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Abstract:  

Humans possess a remarkable ability to understand what is and is not being said by conservational 
partners. An important class of models hypothesize that listeners decode the intended meaning of 15 

an utterance by assuming speakers speak cooperatively, simulating the speaker’s rational choice 
process and inverting this process for recovering the speaker’s most probable meaning. We 
investigated whether and how rational simulations of speakers are represented in the listener’s 
brain, when subjects participated in a referential communication game inside fMRI. In three 
experiments, we show that listener’s ventromedial prefrontal cortex encodes the probabilistic 20 

inference of what a cooperative speaker should say given a communicative goal and context. The 
listener’s striatum responds to the amount of update on the intended meaning, consistent with 
inverting a simulated mental model. These findings suggest a neural generative mechanism 
subserved by the frontal-striatal circuits that underlies our ability to understand communicative 
and, more generally, social actions. 25 
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Main Text 
 
A cornerstone of effective communication is our ability to read between the lines, or to recognize 
the intended meaning of a speaker, even when the meaning is not coded in the utterance directly. 30 

The process of disambiguating the intended meaning of a speaker, often known as pragmatic 
interpretation, has long been hypothesized to rely on cooperation between communicators: A 
speaker tailors an utterance to help a listener recognize a meaning, and a listener recovers the 
intended meaning by assuming that the speaker spoke to be understood (1). The hypothesized role 
of cooperation has inspired a wealth of philosophical inquiries (2-5) and, more recently, empirical 35 

(6-8) and computational (9, 10) investigations into human communication, but little is known 
about the link between the key computational principles and underlying neural mechanisms. 
 
Computationally, pragmatic interpretation requires a listener to identify the speaker’s underlying 
intention that motivated the choice of the utterance. According to an important class of models, 40 

this can be achieved through an internal generative process similar to how the brain translates 
sensations into perceptions (10-13). Decades of work suggests that the brain infers sensory causes 
(e.g., an object) from their bodily effects (e.g., a retinal image) by modeling the sensation-
generating process and then inverting this model to derive the most probable cause of the sensation 
(11, 14, 15). In pragmatic interpretation, a similar strategy for a listener entails modeling the 45 

speaker’s decision-making process, that is, determining how an interacting web of causes––
intention, context, and knowledge––give rise to the choice of an utterance. It has been proposed 
that a listener simulates speaker behavior using a rational, goal-directed choice model (10). 
Speakers are expected to compare candidate expressions to make a choice for best helping the 
audience recognize the intended meaning in a given context. In addition, listeners need to monitor 50 

knowledge and beliefs shared with the speaker (common ground) for simulating speaker behavior 
based on mutual, rather than the listener’s own private knowledge (4, 6).  
 
This generative account, also known as the Rational Speech Act (RSA) model (10), provides 
precise and falsifiable behavioral predictions in a parsimonious framework for social signal 55 

interpretation that can be extended from communication (10, 12, 13) to social perception (16, 17) 
and interpersonal decision-making (18). However, no direct evidence is available suggesting that 
pragmatic interpretation indeed involves rational, context-specific simulation of speakers. In 
particular, it is unclear whether the putative mental simulation signals are represented in the 
listener’s brain, and flexibly facilitate the utterance interpretation in varying contexts. It also 60 

remains to be explored whether the listener’s brain actively interrogates received utterances using 
automatically generated simulations of speakers or, given that such mental modeling is cognitively 
costly, produces internal estimation only when necessary (e.g., in the face of communicative 
ambiguity). A third unresolved question concerns how the mental simulation is internally 
represented––for example, whether different aspects of information (e.g., utterance, context, 65 
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common ground information) directly support or modulate the putative simulation signal in the 
listener’s brain, or whether some aspects of information are abstracted away during the simulation 
process.  
 
We addressed these questions by investigating a simple yet well-characterized game of referential 70 

communication (7, 19, 20), in three experimental conditions (Fig. 1A), using model-based 
functional magnetic resonance imaging (fMRI) (21). This method allowed us to connect the trial-
wise brain activity during utterance interpretation with latent signals derived from computational 
modeling of listener behavior. A total of 41 subjects were scanned while they participated as 
“listeners” against a pool of anonymous “speakers”. As a first test of our hypotheses, we conducted 75 

the experiment where a listener and a speaker were randomly matched in pairs in each trial and 
faced the same communicative context consisting of three objects with varying colors and shapes 
(symmetric condition) (Fig. 1B and Figs. S1-2). The speaker was asked to refer to a target object 
by choosing between alternative expressions denoting either the color or shape of the target. The 
listener, who did not know the target, needed to recover the intended referent from the referring 80 

expression chosen by the speaker (22). Although speakers did not describe the targets in complete 
detail, the rate of listeners recovering the targets was as high as 75.72 ± 0.61%	(mean ± SEM), 
significantly greater than that resulting from literal interpretations (literal recovery rate = 66.88%; 
,-. = 14.53, 2 < 2 × 10567) (Fig. S5). 
 85 

The paradigm has three key advantages for providing a quantitative framework connecting listener 
choices with the underlying cognitive processes in the context of model-based fMRI: (i) a large 
number of trials for each listener, (ii) tight control of the decision space of communicators, and 
(iii) parametric manipulation of contexts. We fitted the listener choices with the RSA model, in 
which listeners anticipate speakers to choose the most specific (informative) expression to refer to 90 

a target (e.g., “square” is more specific than “blue” for denoting the blue square in Fig. 1B). By 
comparing the specificity between competing references, listeners simulate the probability that a 
speaker chooses a particular reference given a target and context (henceforth pragmatic 
likelihood), and then invert pragmatic likelihood with Bayes’ rule for deriving the most probable 
referent (Fig. 1B, bottom) (22).  95 

