulk theory. Although

we expect the objects to be significantly more complicated in this case, presumably

they still exhibit the structure of quantum modular forms. Clearly, the two previous

cases are special instances of this more general behavior. A typical example of this

behavior is 3d N = 2 theory T [S1 × Σg], a.k.a. 3d N = 2 adjoint SQCD whose

half-index is given by (2.3) with the integrand (2.10) for general g > 1. A slight

modification gives a 3d N = 2 theory

SU(2)gauge R-charge boundary condition

chiral adj 2 Neumann

Nf chirals 2 0 Neumann

Nf chirals 2 0 Dirichlet

(2.7)

whose half-index is almost identical, cf. [6],

Ẑ(q) =
1

2(q; q)∞

∫
dz

2πiz

(1− z2)(1− z−2)

(1− z)Nf (1− z−1)Nf

∑
n∈Z

qn
2
z2n (2.8)

but which does not arise, to the best of our knowledge, from any 3-manifold via 3d-3d

correspondence.1

This classification, of course, is only qualitative; its main purpose is to provide an intu-

itive explanation of the deviation from traditional types of modularity. In particular, the

borderlines between different types of behavior are not sharp and some examples may fall

right in the middle, or one might find sub-classes in each type of behavior.

1For various other examples and applications of half-indices see e.g. [3, 4, 6, 12–18].
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Although our considerations apply to arbitrary 3d N = 2 theories, a particularly

large class of examples comes from 3-manifolds via the so-called 3d-3d correspondence

or, equivalently, compactification of 6d (0, 2) fivebrane theory on a 3-manifold M3. The

resulting 3d N = 2 theory, usually denoted T [M3], can therefore be a proxy for a more

general 3d N = 2 theory.

For 3d N = 2 theories T [M3], the BPS Hilbert space Ha[M3] is a homological invariant

of 3-manifolds, and

a ∈ π0Mab
flat(M3, GC) (2.9)

labels the connected components of the moduli space of abelian flat connections on M3

(cf., (1.1)). Here, the requirement for the boundary condition Ba to represent abelian flat

connections is intimately related to the integrality of the resulting q-series (2.2). As ex-

plained in [5], the information about non-abelian flat connections is not lost, but repackaged

in the q-series Ẑa(q) and in its categorification Ha[M3].

Aside from its applications in low-dimensional topology, the advantage of working with

this class of 3d N = 2 theories T [M3] is that the homological blocks (2.1) can be explicitly

computed for many non-trivial examples. The answer is often expressed as a contour

integral (2.3), where (up to an overall power of q):

F3d(x) = (x− x−1)2−2g , for degree-p S1 fibration over Σg (2.10)

F3d(x) =
∏

v ∈ Vertices(Γ)

(xv − 1/xv)
2−deg(v) , for plumbing Γ (2.11)

Note, that F3d(x) does not depend on the choice of 2d N = (0, 2) boundary condition Ba;
this dependence comes through the factor Θ

(a)
2d (x) which is basically the elliptic genus of

Ba. For instance, in the above examples (2.11):

Θ
(a)
2d (x) =

∑
`∈2MZL+a

q−
(`,M−1`)

4

∏
v∈Vertices(Γ)

x`vv (2.12)

is the theta function for the lattice determined by the linking form M of Γ, such that

H1(M3,Z) ∼= ZL/MZL [19]. For a degree-p S1 fibration over Σg, we simply have

Θ
(a)
2d (x) =

∑
n∈pZ+a q

n2/p x2n.

3 Three encounters of modularity

In our journey we encounter three different S-matrices and three corresponding “SL(2,Z)

representations”:

• One set of modular S and T matrices encodes the information about all twisted

indices of 3d N = 2 theories on [4]. In fact, this numerical data is a part of much

richer structure, namely the modular tensor category whose Grothendieck group is

the space of supersymmetric states of a 3d N = 2 theory on R×T 2. When combined

with 3d-3d correspondence, it associates a modular tensor category (MTC for short),

MTC[M3], to every closed 3-manifold M3.

– 9 –
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• A different, much simpler S-matrix S(A) already appeared in (1.3). It is trying to

make an “SL(2,Z) representation” out of the set (1.1) of abelian flat connections on

M3 and, in the basic case H1(M3,Z) = Zp, takes a simple form

Sab =
cos 2π abp
1 + δa,0

(3.1)

This peculiar “cos” representation of SL(2,Z) is suggestive of a non-semisimple MTC

common in logarithmic conformal field theory. It appears to be related to another

connection with logarithmic CFTs which enters our story again in section 5.

• The last but not least — in fact, the most important to us here — is the projective

SL(2,Z) representation that describes modular properties of the q-series Ẑa(q).

The main goal of this section is to describe each of these (close cousins of) SL(2,Z) repre-

sentations, and we devote each one a subsection.

3.1 Twisted indices of 3d N = 2 theories

Three-dimensional N = 2 theories, with or without a Lagrangian description, do not

have sufficient supersymmetry to admit a full topological twist on an arbitrary 3-manifold.

However, when Υ(1)R R-symmetry is unbroken, they can be twisted on S1 × Σg or, more

generally, on a degree-p circle bundle over a genus-g surface Σg. Such partition functions

are sometimes called twisted indices of 3d N = 2 theories and, for general g and p, their

entire structure is captured by a modular tensor category (MTC) that can be assigned to

a 3d N = 2 theory [4].

Among other things, this rich structure involves modular S and T matrices, whose

values S0α and Tαα allow to write a general formula for twisted indices in a succinct form:

Ztwisted =
∑
α

(S0α)2−2g(Tαα)p. (3.2)

When 3d N = 2 theory in question admits a Lagrangian description, the sum over α can

be interpreted as a sum over solutions to the Bethe ansatz equations using the standard

localization technique, whereas S0α and Tαα can be identified with what sometimes are

called handle-gluing and twist/fibering operators:

S0α = “handle-gluing operator”

Tαα = “twist/fibering operator”.
(3.3)

In the context of 3d-3d correspondence, i.e. for 3d N = 2 theories T [M3], this modular

tensor category is effectively assigned to a 3-manifold M3 (plus a choice of the root system)

and was dubbed MTC[M3] in [4]. Correspondingly, the S and T matrices then admit

interpretation in terms of the topological data of the 3-manifold M3. For instance,

Tαβ = δαβ e
2πiCS(α) (3.4)

where CS(α) is the Chern-Simons invariants of a flat connection α : π1(M3)→ GC, defined

modulo 1. Similarly, S0α is related to the Reidemeister torsion of M3 twisted by α; this

– 10 –
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q

1
0

Figure 4. The limit q → e2πi/k, with k ∈ Z, enters many aspects of our story: the Kazhdan-

Lusztig correspondence, the relation between Ẑa(M3) and WRT invariants, the relation between

mock modular forms and false thetas, etc.

relation easily follows from e.g. [5], where it also appears as the constant (~-independent)

coefficient of the transseries Z
(α)
pert.

If MTC[M3] is a representation category of some conformal field theory (or, equiv-

alently, vertex algebra) with diagonalizable T -matrix, we can use the standard relation

in conformal field theory, Tαα = e2πi(∆α− c
24

), to write (3.4) in terms of the conformal

dimensions ∆α:

CS(α) = ∆α −
c

24
(3.5)

This relation plays an important role in various gluing formulae of 4-manifold invari-

ants [15].

Note, the S and T matrices of MTC[M3] described here have elements, Sαβ and Tαβ ,

labeled by α and β which run over all flat connections on M3, abelian and non-abelian,

reducible and irreducible:

α, β ∈ π0Mflat(GC,M3) (3.6)

This is in stark contrast with “modular” matrices that enter the relation (1.2) between Ẑa
and Witten-Reshetikhin-Turaev invariants of M3:

WRT(M3, k) =
q∆

2c (
√
k)1−b1(M3)

∑
a,b

e(kλ(a, a))S
(A)
ab Ẑb(q)|q→e( 1

k
) (3.7)

The peculiar S-matrix S(A) that appears here will be the subject of the next subsection; c

and ∆ are certain rational numbers, and the sum runs over connected components of the

moduli space of flat connections (1.1) equipped with a bilinear form λ given by the linking

pairing on the torsion part of H1(M3,Z).

3.2 Ẑa and non-semisimple MTCs

Many examples of modular tensor categories arise as representation categories of vertex

operator algebras (VOAs). In particular, rational VOAs give rise to semisimple represen-
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tation categories, whereas more esoteric logarithmic VOAs lead to non-semisimple MTCs,

in the sense of Lyubashenko [20–22].

As the name suggests, a key feature of logarithmic CFTs (equivalently, the correspond-

ing VOAs) is that some correlation functions exhibit logarithmic behavior. This happens

when the Hamiltonian L0 is non-diagonalizable (has non-trivial Jordan blocks) and, there-

fore, necessarily requires representations which are reducible, but not decomposable.2 The

converse also appears to be true, and another key feature of logarithmic CFTs is the pres-

ence of irreducible representations which have non-trivial extensions among themselves.

Perhaps the simplest and most well-known examples of logarithmic CFTs with such

properties are the so-called (1, p) triplet models. They have central charge3

c = 1− 6
(1− p)2

p
= 1− 3α2

0 (3.9)

where we use the standard CFT notations

α0 = α+ + α− , α+ =
√

2p , α− = −
√

2

p
(3.10)

The name “triplet” comes from the fact that the corresponding vertex algebra, usually

denoted either Wp or W(2, (2p− 1)⊗3), is an extension of the Virasoro algebra by the sl(2)

triplet of the Virasoro primary fields W±,0(z) of conformal dimension 2p− 1 [23]:

W−(z) = e−α+ϕ(z) , W 0(z) = [S+,W
−(z)] , W+(z) = [S+,W

0(z)]

Here, S+ is the “long” screening operator (5.3) that will be useful to us later.

The triplet algebra Wp has 2p irreducible representations X±s , s = 1, . . . , p, with con-

formal dimensions

∆(X+
s ) =

(p− s)2

4p
+
c− 1

24
(3.11)

∆(X−s ) =
(2p− s)2

4p
+
c− 1

24
(3.12)

2Indecomposable means that a representation can not be written as a direct sum of other non-trivial

representations. A good example to keep in mind is that of a finite-dimensional non-semisimple algebra A
with finitely many irreducible (simple) modules Mi:

A =

n⊕
i=1

(dimMi)Pi (3.8)

where Pi denotes the indecomposable projective cover of Mi, such that dim Hom(Pi,Mj) = δij .
3In the special case p = 2, we have

W2
∼= SF+

1

where SF+
d denotes the even part of the symplectic fermions SFd, another popular family of logarithmic

vertex superalgebras, with the central charge c = −2d.
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Unlike the familiar case of a rational CFT, the characters of the irreducible representa-

tions X±s ,

χ+
s (q) := TrX+

s
qL0− c

24 =
q−1/24∏∞

n=1(1− qn)

∑
n∈Z

(2n+ 1)q
p(n+ p−s

2p
)2

=
1

η(q)

(
s

p
θp−s(q) + 2θ′p−s(q)

)
(3.13)

χ−s (q) := TrX−s q
L0− c

24 =
q−1/24∏∞

n=1(1− qn)

∑
n∈Z

2nq
p(−n+ s

2p
)2

=
1

η(q)

(
s

p
θs(q)− 2θ′s(q)

)
(3.14)

do not close under the action of the modular group SL(2,Z). This is a general feature

of logarithmic CFTs. Indeed, just like correlation functions, (modular transformations of)

characters in logarithmic theories involve logarithms and naively take values in Z[[q]][log q].

Then, formal manipulations that re-express log q terms as power series in q often lead to

expressions which are not modular in the traditional sense (e.g. they can be mock modular)

and also contain both positive and negative coefficients in the q-expansion. This formal

way of rewriting log q terms via q-series is precisely what one encounters in the analytic

continuation of WRT invariants away from roots of unity [6, 24]. This parallel between

Ẑa(q) and (pseudo-)characters of log-CFTs will be developed further in section 5.

The modular properties of the characters can be restored by augmenting them with a

set of “extended” characters (or, “pseudo-characters”). In the case of the logarithmic (1, p)

triplet model, this means that, in addition to the 2p characters χ±s (q), one needs to intro-

duce p−1 pseudo-characters, which then altogether form a (3p−1)-dimensional projective

representation Z of SL(2,Z). This representation can be identified with the endomorphisms

of the identity functor in the category of VOA modules and has the structure [25]:

Z = Rp+1 ⊕ C2 ⊗Rp−1 (3.15)

where Rp−1 is the (p− 1)-dimensional “sin πrs
p ” representation of SL(2,Z) on the unitary

ŝl(2)p−2 characters, and C2 is the defining two-dimensional representation of SL(2,Z). Of

most interest to us here is a non-unitary (p+1)-dimensional “cos πrsp ” representation Rp+1

of SL(2,Z) that does not come from any familiar rational CFT. In particular, it has a

non-diagonalizable T -matrix.

Much like C[M(GC,M3)] is isomorphic (as a set) to the Grothendieck ring of MTC[M3]

described in the previous subsection, Z in (3.15) is related to the Grothendieck ring of a

non-semisimple MTC.4 Its structure is most easily understood via the Kazhdan-Lusztig

correspondence which we describe next. In particular, the Kazhdan-Lusztig correspondence

helps to see the structure of indecomposable modules which, as advertised earlier, are

4Here we find a connection to non-semisimple MTCs based on non-perturbative arguments and modular

properties of the partition functions. These arguments are consistent with braiding properties of Wilson

lines in complex Chern-Simons theory and quantization of the moduli space of flat GC-connections [27].
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responsible for the logarithmic nature of the CFT,5 and which can be constructed as

(iterative) extensions of irreducible (simple) modules. In particular, in the end of this

process one finds projective modules with the following structure (1 ≤ s ≤ p− 1):

X±s

xx &&

P±s : X∓p−s

&&

X∓p−s

xx

X±s

(3.16)

where, following [25, 26], we denote extensions by

X±s• −−→
X∓p−s• (3.17)

so that arrow always points from the irreducible subquotient to the irreducible submodule.

A reflection of the diamond diagram (3.16) is a simple example of an endomorphism of the

projective module P±s .

3.2.1 Kazhdan-Lusztig correspondence

It is a relatively well known and widely used fact that fusion rules of a WZW model are

related to representation theory of a quantum group at a primitive root of unity. Much less

appreciated, however, is the key aspect of this relation which involves semisimplification.

Namely, the semisimple MTC which describes the semisimple fusion in rational CFT is only

a quotient of the representation category of a quantum group by the ideal of indecomposable

tilting modules.

Curiously, this correspondence — called the Kazhdan-Lusztig correspondence [28–

31] — between fusion algebra of a CFT and the Grothendieck ring of the corresponding

quantum group is actually more direct in the case of logarithmic CFTs. While surprising

at first, there is a simple reason for it: the MTC associated to a logarithmic VOA is not

semisimple and, therefore, the corresponding category on the quantum-group side requires

no semisimplification.

The semisimplification is only necessary if we wish to make an additional step and

relate quantum groups at roots of unity (or logarithmic CFTs) to rational WZW models.

Its implication for 3-manifolds is that q-series invariants Ẑa(M3) — which, as we explain

below, are naturally related to (characters of) logarithmic CFTs — may require certain

corrections at roots of unity, when comparing to WRT invariants of M3, cf. table 1.

5They are also responsible for the additional mysterious pseudo-characters, which can be viewed as

modified traces χ̃V (q) = TrV g q
L0− c

24 , twisted by g ∈ End(V ).
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3-manifolds Logarithmic CFTs

flat connections modules

invariants Ẑa(q) characters χ(q)

“mock side” KL “positive zone”

“false side” KL “negative zone”

“corrections” at roots of unity semisimplification

Table 1. Mysterious duality between 3-manifolds and logarithmic CFTs.

The restricted (a.k.a. “baby”) quantum group Uq(sl2) at the primitive 2p-th root of

unity q = e
iπ
p is defined by supplementing the usual relations6

[E,F ] =
K −K−1

q − q−1
, KEK−1 = q2E , KFK−1 = q−2F (3.18)

with

Ep = 0 = F p , K2p = 1 (3.19)

The resulting quotient of the (perhaps) more familiar quantum group Uq(sl2) is, in fact,

finite-dimensional, namely 2p3-dimensional.7 It has 2p irreducible representations X±s ,

s = 1, . . . , p, with the highest weight ±qs−1:

dimX±s = s , h.w.
(
X±s
)

= ±qs−1 (3.20)

and a (3p−1)-dimensional center, which carries a projective SL(2,Z) representation [25, 26]:

dimZ = 3p− 1 (3.21)

Under the Kazhdan-Lusztig correspondence, X±s and Z are identified, respectively, with the

irreducible representations and the space (3.15) of pseudo-characters of the triplet algebra

Wp, denoted by the same letters.

According to the Kazhdan-Lusztig correspondence, not only the projective SL(2,Z)

representations are supposed to match, but the entire representation categories of Wp and

Uq(sl2) should be equivalent as braided tensor categories. In particular, apart from 2p

irreducible modules X±s there are also 2p Verma modules V±s , 1 ≤ s ≤ p, and 2p projective

modules P±s , 1 ≤ s ≤ p, of dimension

dimP±s = 2p , qdimP±s = 0 (1 ≤ s ≤ p− 1) (3.22)

6See [32] for a friedly introduction and a physical realization of the Lusztig quantum groups in the setup

of [4, 6] that leads to Ẑa(M3). In a two-dimensional description of this setup, E and F generators of the

quantum group correspond to half-BPS interfaces of a 2d N = (2, 2) CFT (Kazama-Suzuki model), so that

the quantum group emerges as an algebra of interfaces.
7Its regular representation has the structure (3.8):

Reg =

p−1⊕
s=1

sP+
s ⊕

p−1⊕
s=1

sP−s ⊕ pX+
p ⊕ pX−p

Dimensions of various pieces, then, add up as follows: 2p ·
∑p−1
s=1 s+ 2p ·

∑p−1
s=1 s+ p · p+ p · p = 2p3, where

we used (3.20), (3.22) and (3.25).
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3d topology and 3d BPS states Modularity

non-abelian SL(2,C) flat connections S-matrix condition (4.30)

complex flat connections S-matrix condition (4.33)

pole contributions in the Borel Weil representation

resummation of Ẑa(M3) S-matrix S(B)

Chern-Simons invariants T -matrix T (B) (4.30)

homological blocks false theta functions

Ẑa(M3) and Ẑa(−M3) and mock theta functions

Table 2. The correspondence between modularity and topology/BPS states.

For generic s 6= p, they are given by extensions

0→ X∓p−s → V±s → X±s → 0 (3.23)

and

0→ V∓p−s → P±s → V±s → 0 (3.24)

respectively. This is precisely the structure depicted in (3.16). In the special case s = p,

the two modules

X±p = V±p = P±p (3.25)

are irreducible, Verma, and projective simultaneously. They are called Steinberg modules

by analogy with what happens in the quantum group over Fp.
As we already mentioned earlier, another statement of the Kazhdan-Lusztig correspon-

dence is that fusion algebra of the logarithmic CFT is supposed to match the Grothendieck

ring of Uq(sl2). The latter is generated over Z by x = X+
2 [25]:

Gr = Z[x]/ (x− 2)(x+ 2)

p−1∏
j=1

(
x− 2 cos

πj

p

)2

(3.26)

Note, in the Grothendieck ring there is no difference between direct sums and non-trivial

extensions, so that [P±s ] = 2[X±s ] + 2[X∓p−s], etc.

3.3 The Weil representations

As mentioned in section 1, via Chern-Simons theory a representation for (the metaplectic

double cover of) SL(2,Z) is attached to the 3-manifold M3, and this representation plays an

important role in the categorification of 3-manifold invariants. Its S-matrix S(B) captures

the perturbative as well as non-perturbative data of the homological blocks Ẑa(M3). By

relating the homological blocks to the Chern-Simons partition functions (or WRT invari-

ants), we see that its T - and S-matrices give sharp predictions for the data of non-abelian

SL(2,C) flat connections, including their numbers, Chern-Simons invariants, and whether
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they are real or complex flat connections.8 These relations are summarised in table 2. In

this subsection we give explicit details of these representations.

In the main classes of examples, which are various Seifert manifolds with three or

four singular fibers, the relevant representations are (based on) the so-called Weil rep-

resentations. Given a positive-definite lattice, one can associate a Weil representation,

which is a representation for SL(2,Z) when the rank is even and a representation for

the metaplectic double cover ˜SL(2,Z) of SL(2,Z) when the rank is odd. Recall that
˜SL(2,Z) consists of elements which are the pairs (γ, υ), where γ =

(
a b
c d

)
∈ SL(2,Z),

and υ : H→ C is a holomorphic function satisfying υ(τ)2 = (cτ + d). The multiplication is

(γ, υ)(γ′, υ′) = (γγ′, (υ ◦ γ′)υ′). The elements T̃ := (( 1 1
0 1 ) , 1) and S̃ :=

((
0 −1
1 0

)
,
√
τ
)

form

a generating set.

In this article we focus on Weil representations associated to rank one lattices, labelled

by a positive integer m [33]. Later this integer will be determined by the topological

data (6.14). Concretely, consider the Weil representation %m corresponding to the finite

abelian group Z/2m equipped with a quadratic form Z/2m → Q/Z given by x 7→ x2

4m .

The unitary representation ˜SL(2,Z)→ GL2m(C) generated by the assignments S̃ 7→ S and

T̃ 7→ T , where

Srr′ :=
1√
2m

e

(
− rr

′

2m

)
,

Trr′ := e

(
r2

4m

)
δr,r′ . (3.27)

Throughout the paper we set e(x) := e2πix, and q := e(τ), y := e(z).

The Weil representation %m is realized by the familiar theta functions:

θm,r(τ, z) :=
∑

`=r mod 2m

q`
2/4my`, (3.28)

for τ ∈ H and z ∈ C. When regarding θm := (θm,r)r mod 2m as a column vector, it

transforms as

θm

(
−1

τ
,
z

τ

)
1√
τ

e

(
−mz

2

τ

)
= Sθm(τ, z) ,

θm(τ + 1, z) = T θm(τ, z) (3.29)

under ˜SL(2,Z), where S and T are as in (3.27). As a result, Weil representations play an

important role in the study of Jacobi forms (see §5 of [34]).

The above shows that θm spans a 2m-dimensional representation of ˜SL(2,Z), which

we denote by Θm. This representation is reducible for all m > 1. To see this, note that

the orthogonal group Om := {a ∈ Z/2m | a2 = 1 mod (4m)} has the natural action

θm,r · a := θm,ra (3.30)

8We say that an SL(2,C) flat connection is real if it is conjugate to an SU(2) flat connection and complex

otherwise.
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that commutes with ˜SL(2,Z). As a result, one obtains a sub-representation by considering

eigenspaces of a ∈ Om. In fact, for most examples we encounter in this paper, the relevant

representations are irreducible!

To label the sub-representations we are interested in, it will be convenient to employ

the isomorphism between Om and Exm, the group of the exact divisors of m. Recall that

a divisor n of m is said to be exact if (n, mn ) = 1, and the groups operation is given by

n ∗ n′ = nn′

(n,n)′2 . For n ∈ Exm write a(n) for the unique a ∈ Om such that

a(n) = −1 mod 2n, and a(n) = 1 mod 2m/n. (3.31)

The assignment n 7→ a(n) defines an isomorphism of groups Exm
'−→ Om. Explicitly, the

isomorphism is implemented by the Omega matrix, defined as

Ωm(n)r,r′ :=

{
1 if r = −r′ mod 2n and r = r′ mod 2m/n,

0 otherwise, r, r′ ∈ Z/2m,
(3.32)

which is familiar from the classification of modular invariant combinations of chiral and

anti-chiral characters of the SU(2) current algebra [35].

In the main examples in this article (corresponding to Seifert manifolds with 3 singular

fibers and involving weight 1/2 quantum modular forms), we always encounter representa-

tions which are the −1 eigenspaces of the operation (3.30) for a(m) = −1. As a result, we

are interested in subrepresentations of Θm, labelled by K ⊂ Exm with m 6∈ K (the so-called

“non-Fricke” property), which is defined as the simultaneous eigenspace of a(n), n ∈ K with

eigenvalue 1, and of −1 = a(m) with eigenvalue −1. Only in section 8 we will encounter

the “Fricke” cases where m ∈ K.

In terms of notations, following a tradition initiated in [36], we denote the pair (m,K)

by m + K = m + n, n′, . . . for K = {1, n, n′, . . . }. Subsequently, we denote by Θm+K

the corresponding sub-representation defined above. Especially interesting choices of K

are those such that the above prescription renders a simultaneous eigenspace of all Om.

Concretely, this happens when K is large enough such that Exm = K ∪ (m ∗ K). For

such a choice of K, and when m is not divisible by any square number,9 the resulting

representation is irreducible. This will be the case in most of our examples.

