Enantioselective Construction of the Tricyclic Core of Curcusones A-D via a CrossElectrophile Coupling Approach

Austin C. Wright and Brian M. Stoltz*Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Divisionof Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20,Pasadena, California 91125, United States
Table of Contents

1. Materials and Methods S2
2. Procedural Information S2
3. NMR and IR Spectra of New Compounds S8
4. X-Ray Crystal Structure Analysis of $\mathbf{2 4}$ S26

Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware under a nitrogen atmosphere using dry, deoxygenated solvents (passed over a column of activated alumina under argon). Commercially obtained reagents were used as received. Reactions requiring external heat were modulated to the specified temperatures using an IKAmag temperature controller. Reaction pro- gress was monitored by thin-layer chromatography (TLC), which was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, potassium permanganate, or p-anisaldehyde staining. Silicycle SiliaFlash ${ }^{\circledR}$ P60 Academic Silica gel (particle size $40-63 \mathrm{~nm}$) was used for column chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Inova $500(500 \mathrm{MHz}$ and 126 MHz , respectively) and Bruker 400 (400 MHz and 101 MHz , respectively) spectrometers. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. Infrared (IR) spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $[\alpha]^{\mathrm{D}_{\mathrm{T}}}$ (concentration in $\mathrm{g} / 100 \mathrm{~mL}$, solvent). High Resolution Mass Spectrometer in an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+).

Procedural Information

Ethyl 2-((1S,6R)-3-methyl-6-(prop-1-en-2-yl)-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-2-en-1-yl)acetate (14)

To a solution of $18(8.00 \mathrm{~g}, 33.86 \mathrm{mmol})$ in THF $(113 \mathrm{~mL}, 0.3 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was added a 1 M solution of L-Selectride in THF ($33.9 \mathrm{~mL}, 1.0$ equiv) over 1 min . The solution was stirred at -78 ${ }^{\circ} \mathrm{C}$ for an additional 30 min . The septum was briefly removed, and solid N-phenyltriflimide (12.1 $\mathrm{g}, 33.9 \mathrm{mmol}, 1.0$ equiv) was quickly added in one portion. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$. After stirring for an additional 30 min , the reaction was poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 500 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by careful column chromatography ($3 \% \mathrm{EtOAc}$ in hexanes) to afford vinyl triflate 14 as a colorless oil ($6.43 \mathrm{~g}, 48 \%$ yield); $\mathrm{R}_{f}=0.6(5 \%$ EtOAc in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-27.6\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.83-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 2 \mathrm{H})$, 2.92-2.87 (m, 1H), 2.63-2.60 (m, 1H), 2.44-2.36 (m, 2H), 2.16-2.13 (m, 2H), 1.77 (s, 3H), 1.69 (s, 3H), 1.70-1.69 (m, 2H), 1.66-1.62 (m, 4H), $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.2,145.5,143.4,128.8,118.4\left(\mathrm{q}, J=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right) 112.6,60.4,47.5,37.8,35.0,29.6$, 25.2, 19.7, 17.3, 14.0; IR (Neat Film, NaCl) 2981.4, 2936.9, 1738.2, 1732.2, 1415.6, 1377.8, 1247.2, 1209.3, 1158.3, 1142.6, 1036.0, 947.8, 890.0, $813.3 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 393.0954$, found 393.0947.

Ethyl 2-((1S,6R)-3-methyl-6-(prop-1-en-2-yl)-2-(1,4-dioxaspiro[4.4]non-6-en-6-yl)cyclohexan-1-yl)acetate (12)

In a nitrogen-filled glovebox, a solution of $\mathrm{NiBr}_{2} \cdot$ diglyme ($169.3 \mathrm{mg}, 6 \mathrm{~mol} \%$) precatalyst and bpy ($75.0 \mathrm{mg}, 6 \mathrm{~mol} \%$) in DMF (5 mL) was prepared and stirred vigorously for 10 min . Meanwhile, Zn^{0} dust ($2.09 \mathrm{~g}, 32.0 \mathrm{mmol}, 4$ equiv), $\mathrm{KF}(464.2 \mathrm{mg}, 8.00 \mathrm{mmol}, 1$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(393.4 \mathrm{mg}, 7 \mathrm{~mol} \%)$, and $\mathrm{ZnF}_{2}(1.65 \mathrm{~g}, 16.00 \mathrm{mmol}, 2$ equiv) were added to a 100 mL vial equipped with a cross-shaped stir bar. These solids were diluted with DMF (43 mL), and the resulting suspension was treated with a solution of vinyl bromide $13(328.1 \mathrm{mg}, 1.60 \mathrm{mmol}$, 0.2 equiv) and vinyl triflate $14(2.96 \mathrm{~g}, 8.00 \mathrm{mmol}, 1.0$ equiv) in DMF (10 mL). The light green $\mathrm{Ni}($ II $)$ bpy solution was added to the vial, and the vial was capped with a septum and removed from the glove box. The reaction mixture was placed under a N_{2} atmosphere and heated to $85^{\circ} \mathrm{C}$ under vigorous stirring. Next, a pre-made solution of bromide $\mathbf{1 3}(1.97 \mathrm{~g}, 9.6 \mathrm{mmol}, 1.2$ equiv) in DMF $(8 \mathrm{~mL})$ was added to the heated mixture over 2 h via syringe pump. The reaction was stirred vigorously at $85^{\circ} \mathrm{C}$ for an additional 12 h , after which it was allowed to cool to $23^{\circ} \mathrm{C}$. The resulting black slurry was poured into sat. aq. $\mathrm{LiCl}(500 \mathrm{~mL})$, and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL} \times 4)$ until TLC confirmed no product remained in the aqueous layer. The combined organic layers were again extracted with brine (1 L), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. (Note during extraction: The border between the organic and aqueous layers may be readily determined by olfactory analysis; If $\mathrm{Zn}(\mathrm{II})$ salts remain in the organic layer following extraction, they can be easily removed by passage through a plug of silica ($\mathrm{Et}_{2} \mathrm{O}$ as eluent).) The crude mixture was purified by column chromatography (15% EtOAc in hexanes) to afford bicycle 12 as a colorless oil ($1.72 \mathrm{~g}, 62 \%$ yield); $\mathrm{R}_{f}=0.55\left(20 \%\right.$ EtOAc in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-122.8\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-$ $3.91(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.08-$ $1.95(\mathrm{~m}, 5 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,147.8,141.8,136.1,132.7,127.9,120.8,110.9,65.0,64.4,59.8,45.5,37.9,37.4,36.0$, 30.0, 27.9, 25.0, 21.6, 20.4, 14.2; IR (Neat Film, NaCl) 2974.0, 2922.1, 2884.9, 1735.7, 1449.8, 1373.1, 1373.1, 1317.0, 1171.1, 1149.4, 1039.9, 1028.2, 946.5, 923.9, 888.5, 856.6, 850.4 cm^{-1}; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 347.2222$, found 347.2215 .