 
This model, together with the task design in which we systematically varied reference specificity 
through manipulating features of the presented objects (22), allowed us to create the trial-wise 
regressor of pragmatic likelihood and explore its neural encoding in the listener’s brain. 
Furthermore, to test the hypothesis that pragmatic likelihood is automatically registered in the 100 

listener’s brain, even when mental simulation of the speaker is not required, we classified choices 
faced by listeners into two categories, in which mental predictions may (P+) or may not (P-) 
influence referential interpretation in the task setting (Fig. 1C; see also Fig. S4 for trial type 
definition, simulation, and test statistics) (22). 
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 105 
Fig. 1. Empirical approach and task schematic. (A) Using model-based fMRI, we investigated the core assumption 
of the RSA framework, that a listener rationally simulates the speaker’s decision-making process during pragmatic 
interpretation. We tested this hypothesis in three communicative setups, designed for exploring the existence, 
generality, and sensitivity of the rational simulation signal in the listener’s brain. (B) Schematic of the referential game 
in the first experimental setup, symmetric condition (top), where the presence of three geometric objects (context) is 110 
common knowledge shared between communicators (22). The context and target location (indicated by the arrow in 
the speaker screen) varied across trials. Referential interpretation is modeled as a Bayesian inferential process using 
RSA (bottom): A listener evaluates how likely a particular object is to be the target given the received expression and 
context by inverting a mental model of speaker behavior characterized by pragmatic likelihood (22). (C) Trial types 
in the symmetric condition, differing according to whether predicting speaker choices is relevant (P+) or is not relevant 115 
(P-) for resolving communicative ambiguity. In the P+ example (top), if the target were the blue square, a speaker 
would have uttered “square”, which denotes the blue square unambiguously. The fact that the speaker sent “blue” 
instead of “square” indicates to the listener that the blue circle is the target. In contrast, in the P- example (bottom), a 
listener may single out the red circle upon receiving the expression “red”, without realizing that the red circle would 
be referred to as “red” with 50% probability by the speaker. 120 
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Fig. 2. Method validation. (A) Actual listener choices conditional on the received referring expression and context 
as a function of the model-derived posterior probabilities. Data are pooled over all listeners in the symmetric condition 
and binned by a step size of 0.1 based on model predictions; for single listener results see (22). The dashed line 125 
represents a perfect model fit. The size of a circle is proportional to the number of observations. (B) Actual speaker 
choices conditional on the target and context (grey bar) matched the pragmatic likelihood estimates derived from the 
listener data (red dashed line). According to RSA, the pragmatic likelihood estimate for a possible target is a softmax 
function of the relative specificity between the competing expressions associated with the object (x-axis) (22). (C) 
Consistent with previous studies (23, 24), the listener bilateral striatum encodes the update signal (posterior – prior 130 
probability) for the chosen object at the time of expression onset [2 < 0.05 cluster-wise family-wise error rate (FWE) 
corrected, cluster-forming threshold 2 < 0.001; see also Table S1]. (D) Across listeners, a superior RSA model fit to 
the listener data is associated with enhanced neural responses to the update signal in an independent region of interest 
(ROI) for learning and updating (using the term “prediction error”) defined from Neurosynth (25), which is 
predominately confined to the nucleus accumbens. Each circle represents a listener.  135 
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Consistent with previous research (19, 20), the RSA model explained the listener data well (Fig. 
2A), correctly predicting 68.76 ± 0.99% of listener choices in out-of-sample tests (chance level = 
33.3%), and outperformed a variety of alternative models (Fig. S3) (22). Using the RSA parameter 
calibrated on listener data, we derived pragmatic likelihood estimates for each listener on each 140 

trial. Important for interpreting neuroimaging data, the average pragmatic likelihood estimates 
matched the aggregate choice patterns of speakers (Fig. 2B), indicating that the pragmatic 
likelihood estimates reflect not only what speakers should rationally select to achieve a 
communicative goal but also what they actually selected in the experiment. 
 145 

Next, we investigated whether the listener’s brain activity reflected key computational components 
derived from RSA, including the Bayesian update and pragmatic likelihood signals, at the point 
when listeners received messages from speakers. A standard general linear model (GLM) analysis 
revealed that the Bayesian update signal, as assessed by the difference between the prior and 
model-derived posterior probability that the chosen object was the intended referent, scaled with 150 

activity in the listener bilateral striatum on a trial-by-trial basis (Fig. 2C; see also Materials and 
Methods for how prior probability was assessed). This effect is consistent with previous evidence 
of reward learning and Bayesian updating in decision neuroscience (23, 24). In addition, the striatal 
activity in response to the Bayesian update signal varied across listeners, such that those whose 
choices were better characterized by RSA showed a greater update-related signal in a region-of-155 

interest (ROI) independently defined for learning and updating by an automated online meta-
analysis (Fig. 2D) (25). 

 
To look for listener brain regions where a significant amount of variances could be uniquely 
explained by pragmatic likelihood estimates while controlling for other potentially related 160 

variables, we entered the trial type (P+/P-), posterior probability prediction, and pragmatic 
likelihood estimate as parametric modulators into a single regression model (22). This revealed a 
significant effect of pragmatic likelihood estimates associated with the chosen object in a cluster 
in the listener ventromedial prefrontal cortex (vmPFC) (Figs. 3 and S7). Additional analyses 
suggested that the observed vmPFC activity could not be attributed to correlations with Bayesian 165 

computational components other than pragmatic likelihood (e.g., prior, posterior, or update) or 
cognitive factors that the listener’s brain likely encoded during the inferential process (e.g., 
message type, context configuration, reaction time, and choices). The reported effect remained 
robust to the inclusion of all these variables as regressors of no interest into a single regression 
(Figs. S6 and S8-9), and were predictive of the speakers’ actual choices above and beyond the 170 

model-derived pragmatic likelihood estimates (Fig. S10).  
 