Concretely, to implement the projection onto eigenspaces we introduce the projection

operators, given by the matrices

P±m(n) = (I± Ωm(n))/2, (3.33)

and

Pm+K =

( ∏
n∈K

P+
m(n)

)
P−m(m) (3.34)

9When m is not square-free, the irreducible representation is given by taking the orthogonal complement

of the images of operators Ud : Θm → Θmd2 given by Ud(φ(τ, z)) = φ(τ, dz) with respect to the so-called

Petersson metric in the space {φ ∈ Θ | φ · a = α(a)φ} [37].
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when m is square-free. Extra care needs to be taken when m is divisible by a square. For

instance, when m = p2m′ where m′ is square-free and p is prime, we have

Pm+K =

( ∏
n∈K

P+
m(n)

)
P−m(m)(I− Ωm(p)/p). (3.35)

Using the above projection operator, we define for r ∈ Z/2m

θm+K
r = 2|K|

∑
`∈Z/2m

Pm+K
r` θm,`. (3.36)

Denote by r ∈ σm+K the set of unequal (up to a sign) vectors θm+K
r . A specific basis for

Θm+K is then given by {θm+K
r , r ∈ σm+K}.

Explicitly, the S-matrix of the sub-representation Θm+K is given by

Sm+K
rr′ =

∑
`∈Z/2m

Sr`Pm+K
`r′

Pm+K
r′r′

, r, r′ ∈ σm+K , (3.37)

which can be understood from the fact that, given an element r in σm+K , the number of

` ∈ Z/2m such that θm+K
` = ±θm+K

r is precisely 1/Pm+K
rr . It is easy to check that indeed

(Sm+K)2 = −Id. As can be easily deduced from (3.27), the corresponding T matrix is

simply given by the diagonal matrix

T m+K
rr′ = e

(
r2

4m

)
δr,r′ . (3.38)

As an example, let us take m = 6 and K = {1, 3}. Since Ex6 = {1, 2, 3, 6} = K∪6∗K,

see that the resulting representation Θ6+3 is irreducible. Following the above discussion, a

simple calculation leads to σ6+3 = {1, 3} and the corresponding basis vectors are

θ6+3
1 = θ6,1 + θ6,5 − θ6,−1 − θ6,−5

θ6+3
3 = 2 (θ6,3 − θ6,−3) ,

(3.39)

and the S-matrix is

S6+3 =
i√
3

(
−1 −1

−2 1

)
. (3.40)

4 Resurgence and modularity

We will see in this section how the third type of modular representations discussed in

the previous section — the Weil representations — are materialized in the form of false

theta functions in our problem. To see the connection to topology and physics, we discuss

their origin as Eichler integrals, and analyze their asymptotic expansions near the cusps,

following [38]. Subsequently in section 4.2 we demonstrate the relation between Eichler

integrals and resurgence analysis, and highlight the fact that the transseries coefficients are

given by the S-matrix entries of the Weil representation. Finally in section 4.3 we use these

properties of the false theta functions to deduce predictions for topological information on

the SL(2,C) flat connections of the relevant three-manifolds.
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4.1 False theta functions and the asymptotic expansions

Associated to the Weil representations discussed earlier are also the weight 3/2 unary theta

functions, defined for τ ∈ H in the upper-half plane:

θ1
m,r(τ) =

∑
`∈Z

`=r mod 2m

` q`
2/4m, (4.1)

related to the theta function by the operator

θ1
m,r(τ) :=

1

2πi

∂

∂z
θm,r(τ, z)|z=0.

In the context of Seifert three-manifold one often encounters its Eichler integral. The

Eichler integral of a cusp form g =
∑

n>0 ag(n)qn of weight w, which can be either integer

or half-integer, is defined as

g̃(τ) :=
∑
n>0

n1−wag(n)qn. (4.2)

Note that this is equal to the following integral for integral w,10

g̃(τ) = C

∫ i∞

τ
g(z′)(z′ − τ)−2+wdz′, (4.3)

where C = (2πi)w−1

Γ(w−1) . In our case of (4.1) we have w = 3/2 and the Eichler integral has the

following Fourier expansion (cf. section 3.3):

Ψm,r(τ) := θ̃1
m,r(τ) = 2

∑
n>0

(P−m(m))r,n q
n2/4m, (4.4)

and is often referred to as a false theta function. In the above we have written (P−m(m))r,n
as the entry of the matrix (3.33) corresponding to the r and n mod 2m. Explicitly, we have

2(P−m(m))r,n =

{
±1 n = ±r mod 2m

0 otherwise
. (4.5)

Note that θ1
m,r = −θ1

m,−r and consequently Ψm,r = −Ψm,−r, and this is the reason why

in section 3.3 we focus on sub-representations contained in the −1 eigenspace under the

action (3.30) with −1 = a(m) (the “non-Fricke” type). Clearly, both θ1
m,r(τ) and Ψm,r(τ)

have Fourier expansions that converge in the unit disk |q| < 1. The false theta function is

not a modular form, but naturally leads to a quantum modular form as we will review later.

To explain the nomeclature, note that the functions defined in (4.4) can also be ex-

pressed as

Ψm,r(τ) =
∑
`∈Z

`=r mod 2m

sgn(`) q`
2/4m. (4.6)

In [39] Andrews defined a false theta function to be a function of the form∑
n∈Z

(±1)nqkn
2+`n.

10We choose the branch to be the principal branch −π < arg x ≤ π.
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Since without the sign factors these are just the usual theta functions θm,r(τ, 0), they are

also often referred to as false theta functions.11

In what follows we will be interested in the Eichler integral of the basis vectors discussed

in section 3.3, given by

Ψm+K
r := θ̃m+K,1

r = 2|K|
∑
n≥0

Pm+K
r,n qn

2/4m. (4.7)

where similarly to θ1
m,r, we have defined θm+K,1

r (τ) := 1
2πi

∂
∂z θ

m+K
r (τ, z)|z=0. Later we will

see how these false thetas come to life as q-series invariants Ẑa(M3) attached to certain

three-manifolds M3 and how their transseries give non-trivial predictions about SL(2,C)

flat connections on M3.

The relation between these false theta functions and WRT invariants was first pointed

out in [38] and further developed in [43–45] as stemming from the following two facts:

• The false theta functions give finite values in the radial limit τ → c
d ∈ Q from the

upper-half plane, and when τ → 1/k they reproduce the WRT invariants at level k.

• The asymptotic expansion of the false theta functions near τ = 0 captures the pertur-

bative expansion (Ohtsuki series, or 1/k expansion) around the trivial flat connection

in Chern-Simons TQFT.

Next we briefly discuss the relevant number theoretic properties of the building block false

theta Ψm,r which are responsible for the above matching. Note that the false theta func-

tions defined in (4.4) and (4.6) have Fourier coefficients with certain periodicity property

(see (4.5)) which moreover have vanishing mean value. For such a function C : Z → C, it

was shown [38] that the corresponding L-series L(s, C) =
∑

n≥1 n
−sC(n), <(s) > 1, can be

holomorphically extended to all s ∈ C and the following two functions have the asymptotic

expansions given by ∑
n≥1

C(n)e−nt ∼
∑
`≥0

L(−`, C)
(−t)`
`!

,

∑
n≥1

C(n)e−n
2t ∼

∑
`≥0

L(−2`, C)
(−t)`
`!

(4.8)

for t > 0. From the above, both the radial limit values at τ → 1/k and the asymptotic series

near 0, when approaching from the upper-half plane, can be computed and compared to the

known result on the WRT invariants of the corresponding three-manifold. In the former

case, we take (P−m(m))r,n e( −r
2

4mk ) to be C(n) and we set it to be Cm,r(n) := (P−m(m))r,n in

the latter case. The result of the calculation yields the asymptotic series

Ψm+K
r

(
it

2π

)
∼
∑
`≥0

L(−2`, Cm+K
` )

`!

(−t
4m

)`
. (4.9)

where we have taken Cm+K
r (n) := Pm+K

r,n .

11As is clear from (4.4), the functions Ψm,r also have the property that they are just like (linear combi-

nations of) ordinary theta functions except for that the sum is performed only over part of the lattice. As

a result, they are sometimes also referred to as partial theta functions [40–42].
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Moreover, the relevant L-values are conveniently captured by the ratios of the sinh

functions:
sinh((m− r)z)

sinh(mz)
=
∑
`≥0

L(−2`, Cm,r)

(2`)!
z2`, (4.10)

obtained from applying the asymptotic expansion in (4.8) to the identity

(xm−r − x−m+r)

(xm − x−m)
=
∑
n>0

(P−m(m))r,n x
n. (4.11)

We will see that the above relations to sinh functions play an interesting role in the

resurgence interpretation of the q-series invariants Ẑa(q).

4.2 Resurgence and Eichler integrals

Anticipating the role of the false theta functions Ψm+K
r as homological blocks, in this

section we study the transseries expression of the false theta function (4.4), which admits

a simple physical interpretation in the context of resurgence, as pointed out in [5]. Apart

from the asymptotic series (4.9) computed in the previous subsection, one can moreover

compute the non-perturbative part of Ψm,r(τ = 1/k) and obtain the whole transseries.

The latter captures the important information regarding flat SL(2,C) connections on the

3-manifold M3. This was first done in [38], where it was demonstrated that the false

theta function is modular near rational points up to a smooth function. The transseries

calculation is closely related to the quantum modular structure of false theta functions,

which we will discuss in details in section 7. In this subsection we focus on the resurgence

point of view of [5]. Moreover, we stress that the resurgence sheds light on the origin of the

appearance of the Eichler integrals in our problem, as the structure of the Eichler integrals

arises from the resurgence calculation quite naturally (4.26).

Resurgence is a method to sum up the infinite perturbative series arising from per-

turbative quantum field theories, which are often asymptotic instead of convergent series,

into a complete function by incorporating the non-perturbative contributions. It relies

on the techniques of Borel resummation, which we now describe briefly. Given a non-

convergent series

Zpert(k) =
∑
n

an
kn

(4.12)

we consider its Borel transform

BZpert(z) =
∑
n

an
Γ(n)

zn−1 (4.13)

which typically defines a function that is analytic in a neighbourhood near the origin. We

are then interested in the Borel sum of Zpert, given by∫
e−τzBZpert(z)dz, (4.14)

where we have on purpose left the contour of integration unspecified at this stage.
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Due to the role of false theta functions as the half-indices Ẑb, we are interested in

applying the resurgence analysis to the building blocks Ψm,r [5]. There is however an

important subtlety: note that there is additional overall k dependence in the Chern-Simons

partition function not captured by the homological blocks (3.7). As we have b1(M) = 0

for our three-manifolds M , there is an overall factor of 1/
√
k multiplying the false theta

functions evaluated at τ → −1/k. From the modular point of view, this 1/
√
k factor stems

from the fact that Ψm,r is a weight 1/2 quantum modular form (see section 7.3).

Comparing (4.9) and (4.10), we conclude that the corresponding Borel transform is

B

(
1√
k

Ψm,r(
1
k )

)
(z) =

1√
πz

sin
(

(m− r)
√

2πz
m

)
sin
(
m
√

2πz
m

) . (4.15)

On the other hand, by performing a Gaussian integral on both sides of (4.11) we obtain

the following identity

1√
k

Ψm,r(
1
k ) =

√
i

2

(∫
eiδR+

+

∫
e−iδR+

)
dz√
πz

sin
(

(m− r)
√

2πz
m

)
sin
(
m
√

2πz
m

) e−ikz, (4.16)

which in light of (4.15) can be interpreted as an exact Borel resummation [5]. Note that

the integral has poles at z = 2π n2

4m , and the residue is given by

Res
z=2π n

2

4m

√i
2

1√
πz

sin
(

(m− r)
√

2πz
m

)
sin
(
m
√

2πz
m

) e−ikz

 = −
√
i

π
√

2m
sin

(
rπn

m

)
e

(
− k n

2

4m

)
(4.17)

for n ∈ Z>0. Note that the right-hand side is, up to an overall constant, the S-matrix (3.37)

corresponding to the sub-representation of the Weil representation Θm specified by eigen-

value −1 of the action (3.30) of −1 = a(m) (equivalently, this is the S-matrix of the unary

theta function θ1
m,r in (4.1), corresponding to K = {1} in the notation of (3.37)):

Smr,n = (SP−m(m))r,n =
−i√
2m

sin
(rnπ
m

)
(4.18)

To sum up the contribution from the infinitely many poles lying on the upper half of the

imaginary axis, we use the regularization in (4.8) and (4.10)∑
n≥0

(P−m(m))r,n = lim
t→0+

∑
n≥0

(P−m(m))r,ne
−nt = lim

t→0+

sinh((m− r)t)
sinh(mt)

= 1− r

m
. (4.19)

Applying the above to Ψm+K
r by taking the linear combination, we see that the corre-

sponding integral has groups of poles labelled by the set σm+K , and their corresponding

contribution to the integral is given by

1√
k

Ψm+K
r

(
1

k

)
= −2

√
i
∑

r′∈σm+K

Sm+K
rr′ cr′ e

−2πik r
′2

4m + perturbative part, (4.20)
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where

cr := 2|K|
m−1∑
`=1

Pm+K
`r

(
1− `

m

)
. (4.21)

The first term in the formal transseries expression (4.20) encodes the contributions from

the poles of the Borel transform and captures the non-perturbative contribution to the

path integral. The second term is given by (4.9) in the limit k → ∞, and captures the

asymptotic expansions, corresponding to the Ohtsuki series on the topology/Chern-Simons

side. In the next subsection we will expand on the physical and topological interpretation

of the above transseries, and deduce non-trivial predictions about the flat connections on

three-manifolds.

Note that the same regularization procedure gives the radial limit

Ψm+K
r (−k) = e

(
− k r

2

4m

)
cr , (4.22)

and we can write

1√
k

Ψm+K
r ( 1

k ) =
2√
i

∑
r′∈σm+K

Sm+K
r,r′ Ψm+K

r′ (−k) + perturbative part. (4.23)

The above states that Ψm+K
r has modular property up to a smooth function, which is

precisely the statement that Ψm+K
r gives rise to a quantum modular form. The above

relation will be derived and explained in another context in section 7.

Finally we remark on the relation between the resurgence integral (4.15) and the Eichler

integral (4.3), drawing on results in [46]. Note that, although the two expressions for the

false theta function Ψm,r, evaluated at the cusp τ → 1
k , look very different, they are in fact

extremely closely related. To see this, note that upon an obvious change of variables the

resurgence integrals (4.16) can be rewritten as an integral of

e−y
2/τ

√
τ

sinh((m− r)πy)

sinh(mπy)
= Cm

e−y
2/τ

√
τ

lim
n∗→∞

n∗∑
n=−n∗

sin(rπ n
m)

y − i nm
(4.24)

where Cm is a unimportant constant that depends only on m. Using the equality between

two integrals ∫ ∞
−∞

e−πty
2

y − ir dy = πir

∫ ∞
0

e−πr
2u

√
u+ t

du (4.25)

and exchanging the sum and the integral, as was done in the proof for lemma 3.3 of [46],

one immediately see that∫ ∞
0

dy
e−y

2/τ

√
τ

sinh((m− r)πy)

sinh(mπy)
= c

∫ ∞
0

du
θ1
m,r(u)√
u+ τ

(4.26)

with some unimportant factor c ∈ C. Clearly, the above calculation also extends easily

when Ψm,r is replaced with the folded false theta Ψm+K
r . As we will see, this is precisely

the period integral (7.32) and whose appearance in the resurgence computation for the false

theta function can be understood through the identity (7.30) between the Eichler integral

and the non-holomorphic Eichler integral as far as the asymptotic series are concerned.
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4.3 Flat connections from modularity

In this subsection we will explain how to extract information about flat connections on

three-manifolds from the modular-like properties of the false theta functions discussed in

section 4.2. As mentioned earlier, our main class of examples is Seifert manifolds with

three singular fibres, although similar ideas and methods are also applicable to more gen-

eral examples.

The starting point is the observation (which will be profusely demonstrated in sec-

tion 6) that the q-series invariants Ẑb(M3) can often be expressed as

Ẑb(M3) = c
(
qδΨm+K

r + d
)
, c ∈ C, δ ∈ Q , d ∈ Z[q] (4.27)

where b denotes a boundary condition, as in figure 2, and d is a polynomial in q (typically,

just a single monomial).12 Note that, for a given three-manifold M3, changing the boundary

condition b changes the corresponding r ∈ σm+K but the Weil representation labelled by

m + K remains the same. In other words, given the same three-manifold M3 (or bulk 3d

N = 2 theory) we will have the analogous relation between Ẑb′(M3) and Ψm+K
r′ . For this

reason, in the rest of this subsection it will be convenient to omit the label m+K in order

to avoid clutter.

The resulting homological blocks (4.27) are combined into Za, labelled by abelian flat

connections (1.1)

Za(k) = e(kλ(a, a))
∑
b

S
(A)
ab Ẑb|q→e( 1

k
). (4.28)

These functions Za have the interpretation as the Borel resummed perturbative expansions

near the corresponding abelian flat connections, and are further assembled into SU(2)

Chern-Simons partition function (3.7) upon specialization q → e( 1
k ) and a sum over the

abelian flat connections “a”.

As we have seen in the previous subsection, a given r ∈ σ labels a group of poles in the

integral expression for (4.16) for
√
τΨm,s(τ), each contributing a residue given by Srs (up

to an unimportant overall factor). From (4.27) we see that they translate into poles giving

contribution to the homological blocks, and hence should correspond to certain saddle

point configuration of the path integral formulation of the half-index. When combined

into the physical quantities Za and ZCS(M3) that arise from Chern-Simons theory, cf. (1.1)

and (4.28), the following things can happen to these poles:13

12The origin of d may seem somewhat unclear, especially when compared to (2.2). At a technical level, it

originates from a regularization of an infinite sum, which we expect to be cured by introducing t-dependence

or, equivalently, working at the categorified level, with the space of BPS states. One could also think

of (4.27) as a sum of two blocks Ẑb(M3), which happen to have the same value of CS(b) and such that one

of them is d.
13The Chern-Simons partition function ZCS(M3) coincides with WRT(M3, k) when the gauge group is

SU(2) and the level is k. It is normalized such that:

ZCS(S2 × S1) = 1, and ZCS(S3) =

√
2

k
sin
(π
k

)
.
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1. A pole contributes to the transseries of Ẑb, but this contribution vanishes upon further

re-assembly into Za.

2. A pole contributes to the transseries of Ẑb and the contribution does not vanish when

re-combined into Za.

(i) Moreover, the contribution to Za do not vanish when combined further into

ZCS(M3) by summing over a and over all the (infinitely many) poles in the

group.

(ii) The contributions to Za sum up to zero after performing the two additional

sums that gives ZCS(M3).

From the physical interpretation of Ẑb, Za and ZCS(M3) in the 3d-3d correspondence, we

can give the following physical interpretation to the above types of poles:

1. They correspond to “phantom” saddles of the path integral for Ẑb that may not even

correspond to flat SL(2,C) connections on M3. (For example, “renormalon” saddles

are familiar examples of this behavior in resurgent analysis of QFT.)

2. They correspond to saddle points of the path integral for Ẑb that arise from non-

abelian SL(2,C) flat connections on M3. (Note that according to a Theorem in [5],

only non-abelian flat connections can appear in transseries contributions to a Borel

resummation of a perturbative expansion around an abelian flat connection.)

(i) Moreover, they correspond to “real” non-abelian flat connections that can be

conjugated inside G = SU(2).

(ii) They correspond to “complex” non-abelian flat connections that can not be

conjugated into G = SU(2).

As a result, from the modularity of the false theta functions we can read off the behaviour

of the different poles of the integral expression for homological blocks, and thereby deduce

predictions on non-abelian flat connections as above.

To turn words into equations, we define the following quantities. Let nB = |σ| be size

of the Weil representation described in section 3.3, and denote by nA the number of abelian

SL(2,C) flat connections on M3, i.e. the size of the modular S-matrix (1.3). Consider the

two matrices

S(M3) = S(A).Emb.(S(B))−1

T (M3) = T (A).I.(T (B))−1
(4.29)

where Emb and I are nA × nB matrices. The first is the embedding matrix defined by

Embar = c iff (4.27) holds. In particular, Embar = 0 when the q-series Ẑa does not involve

the false theta function Ψm,r. The second matrix I is the matrix with all entries equal to

one. The prediction, reflecting the interpretation 2-(i), is then

{ e(CS(a)) | a is a non-abelian SL(2,C) flat connection on M3 }
= { T (M3)ar | a, r such that S(M3)ar 6= 0 }

(4.30)
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Compute Ẑb

Identify Weil rep-

resentation (m,K)

with Ẑb = cqδ(Ψm+K
r + d)

Compute the modular matrices

S(M3) and T (M3) (4.29)

Find non-abelian flat

connections (4.30)

Compute e(−α) and cα (4.32)

Find complex flat

connections (4.33)

Figure 5. From plumbing data to flat connections.

Lets denote the elements of the set on the right-hand side by e(α), and write∑
a,r

T (M3)a,rS(M3)a,rcr =
∑
α

e(α) cα. (4.31)

In other words, we have

cα =
∑
(a,r)

S(M3)a,rcr (4.32)

where the sum on the right-hand side is over the pairs (a, r) satisfying T (M3)ar = e(α). In

terms of these quantities, the interpretation 2-(ii) translates into the following prediction

on complex non-abelian flat connections:

{ e(CS(a)) | a is a non-abelian SU(2) flat connection on M3 }
= { e(α) | cα 6= 0 }

(4.33)

In operational terms, the steps of retrieving the information about non-abelian flat

connections from the plumbing data of a three-manifold are summarized in figure 5. We

note that the above rules only give the set of the corresponding Chern-Simons invariants

(mod Z) and a priori cannot distinguish different flat connections with the same Chern-

Simons invariants.
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5 Logarithmic CFTs from three dimensions

Unusual modular transformations of the combined 3d-2d indices (2.1) and 3-manifold in-

variants Ẑa(M3) studied in this paper also appear as one of the key features in logarithmic

conformal field theories (log-CFTs, for short). The goal of this section is to explain, qual-

itatively as well as quantitatively, that this is not an accident and there are good reasons

why half-indices of 3d-2d combined systems and q-series invariants Ẑa(M3) in many cases

are expected to be related to log-CFTs.

Among other things, this offers a new way of looking at logarithmic CFTs, connecting

them to supersymmetric 3d N = 2 theories, including theories T [M3] coming from 3-

manifolds. We hope that, in the future, this new perspective will help to shed light on still

rather mysterious nature of log-CFTs.

5.1 Ẑa(M3) as characters of log-VOAs

The first qualitative, yet conceptual indication that our setup illustrated in figure 2 has

something to do with logarithmic CFTs comes from the fact that, in many cases, log-CFTs

can be thought of as “deformations” of more familiar ordinary conformal field theories,

such as free theories and lattice VOAs. For example, as we review shortly, this perspective

has been very successful in constructing various log-VOAs as kernels of screening opera-

tors [25, 26], which are larger compared to cohomologies of the same screenings used in the

construction of minimal models [47, 48].

This is similar to how, as explained in section 2, the interaction with 3d degrees of

freedom can “deform” the standard modular properties of Θ
(a)
2d (x) and give rise to objects

such as false theta functions, mock modular forms, or more general quantum modular

forms. Recall [3], that Θ
(a)
2d (x) is the elliptic genus of 2d N = (0, 2) boundary theory Ba.

When coupled to 3d N = 2 theory, its elliptic genus is no longer modular in the traditional

sense and, as a result, the combined index (2.1) can become a pseudocharacter of the type

we already encountered in section 3.2.

For example, for logarithmic VOAs constructed from free fields and screening op-

erators, it is natural to expect that free fields describe Ba, whereas screening operators

correspond to coupling with 3d N = 2 theory. Relegating a more systematic study of this

interpretation to future work, here we note that concrete expressions for Θ
(a)
2d (x) in our

examples indeed involve characters of lattice VOAs, cf. (2.12) and (5.8) below.

Simple examples of logarithmic VOAs constructed from free fields and screening oper-

ators are the singlet and triplet (1, p) models, originally introduced in [49]. In both cases,

the starting point is a free scalar field ϕ with the OPE

∂ϕ(z) ∂ϕ(w) ∼ 1

(z − w)2
(5.1)

and the stress-tensor, cf. (3.10),

T (z) =
1

2
∂ϕ(z)∂ϕ(z) +

α0

2
∂2ϕ(z). (5.2)
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The modes of ∂ϕ(z) generate the Heisenberg algebra [am, an] = mδm+n,01, while the modes

of T (z) generate the Virasoro algebra with the central charge (3.9). There are two screening

operators, often called “long” and “short” screening operators, respectively:

S+ =

∮
eα+ϕ , S− =

∮
eα−ϕ (5.3)

that commute with the stress-tensor, i.e. [S±, T (z)] = 0.

Then, the singlet and triplet (1, p) vertex algebras are realized as kernels of the “short”

screening operator [23, 25, 26, 50, 51]:

Mp = KerF0 S− (5.4)

Wp = KerVL S− (5.5)

on the Heisenberg algebra F0 (= the Fock space of weight 0) and on the lattice VOA VL
for L = α+Z =

√
2pZ, respectively. In other words, Wp is a maximal local subalgebra

of VL in the kernel of the “short” screening operator S−, and Mp = F0 ∩ Wp is the

analogous subalgebra of F0. This gives an alternative description of the tripled algebra Wp

that we already discussed in section 3.2, and both algebras Mp and Wp have the central

charge (3.9).

The singlet (1, p) algebra has Fock modules Fλ of highest weight λ ∈ C (also called

Feigin-Fuchs modules when understood as Virasoro modules), and modules M1,s with 1 ≤
s ≤ p. Their characters take the form [52, 53]:

χ(Fλ; τ) =
q

1
2

(λ−α0
2

)2

η(q)
(5.6)

χ(M1,s; τ) =
1

η(q)

∑
n≥0

(
q

1
4p

(2pn+p−s)2 − q
1
4p

(2pn+p+s)2
)

=
Ψp,p−s(τ)

η(τ)
(5.7)

Before we identify these characters with 3d-2d indices (2.1) and q-series invariants of

3-manifolds, we should point out that, following [4, 6], throughout the paper we suppress14

the factor of (q; q)∞ (cf. (7.7)) in the physical index15

Ẑ(unred)
a (q) =

Ẑa(q)

(q; q)∞
(5.8)

and instead use Ẑa(q), which often takes a more compact form. This physical version (5.8)

of the index Ẑa(q) is sometimes called unreduced or un-normalized.

Taking into account this normalization, we can rephrase our discussion in section 4, in

particular (4.27), by saying that in theories where the normalized index

Ẑa(q) = Ψp,s1(τ) + Ψp,s2(τ) + . . . (5.9)

is given by a linear combination of false theta functions (4.6), we have, cf. table 1:

Ẑ(unred)
a (q) = χ (M1,p−s1 ⊕M1,p−s2 ⊕ . . . ; τ) (5.10)

14Cf. (2.8) where this factor is, in fact, present.
15For more general gauge groups, this relation involves a factor of η(q)rank(G) in the denominator [4].
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3-manifold m+K module of a singlet log-VOA

Σ(2, 3, 5) 30 + 6, 10, 15 M1,1 ⊕M1,11 ⊕M1,19 ⊕M1,29

Σ(2, 3, 7) 42 + 6, 14, 21 M1,1 ⊕M1,13 ⊕M1,29 ⊕M1,41

Table 3. Weil representations and the corresponding modules of the logarithmic (1, p) singlet CFT

for simple homology spheres. The sum over modules is precisely the sum over elements of the

orthogonal group Om introduced above (3.30).

In other words, the properly normalized physical index (5.8) is equal to the character of a

(1, p) singlet VOA module

M1,p−s1 ⊕M1,p−s2 ⊕ . . . (5.11)

Note, although this module looks reducible, perhaps it indicates existence of an extension

to a larger log-VOA, where Ẑ
(unred)
a (q) can be identified with a character of a less reducible

module. A positive indication for this comes from the fact that, in many of our examples,

every term M1,s is always accompanied by M1,p−s in (5.11).

In particular, when composed with 3d-3d correspondence, this intriguing duality be-

tween logarithmic CFTs and 3d N = 2 theories with half-BPS boundary conditions im-

plies that all Seifert manifolds with 3 singular fibers correspond to modules of (1, p) singlet

model. The modules are determined by the data of the Weil representation corresponding

to M3, which, in turn, can be obtained using the general technique outlined in section 4.

It will be illustrated in many examples in section 6.

It would be interesting to study a relation between logarithmic VOAs assigned to 3-

manifolds here, and vertex algebras VOA[M4] assigned to 4-manifolds bounded by such

3-manifolds via the duality [12, 15, 54]. Another natural question is: for which class of

3d N = 2 theories (and boundary conditions Ba) the combined 3d-2d half-indices (2.1)

produce characters of logarithmic CFTs? And, conversely, which logarithmic CFTs arise

in this correspondence? We hope to explore these questions in the future work.

Here and in section 3.2, we found several connections relating 3-manifold invariants

Ẑa(q) with logarithmic CFTs and non-semisimple MTCs. On the other hand, in a parallel

line of development, “logarithmic” 3-manifold invariants based on non-semisimple MTCs

were studied in [55–57] which, therefore, we expect to be related to Ẑa(q). We plan to

pursue this direction in the future work.

5.2 Hyperbolic M3 and non-C2-cofinite log-VOAs

Already at this early stage, the connections between 3-manifolds and logarithmic CFTs

can teach us a valuable lesson. Namely, they can help us understand the answer to the

following important question: what is it about 3-manifolds whose invariants Ẑa(q) can be

expressed in terms of false theta functions and mock modular forms, as opposed to more

complicated modular objects?

If we combine several clues from the above, the answer seems to be triggered by whether

the corresponding log-VOA is C2-cofinite or not, and whether a 3-manifold M3 admits only
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GC flat connections with rational values of CS(α),

CS(α) ∈ Q for all α ∈Mflat (GC,M3) . (5.12)

Indeed, anticipating a close relation between MTC[M3] described in section 3 and the

tensor category of a log-VOA associated to M3 via the dictionary summarized in table 1,

we expect that modules of the latter have conformal dimensions ∆α related to values of

CS(α) as in (3.5).

Then, if condition (5.12) fails for some α, it means that the corresponding logarithmic

CFT must have at least some representations with irrational conformal dimensions ∆α,

and such vertex algebras can not be C2-cofinite.16 Indeed, Miyamoto proved [58] (see [59]

for a lucid review) that values of conformal dimensions and the central charge in a C2-

cofinite VOA must all be rational. Curiously, the condition (5.12) holds for all examples of

3-manifolds considered in this paper, which is probably why in all cases we find a relation

to C2-cofinite log-VOAs.

On the other hand, hyperbolic 3-manifolds have at least one SL(2,C) flat connection

αgeom — sometimes called “geometric” or “hyperbolic” — and its complex conjugate, such

that Im CS(αgeom) 6= 0. This necessarily violates the condition (5.12) and, based on the

above considerations, we expect hyperbolic 3-manifolds to be related to logarithmic vertex

algebras which are not C2-cofinite. In particular, this suggests what one should expect of

the q-series invariants Ẑa(M3) for hyperbolic M3, assuming the relation between 3-manifold

invariants Ẑa(M3) and characters of logarithmic VOAs continues to hold in the hyperbolic

case as well.17

6 Examples

In the first part of this section, we analyze the definition of the homological blocks provided

in [6] for plumbed 3-manifolds and show that their convergence only depends on the sign

of the diagonal entries of M−1 corresponding to high-valency vertices (vertices with more

than two edges incident to them, deg v > 2).

This enables us to extend the definition of the q-series invariants Ẑb(q) to a wider

range of plumbed 3-manifolds, including those with indefinite plumbings related to the

negative-definite ones via Kirby moves. For positive-definite plumbings and their Kirby-

equivalents, a new procedure is proposed in section 7 to define the corresponding q-series

invariants Ẑb(q).

In the second part of this section, we explicitly compute the new invariants Ẑb(q) for

some examples of Seifert manifolds with three singular fibers. In addition, we examine

the properties of these manifolds through the modular perspective outlined in section 4.

In particular, we provide asymptotic expansions of WRT invariants (or equivalently, the

16Among other things, the C2-cofiniteness means that VOA has finitely many inequivalent irreducible

modules [60]. See also [61] for a nice exposition and various ways to understand this condition.
17If it indeed passes further tests, the condition (5.12) perhaps deserves the name “C2-cofiniteness for

3-manifolds.”
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transseries expansions of Chern-Simons partition functions as in section 4) for selected

examples:

ZCS(M3) ∼
∑
α

e2πikCS(α)Z
(α)
pert(k)

where α runs over all flat connections on M3. In the above formula, Z
(α)
pert will be referred

to as the transseries of the saddle point α (i.e. flat connection α).

6.1 Definite and indefinite plumbings

Given a plumbing graph with framing coefficients ai ∈ Z, there is an associated surgery

link, see figure 6. Performing surgery along the link, we obtain a “plumbed” manifold

M3 [62]. In particular, all Seifert manifolds M3 = M(b; {qi/pi}i) are plumbed manifolds,

because the rational surgery coefficients can be realized by a series of 3d Kirby moves and

continued fraction:18

−p/q
• =

a1• a2• a3• · · · where
q

p
= − 1

a1 −
1

a2 −
1

a3 − · · ·

. (6.1)

Any Seifert manifold M3 = M(b; {qi/pi}i) has a plumbing presentation illustrated in fig-

ure 7. Such a plumbing graph has only one high-valency vertex and the rational surgeries

along fibers are realized by continued fractions, as in (6.1).

A tree-shaped graph with L vertices has a L× L adjacency matrix:

Mij =


ai if i = j

1 if (i, j) ∈ Edges

0 otherwise,

which is precisely the linking form in (2.12). Together with (2.11), and (2.12), we can

compute the half-index (2.3) in the following form:19

Ẑb(q) = q−
3L+

∑
v av

4 · v.p.
∫
|zv |=1

∏
v∈Vertices

dzv
2πizv

(zv − 1/zv)
2−degv

×
∑

`∈2MZL+b

q−
(`,M−1`)

4

∏
v∈Vertices

z`vv . (6.2)

Here, v.p. indicates that we are performing a principal value integral, and b ∈ 2Coker(M)+δ

modulo Weyl group action b ↔ −b. Although we have chosen δ ∈ ZL such that δv ≡
degv mod 2, different choices of δ would only permute the homological blocks of a given

plumbed manifold.

18The orientation convention is such that Poincare homology sphere is represented by a −E8 plumbing

graph, i.e., M(−2; 1
2
, 2
3
, 4
5
).

19For convenience, we have chosen M to be negative-definite. The condition can be relaxed, which is an

interesting topic from the viewpoint of “going to the other side.” We will come back to this in section 7.

Also, to avoid clutter, we write (6.2) for g = 0 Seifert manifolds; a more general expression for arbitrary

genus g involves the combination of (2.10) and (2.11) as the integrand.
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a3 a4

a5

a6

a1

a2 a3

a4

a1

a2

a5

a6

Figure 6. A plumbing graph (left) and the associated surgery link (right).

b

[g]
· · ·

a
(1)
1 a

(1)
2

· · ·
a
(1)
k1

a
(n)
1 a

(n)
2

· · ·
a
(n)
kn

Figure 7. Plumbing graph for a Seifert manifold M
(
b, g; { qipi }

n
i=1

)
.

According to [6], a particular combination of the homological blocks gives SU(2) Chern-

Simons partition function on M3 in the radial limit |q| → 1, cf. (3.7). Specifically, for

plumbed manifolds we have

ZCS(M3) =
1

2i
√

2k

∑
a

e2πikCS(a)
∑
b

S
(A)
ab Ẑb(q),

a ∈ Coker(M)/Z2
setwise

= TorH1(M3)/Z2,

b ∈ (2Coker(M) + δ)/Z2, CS(a) = −(a,M−1a) mod Z,

and S
(A)
ab =

∑
a′∈{Z2-orbit of a} e

2πi(a′,M−1b)√
|TorH1(M3)|

(6.3)

where the Z2 acts as the Weyl group on H1(M3) by a↔ −a.

When the plumbing graph is composed of a single high-valency vertex, i.e., when M3

is a Seifert fibered manifold, the following theorem determines whether the homological

blocks of M3 defined via equation (6.2) provide convergent q-series inside the unit disk and

when they converge outside the unit disk.

Lemma 1. Take M3 to be a plumbed 3-manifold, whose plumbing graph G is a tree. Denote

by M the adjacency matrix of G and by M−1 its inverse. Assume there is only one high-

valency vertex and let v0 denote the entry associated to this vertex in the adjacency matrix.

Then, if (M−1)v0v0 < 0 the homological blocks associated to M3 are well-defined q-series,

convergent for |q| < 1. On the other hand, if (M−1)v0v0 > 0, the homological blocks

converge for |q| > 1.

More generally, when there are multiple high-valency vertices, let {vi} be the set of

high-valency vertices in the plumbing graph of M3. The homological blocks converge for

|q| < 1 (respectively |q| > 1) when all (M−1)vivi < 0 (respectively > 0) for all vi’s.
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Proof. To prove the above theorem we have to analyze the asymptotic growth of the formula

for the homological blocks. From equation (6.2) we have [6]

Ẑb(q) = 2−Lq∆
∑

`∈2MZL+b

F `1 q
− (`,M−1`)

4 , b ∈ (2CokerM + δ)/Z2 (6.4)

where the integer coefficients F `1 are generated as follows (note 2MZL + b ⊂ 2ZL + δ):∑
`∈2ZL+δ

F `1
∏
v

x`vv =
∏
v

{
Expansion
at xv→0

1

(xv − 1/xv)deg v−2
+ Expansion

at xv→∞

1

(xv − 1/xv)deg v−2

}
.

(6.5)

When deg v ≤ 2, the xv-expansion on the r.h.s. terminates at a finite order. Thus, F `1
vanishes when |`v| is large enough for all but one coordinates `v of L-dimensional vectors

` ∈ 2ZL + δ.

The only exception is `v0 which corresponds to the unique high-valency vertex v0

(deg v0 > 2.) Explicitly,

F `1 6= 0 ⇔ `v =


`v0 if v = v0, `v0 ∈ Z
0 if deg v = 2

1 if deg v = 1.

Degree-zero vertices are irrelevant as we only consider connected graphs. This implies that

the q-exponents in the r.h.s. of (6.4) have the following behavior:

q−
(`,M−1`)

4 = q−
(M−1)v0v0 (`v0 )2

4
+O(1) (6.6)

as |`| → ∞ and if F `1 6= 0. This completes the proof for the first part. The proof proceeds

in an identical way to the plumbing graphs with multiple high-valency vertices.

The above result shows that the validity of (6.2) depends solely on the M−1 entries at

high-valency vertices. Let us make a few remarks:

• orientation reversal. It is important to note that the homological blocks in lemma 1

are computed from (6.4), which is a result of a particular regularization (see appendix

A of [6]). Therefore, when the formula does not define a convergent q-series inside

the unit disc, an alternative computational scheme is required. In particular, given

a 3-manifold M3(G), the oppositely oriented manifold −M3(G) provides the natural

companion of M3(G) on the other side of the q-plane. If the former has (M−1)v0v0 < 0,

the latter has (M−1)v0v0 > 0 and (6.4) cannot be implemented to reproduce the

associated homological blocks which are convergent for |q| < 1. Therefore, when

(M−1)v0v0 > 0 we need to extend the definition of homological blocks outside the

unit disc. This will be the central topic of section 7, where we conjecture a new

procedure to derive the homological blocks of three manifolds with (M−1)v0v0 > 0.

• Kirby moves. The signature of the plumbing data may not be invariant under 3d

Kirby moves. An example is illustrated in (6.7) where two homeomorphic manifolds
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have different signatures: the l.h.s. is neither positive nor negative definite, while the

r.h.s. is positive-definite.

−2•

−2• •
−1

−3•
∼= orientation

reversal of


−2•

−2• •
−2

−2• −2•


M(−1; 1

2 ,
1
2 ,

1
3) ∼= −M(−2; 1

2 ,
1
2 ,

2
3)

(6.7)

Without lemma 1, it is necessary to find for each indefinite manifold a homeomorphic,

definite manifold to determine the convergence of homological blocks. In the above

example, for instance, the r.h.s. is positive-definite, so the homological blocks of

M(−1; 1
2 ,

1
2 ,

1
3) would converge outside the unit disc. By the lemma, however, the

domain of convergence can be immediately read off from M−1 of the l.h.s. (and of

course, they converge for |q| > 1). It is also easy to see how 3d Kirby moves preserve

the domain of convergence, as provided in appendix A.

• multiple high-valency vertices. lemma 1 states that (6.4) does not reproduce conver-

gent q-series when there appears multiple high-valency vertices whose M−1 entries

have different signs. This implies that homological blocks (6.2) must be computed by

other means than the regularization scheme (6.4). We will return to these examples

in future work.

6.2 Example: M(−1; 1
2
, 1
3
, 1
9
)

We first demonstrate the modularity dictionary and the steps outlined in figure 5 with the

specific example of a Seifert manifold M(−1; 1
2 ,

1
3 ,

1
9).

6.2.1 q-series invariants

The Seifert manifold has TorH1(M(−1; 1
2 ,

1
3 ,

1
9)) = Z3 and the following plumbing graph:

−3•

−2• •
−1

−9•
(6.8)

To compute its q-series invariants Ẑa(q), we first write down its adjacency matrix:

M =


−1 1 1 1

1 −2 0 0

1 0 −3 0

1 0 0 −9

 .

As is well known (see e.g. [19]), the cokernel of M is isomorphic to TorH1(M(−1; 1
2 ,

1
3 ,

1
9)):

Coker(M) = Z4/MZ4 =
〈
(0, 0, 0, 0), (1, 0,−1,−6), (1, 0,−2,−3)

〉
∼= TorH1(M(−1; 1

2 ,
1
3 ,

1
9)) = Z3. (6.9)
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The Weyl group action maps a cokernel element to its sign inverse. Therefore, the first

element, (0, 0, 0, 0), is mapped to itself, while the others are conjugate to each other, i.e.,

(1, 0,−1,−6) = −(1, 0,−2,−3) ∈ Z4/MZ4. Thus,

Coker(M)/Z2 =
〈
(0, 0, 0, 0), (1, 0,−1,−6)

〉
(6.10)

(2Coker(M) + δ)/Z2 =
〈
(1,−1,−1,−1), (3,−1,−3,−13)

〉
(6.11)

where δ = (1,−1,−1,−1) is given by δv = degv −2, as in [6]. Then, the q-series invariants

Ẑb(M3) are given by (6.2):

Ẑ(1,−1,−1,−1)(q) = q + q5 − q6 − q18 + q20 + . . . (6.12)

Ẑ(3,−1,−3,−13)(q) = −q4/3(1 + q2 − q7 − q13 + q23 + . . .). (6.13)

6.2.2 Weil representation: 18+9

To homological blocks of M3 one can associate a Weil representation, labelled by the pair

m and K. Explicitly, they are related via (4.27). Let us first determine m via modularity

dictionary. Recall, that the non-perturbative part of the transseries (4.20) for Ψm+K
r , of the

form ∼ e−2πik(r′)2/4m, should capture the contributions from non-abelian flat connections.

For a Seifert manifold M(b, {qi/pi}ni=1), the denominator of CS(a) for a non-abelian is a

l.c.m. of 4pi, where pi are the orders of singular fibers in the Seifert invariant [63]. As a

result, we claim that for M3 = M(b, {qi/pi}ni=1) we have

4m = l.c.m.
(

4{pi}ni=1 ∪ {Denominators of CS(a)}0 6=a∈CokerM/Z2

)
. (6.14)

For the current example, we can easily compute CS(a) for abelian flat connections

from the cokernel elements computed in 6.10:

CS(a) = −(a,M−1a) =

{
0 mod Z for a = (0, 0, 0, 0)
1
3 mod Z for a = (1, 0,−1,−6).

Combining (6.14) and the CS(a) computed, we conclude:

4m = l.c.m.(8, 12, 36, 3) = 72 ⇒ m = 18.

Correspondingly, the possible K giving rise to irreducible representations are K = {1, 2}
and K = {1, 9}. A simple calculation reveals that the relevant irreducible representation

is that labelled by m+K = 18 + 9.

In summary, we have

σ18+9 = {1, 3, 5, 7}
Ẑ(1,−1,−1,−1)(q) = q71/72Ψ18+9

1 (τ)

Ẑ(3,−1,−3,−13)(q) = −q71/72Ψ18+9
5 (τ).

(6.15)

Next, we proceed to compute the composite matrices S(M3) and T (M3), defined

in (4.29).
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6.2.3 Computing S(M3) and T (M3)

Let us write down all the relevant matrices for the current example. First, recall that S(A)

is the linking pairing on TorH1(M3) in (6.3). For M3 = M(−1; 1
2 ,

1
3 ,

1
9),

S(A) =
1√
3

(
1 1

2 −1

)
. (6.16)

Next, from (4.27) and (6.15) we can easily read off:

Emb =

(
1 0 0 0

0 0 −1 0

)
. (6.17)

The S-matrix of the Weil representation is easily computed from to be:

S(B) = −2i

3


A 3

2 B C
1
2 0 1

2 −1
2

B 3
2 −C −A

C −3
2 −A B

 (6.18)

where A,B,C = sin( π18), sin(5π
18 ), sin(7π

18 ) respectively.

Finally we combine S(A),Emb and S(B) into S(M3):

S(M3) =

(
−0.23i 0 0.66i 0.43i

0.43i 1.73i 0.23i 0.66i

)
, (6.19)

here evaluated numerically and rounded to the second decimal place.

Next, we compute the T matrices. T (A) is the diagonal matrix with e2πiCS(a) on the

diagonal:

T (A) = exp 2πi

(
0 0

0 1
3

)
. (6.20)

From (3.38), we also have

T (B) = exp 2πi


1
72 0 0 0

0 9
72 0 0

0 0 25
72 0

0 0 0 49
72

 (6.21)

Combining all these elements, we obtain

T (M3) =

e(− 1
72) e(− 9

72) e(−25
72) e(−49

72)

e(−49
72) e(−57

72) e(− 1
72) e(−25

72)

 . (6.22)
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6.2.4 Non-abelian flat connections

As advertised, we will now extract from S(M3) and T (M3) the set of Chern-Simons invari-

ants for all non-abelian flat connections on M3 and determine which of them are complex.

From S(M3) computed above, we observe that:

{T (M3)ar|a, r such that S(M3) 6= 0} =
{

e(− 1
72), e(−25

72), e(−49
72), e(−57

72)
}
. (6.23)

From the rule (4.30), it follows that there are (at least) four non-abelian SL(2,C) flat con-

nections, and the set of their Chern-Simons invariants is {− 1
72 ,−25

72 ,−49
72 ,−57

72} modulo Z.

To determine which of them correspond to complex non-abelian flat connections, the

next step is to compute cα via (4.32), which involves a sum over the pairs (a, r) for which

T (M3)a,r = e(α). For example, when α = − 1
72 , (a, r) = (1, 1) and (2, 4). Now, we can

compute cα: 
c− 1

72
= 0

c− 25
72

= 1.17i

c− 49
72

= 0.76i

c− 57
72

= 1.03i.

(6.24)

So we conclude that M3 = M(−1; 1
2 ,

1
3 ,

1
9) must admit one complex non-abelian flat

connection with CS = − 1
72 , and three SU(2) non-abelian flat connections with CS =

−25
72 ,−49

72 ,−57
72 .

6.2.5 Counting by A-polynomial

Let us compare the above results with the computation based on a surgery presentation

of M3. As explained in [64] and [5, section 5], when M3 = S3
r (K) is a surgery on a knot

K ⊂ S3 with a surgery coefficient r ∈ Q, flat SL(2,C) connections on M3 are contained in

the set of intersection points:

flat connections ↪→ {s(x, y) := yxr − 1 = 0} ∩ {AK(x, y) = 0} (6.25)

in (C∗ × C∗)/Z2 parametrized by (x, y) ∼ (x−1, y−1). Here, AK(x, y) is the so-called

A-polynomial of the knot K. Note, some of the intersection points (6.25) may not lift

to an actual representation π1 → SL(2,C). Similarly, one might worry that accidental

cancellations in the steps outlined in figure 5 could cause one to underestimate the number

of flat connections on M3. Therefore, in practice, it is a good idea to compare the results

produced by these two methods, when both are available.

In our present example of M3 = M(−1; 1
2 ,

1
3 ,

1
9) such an alternative method is indeed

available, thanks to a surgery presentation M3 = S3
−3(3r), where K = 3r is the right-

handed trefoil knot. The corresponding A-polynomial and the curve s(x, y) = 0 are:

A(x, y) = (y − 1)(yx6 + 1), s(x, y) = yx−3 − 1.

Discarding the point (x, y) = (−1,−1) that does not lift to a flat connection on M3 [5], we

obtain the following intersection points (6.25), modulo the symmetry (x, y) ∼ (x−1, y−1):

(x, y) = (1, 1) , (e2πi/3, 1) , (eπi/3,−1) , (eπi
1
9 , eπi/3) , (−eπi 49 , eπi/3) , (eπi

7
9 , eπi/3) .
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
3
√

3
k−3/2 + 203π2

27
√

3
k−5/2 +O(k−7/2)

)
1
3 Υ(1) abelian e2πik 1

3

(√
3k−1/2 − 11πi

4
√

3
k−3/2 +O(k−5/2)

)
−25

72 ±1 non-abelian, real e−2πik 25
72 e

3πi
4

[
4

3
√

3

(
cos 2π

9 + 2 sin π
18

)]
−49

72 ±1 non-abelian, real e−2πik 49
72 e

3πi
4

[
4

3
√

3

(
2 cos π9 + sin π

18

)]
−57

72 ±1 non-abelian, real e−2πik 57
72 e

3πi
4

2√
3

− 1
72 ±1 non-abelian, complex 0

Table 4. Transseries and classification of flat connections on M(−2; 1
2 ,

1
3 ,

1
9 ).