Strikingly, the pragmatic likelihood estimate was encoded in the listener vmPFC, and only vmPFC, 
even when not required for decoding speaker intentions. A separate whole-brain GLM regression 
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showed that within P- trials, activity in an overlapping vmPFC cluster was strongly correlated with 175 

pragmatic likelihood estimates of the chosen object, with an effect size similar to that in the P+ 
trials (Fig. S6C, top). Moreover, signals extracted from the listener vmPFC ROI demonstrated 
similar level of activation in the P+ and P- trials that were associated with the same pragmatic 
likelihood estimate values (Fig. 3B, at the relative specificity 1:1). These findings suggest an 
automatic neural simulation of speaker behavior, even when such simulation is irrelevant for 180 

utterance interpretation.  
 

 
Fig. 3. Listener vmPFC encodes pragmatic likelihood estimates. (A) Significant activation of the listener vmPFC 
with respect to pragmatic likelihood estimates for the chosen object upon receiving the speaker’s message in the 185 
symmetric condition (2 < 0.05	cluster-wise FWE corrected, cluster-forming threshold 2 < 0.001). (B) BOLD 
signals extracted from the vmPFC ROI (y-axis), defined as a 6-mm ball around the peak voxel (MNI: -6/44/-7), against 
the pragmatic likelihood estimates ranked by the relative specificity of the chosen object (x-axis). A mixed-effect 
linear regression shows the regression coefficient for the vmPFC ROI signal against pragmatic likelihood estimate is 
0.67 ± 0.14 (,-. = 4.68, 2	 = 	9.8 × 1059; Bonferroni corrected). Note that, by design, P- trials are generally 190 
associated with higher pragmatic likelihood estimates relative to the P+ trials, but the listener vmPFC tracks pragmatic 
likelihood estimates in both P+ and P- trials with no significant difference in the slopes (∆; = 0.01 ± 0.42, ,-. =
0.02, 2 = 0.982), demonstrating similar responses when pragmatic likelihood estimates are equal at the relative 
specificity 1:1 (P+ = −0.50 ± 0.15 vs. P-= −0.62 ± 0.13,  ,-. = 0.94, 2 = 0.354). See also Fig. S6C for the whole-
brain analysis using P- trials only. (C-D) BOLD signals extracted from the same vmPFC ROI against the prior 195 
probability (C) and update signal (D) of the chosen object (mixed-effect linear regression coefficient, prior = 0.33 ±
0.20, ,-. = 1.63, 2 = 0.333; update = 0.33 ± 0.18, ,-. = 1.77, 2 = 0.252 ; all Bonferroni corrected). For whole-
brain analyses of the prior and update signals see Fig. 2C and Fig. S9. Error bars represent inter-subject SEM. Circle 
sizes represent sample sizes. 
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 200 
These results thus raise the question of what neural systems inform or facilitate the mental 
simulation signals observed in the vmPFC. Based on previous studies (8), we hypothesized that 
the pragmatic likelihood computation likely involves the communication between the listener’s 
vmPFC and mentalization network. In line with this hypothesis, psychophysiological interaction 
(PPI) analyses showed functional coupling—varying according to the RSA model predictions—205 

between a listener’s vmPFC and brain regions typically implicated in mentalization (22), including 
the dorsomedial prefrontal cortex and temporoparietal junction (26) (Fig. S11). 
 

 
Fig. 4. Generality and sensitivity of the pragmatic likelihood representation in the listener vmPFC. (A) 210 
Schematic of symmetric-garment condition, designed for testing whether the vmPFC encoding depends on the specific 
eliciting stimuli. Different from the other two conditions, the symmetric-garment condition contained less number of 
trials and only the P+ type at the relative specificity 1:1 (22). Both the whole-brain (B) and ROI (C) analyses revealed 
a significant correlation between listener vmPFC activity and the pragmatic likelihood estimates of the chosen object 
(whole brain: 2 < 0.05	cluster-wise FWE corrected, cluster-forming threshold 2 < 0.001,	 only positive activation 215 
was presented for confirmatory purpose, see also Fig. S6 for full activation maps; ROI: ; = 0.73 ± 0.17, ,-. = 4.44, 
2 = 7.0 × 1059). (D) Schematic of asymmetric condition, designed for testing whether shrinking common ground 
between communicators dampens the vmPFC responses to pragmatic likelihood estimates. This condition contained 
the same set of decision contexts for listeners as in the symmetric condition (22). Both the whole-brain (E) and ROI 
(F) analyses revealed a diminished correlation between vmPFC activity and pragmatic likelihood estimates derived 220 
from the matching symmetric condition (whole brain: 2 < 0.05	cluster-wise FWE corrected for positive activation, 
cluster-forming threshold 2 < 0.001; ROI: ; = 0.19 ± 0.14, ,-. = 1.38, 2 = 0.177). The same vmPFC ROI was 
used as in the symmetric condition. Error bars represent inter-subject SEM. 
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To what extent does the vmPFC activity reflect the mental simulation of speakers in other 225 

communicative situations? Results from two additional experimental conditions suggest that, 
whereas varying communicative stimuli did not affect the vmPFC encoding (symmetric-garment 
condition,  Fig. 4, A-C and Fig. S6) (22), altering the knowledge shared between communicators 
significantly perturbed the vmPFC signal (asymmetric condition, Fig. 4D-F and Fig. S6). In the 
latter, we performed the experiment in the same group of listeners, with one important difference: 230 

instead of three geometric objects in each trial, speakers were able to see only the target when 
selecting references. Importantly, listeners underwent the same reasoning task inside the fMRI as 
in the other conditions but were told that speakers faced only the target during their decisions (Fig. 
4D) (22). If a listener models the utterance selection process from the speaker’s perspective, then 
the listener would expect a speaker with a restricted perspective to choose between candidate 235 

expressions randomly, regardless of context. This implies that a listener should demonstrate 
flattened vmPFC activation in the asymmetric condition relative to the symmetric condition. As 
predicted, we found that listeners were sensitive to the manipulation of common ground, such that 
now only 66.92 ± 0.15%	of targets were correctly identified by listeners, a success rate similar to 
that of listeners choosing literally in response to random speakers (literal recovery rate = 66.88%; 240 