All abelian flat connections have y = 1, and there are two such points in our list, in

agreement with the above analysis. The remaining four points are candidates for non-

abelian flat connections, either real or complex. Since the modularity analysis leads to the

lower bound on the number of non-abelian flat connections also equal to 4 in this example,

combining the upper and lower bounds produced by these two methods we learn that the

total number of non-abelian flat connections indeed must be 4.

6.2.6 Asymptotic expansions

We conclude the analysis of this example by writing the asymptotic expansion of ZCS(M3).

Combining the relation between the q-series invariants and (3.7) with the transseries ex-

pression for the false theta functions (4.20), we obtain the transseries expressions at large k

for ZCS(M3). The results for various saddle points (flat connections on M3) are tabulated

in table 4, where we omitted the overall factor −iq71/72/2
√

2.

6.3 Example: M(−2; 1
2
, 1
3
, 1
2
)

Let us look at one more example in detail, the Seifert manifold M3 = M(−2; 1
2 ,

1
3 ,

1
2). This

example will also play a role in section 7, where the extension of q-series invariants Ẑa(q)

to the lower-half plane is discussed.

Another new feature of this example is a “center symmetry,” a global Z2-symmetry

distinct from the familiar Weyl group action. We call it “center symmetry” because it

acts on representations ρ : π1(M3) → SL(2,C) by multiplying some of the corresponding

holonomies by the central elements ±1 of G = SU(2) or its complexification GC = SL(2,C).

The role of this center symmetry will be discussed in details toward the end of this example.

6.3.1 q-series invariants

The manifold of interest has TorH1(M3,Z) = Z8 and one of its plumbing presentations

looks like:
−3•

−2• •
−2

−2•
(6.26)
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Again, we write down the adjacency matrix and compute a ∈ Coker(M) and b ∈
2 Coker(M) + δ:

M =


−2 1 1 1

1 −2 0 0

1 0 −3 0

1 0 0 −2


a ∈ Coker(M)/Z2 =

〈
(0, 0, 0, 0), (1,−1, 0,−1), (6.27)

(0,−1, 0, 0), (0, 0,−1, 0), (0, 0, 0,−1)
〉

b ∈ (2Coker(M) + δ)/Z2 =
〈
(3,−1,−5,−3), (3,−3,−5,−1),

(1,−1,−1,−1), (3,−3,−1,−3), (1,−3,−1,−1)
〉
.

Using this input and the general tools described earlier, we can now compute three kinds of

topological invariants of M3 = M(−2; 1
2 ,

1
3 ,

1
2): 1) the Chern-Simons invariants of abelian

flat connections, 2) its S(A) matrix, and 3) its q-series invariants Ẑa(M3):

CS(a) = −(a,M−1a) =


0 mod Z for a = (0, 0, 0, 0), (1,−1, 0,−1)
7
8 mod Z for a = (0,−1, 0, 0), (0, 0, 0,−1)
1
2 mod Z for a = (0, 0,−1, 0)

. (6.28)

S(A) =
1√
8


1 1 1 1 1

1 1 1 1 1

2 2 0 0 −2

2 2 −2 −2 2

2 2 0 0 −2

 (6.29)

Ẑ(3,−1,−5,−3)(q) = q−1/4(−1 + q4 − q8 + q20 − q28 + q48 + . . .)

Ẑ(3,−3,−5,−1)(q) = q−1/4(−1 + q4 − q8 + q20 − q28 + q48 + . . .)

Ẑ(1,−1,−1,−1)(q) = q−3/8(1 + q − q2 + q5 − q7 + q12 + . . .) (6.30)

Ẑ(3,−3,−1,−3)(q) = q−3/8(−1 + q − q2 + q5 − q7 + q12 + . . .)

Ẑ(1,−3,−1,−1)(q) = 2q1/4(1− q2 + q10 − q16 + q32 − q42 + . . .)

Plugging these into (6.14), we obtain:

4m = l.c.m.(8, 12, 1, 2, 8) = 24 ⇒ m = 6. (6.31)

Since Ex6 = {1, 2, 3, 6}, K can be either {1}, {1, 2} or {1, 3}, with the latter two corre-

sponding to irreducible representations. With m+K = 6 + 2, we get:

σ6+2 = {1, 2, 4}

Ẑ(3,−1,−5,−3)(q) = Ẑ(3,−3,−5,−1)(q) = −1

2
q−5/12Ψ6+2

2 (τ)

Ẑ(1,−1,−1,−1)(q) = q−5/12(2q1/24 −Ψ6+2
1 (τ))

Ẑ(3,−3,−1,−3)(q) = − q−5/12Ψ6+2
1 (τ)

Ẑ(1,−3,−1,−1)(q) = q−5/12Ψ6+2
4 (τ)

(6.32)
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6.3.2 Computing S(M3) and T (M3)

Next, we proceed to compute the “composite” modular matrices S(M3) and T (M3). The

matrix S(A) has already been computed in (6.29). The embedding matrix can be read off

from (6.32):

Emb =


0 −1

2 0

0 −1
2 0

−1 0 0

−1 0 0

0 0 1

 . (6.33)

The matrix S(B) can be computed from the projection matrix to be

S(B) = − i
2


0 1 1

2 1 −1

2 −1 1

 . (6.34)

and, when combined with Emb and S(A), gives

S(M3) =
i√
2


0 1 0

0 1 0

2 0 0

0 0 −2

2 0 0

 . (6.35)

Next, we compute the T matrices. From (6.28) we obtain

T (A) = exp 2πi


0 0 0 0 0

0 0 0 0 0

0 0 7
8 0 0

0 0 0 1
2 0

0 0 0 0 7
8

 . (6.36)

On the other hand, T (B) = e2πi r
2

4m δr,r′ for r ∈ σ6+2 = {1, 2, 4}:

T (B) = exp 2πi

12

24 0 0

0 22

24 0

0 0 42

24

 . (6.37)

Combining these two T -matrices with I (= 3×5 matrix with all entries equal to 1), we get:

T (M3) =



e(− 1
24) e(− 4

24) e(−16
24)

e(− 1
24) e(− 4

24) e(−16
24)

e(− 4
24) e(− 7

24) e(−19
24)

e(−13
24) e(− 4

24) e(− 4
24)

e(− 4
24) e(− 7

24) e(−19
24)


. (6.38)

– 41 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
0

CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

πi
4
√

2
k−3/2 + 7π2

96
√

2
k−5/2 +O(k−7/2)

)
0 SU(2) central e2πik·0

(
πi

4
√

2
k−3/2 + 7π2

96
√

2
k−5/2 +O(k−7/2)

)
7
8 Υ(1) abelian e2πik 7

8

(
−
√

2k−1/2 + 2
√

2πi
3 k−3/2 +O(k−5/2)

)
7
8 Υ(1) abelian e2πik 7

8

(
−
√

2k−1/2 + 2
√

2πi
3 k−3/2 +O(k−5/2)

)
1
2 Υ(1) abelian e2πik 1

2

(
− 2
√

2
3 k−1/2 − 11πi

54
√

2
k−3/2 +O(k−5/2)

)
− 4

24 ±1 non-abelian, real e−2πik 4
24 e

3πi
4 2
√

2

Table 5. Transseries for M(−2; 1
2 ,

1
3 ,

1
2 ).

6.3.3 Non-abelian flat connections

From the S(M3) computed in the previous subsection, we observe that:

{T (M3)ar|a, r such that S(M3) 6= 0} = {e(−1
6)}. (6.39)

Therefore, using the rule (4.30), we predict (at least) one non-abelian SL(2,C) flat connec-

tion with Chern-Simons invariant − 4
24 . To determine whether it corresponds to a complex

non-abelian flat connection, we compute c− 1
6

via (4.32):

c− 1
6

= 2i
√

2 6= 0 (6.40)

So we predict one SU(2) non-abelian flat connection with CS = − 4
24 , and no complex flat

connections on M3 = M(−2; 1
2 ,

1
3 ,

1
2).

6.3.4 Asymptotic expansions

As usual, we can assemble Ẑb into ZCS(M3) to obtain the transseries for M(−2; 1
2 ,

1
3 ,

1
2),

summarized in table 5 (where we omit an overall factor −iq−5/12/2
√

2).

6.3.5 Center symmetry

Note that there is a degeneracy in (6.28)–(6.30) due to an extra symmetry, e.g. the values

CS(a) are equal for a = (0, 0, 0, 0) and a = (1,−1, 0,−1), and the corresponding rows of

S(A) also enjoy the same symmetry. From (4.28) we see that the asymptotic expansions

around these two abelian flat connections are, in fact, identical. Indeed, table 5 explicitly

shows several identical transseries.

Since not only the values CS(a) but also the perturbative expansions around the flat

connections are identical, we claim that the center symmetry is a symmetry of the moduli

space. In order to understand this origin of this symmetry and to remove the degeneracy

from S(A), we first study its action on the holonomy representations and then match

the false theta functions with the “folded” version of the data (6.28)–(6.30) obtained by

modding out the center symmetry.
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CS invariant type (λ, λ1, λ2, λ3) center symmetry

0 abelian (0, 0, 0, 0) (0, 0, 0, 0) 7→ (0, 1
2 , 0,

1
2)

0 abelian (0, 1
2 , 0,

1
2) (0, 1

2 , 0,
1
2) 7→ (0, 0, 0, 0)

1
2 abelian (1

2 ,
1
4 ,

1
2 ,

1
4) (1

2 ,
1
4 ,

1
2 ,

1
4) 7→ (1

2 ,
1
4 ,

1
2 ,

1
4)

7
8 abelian (1

4 ,
5
8 ,

1
4 ,

1
8) (1

4 ,
5
8 ,

1
4 ,

1
8) 7→ (1

4 ,
1
8 ,

1
4 ,

5
8)

7
8 abelian (1

4 ,
1
8 ,

1
4 ,

5
8) (1

4 ,
1
8 ,

1
4 ,

5
8) 7→ (1

4 ,
5
8 ,

1
4 ,

1
8)

− 4
24 non-abelian (1

2 ,
1
4 ,

1
6 ,

1
4) (1

2 ,
1
4 ,

1
6 ,

1
4) 7→ (1

2 ,
1
4 ,

1
6 ,

1
4)

Table 6. Holonomy variables and Chern-Simons invariants of SU(2) flat connections on

M(−2; 1
2 ,

1
3 ,

1
2 ), along with the action of center symmetry on them.

The fundamental group of a Seifert manifold M3 = M(b, {qi/pi}ni=1) is given by

π1(M3) = 〈x1, x2, x3, h | h central, xpii = h−qi , x1x2x3 = hb〉.

We can classify SU(2) flat connections by the SU(2) representations of the fundamental

group into SU(2):

ρ :
(
π1(M3) −→ SU(2)

)
/conj.

modulo gauge transformations. Concretely, we can characterize such representations by the

images of π1(M3) generators. In our present example, they are given by (before modding

out by gauge transformations):

ρ(xi) = gi

(
e(λi) 0

0 e(−λi)

)
g−1
i , i = 1, 2, 3

ρ(h) =
(

e(λ) 0
0 e(−λ)

) (6.41)

where gi represent arbitrary gauge transformations that are compatible with the group

structure of π1(M3). The Weyl group acts on each ρ(xi) via conjugation by
(

0 −1
1 0

)
, hence

λi ↔ −λi. In what follows we will identify holonomy variables λi related by the action of

the Weyl group, as they correspond to the same flat connection. Table 6 shows holonomy

variables (λ, λ1, λ2, λ3) which classify the group homomorphisms ρ and their Chern-Simons

invariants computed as in [63].

Apart from the Weyl group, we conjecture that there is an outer automorphism acting

on the moduli space, which permutes different components of the moduli space. In terms

of the holonomy angles λi, it acts by

(λ, λ1, λ2, λ3) = (λ, λ1 + 1
2 , λ2, λ3 + 1

2). (6.42)

For instance, this maps one abelian flat connection to another as(
1
4 ,

1
8 ,

1
4 ,

5
8

)
+
(
0, 1

2 , 0,
1
2

)
∼
(

1
4 ,

5
8 ,

1
4 ,

1
8

)
, (6.43)
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where we have taken the action of the Weyl group into account. The orbits of center

symmetry are shown in table 6.

We claim that the outer automorphism is not only a symmetry of flat connections but

also of the moduli space of all connections. First note that the center symmetry is also

manifest in the data of the abelian flat connections (6.28)–(6.30). Indeed, the corresponding

values CS(a) are equal, e.g., for a = (0, 0, 0, 0) and a = (1,−1, 0,−1) and this symmetry is

also manifest in the corresponding rows of the S-matrix S(A). As a result, from (4.28) we

see that the asymptotic expansions around these two abelian flat connections are identical.

The prediction is consistent with the transseries in table 5. Since not only the values CS(a)

but also the perturbative expansions around the flat connections are identical, we conclude

that the center symmetry is indeed a symmetry of the moduli space.

Next, let us see what happens when we identify flat connections related by the center

symmetry. The data of the abelian flat connections becomes:

CS(a) =


0 mod Z for a = (0, 0, 0, 0) ∼ (1,−1, 0,−1)
7
8 mod Z for a = (0,−1, 0, 0) ∼ (0, 0, 0,−1)
1
2 mod Z for a = (0, 0,−1, 0)

S(A) =
1√
2

2 2 1

4 0 −2

2 −2 1


Ẑ0(q) = Ẑ(3,−1,−5,−3)(q) + Ẑ(3,−3,−5,−1)(q) = −q−5/12Ψ6+2

2 (τ)

Ẑ1(q) = Ẑ(1,−1,−1,−1)(q) + Ẑ(3,−3,−1,−3)(q) = 2q−5/12(1−Ψ6+2
1 (τ))

Ẑ2(q) = Ẑ(1,−3,−1,−1)(q) = q−5/12Ψ6+2
4 (τ).

(6.44)

One can easily see now that S(A) is now non-degenerate and, furthermore, false theta

functions match perfectly the “folded” homological blocks without degneracy. Therefore,

we may conclude that the modularity dictionary should be used after modding out by the

symmetries of the moduli space.

6.4 Example: M(−1; 1
2
, 1
3
, 1
10

)

We present another example with the center symmetry. This time, it is necessary to mod

out by center symmetry in order to find an appropriate Weil representation m+K.

As before, we characterize flat connections by holonomy angles λ. The angles and their

Chern-Simons invariants are summarized in table 7. The center symmetry acts by

(λ, λ1, λ2, λ3) 7→ (λ, λ1 + 1
2 , λ2, λ3 + 1

2).

6.4.1 q-series invariants

The manifold of interest has TorH1(M3) = Z4 and the following plumbing graph:

−3•

−2• •
−1

−10•
(6.45)
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CS invariant type holonomy angles center symmetry

0 abelian (0, 0, 0, 0) (0, 0, 0, 0) 7→ (0, 1
2 , 0,

1
2)

0 abelian (0, 1
2 , 0,

1
2) (0, 1

2 , 0,
1
2) 7→ (0, 0, 0, 0)

1
4 abelian (1

2 ,
1
4 ,

1
2 ,

1
4) (1

2 ,
1
4 ,

1
2 ,

1
4) 7→ (1

2 ,
1
4 ,

1
2 ,

1
4)

−25
60 non-abelian (1

2 ,
1
4 ,

1
6 ,

1
4) (1

2 ,
1
4 ,

1
6 ,

1
4) 7→ (1

2 ,
1
4 ,

1
6 ,

1
4)

−49
60 non-abelian (1

2 ,
1
4 ,

1
6 ,

3
20) (1

2 ,
1
4 ,

1
6 ,

3
20) 7→ (1

2 ,
1
4 ,

1
6 ,

7
20)

−49
60 non-abelian (1

2 ,
1
4 ,

1
6 ,

7
20) (1

2 ,
1
4 ,

1
6 ,

7
20) 7→ (1

2 ,
1
4 ,

1
6 ,

3
20)

Table 7. Holonomy angles and Chern-Simons invariants of SU(2) flat connections on

M(−1; 1
2 ,

1
3 ,

1
10 ), along with the action of center symmetry.

From its adjacency matrix, we can compute:

a ∈ cokerM/Z2 = 〈(0, 0, 0, 0), (1,−1, 0,−5), (1, 0,−1,−7)〉
b ∈ (2cokerM + δ)/Z2 = 〈(1,−1,−1,−1), (3,−3,−1,−11), (3,−1,−3,−15)〉

CS(a) = −(a,M−1a) =

{
0 mod Z for a = (0, 0, 0, 0), (1,−1, 0,−5)
1
4 mod Z for (1, 0,−1,−7)

(6.46)

S(A) =
1

2

1 1 1

1 1 1

2 2 −2

 (6.47)

Ẑ(1,−1,−1,−1)(q) = q5/4(1 + q6 − q28 + q62 + · · · ) (6.48)

Ẑ(3,−3,−1,−11)(q) = q13/4(−1− q12 + q14 + q38 − q82 + · · · ) (6.49)

Ẑ(3,−1,−3,−15)(q) = − q3/2(1− q3 + q4 − q11 + q19 − q32 − q52 + · · · ) (6.50)

From which it follows that:

4m = l.c.m.(8, 12, 40, 1, 4) = 120 ⇒ m = 30. (6.51)

6.4.2 Folding with the center symmetry

Unlike what happens in the previous example, here the homological blocks (6.48)–(6.50) do

not correspond to any level 30 false theta function (although they do correspond to certain

level 60 false theta functions). In what follows we show how this problem is resolved by

folding with the center symmetry.

First note that the center symmetry is also manifest in the data of the abelian flat

connections (6.46)–(6.50). Indeed, the values CS(a) are equal for a = (0, 0, 0, 0) and a =

(1,−1, 0,−5). Moreover, the corresponding rows of S(A) enjoy this symmetry as well.

As a result, from (4.28) we see that the asymptotic expansions around these two abelian
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flat connections are identical. Since not only CS(a) but also the perturbative expansions

around the flat connections are identical, this indicates that the center symmetry is indeed

a symmetry of the moduli space.

Next, let us see what happens when we identify flat connections related by the center

symmetry. The data of the abelian flat connections becomes:

CS(a) =

{
0 mod Z for a = (0, 0, 0, 0) ∼ (1,−1, 0,−5)
1
4 mod Z for a = (1, 0,−1,−7)

S(A) =

(
1 1

1 −1

)

Ẑ0(q) = Ẑ(1,−1,−1,−1)(q) + Ẑ(3,−3,−1,−11)(q) = q5/4(1− q2 + q6 − q14 + q16 + · · · )
Ẑ1(q) = Ẑ(3,−1,−3,−15)(q) = −q3/2(1− q3 + q4 − q11 + q19 − q32 − q52 + · · · ).

(6.52)

As expected, now S(A) is non-degenerate and, furthermore, false theta functions perfectly

match the “folded” q-series invariants Ẑa(M3). This supports our proposal for applying

the modularity dictionary after modding out by the symmetries of the moduli space. The

resulting Weil representation is m+K = 15 + 5:

σ15+5 = {1, 2, 4, 5, 7, 10} (irrep, genus 0)

Ẑ0(q) = q37/30Ψ15+5
1 (τ)

Ẑ1(q) = −q37/30Ψ15+5
4 (τ) .

(6.53)

6.4.3 S(M3), T (M3), and the asymptotic expansions

As before, we can proceed to compute the (numeric values of the) composite matrices

S(M3) and T (M3):

Emb =

(
1 0 0 0 0 0

0 0 −1 0 0 0

)
, T (A) = exp 2πi

(
0 0

0 1
4

)

S(B) = i



0.20 −0.51 −0.20 −0.32 −0.51 −0.32

−0.51 −0.20 −0.51 −0.32 0.20 0.32

−0.20 −0.51 −0.20 0.32 0.51 −0.32

−0.63 −0.63 0.63 0.32 −0.63 0.32

−0.51 0.20 0.51 −0.32 0.20 −0.32

−0.63 0.63 −0.63 0.32 −0.63 −0.32


T (B) = exp 2πi · diag

(
1
60 ,

4
60 ,

16
60 ,

25
60 ,

49
60 ,

100
60

)

(6.54)

It follows that

S(M3) = i

(
−0.39 0 0 0.63 1.02 0

0 1.02 0.39 0 0 0.63

)

T (M3) =

e(− 1
60) e(− 4

60) e(−16
60) e(−25

60) e(−49
60) e(−100

60 )

e(−46
60) e(−49

60) e(− 1
60) e(−10

60) e(−34
60) e(−25

60)

 ,

(6.55)
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(
πik−3/2 + 283π2

60 k−5/2 +O(k−7/2)
)

1
4 Υ(1) abelian e2πik 1

4

(
4
3k
−1/2 − 49πi

135 k
−3/2 +O(k−5/2)

)
−25

60 ±1 non-abelian, real e−2πik 25
60 e

3πi
4 · 1√

10

−49
60 ±1 non-abelian, real e−2πik 49

60 e
3πi
4 · 4

√
2√

15

(
cos π

30 + sin 2π
15

)
− 1

60 ±1 non-abelian, complex 0

Table 8. Transseries and classification of flat connections on M(−1; 1
2 ,

1
3 ,

1
10 ), after modding out

the center symmetry.

from which we conclude that the Chern-Simons invariants of non-abelian flat connections

are − 1
60 ,−25

60 ,−49
60 . As only c− 1

60
vanishes, we predict that there are two real non-abelian

flat connections with CS = −25
60 ,−49

60 and one (or two, but related by the center symmetry)

complex flat connections with CS = − 1
60 . The asymptotic expansions are computed and

summarized in table 8, where we have omitted the overall factor −iq−37/30/2
√

2.

Note that table 8 is obtained after modding out by the center symmetry. In particular,

the transseries of the “central” flat connection stands for the sum of two identical transseries

around a = (0, 0, 0, 0) and a = (1,−1, 0,−5). As mentioned before, we must multiply the

above answer by a factor of 1
2 in order to recover the contribution from each of the two

central flat connections.

Likewise, in table 6 we see that there are two real non-abelian flat connections that get

identified by the center symmetry. As a check, we compute the Chern-Simons invariants

from the holonomy variables using the formula

CS[(λ, λi);M(b, {qi/pi}ni=1)] = −
(

3∑
i=1

piriλ
2
i − qisi

1

22

)

=

−
49
60 for (λ1, λ2, λ3) = (1

4 ,
1
6 ,

3
20) and (1

4 ,
1
6 ,

7
20)

−25
60 for (λ1, λ2, λ3) = (1

4 ,
1
6 ,

5
20).

(6.56)

In the first line, ri and si are any integers satisfying pisi − qiri = 1. It follows that

degenerate non-abelian flat connections have CS = −49
60 . As a result, we predict that our

manifold has

• one complex flat connection with CS = − 1
60

• two real non-abelian flat connections with CS = −49
60

• one real non-abelian flat connection with CS = −25
60 .

6.4.4 Comparison with A-polynomial

Note that we have not ruled out the possibility that there can be extra complex flat

connections related by the center symmetry. To investigate this, recall that since M3 =
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(
πi
2 k
−3/2 + 283π2

120 k−5/2 +O(k−7/2)
)

0 SU(2) central e2πik·0
(
πi
2 k
−3/2 + 283π2

120 k−5/2 +O(k−7/2)
)

1
4 Υ(1) abelian e2πik 1

4

(
4
3k
−1/2 − 49πi

135 k
−3/2 +O(k−5/2)

)
−25

60 ±1 non-abelian, real e−2πik 25
60 e

3πi
4 · 1√

10

−49
60 ±1 non-abelian, real e−2πik 49

60 e
3πi
4 · 2

√
2√

15

(
cos π

30 + sin 2π
15

)
−49

60 ±1 non-abelian, real e−2πik 49
60 e

3πi
4 · 2

√
2√

15

(
cos π

30 + sin 2π
15

)
− 1

60 ±1 non-abelian, complex 0

Table 9. Transseries and classification of flat connections on M(−1; 1
2 ,

1
3 ,

1
10 ).

M(−1; 1
2 ,

1
3 ,

1
10) is a −4/1 surgery along the right-handed trefoil, we can compute the

total number of real/complex non-abelian flat connections by studying its A-polynomial.

Counting the intersection points of algebraic curves defined by equations

A(x, y) = (y − 1)(yx6 + 1) and s(x, y) = yx−4 − 1,

we find a total of four non-abelian flat connections, which agrees with the number found

in the previous section. Therefore, the complex flat connections are non-degenerate with

respect to the action of center symmetry, and we can finalize the transseries as in table 9.

(Again, the overall factor −iq−37/30/2
√

2 is omitted.)

6.5 Example: M(−1; 1
2
, 1
3
, 1
8
)

6.5.1 q-series invariants

The manifold of interest has TorH1(M3) = Z2 and the following plumbing graph:

−3•

−2• •
−1

−8•
(6.57)

From its adjacency matrix, we can compute:

a ∈ cokerM/Z2 = 〈(0, 0, 0, 0), (1,−1, 0,−4)〉
b ∈ (2cokerM + δ)/Z2 = 〈(1,−1,−1,−1), (3,−3,−1,−9)〉 (6.58)

CS(a) = −(a,M−1a) =

{
0 mod Z for a = (0, 0, 0, 0)
1
2 mod Z for (1, 0,−1,−4)

(6.59)

S(A) =
1

2

(
1 1

1 1

)
(6.60)

Ẑ(1,−1,−1,−1)(q) = − q3/4(−1 + q3 − q10 + q23 − q25 + q44 + · · · ) (6.61)

Ẑ(3,−3,−1,−9)(q) = q5/4(−1 + q5 − q6 + q17 − q31 + q52 − q55 + · · · ) (6.62)
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From which it follows that:

4m = l.c.m.(8, 12, 32, 1, 2) = 96 ⇒ m = 24. (6.63)

One observes that q-series invariants Ẑb(M3) correspond naturally to the irreducible Weil

representation m+K = 24 + 8:

σ24+8 = {1, 2, 5, 7, 8, 13}
Ẑ(1,−1,−1,−1)(q) = q71/96Ψ24+8

1 (τ)

Ẑ(3,−3,−1,−9)(q) = − q71/96Ψ24+8
7 (τ).

(6.64)

6.5.2 Computing S(M3), T (M3) and the asymptotic expansions

As before, one can proceed to compute the (numeric values of the) composite matrices

S(M3), T (M3). The results are

Emb =

(
1 0 0 0 0 0

0 0 0 −1 0 0

)
, T (A) = exp

(
2πi

(
0 0

0 1
2

))

S(B) = i



0.19 −0.71 −0.46 −0.19 −0.5 −0.46

−0.35 0 −0.35 −0.35 0 0.35

−0.46 −0.71 −0.19 0.46 0.5 −0.19

−0.19 −0.71 0.46 0.19 −0.5 0.46

−0.5 0 0.5 −0.5 0 −0.5

−0.46 0.71 −0.19 0.46 −0.5 −0.19


T (B) = exp 2πi · diag

(
1
96 ,

4
96 ,

25
96 ,

49
96 ,

64
96 ,

169
96

)

(6.65)

From which it follows that

S(M3) = i

(
−0.54 0 1.31 0.54 0 1.31

−0.54 0 1.31 0.54 0 1.31

)

T (M3) =

e(− 1
96) e(− 4

96) e(−25
96) e(−49

96) e(−64
96) e(−169

96 )

e(−49
96) e(−52

96) e(−169
96 ) e(− 1

96) e(−64
96) e(−25

96)

 ,

(6.66)

from which we conclude that the Chern-Simons invariants of non-abelian flat connections

are − 1
96 ,−25

96 ,−49
96 , and −169

96 . Since cα vanishes for α = − 1
96 ,−49

96 , we predict that there

are two real non-abelian flat connections with CS = −25
96 ,−169

96 and two complex flat con-

nections with CS = − 1
96 ,−49

96 . The asymptotic expansion is computed and summarized in

table 10. We have omitted the overall factor −iq−71/96/2
√

2.

Note the degeneracy in table 10, which arises due to the degeneracy in S
(A)
ab . Therefore,

we verify the presence of center symmetry by studying the holonomy angles of SU(2) flat

connections. The angles and their Chern-Simons invariants are summarized in table 11.

The center symmetry acts by an addition of (0, 1
2 , 0,

1
2). But this time, the Chern-Simons

invariants are shifted by 1/2 due to center symmetry. Therefore, table 10 shows transseries

without ambiguity.
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(
πi
2 k
−3/2 + 359π2

96 k−5/2 +O(k−7/2)

)
1
2 SU(2) central e2πik 1

2

(
πi
2 k
−3/2 + 359π2

96 k−5/2 +O(k−7/2)

)
−25

96 ±1 non-abelian, real e−2πik 25
96 e

3πi
4 · 1√

3
cos π6 cos π8

−169
96 ±1 non-abelian, real e−2πik 169

96 e
3πi
4 · 1√

3
cos π6 cos π8

− 1
96 ±1 non-abelian, complex 0

−49
96 ±1 non-abelian, complex 0

Table 10. Transseries and classification of flat connections on M(−1; 1
2 ,

1
3 ,

1
8 ).

CS invariant type holonomy angles center symmetry

0 abelian (0, 0, 0, 0) (0, 0, 0, 0) 7→ (0, 1
2 , 0,

1
2)

1
2 abelian (0, 1

2 , 0,
1
2) (0, 1

2 , 0,
1
2) 7→ (0, 0, 0, 0)

−25
96 non-abelian (1

2 ,
1
4 ,

1
6 ,

3
16) (1

2 ,
1
4 ,

1
6 ,

3
16) 7→ (1

2 ,
1
4 ,

1
6 ,

5
16)

−169
96 non-abelian (1

2 ,
1
4 ,

1
6 ,

5
16) (1

2 ,
1
4 ,

1
6 ,

5
16) 7→ (1

2 ,
1
4 ,

1
6 ,

3
16)

Table 11. Holonomy angles and Chern-Simons invariants of SU(2) flat connections on

M(−1; 1
2 ,

1
3 ,

1
8 ), and the center symmetry among them.

6.6 Infinite families

In this section, we discuss two sets of infinite families of Seifert manifolds with three singular

fibers for which the steps outlined in figure 5 can be carried out for all 3-manifolds in the

family at once. These examples are the Brieskorn homology spheres and manifolds whose

plumbing diagram is a D-type Dynkin diagram with “−2” at all nodes.

6.6.1 Brieskorn spheres

A simple class of Seifert manifolds with three singular fibers are the Brieskorn spheres

Σ(p1, p2, p3) := S5 ∩ {(x, y, z) ∈ C3 | xp1 + yp2 + zp3 = 0} (6.67)

labeled by a triple of relatively prime integers (p1, p2, p3). As discussed in [62], the Brieskorn

sphere Σ(p1, p2, p3) can be associated with the Seifert data M
(
− 1; q1p1 ,

q2
p2
, q3p3

)
, satisfying20

q1

p1
+
q2

p2
+
q3

p3
= 1− 1

p1p2p3
. (6.68)

20This holds for all 1
p1

+ 1
p2

+ 1
p3

< 1, which is satisfied for all Brieskorn spheres except the Poincare

homology sphere Σ(2, 3, 5) which has Seifert data M(−2; 1
2
, 2
3
, 4
5
).
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The standard choice of orientation is that Brieskorn spheres are boundaries of negative

definite plumbings. The connection between false theta functions and the WRT invariants

for this class of examples was discussed in details in [65], building on [38]. These results can

be understood in terms of the q-series invariants Ẑb(M3) later introduced in [6]. In what

follows we present them using the language of irreducible Weil representations discussed in

section 3.3, and discuss the resurgence analysis for these manifolds.

All Brieskorn spheres are integral homology spheres, i.e. have H1(M3) = 0. In par-

ticular, this means that there is only one q-series invariant Ẑa(q) with a = 0. Further-

more, there is a simplified modularity dictionary for this class of examples because the

SL(2,Z) representation acting on abelian flat connections is the trivial representation.

This is summarized in table 12. First of all, the homological block Ẑ0(q) is given by

the false theta function Ψm+K
r (τ) (up to an overall power of q) where m = p1p2p3 and

K = {1, p1p2, p2p3, p1p3}, and r = m−p1p2−p2p3−p1p3. In the notation from section 4.3,

we have that S(A) = T (A) = I1×1, the 1-by-1 identity matrix. Therefore, the composite

matrix S(M3) is simply the 1× d matrix, where

d = |σm+K | = 1

4
(p1 − 1)(p2 − 1)(p3 − 1)

is the dimension of the Weil representation m + K. Using a natural map from {1, . . . , d}
to σm+K , and write the image of k as rk, the matrix S(M3) is given by

S(M3)1k = (Sm+K)−1
rrk

(6.69)

where r = m− p1p2 − p2p3 − p1p3 is fixed and k runs from 1, . . . d.

The matrix T (M3) is 1× d given by

T (M3)1k = e

(
− r2

k

4m

)
. (6.70)

From equation (4.30), we see that M3 will have a non-abelian flat connection α with

CS(α) = − r2k
4m as long as (Sm+K)−1

rk 6= 0. Furthermore, when this is the case, from (4.33)

the connection will be real as long as cr 6= 0, where cr is as defined in equation (4.21). Note

that for Ψm+K
r = a1Ψm,r1 + a2Ψm,r2 + . . .+ anΨm,rn , cr = 0 iff a1(m− r1) + a2(m− r2) +

. . .+an(m− rn) = 0. Thus we can read off directly from the components of the irreducible

Weil representation m + K the number of real and complex non-abelian flat connections

for the corresponding Brieskorn sphere. In the following we illustrate this explicitly with

a simple example.

Example: resurgence for the Brieskorn spheres Σ(2, 3, 5) and Σ(2, 3, 7) was discussed in

detail in [5] and for Σ(2, 5, 7) in [66]. We will see the reappearance of these examples in

section 7.5, when we discuss going to the lower half-plane. For now, we briefly discuss

resurgence for a new example to explicitly illustrate the procedure we have outlined above.

Let M3 be the Brieskorn sphere Σ(3, 4, 5), which can be represented by the following

plumbing graph:
−4•

−3• •
−1

−3• −2•
(6.71)
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Weil representation m+K m = p1p2p3 and K = {1, p1p2, p2p3, p1p3}
q-series invariant Ẑ0(q) Ψm+K

r , where r = m− p1p2 − p2p3 − p1p3
Number of (real and complex)

|σm+K | = 1
4 (p1 − 1)(p2 − 1)(p3 − 1)

non-abelian flat connections

CS invariants of (real or complex)
CS = − r2

4m ∀ r ∈ σm+K

non-abelian flat connections

CS invariants of complex
CS = − r2

4m s.t.
∑m−1
`=1 Pm+K

`r (1− `
m ) = 0

non-abelian flat connections

Table 12. The modularity dictionary for Brieskorn spheres Σ(p1, p2, p3).

From equation (6.2), one can easily compute the single homological block corresponding

to the trivial flat connection as

Ẑ0(q) = q1/2 (1− q5 − q7 − q11 + q18 + . . .). (6.72)

In terms of false theta functions, this is given by,

Ẑ0(q) = q−49/240Ψ60+12,15,20
13 (τ) = q−49/240(Ψ60,13 −Ψ60,37 −Ψ60,43 −Ψ60,53)(τ). (6.73)

The irreducible SL(2,Z) representation is given by m + K = 60 + 12, 15, 20. This has

dimension d = |σ60+12,15,20| = 1
4(3−1)(4−1)(5−1) = 6, and contains elements σ60+12,15,20 =

{1, 2, 7, 11, 13, 14}. The corresponding set of false theta functions is given by,

Ψ60+12,15,20
1 (τ) = (Ψ60,1 −Ψ60,31 −Ψ60,41 −Ψ60,49)(τ)

Ψ60+12,15,20
2 (τ) = (Ψ60,2 + Ψ60,22 + Ψ60,38 + Ψ60,58)(τ)

Ψ60+12,15,20
7 (τ) = (Ψ60,7 + Ψ60,17 + Ψ60,23 −Ψ60,47)(τ)

Ψ60+12,15,20
11 (τ) = (Ψ60,11 + Ψ60,19 + Ψ60,29 −Ψ60,59)(τ)

Ψ60+12,15,20
13 (τ) = (Ψ60,13 −Ψ60,37 −Ψ60,43 −Ψ60,53)(τ)

Ψ60+12,15,20
14 (τ) = (Ψ60,14 + Ψ60,26 + Ψ60,34 + Ψ60,46)(τ).

From this we find that the embedding matrix is simply

Emb =
(

0 0 0 0 1 0
)
, (6.74)

which leads to a matrix S(M3) given by

S(M3) = Emb.(S60+12,15,20)−1 (6.75)

Furthermore, the matrix T (M3) is given by,

T (M3) = 11×6.(T 60+12,15,20)−1

=
(

e
(
− 1

240

)
e
(
− 4

240

)
e
(
− 49

240

)
e
(
−121

240

)
e
(
−169

240

)
e
(
−196

240

))
.

(6.76)
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As each entry of S(M3) is nonzero, it follows that this manifold has six non-abelian flat

connections with CS invariants given by the entries of T (M3). Furthermore, we see that

four of them are real and two of them are complex, as

(60− 1)− (60− 31)− (60− 41)− (60− 49)

= (60− 13)− (60− 37)− (60− 43)− (60− 53)

= 0.

The complex flat connections have CS = − 1
240 and CS = −169

240 .

6.6.2 D-type manifolds

In this section we will consider negative-definite plumbing diagrams whose graph takes the

shape of a Dk+3, k ≥ 1 Dynkin diagram. The simplest plumbing for such a graph assigns

a weight of “−2” to all nodes, as pictured below:

−2•

−2• •
−2

−2• . . .
−2•︸ ︷︷ ︸

k nodes

(6.77)

This describes a Seifert manifold with three singular fibers and Seifert invariants

M
(
− 2; 1

2 ,
1
2 ,

k
k+1

)
. This manifold can also be represented as an intersection of a Dk+3

singularity with a unit sphere in C3:

M

(
−2;

1

2
,

1

2
,

k

k + 1

)
:= S5 ∩ {(x, y, z) ∈ C3 | xk + xy2 + z2 = 0}. (6.78)

The connection between WRT invariants and false theta functions for these manifolds

was considered in [44]; here we analyze them from the point of view of resurgence and

(irreducible) Weil representations. When k is odd, H1(M3) = Z2⊕Z2 and when k is even,

H1(M3) = Z4. In both cases, the relevant SL(2,Z) representation is m+K = k + 1, with

m = k + 1 and K = {1} the trivial group. This is an irrep whenever m is a prime to

some power; i.e. m = pN . As we will see in section 7.5, this includes optimal examples

for m = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25. Interestingly, we will see the phenomenon of

center symmetry which played a role in some of our previous examples also reappears here.

We consider the case of even and odd k separately:

• k odd: there are four Ẑb(q), none of which are related by Weyl symmetry. With some

choice of basis for H1(M3), we have

q
m2+1
4m Ẑ0(q) = 2q1/4m −Ψm

1 (τ)

q
m2+1
4m Ẑ1(q) = −Ψm

m−1(τ)

q
m2+1
4m Ẑ2(q) = −Ψm

m−1(τ)

q
m2+1
4m Ẑ3(q) = −Ψm

1 (τ).

(6.79)
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Corresponding to the above are the following (k + 3)-dimensional vectors in

2Coker(M) + δ, up to multiplication by (2M)−1:

(1
2 , · · · , 1

2)

(1
2 , 0,

1
2 , 0, · · · , 1

2 , 0)

(1
2 , 0, 0,

1
2 ,

1
2 , · · · , 1

2)

(1
2 ,

1
2 , 0, 0,

1
2 , 0,

1
2 , 0, · · · , 1

2 , 0)

(6.80)

where “. . .” signifies a repetition of 1
2 in the first and third lines, and a repetition of

(1
2 , 0) in the second and fourth lines.

The center symmetry acts on the above vectors by adding:

(0, 0, 1
2 ,

1
2 , 0,

1
2 , 0,

1
2 , · · · , 0, 1

2)

(0, 1
2 ,

1
2 , 0, · · · 0)

(6.81)

From this action we can infer that it is possible to fold the homological blocks by

taking the linear combinations Ẑ ′0(q) = Ẑ0(q)+ Ẑ3(q) and Ẑ ′1(q) = Ẑ1(q)+ Ẑ2(q), and

that the center symmetry group is Z2 ⊕ Z2.

The Chern-Simons invariants of the abelian connections are

CS(a) =

{
0,
m+ 2

4
,
m+ 2

4
, 1

}
. (6.82)

Note that for m/2 odd this is just CS(a) = {0, 0, 0, 0} (mod Z) and for m/2 even

this is CS(a) = {0, 1
2 ,

1
2 , 0} (mod Z).

Associated to these abelian connections are a set of k + 3-dimensional vectors a ∈
Coker(M) which we can take to be (up to multiplication by M−1):

(0, · · · , 0)

(0, 1
2 , · · · , 0, 1

2)

(0, 1
2 ,

1
2 , 0, · · · , 0)

(0, 0, 1
2 ,

1
2 , 0,

1
2 , · · · , 0, 1

2)

(6.83)

where now “. . .” signifies a repetition of 0 in the first and third lines, and a repetition

of (0, 1
2) in the second and fourth lines. The center symmetry acts on these vectors

by adding:

(0, 0, 1
2 ,

1
2 , 0,

1
2 , · · · , 0, 1

2)

(0, 1
2 ,

1
2 , 0, · · · 0)

(6.84)

From which we can infer that the corresponding CS(a) should be grouped as {0, 1}
and {m+2

4 , m+2
4 }.
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The matrix S(A) is

S(A) =
1

2


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 (6.85)

and the matrix T (A) is

T (A) =


1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

 (6.86)

where the “+” is for m/2 odd and the “−” is for m/2 even. After folding by the

center symmetry these matrices become

S′(A) =

(
1 1

1 1

)
(6.87)

and

T ′(A) =

(
1 0

0 ±1

)
(6.88)

Upon reverse-engineering, we observe no complex flat connection but m/2 real non-

abelian flat connections with Chern-Simons invariants − r2

4m for odd r ∈ (0,m). They

are quite degenerate, mostly due to the fact that Chern-Simons invariants are defined

modulo one. Therefore, it can be delicate to distinguish the contributions of two

non-abelian flat connections with the same Chern-Simons invariants to the asymp-

totic expansion of ZCS(M3). Nevertheless, we can reverse-engineer the perturbatitve

expansion without ambiguity:

πi

2
k−3/2 +

(m2 − 2)π2

8m
k−5/2 + · · ·

which is identical for all four abelian flat connections due to the center symmetry.

• k even: there are four Ẑb(q), two of which are related by Weyl symmetry. With some

choice of basis, after modding out by the Weyl action, we have

q
m2+1
4m Ẑ0(q) = 2q1/4m −Ψm

1 (τ)

q
m2+1
4m Ẑ1(q) = −Ψm

1 (τ)

q
m2+1
4m Ẑ2(q) = −2Ψm

m−1(τ).

(6.89)

Corresponding to the above homological blocks are the following elements b ∈
2Coker(M) + δ, up to multiplication by (2M)−1:

(1
2 , · · · , 1

2)

(1
2 , 0, 0,

1
2 , · · · , 1

2)

(0, 1
4 ,

3
4 ,

1
2 , 0, · · · , 1

2 , 0)

(6.90)
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where “. . .” corresponds to repetition of 1
2 in the first two lines, and repetition of ( 1

2 , 0)

in the third line. The center symmetry acts on these vectors through the addition of

(0, 1
2 ,

1
2 , 0, · · · , 0).

From this action we deduce that the center symmetry group is Z2 for these cases and

one can fold the homological blocks by this Z2 by the grouping Ẑ ′0(q) = Ẑ0(q)+ Ẑ1(q)

and Ẑ ′1(q) = Ẑ2(q).

The Chern-Simons invariants of the abelian connections are

CS(a) =

{
0, 1,

m+ 2

4

}
. (6.91)

Note that for m = 1 mod 4 this is just CS(a) = {0, 0, 3
4} (mod Z) and for m = 3

mod 4 this is CS(a) = {0, 0, 1
4} (mod Z).

Corresponding to these abelian connections are a set of k + 3-dimensional vectors

a ∈ Coker(M) which we can take to be (up to multiplication by M−1):

(0, · · · , 0)

(0, 1
2 ,

1
2 , 0, · · · , 0)

(1
2 ,

1
4 ,

3
4 , 0,

1
2 , · · · , 0, 1

2)

(6.92)

where now “. . .” corresponds to repetition of 0 in the first two lines, and repetition

of (0, 1
2) in the third line. The center symmetry acts on these vectors through the

addition of the vector

(0, 1
2 ,

1
2 , 0, · · · , 0),

and we deduce that upon modding out by the center symmetry group, CS(a) are

grouped as {0, 1} and {m+2
4 }.

The matrix S(A) is

S(A) =
1

2

1 1 1

1 1 1

2 2 −2

 (6.93)

and the matrix T (A) is

T (A) =

1 0 0

0 1 0

0 0 e(m+2
4 )

 (6.94)

After modding out the center symmetry we obtain the matrices

S′
(A)

=

(
1 1

1 −1

)
(6.95)

T ′
(A)

=

(
1 0

0 e(m+2
4 )

)
(6.96)
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and folded homological blocks

q
m2+1
4m Ẑ ′0(q) = q

m2+1
4m

(
Ẑ0(q) + Ẑ1(q)

)
= 2q1/4m − 2Ψm

1 (τ)

q
m2+1
4m Ẑ ′1(q) = q

m2+1
4m Ẑ2(q) = −2Ψm

m−1(τ).

(6.97)

Upon reverse-engineering, we observe no complex flat connection but (m− 1)/2 real

non-abelian flat connections with Chern-Simons invariants − r2

4m for odd r ∈ (0,m).

We also obtain the following perturbative expansions which are pairwise identical:

πi

2
k−3/2 +

(m2 − 2)π2

8m
k−5/2 + · · ·

πi

2
k−3/2 +

(m2 − 2)π2

8m
k−5/2 + · · ·

2

m
k−1/2 +

i(m2 + 2)π

6m2
k−3/2 + · · ·

2

m
k−1/2 +

i(m2 + 2)π

6m2
k−3/2 + · · ·

(6.98)

7 Going to the other side

In this section we explore what happens to the q-series invariants Ẑa(M3) when the orien-

tation of the three-manifold M3 is reversed. As will be explained shortly, this operation

is expected to have the effect of (formally) replacing q ↔ q−1 and then re-expanding the

result again as a q-series. Luckily, precisely this question was independently asked by

Rademacher [102] and his followers in the context of (mock) modular objects and their ex-

tension from the upper half-plane (or, |q| < 1) to the lower half-plane (respectively |q| > 1),

and has gained more attention since the introduction of the notion of quantum modular

forms by Zagier [71].

In particular, we mostly focus on the families of 3-manifolds whose q-series invariants

Ẑa(M3) are given by false theta functions discussed in section 3 and illustrated by examples

in section 6. In these cases, we propose that the q-series invariants Ẑa(−M3) of a manifold

−M3 are given by mock modular forms with shadows (see section 7.3 for definitions)

associated to the false theta functions. We summarize the relation in figure 9.

Our proposal is supported by the following three facts:

• In some cases the false theta functions admit expressions as q-hypergeometric series,

which converge not only inside but also outside the unit circle. In those cases one can

establish that the expression outside the unit circle is given by a mock theta function.

• The mock theta function and the corresponding false theta function have the same

asymptotic expansions transseries structure near x ∈ Q (cf. (4.23), (7.37)), up to

x↔ −x, precisely as Ẑa(M3) and Ẑa(−M3) should.

• When the mock modular form can be expressed as a so-called Rademacher sum, one

can prove in general that the same Rademacher sum, now performed in the lower

rather than upper half-plane, yields precisely the corresponding Eichler integral. In
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other words, the Rademacher sum yields a function defined on both H and H−, where

they coincide with the mock respectively false theta function.

After explaining the physics and topology motivation to go between the upper- and lower-

half planes, we explain the above three points in section 7.2, section 7.3 and section 7.4

respectively.

7.1 The physics of the other side

As we already mentioned earlier, around (2.5), it is natural to compare the appropriate

extension, or “leakage”, of Ẑa(q) to Im(τ) < 0 with the half-index (2.1) obtained by

orientation reversal (parity) transformation applied to the original 2d-3d system on D2×q
S1. The two are expected to be closely related, if not simply equal.

In other words, we wish to compare Ẑa(q
−1), understood as a q-series expansion, with

the half-index of 2d-3d system where all Chern-Simons coefficients of the 3d theory have

opposite signs and where the 2d N = (0, 2) boundary condition Ba is replaced by B̃a:

parity : Ba 7→ B̃a (7.1)

The resulting q-series — which, abusing notations, we denote Ẑa(q
−1) — together with

the original homological blocks Ẑa(q) are expected to combine into another q-series (2.5)

which does not depend on the choice of boundary conditions. Namely, (2.5) gives the

superconformal index I(q) of the 3d N = 2 theory which, moreover, can be computed

independently, by other means. In the context of 3d-3d correspondence, to which we turn

momentarily, it is believed that the integer coefficients of the q-series I(q) count normal

surfaces in the 3-manifold [67].

When applied to 3d N = 2 theories T [M3], this parity reversal is equivalent to changing

the orientation of the 3-manifold, i.e. replacing M3 by −M3. Therefore, formally, we expect

Ẑa(−M3, q
−1)

re-expand
=== Ẑa(M3, q) (7.2)

While in what follows we present further physics arguments for this relation, the challenge

is to turn them into a concrete computational algorithm. Note, based on our experience

in section 6, we do not expect this algorithm to be simple. For example, the orientation

reveral turns negative-definite plumbings (for which Ẑa(q) can be systematically computed

in full generality) into positive-definite ones (for which no general algorithms were available

until now).