,-. = 0.88, 2 = 0.384) (Fig. S5). Importantly, the listener vmPFC showed blunted responses to 
the pragmatic likelihood estimates derived from the matching symmetric condition, either at the 
whole-brain level or within the ROI obtained in the original symmetric condition (Fig. 4, E-F, see 
also Figs. S12-13 for within- and between-listener comparisons). 
 245 

Dating back to Grice’s cooperative principle (1), understanding what is meant from what is said 
in context is thought to involve an inferential process guided by the expectation that the speaker 
communicates cooperatively. The consistent results across three experimental conditions provide 
substantial evidence that the listener vmPFC encodes mental simulations of the speaker choice 
process, complied with rational cooperative principles, inferred from a specific context and 250 

common ground information, independent of eliciting stimuli, and irrespective of whether such a 
simulation is required for utterance interpretation. The rational simulation signal in vmPFC is 
likely supported by inputs from the mentalization network. Importantly, the finding that the 
vmPFC signal resembles a Bayesian likelihood function, together with the fact that the listener’s 
striatal activity correlates with the update from the Bayesian prior to posterior probability, support 255 

a mechanism by which the frontal-striatal circuits are engaged in building and then inverting a 
choice model of the speaker to produce pragmatic interpretations, in a manner mimicking Bayesian 
inferences.  
 
The result that vmPFC encodes rational simulations of speakers corroborates previous findings 260 

that vmPFC is involved in calibrating social actions by processing implied, rather than explicit, 
social information (27, 28). Our data extend these past findings by characterizing the exact role of 
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vmPFC in encoding the speaker’s intention-action contingency, inferred from a specific 
communicative context, and by specifying the automaticity and generality of the vmPFC 
representation. This result also supports the view that vmPFC contributes to representing 265 

“cognitive maps” that organize task-relevant components for decision-making, especially when 
behaviors require flexible evaluation of cues, contexts, and actions (29, 30), similar to the case of 
communication. 
 
The finding that altering common ground information modifies the vmPFC signal provides neural 270 

evidence for the idea that knowledge and beliefs shared between communicators critically shape 
pragmatic inferences (4, 6). In addition, it raises an intriguing possibility that  additional 
neurocognitive processes are involved in selecting mental models appropriate to the information 
structure within communicators, perhaps through hierarchical generative mechanisms (11-13).  
 275 

The notion of probabilistic generative model has deep roots in artificial intelligence (14) and 
cognitive neuroscience (11) such as visual perception (15)  and motor control (31), and has been 
recently proposed to account for various social inferences (10, 12, 13, 16, 17). Our results shed 
light for the neural instantiation of this generative account in high-level cognitive systems involved 
in communication and social reasoning. It also helps to explain why people coordinate and 280 

cooperate with strangers in the novel, one-shot situations. Past research on cooperation typically 
focuses on how the brain anticipates partners’ choices by learning from direct experience, such as 
repeatedly interacting with the same partner within the same decision context (32-34). In contrast, 
our results suggest a neural system for simulating another’s behavior based on rational principles 
that may substitute for learned expectations, consistent with psychological and economic theories 285 

regarding the role of strategic mentalization in a range of mutually beneficial behavior (18, 35).  
 
More broadly, by highlighting the utility of connecting tools and ideas from decision neuroscience 
and those of experimental and computational pragmatics, our study raises exciting questions 
regarding the degree to which neurocognitive substrates of social decision-making are shared by 290 

communication and language (8, 36, 37), as well as whether behaviors such as detecting sarcasm 
or interpreting humor can be modeled as strategic, cooperative choices in the brain and brain-
inspired artificial intelligence (38). 
 
 295 
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Materials and Methods 
fMRI participants 
 400 

A total of 46 healthy, right-handed volunteers [26 females; age = 20.2 ±1.32 years (mean ± 
SD)] were recruited for the fMRI experiment from the Neuroeconomics Lab subject pool at Peking 
University, China. All participants reported having normal or corrected-to-normal eye vision, no 
colorblindness, and no history of neurological or psychiatric illnesses. Five subjects were excluded 
from data analyses due to excessive motion (N = 4) and a technical problem in stimuli display (N 405 
= 1). Informed consent was obtained by the Ethics Committee at Peking University, China. 
 
Experimental procedure 
 

Subjects participated in a Referential Game adapted from previous studies (7, 19, 20). We 410 
first conducted a behavioral session in which 60 subjects participated in the Referential Game in 
the role of speakers. Subjects in neuroimaging sessions subsequently played the role of listeners 
with speakers under a random matching protocol. That is, a listener and a speaker were matched 
pseudo-randomly at the beginning of each round. The listener received a referring expression 
previously selected by the speaker and needed to recover the intended referent from the received 415 
expression. The random matching between speakers and listeners ensured that the probability of 
repeated interaction was small, thereby preventing communicators from developing hierarchical 
mental models to collude with their partners.  

 
No feedback was provided to either communicator during the experiment. That is, speakers 420 

did not know which items listeners selected in response to the referring expressions, and listeners 
did not know whether their choices of referents were correct after each decision. 
 