From the viewpoint of WRT invariants or quantum Chern-Simons theory, the behav-

ior (7.2) is rather clear, and therefore one might say that q-series invariants Ẑa(M3) simply

inherit it through the relation (1.2). Indeed, the Chern-Simons partition function of M3 is

defined as a (formal) infinite-dimensional integral

ZCS(M3, k) =

∫
eikCS(A)DA (7.3)

over the space of gauge connections A. At least formally, from this expression it follows

that an orientation reversal M3 → −M3 is equivalent to changing the sign k → −k. If we
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now recall the standard relation between k, ~, and q, cf. (1.2),

q = e~ = e2πiτ = e2πi/k (7.4)

then we conclude that M3 → −M3 should be equivalent to q → q−1.

While this argument, based on Feynman path integral, may sound a little formal, it

is easy to see that it should hold to all orders in perturbation theory by expanding (7.3)

into Feynman diagrams around a given flat connection α ∈ Mflat(GC,M3). In Chern-

Simons theory with complex gauge group GC such perturbative expansion is carried out

explicitly e.g. in [68], and the coefficient of each term in the ~-expansion is given by a

finite-dimensional integral. The result is an asymptotic expansion, cf. (4.12),

Z
(α)
pert(M3, ~) =

∑
n

an~n (7.5)

which generalizes the Ohtsuki series of M3 (the latter corresponds to α = 0.) Even in

complex Chern-Simons theory, where q and ~ are complex variables, the perturbative

expansion has a symmetry Z
(α)
pert(M3, ~) = Z

(α)
pert(−M3,−~), cf. [68, section 2.3], so that

Z
(α)
pert(−M3, ~) =

∑
n

(−1)nan~n. (7.6)

Since the q-series invariants Za(M3) and Za(−M3) are obtained by Borel resummation

of (7.5) and (7.6) for abelian α = a, they too are expected to enjoy the property (7.2).

Even though (7.5) and (7.6) look very similar and appear on the same footing, in

practice, so far it was much easier to compute only one of the q-series invariants, Ẑa(M3)

or Ẑa(−M3), while the other remained elusive. This asymmetry between M3 and −M3 may

seem surprising from the topology viewpoint. However, from the viewpoint of resurgent

analysis, it is relatively well known that among two asymptotic expansions, (7.5) and (7.6),

usually one may have a relatively simple Borel resummation, whereas the other one can

be much more complicated [69]. Similarly, from the viewpoint of their modular behavior,

which will occupy the rest of this section, the two sides also usually play rather different

asymmetric role.

In particular, in the rest of this section we use a variety of methods and recent devel-

opments in number theory to answer a question in topology: given Ẑb(M3) and, possibly,

some basic topological invariants of M3, can one determine Ẑb(−M3)?

7.2 Examples: q-hypergeometric series

In this subsection, we give examples illustrating how certain false theta functions, which

play the role of homological blocks for certain three-manifolds (cf. section 6), can be defined

in the other side of the plane using their expressions as q-hypergeometric series. Surpris-

ingly, on the other side of the plane they turn out to coincide with some of Ramanujan’s

famous mock theta functions. This establishes in a very direct way the connection between

mock modular forms, false theta functions, and three-manifolds, at least for these exam-

ples. After reviewing the examples, we will also describe the ambiguities when extending

a function to the lower-half plane via q-hypergeometric series.
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7.2.1 Example: M(−2; 1
2
, 1
3
, 1
2
) and the order three mock theta function f

In (6.32) we have seen that the false theta function Ψ6+2
1 (τ) coincides, up to addi-

tive and multiplicative simple q factors, with the homological blocks Ẑ(1,−1,−1,−1)(q) and

Ẑ(3,−3,−1,−3)(q), for the three-manifold M(−2; 1
2 ,

1
3 ,

1
2).

To write down the relevant q-hypergeometric series, we use the q-Pochhammer symbol

(a;x)n :=

n−1∏
k=0

(1− axk) (7.7)

satisfying

(a; q−1)n = (−1)nanq−
n(n−1)

2 (a−1; q)n. (7.8)

Note that this false theta function admits the expression [42]

Ψ6+2
1 (τ) = ψ6+2

1 (q), ψ6+2
1 (q) =

q
1
24

2

1−
∑
n≥1

(−1)nq
n(n−1)

2

(−q; q)n

 , (7.9)

for |q| < 1 ⇔ τ ∈ H. Moreover, the series ψ6+2
1 converges both for |q| > 1 and |q| < 1.

Using (7.8) one obtains

ψ6+2
1 (q−1) =

q−
1
24

2

1−
∑
n≥1

(−1)nqn

(−q; q)n

 . (7.10)

It turns out that this is a mock modular form, related to the celebrated order three mock

theta function f(q) as

2q
1
24ψ6+2

1 (q−1) = f(q) = 1 + q − 2q2 + 3q3 +O(q4). (7.11)

As we will see in section 7.5, it belongs to a family of special vector-valued mock modular

forms hm+K = (hm+K
r ); in the notation of section 7.5 the relation is simply

ψ6+2
1 (q−1) = −1

2
h6+2

1 (τ). (7.12)

From the argument in section 7.1, we hence propose that the mock theta function f(q)

plays a role as the homological block for the three-manifold that is related to M(−2; 1
2 ,

1
3 ,

1
2)

via an orientation reversal. As we will discuss shortly, this example also illustrates the

intrinsic ambiguity of the q-hypergeometric approach (see (7.26)).

7.2.2 Example: M(−2; 1
2
, 1
2
, 3
5
) and the order ten mock theta function X

As we will see in section 7.5, the false theta function

Ψ10+2
1 (τ) = Ψ10,1(τ)−Ψ10,9(τ) = q1/40(1− q2 + q3 − q9 +O(q10)) (7.13)

plays the role of homological blocks for M3 = M(−2; 1
2 ,

1
2 ,

3
5).
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Note that this false theta function admits the expression

Ψ10+2
1 (τ) = ψ10+2

1 (q), ψ10+2
1 (q) = q

1
40

∑
n≥0

(−1)nqn(n+1)

(−q; q)2n
(7.14)

for |q| < 1. Similar to ψ6+2
1 , the series ψ10+2

1 converges both for |q| > 1 and |q| < 1 and

has the following relation to the optimal mock Jacobi form (section 7.5) and order 10 mock

theta function X:

ψ10+2
1 (q−1) = q−

1
40

∑
n≥0

(−1)nqn
2

(−q; q)2n
= −h10+2

1 (τ)

= q−
1
40X(q) = q−

1
40
(
1− q + q2 +O(q4)

) (7.15)

7.2.3 Example: Σ(2, 3, 5) and the order five mock theta function χ0

As we have discussed in section 6.6.1, the false theta function

Ψ30+6,10,15
1 (τ) = (Ψ30,1 +Ψ30,11 +Ψ30,19 +Ψ30,29)(τ) = q1/120(1+q+q3 +q7 +O(q8)) (7.16)

plays the role of homological blocks for the homology sphere Σ(2, 3, 5).

Note that this false theta function admits the expression

Ψ30+6,10,15
1 (τ) = ψ30+6,10,15

1 (q), ψ30+6,10,15
1 (q) = q

1
120

(
2−

∑
n≥0

(−1)nq
n(3n−1)

2

(qn+1; q)n

)
(7.17)

for |q| < 1. As before, the series ψ30+6,10,15
1 converges both for |q| > 1 and |q| < 1 and has

the following relation to the optimal mock Jacobi form and order 5 mock theta function:

ψ30+6,10,15
1 (q−1) = q−

1
120

(
2−

∑
n≥0

qn

(qn+1; q)n

)
= −h30+6,10,15

1 (τ)

= q−
1

120 (2− χ0(q)) = −q− 1
120
(
−1 + q + q2 + 2q3 +O(q4)

) (7.18)

It is for this case that the relation between false theta functions and WRT invariants

was first discussed by Lawrence and Zagier in [38], where they also noted the relation to

the mock theta function χ0.

7.2.4 Example: Σ(2, 3, 7) and the order seven mock theta function F0

As we have discussed in section 6.6.1, the false theta function

Ψ42+6,14,21
1 (τ) = (Ψ42,1 −Ψ42,13 −Ψ42,29 + Ψ42,41)(τ) = q1/168(1− q − q5 +O(q10)) (7.19)

plays the role of homological blocks for the homology sphere Σ(2, 3, 7).

Note that this false theta function admits the expression

Ψ42+6,14,21
1 (τ) = ψ42+6,14,21

1 (q), ψ42+6,14,21
1 (q) = q

1
168

∑
n≥0

(−1)nq
n(n+1)

2

(qn+1; q)n
(7.20)
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for |q| < 1. As before, the series ψ42+6,14,21
1 converges both for |q| > 1 and |q| < 1 and has

the following relation to the optimal mock Jacobi form and order 7 mock theta function:

ψ42+6,14,21
1 (q−1) = q−

1
168

∑
n≥0

qn
2

(qn+1; q)n
= −H42+6,14,21

1 (τ)

= q−
1

168 F0(q) = −q− 1
168
(
1 + q + q3 + q4 +O(q5)

) (7.21)

From the argument in section 7.1, we hence propose that the mock theta function is the

homological block of the three-manifold obtained from Σ(2, 3, 7) via the orientation reversal.

7.2.5 The ambiguity

The above examples illustrate an explicit relation between false and mock theta functions

when going between the upper- and the lower-half plane. One should however be cautious

about the applicability and the ambiguity of the treatment.

First, this treatment depends on the existence of an expression of false/mock theta

function as a q-hypergeometric series. In many cases interesting for us, such an expression

is not available. Moreover, sometimes more than one such expressions exist and they might

have different extension outside the unit disk. Such examples abound. See for instance [70]

where the Rogers-Fine false theta functions are extended to the other side in a specific

way which leads to mock forms that sometimes differ from what other methods discussed

in section 7.3–7.4 give. We will now explain one explicit example in details to illustrate

the ambiguities.

The relation between the order three mock theta function f(q) and other mock theta

function, inside and outside the unit disc, has been studied in details in [42], which we

follow here. First we have seen in (7.9)-(7.11) that the hypergeometric series ψ6+2
1 satisfies

ψ6+2
1 (q) = Ψ6+2

1 (q) and ψ6+2
1 (q−1) =

q−
1
24

2
f(q) (7.22)

for |q| < 1.

Now, define other two hypergeometric series

ψ′(q) =
q1/24

2

(
1 +

∑
n≥1

qn

(−q; q)2
n

)

ψ′′(q) = q1/24
∑
n≥0

qn

(−q2; q2)n
.

(7.23)

One can easily check that they too are defined both inside and outside the unit disk. It

turns out that they are related to ψ6+2
1 (q) in a very interesting way. To describe the

relation, we need to introduce two more functions. The first is a modular form given by

T (τ) :=
η7(2τ)

η3(τ)η3(4τ)
, (7.24)

and the second is the ratio of a false theta function and a modular form

S(τ) :=
1

η2(τ)
Ψ2,1(τ). (7.25)
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These functions are related via

ψ6+2
1 (q) = ψ′(q) +

1

2
S(τ) = ψ′′(q)

ψ6+2
1 (q−1) = ψ′(q−1) = ψ′′(q−1)− 1

2
T (τ + 1/2)

(7.26)

for |q| < 1 ⇔ τ ∈ H. In other words, the two q-hypergeometric series which are the same

in the upper-half plane might extend to different functions in the lower-half plane, and vice

versa. In the following two subsections we will see a more systematic way of describing and

understanding the relation between mock and false theta functions, as well as quantum

modular forms.

7.3 False, mock, and quantum

In section 3 and section 6 we have seen the role of false theta functions in describing the

homological blocks associated to certain three-manifolds. In the previous subsections we

have seen hints that, when considering the superconformal indices by venturing to the

lower-half plane, mock theta functions are likely to play an important role for the related

three-manifolds. In fact, despite their very different appearances and modular behaviors,

false and mock theta functions both share the structure of the so-called quantum modular

forms [71]. See also the Ch 21 of [72] for a recent account.

We propose that the (strong) quantum modularity of the false and mock theta functions

is in fact what makes them relevant for three-manifolds and homological blocks. Moreover,

we propose that going to the other side of the plane in the current context turns a false

theta into a mock theta, such that the false-mock pair corresponds to the same quantum

modular form.

To explain these ideas, we will start by recalling the definitions of mock modular forms

and quantum modular forms. The definition for quantum modular forms is purposely a

little vague in order to encompass the different types of examples with slightly different

properties [71]. It states:

Definition 2. [71] A quantum modular form of weight k and multiplier χ on Γ is a function

Q on Q such that for every γ ∈ Γ the function pγ : Q\{γ−1∞} → C, defined by

pγ(x) := Q(x)−Q|k,χγ(x) (7.27)

(the “period function”) has some property of continuity or analyticity for every γ ∈ Γ.

Moreover, we say that Q is strong quantum modular if it has formal power series attached

to each rational number so that (7.27) holds as an identity between countable collations of

formal power series.

In the above we have used the slash operator for weight k and multiplier χ on Γ, acting

on the space of holomorphic functions on the upper-half plane and defined as

f(τ)|k,χγ = f

(
aτ + b

cτ + d

)
χ(γ)(cτ + d)−k (7.28)

where we wrote γ =
(
a b
c d

)
∈ Γ.
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g̃(x+ it)

g̃∗(x− it)

Q(x)

Figure 8. The upper- and lower-half planes and quantum modular forms.

In fact, the Eichler integrals we encountered in section 4.1 are examples of quantum

modular forms. To explain this, define the non-holomorphic Eichler integral g̃∗ : H− → C

g̃∗(z) := C

∫ i∞

z̄
g(z′)(z′ − z)w−2dz′ (7.29)

of a weight w cusp form g with multiplier χ, where the constant C is the same as in

the definition of the Eichler integral (4.3). For the purpose of the present article, we can

restrict to the cusp forms g with real coefficients, namely g(−τ̄) = g(τ). Note that g̃∗(z)

has nice transformation property while g̃(τ) has nice Fourier expansions. In [38, 73] it was

shown that g̃∗ and the Eichler integral (4.2) g̃ agree to infinite order at any x ∈ Q, in the

sense that

g̃(x+ it) ∼
∑
n≥0

αnt
n and g̃∗(x− it) ∼

∑
n≥0

αn(−t)n (7.30)

for t > 0. See figure 8 for an illustration.

Furthermore, it is easy to see that g̃∗ is nearly modular of weight 2 − w in H−, and

the discrepancy is given precisely by the period function:

g̃∗(z)− g̃∗|2−w,χγ(z) = C

∫ i∞

γ−1(i∞)
g(z′)(z′ − z)w−2dw. (7.31)

Combining the above two facts we are immediately led to the conclusion that g̃ is a quantum

modular form of weight 2−w and multiplier system χ. In the notation of definition 2, the

period function corresponding to g̃ is given by

pγ(x) = C

∫ i∞

γ−1(i∞)
g(z′)(z′ − x)w−2dw (7.32)

and is a smooth function on R except for x = γ−1(i∞) and has an analytic extension to

{u+iv| u > 0 or v > 0} (cf. lemma 3.3 in [8]). In particular, the false theta functions Ψm,r,

arising from taking the cusp form g to be given by the weight 3/2 unary theta functions

θ1
m,r, are quantum modular forms of weight 1/2.

Soon we will see that mock modular forms produce examples of quantum modular

forms. In his last letter to Hardy in 1920, Ramanujan constructed 17 examples of what he
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called mock theta functions and claimed that they have a few striking properties regarding

their behavior near the roots of unity. Ramanujan did not give a definition for mock theta

functions, but stated that they should be a q-series that converges for |q| < 1 that have

the following properties

1. Infinitely many roots of unity are exponential singularities,

2. For every root of unity ξ there is a modular form fξ(q) such that the difference f −fξ
is bounded as q → ξ radially,

3. f is not the sum of two functions, one of which is a modular form and the other a

function which is bounded radially toward all roots of unity.

The long search for a definition of mock modular forms, which would place mock theta

functions in the context of modular forms, ended with the PhD thesis of Zwegers [74],

where he gave mock modular forms a definition, which basically states that they can be

viewed as the holomorphic part of certain harmonic Maass forms. Moreover, the other,

non-holomorphic, part of the harmonic Maass form is given by a modular form, called the

shadow of the mock modular form. Since we have a specific application in mind and in

order to simplify the discussion, in the following definition we restrict to mock modular

forms whose shadows are cusp forms. The generalization is standard and straightforward.

Definition 3. We say that a holomorphic function f on H is a mock modular form of

weight k and multiplier χ on Γ, if and only if it exists a weight 2−k cusp form g on Γ such

that the non-holomorphic completion of f , defined as

f̂(τ) = f(τ)− g∗(τ)

satisfies f̂ = f̂ |k,χγ for every γ ∈ Γ. In the above, we defined the non-holomorphic Eichler

integral

g∗(τ) := C

∫ i∞

−τ̄
(τ ′ + τ)−kg(−τ̄ ′) dτ ′ (7.33)

for τ ∈ H.

Note that there is no canonical normalization of the shadow and we choose ours to sim-

plify the comparison between mock modular forms and Eichler integrals. For convenience,

we will denote by Mk,χ(Γ), M !
k,χ(Γ), Sk,χ(Γ), Qk,χ(Γ) the spaces of mock modular, weakly

holomorphic modular, cusp and quantum modular forms respectively, of weight k ∈ 1
2Z and

multiplier χ for the group Γ < SL(2,R). In the present article we will mainly encounter

the cases Γ = SL(2,Z) and Γ = Γ0(N), the congruence subgroup of SL(2,Z) with the

congruence condition N |c. We will also define the shadow map ξ : Mk,χ(Γ) → S2−k,χ̄(Γ)

by letting ξ(f) = g in the notation of definition 3.

In what follows we will see a relation between the above modern definition of mock

modular forms and the characterizations Ramanujan gave in his letter, and how mock

modular forms lead to quantum modular forms in a way that is closely related to the case

– 65 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
0

of Eichler integrals discussed above. We will follow the work by Choi-Lim-Rhoades [8]

quite closely in this part of the discussion.

To show that mock theta functions do have the above-mentioned properties that Ra-

manujan claimed, the following was proven recently.

Theorem 4. [8, 75] If f ∈ Mk,χ(Γ0(N)) such that it has non-vanishing shadow, and

Γ0(N) has t inequivalent cusps, {q1, . . . , qt} ⊂ Q ∪ {i∞}. Then

1. The function f(τ) has exponential singularities at infinitely many rational numbers,

2. for every G ∈ M !
k,χ(Γ0(N)), f − G has exponential singularities at infinitely many

rational numbers,

3. there is a collection {Gj}tj=1 of weakly holomorphic modular forms such that f −Gj
is bounded towards all cusps equivalent to qj.

A famous example of the above is the third order mock theta function of Ramanujan

that we have encountered in (7.11)-(7.12). Ramanujan’s observation, written in terms of

the mock modular form h6+2
1 (τ), states that

lim
τ→ζ

h6+2
1 (τ) = O(1) (7.34)

for all roots of unity e(ζ) of odd order (such as q → 1), and

lim
τ→ζ

(h6+2
1 + (−1)kb(τ)) = O(1) (7.35)

for all order 2k roots of unity e(ζ), with the modular form subtraction given by

b(τ) = η3(τ)
η2(2τ)

.

Moreover, after the modular subtraction the asymptotic expansion of the mock mod-

ular form near a specific cusp is the same (up to a minus sign) as that of the modular

correction:

Lemma 5. In the notation of theorem 4, we have the following equality among asymp-

totic series:

(f −Gx)(x+ it) ∼
∑
n≥0

βnt
n and g∗(x+ it) ∼

∑
n≥0

βnt
n. (7.36)

Proof. The equality among the limiting values is shown in the lemma 3.1 of [8] using the

fact that f̂ −Gx is a harmonic Maass form and expand it near the cusp τ → x. The same

method gives the above equality among the asymptotic series.

Given a choice of {Gj}tj=1, one define Qf : Q→ C by setting

Qf (x) := lim
t→0+

(f −Gx)(x+ it),

where we write Gx = Gj when x is equivalent to qj under the action of Γ = Γ0(N). The

lemma 5, the analyticity property of the period function (7.32) associated to g̃∗ and the

fact that g∗(τ) = g̃∗(−τ) (in the cases we care about where g(−τ̄) = g(τ)) immediately

shows that the mock modular form gives rise to a (strong) quantum modular form Qf .
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Note that the choice of the modular subtraction {Gj}tj=1 with which to carve out the

singularities of the mock modular forms is not unique. At present, a satisfactory systematic

study of the possibilities and their properties is not yet available. For a family of mock

modular forms, namely those with known expressions in terms of the so-called universal

mock modular forms g2 and g3, specific choices are given explicitly in [76, 77]. Given this

lack of uniqueness of the modular subtractions, it is important to note that the limiting

value and the asymptotic expansion (7.36) is independent of the choices of the modular

form Gj as long as they do subtract the singularity.

To sum up, given a cusp form g ∈ S2−k,χ̄(Γ), if f is a mock modular form f ∈Mk,χ(Γ)

with shadow ξ(f) = g and g̃ is its Eichler integral, then f and g̃ have the same limiting

value at x ∈ Q in the sense that

lim
t→0+

(f −Gx)(x+ it) = lim
t→0+

g̃∗(−x+ it). (7.37)

Moreover, they also have the same asymptotic series; in terms of the asymptotic series (7.30)

and (7.36) we have αx(n) = (−1)nβ−x(n) and we have

(f −Gx)(−x+ it) ∼
∑
n≥0

αx(n)(−t)n and g̃(x+ it) ∼
∑
n≥0

αx(n)tn. (7.38)

In particular, at cusp 0 we have the “same” asymptotic series, approaching from the upper-

and lower-half plane, in the sense that:

(f −G0)(it) ∼
∑
n≥0

α0(n)(−t)n and g̃(it) ∼
∑
n≥0

α0(n)tn. (7.39)

Note that the relations (7.36) among the asymptotic expansion relations are precisely

what we need to make contact with the homological blocks of the three-manifold: the

former states that the limiting value at τ → 1
k respectively − 1

k coincide which is what we

need to obtain the expected relations among the WRT invariants of M3 and −M3, and the

latter gives the expected relation among Ohtsuki series.

We summarize the relation between these objects in figure 9. Note that the q ↔ q−1

line between mock and Eichler integral of its shadow is in dashed line, since the q ↔ q−1

procedure is non-unique in both directions. This is clear from the fact that the asymptotic

expansion only depends on the shadow of the mock modular form, and hence the map from

mock to quantum modular forms is in fact a linear injective map

µ : Mk,χ(Γ)/M !
k,χ(Γ)→ Qk,χ(Γ), (7.40)

given by µ(f) = Qf . Relatedly, it is insensitive to the choice of the modular subtrac-

tion {Gj}tj=1.

Finally, from the discussions in section 3–4 it is easy to see that in our context we need a

vector-valued version of the above discussion, for the full modular group SL(2,Z). It should

be straightforward to generalize the existing discussion to the vector-valued situation and

we leave the details for future work.
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Mock Modular Form

f ∈ Mk,χ

Shadow

g ∈ S2−k,χ̄

Non-hol. Eichler Int.

g̃∗(z), z ∈ H−

Eichler Int. (False θ)

g̃(τ), τ ∈ H+

Modular Correction

g∗(τ), τ ∈ H+

Quantum Modular Forms

shadow map

z = −τ

same asymp.

(7.30)q ↔ q−1

Figure 9. The relation between the different modular objects involved. The dashed line is to

denote that the relation is non-unique in both directions.

7.4 Rademacher sums

Apart from the q-hypergeometric relation discussed in section 7.2, another way to explicitly

see how mock theta functions become false theta functions when going between upper- and

lower-half planes, is via the method of Rademacher sums. For the families of examples we

are interested in in this paper, this approach is arguably more systematic than that of the

q-hypergeometric series. We will explain this further in section 7.5.

As Poincaré pointed out, a simple way to construct modular forms is simply by aver-

aging a quantity over its images under the modular group [78]. Taking this quantity to be

a monomial qµ, and for a given (compatible) multiplier system χ of weight k for a group

Γ < SL(2,R) that is commensurable with SL(2,Z), we define the Poincaré sum:

P
[µ]
Γ,k,χ(τ) :=

∑
γ∈Γ∞\Γ

qµ|k,χγ, (7.41)

where Γ∞ is the subgroup of Γ that preserves the cusp {i∞}, and is in general generated

as Γ∞ = 〈T h,−1〉. The unique such positive integer h is called the width of the cusp

i∞ of the group Γ. A choice of µ is compatible if and only if (cf. (7.51)) qµ|k,χγ = qµ

for all γ ∈ Γ∞. We are mainly interested in the special case Γ = SL(2,Z). In this case

Γ∞ = 〈T,−1〉 and the choice of µ is consistent if and only if χ(T ) e(µ) = 1. For k > 2 the

sum (7.41) converges absolutely and P
[µ]
Γ,k,χ is indeed a holomorphic function on H which is

moreover a modular form of weight k and multiplier χ by construction.