Before the experiment, all subjects (listeners and speakers) were given instructions, 
completed a quiz, and performed 3 practice trials to ensure comprehension of the game. Subjects 425 
were informed that both communicators would be rewarded if a referent was successfully 
recovered by the listener in a trial. Subjects were paid at the end of the study, based on the total 
payoff of 100 randomly chosen trials, plus a show-up fee (150 CNY for fMRI listeners and 40 
CNY for speakers). 
 430 
Experimental conditions 
 

The fMRI experiment included three conditions: symmetric, asymmetric, and symmetric-
garment conditions. In the symmetric condition (152 trials divided into 2 scanning sessions), a set 
of three geometric objects were presented to both speakers and listeners in each trial and were 435 
known to be presented to both. The speaker was additionally presented with an arrow, randomly 
distributed among three displayed items, indicating the target object that the speaker needed to 
refer to and the listener needed to recover based on the received expression. In the asymmetric 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/800359doi: bioRxiv preprint first posted online Oct. 10, 2019; 

http://dx.doi.org/10.1101/800359
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

condition (152 trials divided into 2 scanning sessions), we reduced the common knowledge shared 
between the communicators such that speakers saw only the target object, whereas listeners were 440 
informed of all three objects and the fact that speakers were able to see only the target. We also 
included a symmetric-garment condition (72 trials, 1 scanning session) only for listeners as a 
robustness check for whether the main neuroimaging result depended on specific eliciting stimuli. 

 
During scanning, the symmetric and asymmetric conditions were presented in a block-wise 445 

manner with a counterbalanced order [i.e., two successive sessions of the symmetric condition 
followed by (or following) two sessions of the asymmetric condition]. The symmetric-garment 
session was always administered at the end. Within each scanning session, trial order was 
randomly shuffled with a unique order per listener. 

 450 
Experimental stimuli 
 

A schematic representation of the Referential Game and the timeline of the experiment is 
shown in Fig. S1. 

 455 

 
Fig. S1. Schematic representation of the symmetric condition. A listener and a speaker are presented with the same 
context consisting of 3 items in the symmetric condition. The speaker needs to refer to the target item (indicated by 
an arrow) using either the color or shape of the target, whereas the listener needs to recover the target referent based 
on the expression sent by the speaker. More specifically, on each trial, a listener is presented with a set of three items 460 
for an average of 2.5 s. The referring expression chosen by the speaker is then shown on the screen for an average of 
2.5 s. The listener is able to make a self-paced decision once the received expression is framed by pressing buttons 
mapped to item locations on a response pad. Once the listener makes the choice, an arrow is shown underneath the 
chosen item for an average of 1 s, followed by a fixation screen for an average of 3 s. 
 465 

On each scanning trial in the symmetric and asymmetric conditions, a listener is presented 
with a new context consisting of 3 geometric items displayed horizontally, with item locations 
fixed for the listener and the speaker within each context. All listeners faced the same 304 contexts 
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that contained a total of 16 different geometric objects, generated from 4 colors (red, green, blue, 
and yellow) and 4 shapes (diamond, square, circle, and trapezoid). All color/shape features can be 470 
denoted by a two-character noun in Chinese. We constructed the 304 contexts pseudo-randomly 
by drawing 3 items out of 16, with replacement, without distinguishing between drawing orders 
or item locations (Fig. S2). A full list of experimental stimuli is included in the supplemental data 
(Data S1). The target location was randomly distributed. In the asymmetric condition, only the 
target was revealed to the speaker, whereas the two distractors were covered by grey masks. 475 

 

   
Fig. S2. (A) Context configuration. Contexts were constructed by generating all possible combinations of 3 objects, 
randomly drawn from 16 (i.e., 4 colors ´ 4 shapes), with replacement, that did not distinguish between drawing orders 
or item locations. We included all these combinations in the experiment with two exceptions, due to the fMRI 480 
experiment's time constraint (1.5-hour scanning time under the current design). We excluded contexts that contained 
3 different colors or shapes and manually selected a subset of contexts for type 2A2B-I (48 out of 144) that displayed 
no obvious patterns in the distribution of item features. This resulted in 304 contexts of 4 configuration types in the 
symmetric and asymmetric conditions combined. (B) Item features are evenly distributed across item locations in 304 
contexts [>?(14) = 2.15, 2 = 0.999]. 485 
 

Stimuli in the symmetric-garment condition were created in a similar fashion and included 9 
items, generated by 3 garment types (top, pants, and sneakers) and 3 brand names (Adidas, Nike, 
and Li Ning). Each of these features was associated with a two-character Chinese noun (Data S1). 
 490 
Prior probability evaluation 
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Following previous studies (19, 20), we empirically measured the prior probability 

distribution of target items in 304 contexts using online surveys (https://www.wjx.cn)  in a separate 
sample of Chinese participants (N=900). In each trial, survey participants were presented with 3 495 
geometric items and asked to infer the referent based on an unknown expression in a foreign 
language. We instructed subjects to follow their intuition and make a guess if they did not know 
the meaning of the expression. Answers from these participants therefore likely reflect the relative 
visual saliency among geometric items presented in the same context. To monitor the 
performances of online participants, 32 sanity check questions were included and evenly 500 
distributed throughout the survey, where subjects needed to identify the referent based on a 
Chinese referring expression that uniquely denoted an item in the context. Ninety-eight survey 
participants who answered incorrectly on more than 30% of sanity check questions were excluded 
from the data analysis, whereas the rest of the participants answered sanity check questions with 
an accuracy rate of 91.63 ± 0.32%. 505 

 
We calculated the trial-wise prior probability distribution of targets by averaging the choices 

of each item within each context across survey participants. The empirically measured prior 
probabilities were subsequently used for fitting listener choices in the symmetric condition and 
imaging data analyses. No prior probability data were collected for the asymmetric or symmetric-510 
garment conditions.  
 
Computational modeling 
 

We applied the Rational Speech Act (RSA) model (10, 19) to characterize the listener behavior 515 
observed in the symmetric condition. Listeners make their decisions based on a Bayesian 
inferential process that can be formalized as 

  

2(B|D, E) = 	
2(D|B, E)2(B)

∑ 2(D|B′, E)2(B′)HI∈K
 

 520 
where 2(B|D, E) is the posterior probability of a listener choosing a particular item B upon receiving 
an expression D in a context E; 2(D|B, E) is the likelihood that the speaker selects the expression D 
in order to refer to an item B in a context E; and 2(B) is the prior probability that an item B is the 
target referent. According to the Bayesian setup, listeners need to predict how speakers generate 
their choices for each possible target in a context in the form of conditional probability 525 
distributions 2(D|B, E), which we refer to as pragmatic likelihood. 

 
RSA assumes that pragmatic likelihood is computed by simulating speaker choices through a 

rational, goal-directed decision-making model. Specifically, listeners expect that when selecting 
referring expressions, speakers choose an expression to help the recipient recover the target. In the 530 
symmetric condition, this corresponds to choosing the maximally specific (informative) reference 
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within a given context, which can be quantified using an information-theoretic measure, self-
information, L(D; E) = −log	(Q

(R;K)

Q
), where S denotes the total number of items contained in a 

context E (thus, S = 3 in our experimental setting), and S(D; E) denotes the number of objects that 
an expression D can denote in context E. For example, if an expression D can describe all three 535 
items in a context [i.e., S(D; E) = 3], D is not informative at all [i.e., L(D; E) = 0] and will not help 
the listener narrow down possible referents. 

 
To convert self-information of candidate expressions into choice probabilities, the model 

assumes that speaker choices follow a logit or softmax formula widely used in decision-making 540 
research: 

 

2(D|B, E) =
1

1 + exp	(−X[L(D; E) − L(DI; E)])
=

1
1 + [5\

 

 
where [ = Q(RI;K)

Q(R;K)
 reflects the relative specificity between the expression D and its alternative D′, 545 

and X	reflects how sensitive speaker choice probability is to the relative specificity between 
competing expressions, or the “inverse temperature” of the softmax function (e.g., X = 0 means 
listeners expect speakers to select randomly between D and D′). For example, if an expression D is 
more specific than its alternative D′ in referring to a target B (i.e., expression D can denote fewer 
items than D′), a rational cooperative speaker should be more likely to select D over D′ [i.e., 550 
2(D|B, E) ≥ 0.5]. That is, pragmatic likelihood 2(D|B, E) is a non-decreasing function with respect 
to the relative specificity [, as demonstrated in Fig. 1D. 
 
Model estimation 

  555 
To calibrate the RSA parameter X with listener behavior observed in the symmetric condition, 

we estimated the behavioral model using both pooled estimation and hierarchical Bayesian 
analysis. For pooled estimation, we assumed that the choices of all listeners were generated by a 
single, shared X, and we applied the maximum likelihood estimation with grid search over a large 
non-negative domain for X, since the likelihood function may be not globally concave. 560 
Specifically, we fit listener choice data by maximizing the log of posterior probability of observed 
listener choices, ∑ ∑ log	2^B_,`aD_,`, E_,`b`_ , pooled over listeners c	and trials ,. 

 
Second, to account for individual differences in referential interpretation, we also calibrated 

individual listener parameters using the well-established hierarchical Bayesian model estimation 565 
method. We assumed that the parameter X for each listener was randomly drawn from a normal 
distribution governed by group-level mean and variance [i.e., X_~S(e, f)], whereas the group-
level parameters were independently sampled from a uniform prior distribution taking values from 
0 to infinity. We computed the posterior likelihood of observing listener choices with the Markov 
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chain Monte Carlo (MCMC) method implemented in RStan (39). Two MCMC chains were 570 
simulated with 2500 iterations after 2500 burns-in, resulting in 2500 posterior samples for each 
parameter in each chain. All parameters were checked for convergence both visually (from the 
trace plot) and through the Gelman-Rubin test (all [g < 1.01). 

 
In the model estimation and subsequent behavioral and neuroimaging analyses, the Bayesian 575 

prior probability distribution was empirically measured using an independent online sample. 
Additionally, we excluded trials in which listeners made literal mistakes for data analyses (e.g., 
choosing a red circle upon receiving an expression “blue”) to avoid zero probability for the chosen 
item according to model prediction. This resulted in the removal of 0.50 ± 0.12%, 0.33 ± 0.07%, 
and 0.58 ± 0.17% trials in the symmetric, asymmetric and symmetric-garment conditions, 580 
respectively. According to the pooled estimation result, the best-fitting X is 4.97, and the log 
likelihood of listener choices observed in the symmetric condition is -2351.63. For hierarchical 
Bayesian analysis, the individual parameter X_~S(5.93, 2.17), and the deviance information 
criterion (DIC) is 107.36 ± 2.93.  
 585 
Model comparison 
 

To further verify the plausibility of RSA and test for alternative decision strategies that may 
be employed by listeners, we compared RSA with the following models representing competing 
hypotheses regarding how listeners recognize speaker intentions. 590 

 
Literal listener model. This model assumes that listeners interpret received expressions 

literally, randomly choosing among items that the received reference can denote within the context. 
This model contains no free parameter and serves as a baseline for model comparison. 

 595 
Flat prior model. This model assumes that a flat prior probability distribution is used for the 

Bayesian inferential process within RSA, serving to test the assumption that empirically measured 
prior probabilities, a measure of relative saliency between items within a context, contribute to 
referential interpretation. This model also contains a single parameter X as in the original RSA. 