For k ≤ 2, which is the range of interest for us, the sum is no longer absolutely

convergent and one needs to regularise the Poincaré sum, which leads to what is often
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known as the Rademacher sums. See [79] for a review. First, the sum can no longer be

taken over the full coset Γ∞\Γ and we consider instead the following subset

ΓK,K2 =

{(
a b

c d

)
∈ Γ
∣∣∣|c| < K, |d| < K2

}
. (7.42)

Such an adjustment of the range of sums is sufficient for k = 2, but for k < 2 we also need

to introduce an additional regularisation factor

<[µ]
k (γ, τ) :=

γ̄(1− w, 2πin(γτ − γ∞))

Γ(1− w)

where γ̄ denotes the lower incomplete gamma function

γ̄(s, x) =

∫ x

0
ts−1e−tdt. (7.43)

Using the above, we define the Rademacher sum, associated to the data (Γ, k, χ, µ) deter-

mining the group, the weight, the multiplier and the seed (or polar part when µ < 0) of

the sum, to be21

R
[µ]
Γ,k,χ(τ) := lim

K→∞

∑
γ∈Γ∞\ΓK,K2

<[µ]
k (γ, τ) (qµ|k,χγ) . (7.44)

Niebur proved that in the case of negative weight the above construction gives rise to a

conditionally convergent series, which he referred to as automorphic integral [83]. Clearly,

after regularization there is no guarantee that the sum will still be a modular form. It turns

out that in general the Rademacher sum (7.44) is a mock modular form with a shadow given

by a cusp form. Moreover, the shadow of the Rademacher sum is itself a Rademacher sum:

ξ
(
R

[µ]
Γ,k,χ

)
= (−µ)1−kR

[µ]
Γ,2−k,χ̄, (7.45)

now with the dual weight and the conjugate multiplier system (cf. definition 3).

This technique was extended to differenet weights, multiplier systems and modular

groups by [80–84] and later to weight 1/2 mock modular forms in [9, 85, 86]. Further

developments in the context of harmonic Maass forms are reported in [87, 88]. As such,

Rademacher sum construction can be viewed as a useful tool to construct mock modular

forms. It can also be generalised to the vector-valued cases, which are relevant for the

application discussed in the present paper, as was done in [89].

After massaging the sum in (7.44), one can recast the Rademacher sum as a q-series

R
[µ]
Γ,k,χ(τ) = qµ +

∑
h(ν−µ)∈Z

ν>0

cΓ,k,χ(µ, ν)qν (7.46)

21In the special case of χ(T ) = 1, which we do not encounter in the present work, an additional constant

should be added to this sum. The same comment also applies to (7.46). See [79] for details. In what follows

we will not consider such cases.
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and obtain an explicit expression for its Fourier coefficients cΓ,k,χ(µ, ν), sometimes referred

to as the Rademacher series.

To write down this expression, we define the subset

Γ×K =

{(
a b

c d

)
∈ Γ | 0 < |c| < K

}
, (7.47)

and the functions

Kγ,χ(µ, ν) = e

(
µ
a

c

)
e

(
ν
d

c

)
χ(γ), (7.48)

Bγ,k(µ, ν) =


e

(
−k

4

)∑
n≥0

(
2π

c

)2n+k (−µ)n

n!

νk+n−1

Γ(k + n)
, k ≥ 1,

e

(
−k

4

)∑
n≥0

(
2π

c

)2n+2−k (−µ)n+1−k

Γ(n+ 2− k)

νn

n!
, k ≤ 1.

(7.49)

In terms of these we have

cΓ,k,χ(µ, ν) =
1

h
lim
K→∞

∑
γ∈Γ∞\Γ×K/Γ∞

Kγ,χ(µ, ν)Bγ,k(µ, ν) (7.50)

defined for

(µ, ν) ∈ 1

h
Z× 1

h
Z−

(
ν̄

h
,
ν̄

h

)
(7.51)

where χ(T h) = e(ν̄). For later use we choose the branch 0 < ν̄ < 1.

For the case Γ = SL(2,Z) and µ < 0 we have

cΓ,k,χ(µ, ν) =
∑
c>0

sΓ,χ(µ, ν, c)
2π

c

(
−ν
µ

) k−1
2

I|1−k|

(
4π

c

√−µν
)

(7.52)

where sΓ,χ(µ, ν, c) is the Kloosterman sum

sΓ,χ(µ, ν, c) =
∑

γ∈Γ∞\Γ/Γ∞

e

(
µ
a

c
+ ν

d

c

)
χ(γ) (7.53)

where the sum is over the γ = ( ∗ ∗c ∗ ) and we write the double coset representative as

γ = ( a bc d ). One can easily check that the compatibility condition guarantees that the

summand is independent of the choice of representative. More explicitly, one can write the

above as

sΓ,χ(µ, ν, c) =
∑

0≤d<c
(c,d)=1

e

(
µ
a

c
+ ν

d

c

)
χ(( a bc d )), (7.54)

where in each term in the sum we choose any (a, b) such that ( a bc d ) ∈ SL(2,Z), and the

summand is again independent of the choice.
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The first way to see the relation between Eichler integral of the shadow and the

Rademacher sum performed in the lower-half plane, is by noting the following relations

among the Rademacher series [9]. The so-called Eichler duality states

−cΓ,k,χ(−µ,−ν)µ1−k = cΓ,2−k,χ̄(µ, ν)ν1−k. (7.55)

Together with the so-called Zagier duality relating the Rademacher sums of dual weights

cΓ,2−k,χ̄(−ν,−µ) = cΓ,χ,k(µ, ν), (7.56)

we have the following expression for the Fourier coefficients of the mock modular form

f = R
[µ]
Γ,k,χ, its shadow g = ξ(R

[µ]
Γ,k,χ) (7.45), and the Eichler integral g̃:

f(τ) = qµ +
∑

h(ν−µ)∈Z
ν>0

C(µ, ν) qν (7.57)

g(τ) = (−µ)1−k

(
q−µ +

∑
h(ν′+µ)∈Z

ν>0

C(−ν ′, µ) qν
′

)
(7.58)

g̃(τ) = q−µ +
∑

h(ν′+µ)∈Z
ν>0

C(µ,−ν ′) qν′ (7.59)

in terms of the Rademacher series C(µ, ν) := cΓ,χ,k(µ, ν) [79]. Compare (7.57) and (7.59),

and focus on the case where the mock modular form (such as mock theta functions) have

real coefficients C(µ, ν) = C(µ, ν), we see that f and g̃ can be viewed as being related by

q ↔ q−1, as depicted in figure 9.

The above relation between the mock modular form f and the Eichler integral g̃ via

q ↔ q−1 can be seen even more explicitly by manipulating the Rademacher sum itself. The

question of how to extend the Rademacher series to the lower-half plane was first discussed

by Rademacher in [90]. This analysis was later reviewed and extended to the context of

harmonic Maass forms and mock modular forms by Rhoades [10], in the special case of

weight k = 1/2. In what follows we will follow his treatment and show that one can define

a function convergent both in the upper and the lower half-plane which coincides with the

mock modular form in the upper half-plane and the Eichler integral of its shadow in the

lower half-plane. Given the convergence of the weight 1/2 Rademacher sums proven in [91],

we have the following theorem, generalising the result of [10].

Theorem 6. Let f(τ) be a mock modular form of weight 1/2 defined by the Rademacher

sum R
[µ]
Γ,1/2,χ(τ), for Γ = Γ0(N) with some positive integer N . Then there exists a function

F (τ) on H and H−, satisfying

F (τ) =

{
f(τ) when τ ∈ H
g̃(−τ) when τ ∈ H−.

(7.60)

in the notation of (7.57)–(7.59).
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Proof. To construct F , let us start with the Rademacher sum which defines the mock

modular form f . For convenience we will focus on the case Γ = SL(2,Z). The generalization

to Γ = Γ0(N) with N > 1 is straightforward. Using (7.52) and the following integral

expression for the Bessel function (cf. lemma 3.1 of [10])

t−1/4I1/2

(4π

k

√
t
)

=

∮
|s|=ε

ds

2πi
est
∑
m≥0

(4π
k )2m+ 1

2

Γ(m+ 3
2)

1

sm+1
, (7.61)

where ε may be taken to be arbitrarily small, we obtain the following expression for

f := R
[µ]

SL(2,Z), 1
2
,χ

:

f(τ) = qµ +
(−µ)−1/2

2

∑
ν−µ∈Z
ν>0

∑
c>0

∑
0≤d<c

qν e

(
ν
d

c
+ µ

a

c

)
χ(( a bc d ))

×
∮
|s|=ε

ds

2πi
e−sµν

∑
m≥0

(4π
c )2m+ 3

2

Γ(m+ 3
2)

1

sm+1
.

(7.62)

The proof of the convergence of the above sum is the same as in [91]. Since the sum over

m is absolutely convergent, we can switch the order of the integral and the sum and obtain

the succinct expression

f(τ) = qµ +

∮
|s|=ε

ds

2πi

∑
c>0

∑
0≤d<c

fc,d;+(τ, s)Gc,d(s) (7.63)

where

Gc,d(s) =
(−µ)−1/2

2
e

(
µ
a

c

)
χ(( a bc d ))

∑
m≥0

(4π
c )2m+ 3

2

Γ(m+ 3
2)

1

sm+1
(7.64)

is a τ -independent factor and

fc,d;+(τ, s) =
∑

ν−µ∈Z
ν>0

qν e

(
ν
d

c

)
e−sµν (7.65)

captures the summation over ν. Note that fc,d;+ is a geometric series. Consequently, if we

define

fc,d(τ, s) =
qν̄ e

(
ν̄ dc
)
e−sµν̄

1− q e
(
d̄
c

)
e−sµ

(7.66)

where ν̄ is as in (7.51), we have

fc,d(τ, s) =

fc,d;+(τ, s), | qe−µs |< 1

fc,d;−(τ, s), | qe−µs |> 1
(7.67)

where

fc,d;−(τ, s) = −
∑

ν′+µ∈Z
ν′>0

q−ν
′
e

(
− ν ′d

c

)
esµν

′
. (7.68)
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Using the above, one finally shows that

F (τ) := qµ +

∮
|s|=ε

ds

2πi

∑
c>0

∑
0≤d<c

fc,d(τ, s)Gc,d(s) (7.69)

converges both for τ ∈ H and τ ∈ H− (cf. theorem 1.1 of [10]). Moreover, plugging in

fc,d(τ, s) = fc,d;−(τ, s) in the lower-half plane and again using the integral expression for

the Bessel function (7.61), we obtain the key statement of theorem 6.

The content of the above manipulation is technically equivalent to the relations (7.55)

and (7.56) among the Rademacher series, but further highlights the fact that Rademacher

sums lead to a natural definition of functions defined both on the upper- and lower-

half plane.

We finish this subsection with some remarks.

• Given a false theta function, the Rademacher sum formalism does not determine a

unique mock modular form as its companion in the other side of the plane. This

is because the shadow map has a large kernel: the addition of a modular form to a

mock modular form does not change its shadow. Since the Eichler integral, arising

as Rademacher sums performed on the other side of the plane, only depends on the

shadow of the mock modular form, Rademacher sums with the same shadow are

extended to the same function on the other side of the plane. In other words, there

can be many different ways to write a false theta function as Rademacher sums,

corresponding to distinct mock modular forms with the same shadow. A closely

related fact is that they also give rise to the same quantum modular form, as we have

discussed in (7.40).

• For the main part of the paper, including all the examples we discuss in section 6, we

are interested in the special cases where the weight of the mock modular form is k = 1
2

and the group is Γ = SL(2,Z). Moreover, the multiplier is that obtained from Weil

representations discussed in section 3.3. In this family of cases, the mock modular

forms can be conveniently described in terms of mock Jacobi forms and the results

of [37] imply that these vector-valued mock modular forms enjoy the property that

they are uniquely determined by their polar part, i.e. their behaviour near the cusp

τ → i∞ (cf. [92]). Moreover, generically the Rademacher sums in this context give

rise to q-series with transcendental coefficients which cannot be relevant as quantum

invariants since the coefficients are supposed to count BPS states. This shows that

despite ambiguity one should be able to use physical and topological criteria to search

for the relevant mock modular forms.

• The Rademacher sums discussed here have a natural interpretation in the physical

setup (2.1) illustrated in figure 2. Indeed, recall that τ = 1
2πi log q is the complex

structure of the boundary torus T 2 ∼= ∂
(
D2 ×q S1

)
. However, unlike other physical

systems where the full modular group Γ = SL(2,Z) acts on τ , in our setup 2d

N = (0, 2) boundary theory enjoys SL(2,Z) symmetry, whereas 3d N = 2 theory is
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only invariant under the subgroup Γ∞ because one of the 1-cycles of T 2 ∼= ∂
(
D2 ×q

S1
)

is contractible in the combined 3d-2d systems. This explains the origin of the

coset Γ∞\Γ.

Moreover, the leading term in the sum (with c = 0) that corresponds to the contri-

bution of the cusp i∞ can be interpreted as the partition function of a 1d effective

quantum mechanics obtained from our 3d-2d system in the limit τ → i∞, in which

T 2 is effectively stretched to a product of a “long” circle and a “short” circle, with

ratio of radia Imτ . The contribution of the other terms, with c 6= 0, then can be

understood as the sum over KK modes along the “short” circle.

• For 39 of such cases there are “optimal” natural choices for their polar parts [92] and

they appear prominently also in the context of 3-manifold. As a result, they serve as

examples of how Rademacher sums give rise to nice q-series both in the upper- and

lower-half planes and will be discussed separately in section 7.5.

7.5 The “optimal” examples

In the previous subsections we have discussed how mock modular forms and Eichler in-

tegrals are related via q ↔ q−1, from the point of view of q-hypergeometric functions,

quantum modular forms, and Rademacher sums, respectively. In this subsection we will

give explicit examples of such mock-false pairs with the following desirable properties, as

alluded to at the end of the previous subsection:

• They can be obtained as Rademacher sums in a particularly simple way, making

them a perfect illustration of the principle explained in section 7.4.

• They appear in the three-manifold context, as illustrated in table 13–14.

• As we mentioned before, the modular subtractions of generic mock modular forms

are not unique and a totally systematic treatment is not yet available. From the

relation to the perturbative Chern-Simons, or the Ohtsuki series, we are particularly

interested in mock modular forms which are finite at q → 1 (cf. (7.39)). Due to the

simple structure of the poles of the functions in our example, it is possible to show

that some of them are finite in the limit q → 1 and hence have the same asymptotic

expansions at the cusp τ → 0 on the nose. As a result, these mock modular forms

are readily candidates for the quantum invariants of −M3.

This class of 39 examples is studied and classified in [92] as the only optimal mock

Jacobi forms of weight one with non-transcendental coefficients. To explain what they

are, recall that so far we always encounter false theta functions that are Eichler integrals

of weight 3/2 unary theta functions transforming according to Weil representations (cf.

section 3.3 and section 6). Following the quantum modular form analysis in section 7.3, on

the other side of the plane they correspond to weight 1/2 mock modular forms which are

vector-valued and transforming according to the dual Weil representations. A succinct way

to say this is they are mock Jacobi forms of weight one. (Everywhere in the present paper

– 74 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
0

m+K σm+K M3 H1(M3) r ∈ σm+K

2 {1} M(−2; 1/2, 1/2, 1/2) Z2 ⊕ Z2 r = 1

3 {1, 2} M(−2; 1/2, 1/2, 2/3) Z4 r = 1, 2

4 {1, 2, 3} M(−2; 1/2, 1/2, 3/4) Z2 ⊕ Z2 r = 1, 3

5 {1, 2, 3, 4} M(−2; 1/2, 1/2, 4/5) Z4 r = 1, 4

6 {1, . . . , 5} M(−2; 1/2, 1/2, 5/6) Z2 ⊕ Z2 r = 1, 5

6+3 {1, 3} M(−2; 1/2, 2/3, 2/3) Z3 r = 1, 3

7 {1, . . . , 6} M(−2; 1/2, 1/2, 6/7) Z4 r = 1, 6

8 {1, . . . , 7} M(−2; 1/2, 1/2, 7/8) Z2 ⊕ Z2 r = 1, 7

9 {1, . . . , 8} M(−2; 1/2, 1/2, 8/9) Z4 r = 1, 8

10 {1, . . . , 9} M(−2; 1/2, 1/2, 9/10) Z2 ⊕ Z2 r = 1, 9

10+5 {1, 3, 5} M(−1; 1/2, 1/5, 1/5) Z3 r = 1, 5

M(−4; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z5 r = 1, 3, 5

12 {1, . . . , 11} M(−2; 1/2, 1/2, 11/12) Z2 ⊕ Z2 r = 1, 11

12+4 {1, 4, 5} M(−1; 1/2, 2/3, 3/4) Z2 r = 1, 5

13 {1, . . . , 12} M(−2; 1/2, 1/2, 12/13) Z4 r = 1, 12

14+7 {1, 3, 5, 7} M(−5; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z7 r = 1, 3, 5, 7

M(−1; 1/2, 1/7, 2/7) Z7 r = 3, 7

16 {1, . . . , 15} M(−2; 1/2, 1/2, 15/16) Z2 ⊕ Z2 r = 1, 15

18 {1, . . . , 17} M(−2; 1/2, 1/2, 17/18) Z2 ⊕ Z2 r = 1, 17

18+9 {1, 3, 5, 7}
M(−1; 1/2, 1/3, 1/9) Z3 r = 1, 5

M(−2; 1/2, 1/3, 2/3) Z9 r = 1, 3, 5, 7

M(−6; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z9 r = 1, 3, 5, 7

25 {1, . . . , 24} M(−2; 1/2, 1/2, 24/25) Z4 r = 1, 24

22+11 {1, 3, 5, 7, 9, 11} M(−7; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z11 r = 1, 3, 5, 7, 9, 11

M(−1; 1/2, 1/11, 4/11) Z11 r = 7, 11

30+6,10,15 {1, 7} Σ(2, 3, 5) 0 r = 1

30+15 {1, 3, . . . , 15} M(−9; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z15 r = 1, 3, . . . , 15

M(−1; 1/2, 2/5, 1/15) Z5 r = 7, 11

46+23 {1, 3, . . . , 23} M(−13; 1/2, 1/2, 1/2) Z2 ⊕ Z2 ⊕ Z23 r = 1, 3, . . . , 23

Table 13. Optimal mock Jacobi thetas of Niemeier type and examples of the relevant 3-manifolds.

(mock) Jacobi forms refer to those transforming under the whole modular group SL(2,Z),

and not just some proper subgroup of it.) In other words, suppose the homological blocks

of a three-manifold M3 are given in terms of false theta functions of index m (cf. (4.4)

and (4.7)), then from the analysis of the previous subsections we expect a certain index m

mock Jacobi form to be relevant for −M3.

Given a vector-valued mock modular form h = (hr), r = 1, . . . ,m−1, with completion

ĥ = (ĥr) (cf. definition 3), we say that its combination with the index m theta functions

(cf. (3.28))

ψ(τ, z) =
∑

r=1,...,m−1

hr(τ) (θm,r − θm,−r) (τ, z) (7.70)
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m+K σm+K M3 H1(M3) r ∈ σm+K

6+2 {1, 2, 4} M(−2; 1/2, 1/2, 1/3) Z8 r = 1, 2, 4

10+2 {1, 2, 3, 4, 6, 8} M(−2; 1/2, 1/2, 3/5) Z8 r = 1, 4, 6

12+3 {1, 2, 3, 5, 6, 9} M(−1; 1/3, 1/3, 1/4) Z3 r = 1, 9

M(−2; 1/2, 1/2, 1/4) Z2 ⊕ Z2 ⊕ Z3 r = 1, 3, 5, 9

15+5 {1, 2, 4, 5, 7, 10}
M(−1; 1/2, 1/3, 1/10) Z4 r = 1, 4

M(−1; 1/3, 1/5, 2/5) Z5 r = 4, 10

M(−3; 1/2, 1/2, 1/3) Z20 r = 1, 2, 4, 5, 10

18+2 {1, . . . , 8, 10, 12, 14, 16} M(−2; 1/2, 1/2, 7/9) Z8 r = 1, 8, 10

20+4 {1, 3, 4, 7, 8, 11} M(−1; 1/2, 1/4, 1/5) Z2 r = 1, 11

21+3 {1, . . . , 6, 8, 9, 11, 12, 15, 18} M(−2; 1/2, 1/2, 4/7) Z8 r = 1, 6, 8, 15

24+8 {1, 2, 5, 7, 8, 13} M(−1; 1/2, 1/3, 1/8) Z2 r = 1, 7

28+7
{1, 2, 3, 5, 6, 7, 9,

M(−1; 1/4, 1/7, 4/7) Z7 r = 13, 21
10, 13, 14, 17, 21}

30+3,5,15 {1, 3, 5, 7, 9, 15}

33+11
{1, 2, 4, 5, 7, 8, 10, M(−5; 1/2, 1/2, 1/3) Z44 r = all

11, 13, 16, 19, 22} M(−1; 1/3, 1/11, 6/11) Z11 r = 16, 22

36+4
{1, 3, 4, 5, 7, 8, 11,

12, 15, 16, 19, 23}
42+6,14,21 {1, 5, 11} Σ(2, 3, 7) 0 r = 1

60+12,15,20 {1, 2, 7, 11, 13, 14} Σ(3, 4, 5) 0 r = 13

70+10,14,35 {1, 3, 9, 11, 13, 23} Σ(2, 5, 7) 0 r = 11

78+6,26,39 {1, 5, 7, 11, 17, 23} Σ(2, 3, 13) 0 r = 7

Table 14. Optimal mock Jacobi thetas of non-Niemeier type and examples of the relevant 3-

manifolds.

is a mock Jacobi form of index m and weight one if its non-holomorphic completion

ψ̂(τ, z) =
∑

r=1,...,m−1

ĥr(τ) (θm,r − θm,−r) (τ, z) (7.71)

transforms as a usual Jacobi form (of index m and weight one). We refer to, for instance [34]

and [92, 93], for background on Jacobi forms and mock Jacobi forms repsectively. Note

that the opposite sign in the theta function factor reflects the anti-invariance of Jacobi

forms of odd weights under z ↔ −z.

From a number theory point of view, weight one mock Jacobi forms are rather special.

First, in a sense we will make precise shortly, almost all of them have transcendental coef-

ficients [94] and are therefore not related to any counting problem in topology and physics.

Second, as we have seen in the previous subsections, an important property of (mock)

modular forms is their behavior at the cusps Q ∪ {i∞}. At weight one mock Jacobi form

is in fact uniquely determined by its poles [37, 93]. The optimal choice of the poles, for a

given index m, is given by

q
1

4mhr = O(1). (7.72)
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In [92] it was shown that the space of weight one mock Jacobi forms, of any index

m ∈ Z>0 and having 1. the optimal poles (7.72) and 2. non-transcendental coefficients,

is surprisingly finite-dimensional (34-dimensional to be precise). Moreover, there are 39

special vectors in this 34-dimensional space, distinguished by their symmetries, which span

the space. (Five of them are not linearly independent of the rest.) They are labelled by

the same pair (m,K) that we used in section 3.3 to define sub-representations of Weil

representations. Let’s denote the corresponding mock forms by

ψm+K =
∑

r=1,...,m−1

hm+K
r (τ)(θm,r − θm,−r). (7.73)

Then the group K dictates the symmetry of Ψm+K that it is invariant under θm,r 7→ θm,ra(n)

for every n ∈ K (cf. (3.30) – (3.31)). In particular, since a(m) = −1 we will never have

a non-vanishing ψm+K unless m 6∈ K. In fact, quite remarkably they are in one-to-one

correspondence with the 39 pairs (m,K) with m 6∈ K which define discrete subgroups

Γm+K of SL(2,R) with the property that Γm+K\H is a genus zero Riemann surface (minus

finitely many points). We refer to [92] and [95] for the details.

From the above classification, we obtain 39 distinguished mock Jacobi forms ψm+K ,

or equivalently 39 vector-valued mock modular forms hm+K = (hm+K
r ), with independent

components given by r ∈ σm+K (cf. section 3.3). They have three further striking number

theoretic properties [92] of great importance to the problems at hand:22

1. Integral coefficients;

2. Rademacher sums;

3. Theta function shadows.

Although we only demanded the coefficients to be non-transcendental, with a suitable

normalization they are in fact all integral! The first dozens of coefficients can be found

in [92] and [96]. The properties of the coefficients further divide the 39 cases into two

groups: the forms in the first group, called the Niemeier type, have nonnegative coefficients

of hm+K
r for all non-polar terms in the q-expansion, and are in one-to-one correspondence

with the 23 Niemeier lattices and play the role of the graded dimensions of the finite group

modules for umbral moonshine [96, 97]. The second group contains the other 16 cases

which have both positive and negative Fourier coefficients. The corresponding m + K of

the two groups are tabulated in table 13 and 14 respectively. Notice that in the first group,

not all of them correspond to irreducible Weil representations.