 600 
Sophisticated listener model. This model assumes that speakers think one step further than 

maximizing reference specificity as proposed by the RSA, taking into account the possible choices 
by listeners in response to a specificity-maximizing speaker. On the other hand, listeners decode 
speaker intention based on this sophisticated mental model of speaker behavior. In particular, 
following the well-established cognitive hierarchy approach (40), we assume that sophisticated 605 
listeners derive the most probable referents through a Bayesian inferential process that can be 
characterized as 
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2h(B|D, E) = 	
2i(D|B, E)2(B)

∑ 2i(D|B′, E)2(B′)HI∈K
 

 610 
where 2h(B|D, E) is the posterior probability of sophisticated listeners choosing a particular item B 
given the expression D and context E, and 2i(D|B, E) is the probability of a speaker selecting an 
expression D to refer to B in a context E. Importantly, and different from the assumption in RSA, 
here the speaker is assumed to cooperate with an RSA listener according to the following softmax 
decision rule: 615 

2j(D|k, E) =
1

1 + (
2lim(k|D, E)
2lim(k|D′, E)

)5\
 

 
where 2lim(k|D, E) is the probability of an RSA listener recovering a target k from an expression 
D in context E, and the so-called RSA listener is a listener who uses Bayesian inferences to derive 
the target based on the expectation that speakers seek to maximize the specificity of the chosen 620 
reference. The sophisticated listener model also contains a single free parameter, X, reflecting the 
choice sensitivity of speakers to the difference between alternative referring expressions. 

 

 
Fig. S3. (A) Out-of-sample predictive power based on pooled estimation is superior for RSA compared with the 625 
alternatives (RSA vs. flat prior: t40 = 4.09, P = 0.0004; RSA vs. sophisticated listener: t40 = 3.63, P = 0.0016; all 
Bonferroni corrected). Models are fitted using the pooled estimation method with either the odd-numbered or even-
numbered trials in the symmetric condition compounded over listeners. The predicative power is computed by 
averaging the hold-out prediction accuracy for each model. The dashed line represents the explanatory power of the 
literal listener model, which contains no free parameter and therefore does not need model fitting. (B) We also 630 
implement the Bayesian model selection method for models with free parameter, assuming that listeners follow 
different decision models with a fixed but unknown population distribution of the parameter. Both the protected 
exceedance probability (left) and model frequency (right) calculated by Bayesian model selection based on DIC (41) 
show superior RSA fit relative to models with alternative hypotheses regarding either the prior probability (flat prior 
model) or pragmatic likelihood (sophisticated listener model). 635 
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We compared the fits of listener choices among competing models and found the highest 
predictive power by RSA using either pooled estimation or Bayesian model selection (42), 
according to either in-sample or out-of-sample measurements of goodness of fit (Fig. S3). 
 640 
Prediction+ (P+) and prediction- (P-) trials 
 

We classified choices faced by listeners in the symmetric condition into two categories, 
depending on whether predicting speaker choices is critical for referential interpretation. In 
particular, 645 
 

if 2(B|D, E) = 	 n(R|H,K)n(H)

∑ n(R|HI,K)n(HI)op∈q
= 	 n(H)

∑ n(HI)op∈{s:	u(v|s,q)wx}
,  Prediction - (P-) type; 

 
otherwise, Prediction+ (P+) type. 
 650 

Put in other words, the posterior probability distribution that an object would be referred to 
depends only on the prior probability but not the pragmatic likelihood in the P- trials, suggesting 
that listeners can arrive at the same referential interpretations in these situations without simulating 
the speaker’s choice behavior. More precisely, under the current experimental setup, the P- type 
consists of trials where a received reference denotes either a single item or a number of identical 655 
items (i.e., same color and shape) in the context. 
 

 
Fig. S4. (A) P+ and P- examples show that perturbing pragmatic likelihood influences RSA model predictions in the 
P+ trials but not P- trials. Red crosses represent the actual choice frequencies of listeners in the corresponding decision 660 
in the symmetric condition. Black crosses represent the posterior probability distribution of listener choices derived 
from the best-fitting, group-level RSA estimation. Grey dots are the posterior probabilities simulated from RSA based 
on 100 randomly perturbed pragmatic likelihood values, in which randomly generated probability distributions are 
assigned as the pragmatic likelihood over items that can be literally described by the received references. The 
distributions of grey dots are similar for the blue square and the blue circle in the left example, because both items can 665 
be described as “blue” and are both assigned with perturbed pragmatic likelihood randomly. (B) Classification 
outcomes across trials in the symmetric condition. Histograms depict the average Euclidean distance between the 
posterior probability predictions generated by the best-fitting RSA and 100 randomly perturbed RSA. 
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To verify and visualize classification outcomes, we generated RSA model predictions using 670 

randomly perturbed pragmatic likelihood values and compared these predictions with the actual 
listener choices in the symmetric condition (Fig. S4). In P+ trials, pragmatic likelihood critically 
shapes the utterance interpretation such that perturbing pragmatic likelihood gives rise to 
differential interpretations of the same message. In P-trials, however, listeners always arrive at the 
same interpretation even when pragmatic likelihood is randomly perturbed, leaving it difficult to 675 
determine whether a listener actually generates rational predictions regarding the speaker as 
proposed by RSA. Neuroimaging data, on the other hand, offer an opportunity for testing the extent 
to which the mental simulation of speakers is related to pragmatic reasoning in a manner implied 
by computational models incorporating rational, cooperative assumptions. 
 680 
fMRI data acquisition and preprocessing 
 

We collected the fMRI images for each listener using a 3T Siemens Prisma scanner and a 32-
channel head coil at the Center for MRI Research at Peking University. Images were acquired 
using echo-planar T2* images with BOLD (blood-oxygenation-level-dependent) contrast and 685 
angled 30º relative to the AC-PC line to minimize susceptibility artifacts in the orbitofrontal area. 
The scanning parameters are as follows: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, 
flip angle = 90º, field of view (FoV) = 192 × 192 mm, slice thickness = 4 mm, slice gap = 0.4 mm, 
voxel size = 3 × 3 × 4 mm3�32 slices. A high-resolution T1-weighted structural image was 
acquired using a magnetization-prepared rapid gradient echo sequence (MPRAGE) with the 690 
following parameters: TR = 2530 ms, TE = 2.98 ms, flip angle = 7º, FoV = 224 × 256 mm, slice 
thickness = 1 mm, slice gap = 0.5 mm, voxel size = 0.5 × 0.5 × 1 mm3, 192 slices. 