The second property states that they can be constructed as vector-valued Rade-macher

sums, whose simpler, single-valued version we have reviewed in section 7.4 as a way to

interpolate between upper- and lower-half plane. This means that the discussion section 7.4

is appliable for these functions, and they are related to the Eichler integral of their shadows,

22Another noteworthy property, though not directly related to the present application, is the fact that

all Ramanujan’s mock theta functions (up to modular forms) can be expressed in terms of these 39 mock

Jacobi forms.
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via the q ↔ q−1 transformation discussed in section 7.3 and section 7.4. The good news

for us is then that for all these 39 mock Jacobi forms, the shadows are given by weight 3/2

unary theta functions of the form (4.1), and their Eichler integrals are precisely the false

theta functions Ψm+K
r that we encounter. The precise form of the shadows can be found

in [92] and [96]. From the dominant role of the Eichler integrals Ψm+K
r of them (4.7) in

the homological blocks for Seifert manifolds with three singular fibres, as demonstrated in

section 6, we expect these 39 examples to be relevant for the same manifolds with reversed

orientation. Indeed, for almost all of them we can easily find three-manifolds for which the

homological blocks are given by the corresponding Ψm+K
r for some r. We tabulate some of

them in table 13–14.

Finally, we comment that

lim
τ→0

hm+K
r (τ) = O(1) (7.74)

for the following (m,K) and r:

• 6+2 , r = 1

• 10+2 , r = 1, 3

• 18+2 , r = 1, 3, 5, 7,

which can easily be verified from the known behaviour (7.72) of hm+K
r near τ → i∞ and by

computing the S-matrix (3.37). For instance, h6+2
1 (τ) = −q− 1

24 f(q) is given by the order

three mock theta function of Ramanujan f(q), which as we have commented in (7.34)–

(7.35) has a finite value at q → 1. As mentioned in the beginning of the subsection,

this fact gives these mock modular forms the distinguished status that their asymptotic

expansion near τ → 0 coincides with the corresponding Ohtsuki series on the nose.

8 Beyond false

In this section, we study Seifert manifolds with four singular fibers. It turns out that

structure of the homological blocks are very analogous as the cases with three singular

fibres. The novelty is that they have the following “building blocks”, playing a similar

role as the false theta functions Ψm+K
r in the previous cases, are a mix between Eichler

integrals of weight 1/2 and weight 3/2 theta functions (cf. (8.4))

Bm,r(τ) ≡ 1

2m

[
Φm,r(τ)− rΨm,r(τ)

]
Bm+K
r (τ) = 2|K|−1

∑
r′ mod 2m

Pm+K
rr′ Bm,r′(τ).

(8.1)

We provide a non-spherical example M(−2; 1
2 ,

2
3 ,

2
5 ,

2
5) and compute its asymptotic expan-

sion by exploiting its modular-like properties.
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8.1 The building blocks

We proceed by analogy with 3-fiber examples to identify the “building blocks.” For

Brieskorn homology spheres Σ(p1, p2, p3), their WRT invariants decompose into false theta

functions [44, 45]:

ZCS(Σ(p1, p2, p3)) =
q−φ/4

i
√

8k

[
m−1∑
r=1

χ
(1,1,1)
2m (r)Ψm,r(τ) +H

(
− 1 +

3∑
j=1

1

pj

)
q1/120

]
, (8.2)

where m =
∏
j pj , and H is the heaviside step-function. The 2m-periodic function χ

~l
2m(r)

is defined from n-dimensional vectors ~l = (l1, · · · , ln) and ~p = (p1, · · · , pn) satisfying

0 < lj < pj :

χ
~l
2m(r) =


−

n∏
j=1

εj if r ≡ m
(

1 +
∑

j
εj lj
pj

)
mod 2m, where εj = ±1

0 otherwise.

Thus, χ
(1,1,1)
2m (r) in (8.2) is given by n = 3, ~l = (1, 1, 1), and ~p = (p1, p2, p3). One can

observe that partial theta functions play the role of basic building blocks for the WRT

invariants of Brieskorn homology spheres, with the latter determined by χ
(1,1,1)
2m (r).

It was shown in [98, 99], for four-singularly fibered Seifert homology spheres

Σ(p1, p2, p3, p4) the quantity ZCS(M3) can be expressed in terms of partial theta func-

tions and a weight 1/2 Eichler integral. Then, one can similarly extract basic building

blocks by pulling out χ
(p1−1,1,1,1)
2m (r),23

ZCS(Σ(p1, p2, p3, p4)) =
q−φ/4

i
√

8k

[
m−1∑
r=1

χ
(p1−1,1,1,1)
2m (r)

1

2m

(
Φm,r(τ)− rΨm,r(τ)

)
+H

(
− 1 +

∑
j

1

pj

)
Ψm,(2m−

∑
j m/pj)

(τ)

]
, (8.3)

where Φm,r(τ) are the weight 1/2 Eichler integrals (4.2) of the weight 1/2 theta functions

(cf. (4.1))

θ0
m,r(τ) := θm,r(τ, z)|z=0 =

∑
`∈Z

`=r mod 2m

q`
2/4m.

Explicitly, we have

Φm,r(τ) =
∑
n≥0

nψ
′(r)
2m (n)qn

2/4m,

where ψ
′(r)
2m (n) =

{
1 if n ≡ ±r mod 2m

0 otherwise.
.

(8.4)

Similar to (4.5), in terms of projectors (3.33) we simply have ψ
′(r)
2m (n) = 2(P+

m(m))r,n.

23Spherical Seifert manifolds are uniquely determined by the orders of their singular fibers. In our

convention, their Euler characteristic is −1/
∏
j pj : following [62].
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The expression (8.3) can be best understood in comparison with three-singular

fiber cases:

χ
(p1−1,1,1,1)
2m (r)←→ χ

(1,1,1)
2m (r)

1

2m

(
Φm,r(τ)− rΨm,r(τ)

)
←→ Ψm,r(τ)

H

(
− 1 +

∑
j

1

pj

)
Ψm,(2m−

∑
j m/pj)

(τ)←→ H

(
− 1 +

∑
j

1

pj

)
q1/120

(8.5)

Consequently, we propose that WRT invariants of Seifert manifolds with four singu-

lar fibers (not necessarily integral homology spheres) decompose into the following build-

ing blocks:

Bm,r(τ) ≡ 1

2m

[
Φm,r(τ)− rΨm,r(τ)

]
.

Note that while Ψm,r = −Ψm,−r, we have Bm,r = Bm,−r. As a result, while m 6∈ K for the

pair m+K relevant for the examples in section 6, in this case we must have m ∈ K. The

modular-like property of Bm,r follows from those of Ψm,r and Φm,r:

1√
k

Ψm,r(1/k) +
1√
i

m−1∑
r′=1

√
2

m
sin

rr′π

m
Ψm,r′(−k)

=
∑
n≥0

cn
n!

(
πi

2m

)n
k−n−

1
2 ,

Ψm,r(−k) =

(
1− r

m

)
e−2πikr2/4m, where

sinh(m− r)z
sinhmz

=

∞∑
n=0

cn
2n!

z2n. (8.6)

1√
k

Φm,r(1/k) +
k√
i3

m−1∑
r′=1

√
2

m

r′(m− r′)
m

cos
rr′π

m
e−2πik

(r′)2
4m

=
mk

πi

∞∑
n=0

c′n
n!

(
πi

2m

)n
k−n−

1
2 , where

∂

∂r

sinh(m− r)z
sinhmz

=

∞∑
n=0

c′n
2n!

z2n. (8.7)

The above property can be employed to compute the transseries expression of ZCS(M3).

Note that the relation between characters of singlet (1, p) logarithmic vertex algebras

and homological blocks of Seifert manifolds with three singular fibers persists to the present

case. One observes a close relation between characters of singlet (p+, p−) vertex alge-

bras [100, 101] and the homological blocks of Seifert manifolds with four singular fibers stud-

ied in this section, strengthening the observed connection between logarithmic algebras.

It would be also interesting to explicitly construct building blocks for generic number

of fibers, and we leave it for future works.

8.2 Example: M(−2; 1
2
, 2
3
, 2
5
, 2
5
)

We apply the modularity dictionary to homological blocks of a non-spherical, four-

singularly fibered Seifert manifold. The Seifert manifold M(−2; 1
2 ,

2
3 ,

2
5 ,

2
5) has the following
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plumbing graph:
−2•

−2•

−2• •
−2

−3• −2•

•
−3

•
−2

(8.8)

As before, we compute homological blocks and S(A):

CS(a) =
(

1 1
5

9
5

)
,

S(A) =
1√
5

1 1 1

2 −1−
√

5
2

−1+
√

5
2

2 −1+
√

5
2

−1−
√

5
2

 , (8.9)

Ẑ0(q) = q7/2(1− q11 + q14 − q19 − q33 + q40 − q45 + 2q53 + q74 + · · · ),
Ẑ1(q) = 0, (8.10)

Ẑ2(q) = 2q93/10(−1 + q15 + q25 − q50 − 2q65 + 2q120 − 2q165 − 3q190 + · · · ).

By the prescription of modularity dictionary, we can easily see that m = 30. Then,

homological blocks correspond to the Weil representation σ = 30+5, 6, 30, whose projector

is explicitly given by

P 30+5,6,30 = P+
30(5)P+

30(6)P−30(15),

which leads to, using (8.1),

B30+5,6,30
7 (τ) = (B30,7 −B30,13 +B30,17 −B30,23) (τ),

B30+5,6,30
5 (τ) = (B30,5 −B30,23) (τ).

(8.11)

In terms of these, the homological blocks read

Ẑ0(q) = q−109/120
(

Ψ30,23(τ)−B30+5,6,30
7 (τ)

)
Ẑ1(q) = 0

Ẑ2(q) = 2q−109/120B30+5,6,30
5 (τ).

(8.12)

By the modular-like properties of the building blocks, we obtain the transseries summarized

in table 15, where an overall factor of −iq−109/120/2
√

2 is omitted as usual.
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
5 k
−3/2 +O(k−5/2)

)
1
5 Υ(1) abelian e2πik 1

5

(
5−
√

5
6 k−1/2 +O(k−3/2)

)
9
5 Υ(1) abelian e2πik 9

5

(
5+
√

5
6 k−1/2 +O(k−3/2)

)
− 1

120 ±1 non-abelian, real e−2πik 1
120

e3πi/4

150
√

15

(
− 25 + 5

√
5 + 24

√
3 cos π

10

)
− 4

120 ±1 non-abelian, real −e−2πik 4
120

e3πi/4

4 (1 +
√

5)

− 16
120 ±1 non-abelian, real e−2πik 16

120
e3πi/4

4 (1−
√

5)

− 25
120 ±1 non-abelian, real e−2πik 25

120
4e3πi/4

5

√
1− 2√

5

− 40
120 ±1 non-abelian, real e−2πik 40

120 e3πi/4

− 49
120 ±1 non-abelian, real −e−2πik 49

120
e3πi/4

30
√

15

(
25 + 5

√
5 + 24

√
3 cos 3π

10

)
− 73

120 ±1 non-abelian, real −e−2πik 73
120

8e3πi/4

5
√

5
cos 3π

10

− 76
120 ±1 non-abelian, real e−2πik 76

120
e3πi/4

4 (1−
√

5)

− 81
120 ±1 non-abelian, real e−2πik 81

120
e3πi/4

3
√

3
(1−

√
5)

− 97
120 ±1 non-abelian, real e−2πik 97

120
8e3πi/4

5
√

5
cos π

10

−105
120 ±1 non-abelian, real e−2πik 105

120
4e3πi/4

3
√

3

− 9
120 ±1 non-abelian, complex 0

− 64
120 ±1 non-abelian, complex 0

−100
120 ±1 non-abelian, complex 0

Table 15. Transseries and classification of flat connections on M(−2; 1
2 ,

2
3 ,

2
5 ,

2
5 ).

9 Discussions and open questions

In this paper we discussed the following surprising features of half-indices of certain N = 2

3d supersymmetric quantum field theories, which are also the homological blocks [6] of

a family of three-manifolds. In the first part of the paper we discussed three different

SL(2,Z) (projective) representations we encountered in the problem and make use of them

to compute topologically and physically interesting quantities. Second we propose the

relevance of the false-mock pair for our problem, making use of their relation to quantum

modular forms.

We will end the main part of the paper with a list of open questions and future

directions:

• Though the relevance of the false-mock pair is manifest, there are still a few important

puzzles remaining. Just purely from the number theory point of view there are two

ambiguities in identifying the correct Ẑa on the mock side:
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1. As summarised in figure 9, the Eichler integral associated to a mock function

only depends on its shadow and is therefore insensitive to the addition of a purely

modular form. Relatedly, at the end of section 7.2, we have seen that from the

q-hypergeometric perspective there are various ambiguities when going between

upper- and lower-half planes: two q-hypergeometric series can define the same

function on one side and different functions on the other. This is related to the

so-called “expansion of zero” described by Rademacher [102]. In our context

of weight one Jacobi forms, the ambiguity is equivalent to the ambiguity of

specifying the poles of the function (see [37] and [92]).

2. Moreover, once a mock modular form f is chosen, one still need to choose

the modular subtraction Gx at the cusp x (cf. (7.36)). While for comparison

with perturbative Chern-Simons one only needs the subtraction for the cusp

τ → 0, in order to literally compare with all the WRT invariants one would

need the subtraction at all roots of unity of the form τ → 1
k . (Of course, this

is the description of the ambiguity when considering the mock form f as a

single-valued mock modular form for a subgroup Γ < SL(2,Z). When described

in terms of vector-valued mock modular forms for SL(2,Z), the corresponding

ambiguity is that of specifying the modular subtractions for all components of

the vector-valued function.)

Recall that, while one does not necessarily need to care about these ambiguities for

the pupose of reproducing the perturbative Chern-Simons data, the actual q-series

are physically very meaningful! Clearly, in order to make general predictions for the

homological blocks for general three-manifolds and in order to better understand the

general modularity structure of 3d N = 2 theories, it is crucial to better understand

the above ambiguities, and hopefully to find sufficiently powerful criteria from physics

and topology to eliminate the ambiguities. Also from the context of this work, the

relation to Habiro ring [103] appears to be an important lead.

• It would be interesting to compute, e.g. via resurgence [5], the q-series invariants

Ẑa(M3) for hyperbolic 3-manifolds and test the conjecture in section 5, namely

whether in such cases Ẑa(M3) are related to characters of logarithmic vertex algebras

which are not C2-cofinite.

• In this work we note the important role played by the Weil representations, labelled

by a pair m and K ⊂ Exm, in our problem. While m can phenomelogically be

determined by the topological data (6.14), we do not know what the explicit rela-

tion between K and 3-manifold topology is. More conceptually, it would be great

to understand the origin of these Weil representations in our topological/physical

problem. Furthermore, in section 3 we discussed three different S-matrices and three

different “SL(2,Z) representations” that play an important role in our story. We do

expect these representations to be inter-related and one obvious open problem is to

understand how exactly they are related.
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• In our story, mock modular forms and interesting modular structures emerge from the

physics of 3d N = 2 theories and BPS states. In particular, our key players Ẑa(q) are

“counting” BPS states. It would be interesting to find relations (dualities) to other

physics problems where similar modular structures appeared, e.g. [93, 104–107].

• In this work we have mainly focused on examples of Seifert manifolds with ` singular

fibers, where ` = 3 and the homological blocks are given by false thetas. These type of

functions also appear as characters of modules of singlet (1, p) logarithmic vertex alge-

bras. In section 8 we briefly discussed the case of ` = 4, where the homological blocks

are composed of building blocks which contain false theta functions corresponding

to a mix of quantum modular forms of weight 3/2 and weight 1/2. Moreover, the

relation to logarithmic vertex algebras persists and this time the blocks appear to

be related to characters of (p+, p−) singlet vertex algebras. However, there is clearly

much more to explore. One interesting question is to identify the building blocks of

homological blocks for Seifert manifolds with general `, and the potential relation to

logarithmic vertex algebras. Next, it would be intestering to explore the modular-

ity structure of homological blocks for plumbed 3-manifolds which are non-Seifert.

Third, it is very conceivable that there exists a nice relation between higher rank

invariants and higher-depth quantum modular forms [100], generalizing the SL(2,C)

story which is the focus of the present paper. Finally, one may also investigate

the modular-like properties of the half-indices arising from 3d theories that are not

coming from three-manifolds.

• The examples given in section 7.5 suggest the relevance of the 39 optimal mock

Jacobi theta functions in our topological and physical problems. At the same time,

these mock functions also play the role of the graded dimensions of finite group

representations in the context of the still mysterious umbral moonshine [96, 97]. One

natural question is whether there is a relation between our setup and the moonshine

finite groups.
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a1 0 a2

∼=

a1 + a2

a1 ± 1 ±1 a2 ± 1

∼=

a1 a2

a1 ± 1 ±1

∼=

a1

Figure 10. 3d Kirby moves for plumbed manifolds. The resulting plumbed manifolds M and M ′

are homeomorphic.

A Invariance of convergence under 3d Kirby moves

In this section, we prove that 3d Kirby moves (figure 10) preserve the domain of convergence

of homological blocks.

Consider the bottom left graph of figure 10. We may choose the basis in which the

adjacency matrix M has framing coefficient a1 +a2 in the (i, i)-th coordinate. By lemma 1,

homological blocks of the manifold plumbed along the bottom left graph would have the

following asymptotic behavior for the q-exponents:

q−
(`,M−1`)

4 = q−
(M−1)ii`

2
i

4
+O(1), as |`| → ∞ (A.1)

for the relevant terms of the sum. Next, we consider the adjacency matrix M ′ of the top

left graph, which has the following [i− 1, i+ 1]× [i− 1, i+ 1]-submatrix:a1 1 0

1 0 1

0 1 a2

 ⊂M ′.
A simple linear algebra shows that its inverse has the following [i− 1, i+ 1]× [i− 1, i+ 1]-

submatrix: 
(M−1)ii

2 · · · − (M−1)ii
2

· · · · · · · · ·
− (M−1)ii

2 · · · (M−1)ii
2

 ⊂ (M ′)−1.

Therefore, the homological blocks associated to the top left plumbing graph would have

the q-exponents with the following asymptotic behavior:

q−
(`,(M′)−1`)

4 = q−
(M−1)ii(`i−1−`i+1)

2

8
+O(1), as |`| → ∞ (A.2)

for the relevant terms of the sum. In particular, the asymptotic behavior depends only

on (`i−1 − `i+1), which is playing the role of `i in (A.1). Furthermore, the asymptotic

behaviors of both (A.1) and (A.2) are proportional to (M−1)ii. Thus, we may conclude

that the first Kirby move preserves the domain of convergence of homological blocks. We

can analogously work out the diagonal elements of (M ′)−1 for the two remaining Kirby

moves and observe the invariance.
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B Further examples

In this section, we provide further examples of Seifert manifolds whose homological blocks

are given in terms of the false theta functions Ψm+K
r and whose data about the flat con-

nections can be inferred from the modularity dictionary as discussed in section 4.

CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
3
√
3
k−3/2 + 19π2

9
√
3
k−5/2 +O(k−7/2)

)
1
3 Υ(1) abelian e2πik

1
3

(√
3k−1/2 + 5πi

12
√
3
k−3/2 +O(k−5/2)

)
− 1

24 ±1 irreducible, real e−2πik
1
24 e

3πi
4 · (−2)

Table 16. Transseries and classification of flat connections on M(−2; 1
2 ,

2
3 ,

2
3 ) = S3

−3(3`1) up to an

overall factor of −iq−25/24/2
√

2. The corresponding Weil representation is m+K = 6 + 3.

CS action stabilizer type transseries

0 SU(2) central e2πik·0
(
πi
√

2k−3/2 + 259π2

20
√

2
k−5/2 +O(k−7/2)

)
1
2 SU(2) central e2πik 1

2

(
πi
√

2k−3/2 + 259π2

20
√

2
k−5/2 +O(k−7/2)

)
− 9

80 ±1 non-abelian, real e−2πik 9
80 e

3πi
4 ·
(

6+2
√

5
5

) 1
4

−49
80 ±1 non-abelian, real e−2πik 49

80 e
3πi
4 ·
(

6+2
√

5
5

) 1
4

− 1
80 ±1 non-abelian, complex 0

−121
80 ±1 non-abelian, complex 0

Table 17. Transseries and classification of flat connections on M(−1; 1
2 ,

1
4 ,

1
5 ) = S3

+2(41) up to an

overall factor of −iq19/80/2
√

2. The corresponding Weil representation is m+K = 20 + 4.

CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
3
√

3
k−3/2 + 103π2

18
√

3
k−5/2 +O(k−7/2)

)
2
3 Υ(1) abelian e2πik 2

3

(√
3

2 k
−1/2 − 7πi

48
√

3
k−3/2 +O(k−5/2)

)
− 4

48 ±1 non-abelian, real e−2πik 4
48 e

3πi
4 ·
√

2

−25
48 ±1 non-abelian, real e−2πik 25

48 e
3πi
4 · 1

− 1
48 ±1 non-abelian, complex 0

Table 18. Transseries and classification of flat connections on M(−1; 1
3 ,

1
3 ,

1
4 ) up to an overall

factor of −iq−1/48/2
√

2. The corresponding Weil representation is m+K = 12 + 3.
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CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
5
√

5
k−3/2 + 67π2

25
√

5
k−5/2 +O(k−7/2)

)
2
5 Υ(1) abelian e2πik 2

5

(
1+
√

5
2 k−1/2 − (125+61

√
5)πi

200 k−3/2 +O(k−5/2)
)

3
5 Υ(1) abelian e2πik 3

5

(
−1+

√
5

2 k−1/2 + (125−61
√

5)πi
200 k−3/2 +O(k−5/2)

)
− 9

40 ±1 non-abelian, real e−2πik 9
40 e3πi/4 ·

(
1 + 1√

5

)
−25

40 ±1 non-abelian, real e−2πik 25
40 e3πi/4 · 4√

5

− 1
40 ±1 non-abelian, complex 0

Table 19. Transseries and classification of flat connections on M(−1; 1
2 ,

1
5 ,

1
5 ) up to an overall

factor of −iq−19/40/2
√

2. The corresponding Weil representation is m+K = 10 + 5.

CS action stabilizer type transseries

0 SU(2) central e2πik·0
(

4πi
27 k

−3/2 +O(k−5/2)
)

0 Υ(1) abelian e2πik·0
(
− k−1/2 +O(k−3/2)

)
2
9 Υ(1) abelian e2πik 2

9

((
4
3 cos π9 − 2

3

)
k−1/2 +O(k−3/2)

)
5
9 Υ(1) abelian e2πik 5

9

(
−
(

4
3 sin π

18 + 2
3

)
k−1/2 +O(k−3/2)

)
8
9 Υ(1) abelian e2πik 8

9

(
−
(

4
3 cos 2π

18 + 2
3

)
k−1/2 +O(k−3/2)

)
− 9

72 ±1 non-abelian, real e−2πik 9
72 e3πi/4 · (−2)

Table 20. Transseries and classification of flat connections on M(−2; 1
2 ,

1
3 ,

2
3 ) up to an overall

factor of −iq−45/72/2
√

2. The corresponding Weil representation is m+K = 18 + 9.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)

440301 [arXiv:1608.02952] [INSPIRE].

[2] E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525

[INSPIRE].

[3] A. Gadde, S. Gukov and P. Putrov, Walls, lines and spectral dualities in 3d gauge theories,

JHEP 05 (2014) 047 [arXiv:1302.0015] [INSPIRE].

[4] S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, JHEP 07 (2017)

071 [arXiv:1602.05302] [INSPIRE].

[5] S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory,

arXiv:1605.07615 [INSPIRE].

– 87 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02952
https://doi.org/10.1007/BF01208956
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,109,525%22
https://doi.org/10.1007/JHEP05(2014)047
https://arxiv.org/abs/1302.0015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0015
https://doi.org/10.1007/JHEP07(2017)071
https://doi.org/10.1007/JHEP07(2017)071
https://arxiv.org/abs/1602.05302
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.05302
https://arxiv.org/abs/1605.07615
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.07615


J
H
E
P
1
0
(
2
0
1
9
)
0
1
0

[6] S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants,

arXiv:1701.06567 [INSPIRE].

[7] S. Ramanujan, The lost notebook and other unpublished papers, Springer, Berlin Germany

(1988).

[8] D. Choi, S. Lim and R.C. Rhoades, Mock modular forms and quantum modular forms,

Proc. Amer. Math. Soc. 144 (2016) 2337.

[9] M.C.N. Cheng and J.F.R. Duncan, On Rademacher sums, the largest Mathieu group and

the holographic modularity of Moonshine, Commun. Num. Theor. Phys. 6 (2012) 697

[arXiv:1110.3859] [INSPIRE].

[10] R.C. Rhoades, A unified approach to partial and mock theta functions, Math. Res. Lett. 25

(2018) 659 [arXiv:1111.1495].

[11] D. Zagier, Ramanujan’s Mock theta functions and their applications (after Zwegers and
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[35] A. Cappelli, C. Itzykson and J.B. Zuber, The ADE classification of minimal and A1(1)

conformal invariant theories, Commun. Math. Phys. 113 (1987) 1 [INSPIRE].

[36] J.H. Conway and S.P. Norton, Monstrous Moonshine, Bull. London Math. Soc. 11 (1979)

308.
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