 
Imaging preprocessing and analyses were performed in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) with MATLAB R2016b. For each fMRI 695 
session, the raw images were first slice-timing corrected and then aligned to the first volume to 
correct participants’ head motion. After that, the images were spatially normalized into the 
Montreal Neurological Institute (MNI) template with a final image resolution of 3 × 3 × 3 mm3 

and smoothed using a 6-mm FWHM Gaussian kernel. All images were temporally filtered using a 
high-pass filter with a width of 128 s. 700 

 
fMRI data analysis 
 

We implemented a generalized linear model (GLM) for model-based fMRI analysis widely 
used in the field of decision neuroscience. The best-fitting RSA model parameter from pooled 705 
estimation was used to calculate the trial-wise pragmatic likelihood, posterior probability, and 
posterior–prior update (with prior probability obtained in a separate online sample) for each 
listener. These values were then used as parametric modulators in the model-based fMRI analysis 
for listener brain activity observed in the symmetric condition. To examine the robustness of neural 
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encoding of pragmatic likelihood, we also included a single scanning session of the symmetric-710 
garment condition, where we computed the corresponding pragmatic likelihood values for each 
trial and each listener, assuming listeners in the symmetric-garment condition shared the same X 
estimate as in the symmetric condition. Finally, to test whether altering common ground between 
communicators modifies the neural encoding of pragmatic likelihood, we included the asymmetric 
condition, where we entered the same pragmatic likelihood value from the matching symmetric 715 
trial as the parametric modulator for fMRI analysis. 

 
In GLMs, each trial was modeled as 4 discrete events—item onset, expression onset, choice 

submission, and fixation onset—all as stick functions (i.e., duration = 0). Regressors were 
convolved with the canonical hemodynamic response function and entered into a regression 720 
analysis against each listener’s BOLD responses. We were specifically interested in listeners’ brain 
activity when they received the referring expression from the speaker; thus, variables of interest 
were entered into GLMs as parametric modulators associated with expression onset. 

 
In particular, the first GLM served to establish the validity of the RSA model at the neural 725 

level; thus, it included the posterior–prior update signal associated with the chosen object as the 
parametric modulator for trials in the symmetric condition (Fig. 2C). In the second GLM, we 
sought to establish the neural signature of pragmatic likelihood by including the following 
parametric modulators: trial type (i.e., P+/P-), model-derived posterior probability for the chosen 
object, and the pragmatic likelihood estimate for the chosen object, with the default automatic 730 
orthogonalization switched off (Figs. 3A and S7). To examine the robustness of pragmatic 
likelihood encoding and control for the influences of potential confounding factors, the third GLM 
included the following 9 parametric regressors: trial type (P+/P-), posterior probability of the 
chosen item, message type (color/shape), context configurations (1A1B/1A2B/2A2B), reaction 
time, choice (left/mid/right), choice uncertainty (entropy of the posterior probability), outcome 735 
uncertainty (distance between posterior probability of the chosen object and 0.5), and pragmatic 
likelihood for the chosen item (Fig. S6B). The fourth GLM served to explore the extent of neural 
activation in response to pragmatic likelihood and thus included only a single parametric 
modulator of the pragmatic likelihood estimates for chosen objects with no control variables (Fig. 
S6A). The 6 vectors of head motion parameters derived from pre-processing were also included 740 
as nuisance regressors in all analyses. Regression betas from each listener were averaged across 
sessions within each condition and then taken into random-effects group-level analyses. 

 
All whole-brain analyses were thresholded and displayed at the family-wise error rate (FWE)-

corrected P value (PFWE) of 0.05 at the cluster level, with a cluster-forming threshold of Punc. < 745 
0.001, as reported by SPM. In addition, similar whole-brain results were obtained with a non-
parametric thresholding approach applied to the second-level analyses using default settings in 
SnPM13 (43) (i.e., 5,000 permutations, cluster-forming threshold of 0.001, PFWE < 0.05). 
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Functional connectivity analyses 750 
 
To test whether listener vmPFC differentially connected with areas within the well-

established theory-of-mind (ToM) network according to behavioral model predictions, we 
analyzed functional connectivity between listener vmPFC and ROIs that were a priori selected 
using Neurosynth (http://www.neurosynth.org) for the term “theory of mind”, followed by an 755 
exploratory whole-brain analysis to identify areas other than the a priori defined ToM ROIs that 
show similar effects. The vmPFC cluster identified in Fig. 3A was used as the seed region for PPI 
analyses. Four ToM ROIs were defined by 6-mm spheres around peaks of the map automatically 
generated by Neurosynth for “theory of mind” [dmPFC: (4, 58, 24), LTPJ: (-54, -54, 22), RTPJ: 
(58, -54, 20), and Precuneus: (-2, -56, 40)]. We performed PPI analyses in SPM12 with the 760 
following regressors for the event of expression onset: (i) the average BOLD time series extracted 
from the vmPFC cluster, (ii) the dummy variable indicating whether a listener choice follows the 
RSA model recommendation (i.e., the choice is assigned with the highest posterior probability by 
the best-fitting model), and (iii) the interaction term between the average vmPFC time course and 
the dummy variable. 765 
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