N-methoxy- N-methyl-2-((1S,6R)-3-methyl-6-(prop-1-en-2-yl)-2-(1,4-dioxaspiro[4.4]non-6-en-6-yl)cyclohexan-1-yl)acetamide (19)

To a $-10^{\circ} \mathrm{C}$ solution of ester $12(1.72 \mathrm{~g}, 4.96 \mathrm{mmol})$ and $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}(1.07 \mathrm{~g}, 10.92 \mathrm{mmol}$, 2.2 equiv) in THF (50 mL) was slowly added a 2 M solution of $i-\mathrm{PrMgCl}$ in THF ($10 \mathrm{~mL}, 4.0$ equiv) over several minutes. The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 30 min then poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \mathrm{X} 3)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude residue was purified by column chromatography ($50 \% \mathrm{EtOAc}$ in hexanes), concentrated, and stripped twice with hexanes (5 mL X 2) to provide amide 19 as a viscous clear oil ($1.11 \mathrm{~g}, 63 \%$ yield); $\mathrm{R}_{f}=0.40\left(50 \%\right.$ EtOAc in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-118.5\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.75(\mathrm{t}, J=2.5,1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 2.71-2.68,1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.01(\mathrm{~m}$, $4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,147.9,142.3,135.8$, 132.3, 128.3, 120.7, 110.2, 64.9, 64.4, 61.1, 44.3, 36.7, 36.1, 35.1, 29.5, 27.9, 24.0, 21.6 (two resolved signals), 21.1; IR (Neat Film, NaCl) 2932.6, 1669.5, 1451.9, 1405.9, 1377.1, 1317.0, 1217.2, 1198.3, 1140.9, 1102.9, 1043.4, 1024.0, 1005.4, 948.9, 927.1, 890.5, $858.4 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 362.2326$, found 362.2314.

2-((1S,6R)-3-methyl-6-(prop-1-en-2-yl)-2-(1,4-dioxaspiro[4.4]non-6-en-6-yl)cyclohexan-1yl)acetaldehyde (20)
To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $19(1.13 \mathrm{~g}, 3.11 \mathrm{mmol})$ in THF $(31 \mathrm{~mL})$ was added a 1 M solution of DIBAL ($3.72 \mathrm{mmol}, 1.2$ equiv) over 1 min . The solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 min after which it was poured into a combined solution of aq. $\mathrm{NaHCO}_{3}(2 \mathrm{M}, 100 \mathrm{~mL})$ and sat. aq. Rochelle's salt (100 mL). The biphasic mixture was vigorously stirred for 30 min , extracted with $\mathrm{Et}_{2} \mathrm{O}$ (100 $\mathrm{mL} \mathrm{X} \mathrm{3})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The crude residue was purified by column chromatography (15% EtOAc in hexanes) to provide aldehyde 20 as a pale yellow oil (729 mg , 77% yield); $\mathrm{R}_{f}=0.35\left(5 \% \mathrm{EtOAc}\right.$ in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-118.5\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.49-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.64(\mathrm{~s}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,147.5,141.7,136.8,133.4,127.7,120.9,111.7,64.9$, $64.5,47.3,47.2,36.4,35.9,30.7,27.9,26.6,20.1$ (2 resolved signals); IR (Neat Film, NaCl) 2967.8, 2919.9, 2857.8, 2831.6, 2716.8, 1721.1, 1644.3, 1449.7, 1376.7, 1317.6, 1216.6, 1142.2, 1088.5, 1044.2, 1025.3, 948.2, 926.2, $892.1,855.7 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1774$, found 325.1764 .

2-((1S,6R)-3-methyl-2-(5-oxocyclopent-1-en-1-yl)-6-(prop-1-en-2-yl)cyclohex-2-en-1yl)acetaldehyde (11)

To a $0^{\circ} \mathrm{C}$ solution of ketal $\mathbf{2 0}(345 \mathrm{mg}, 1.34 \mathrm{mmol})$ in THF (10 mL) were sequentially added a pre-made solution of $\mathrm{AcOH}(0.8 \mathrm{~mL}, 13.40 \mathrm{mmol}, 10$ equiv $)$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ followed by solid oxalic acid \bullet dihydrate ($169 \mathrm{mg}, 1.0$ equiv). The reaction was religiously monitored by TLC until deemed complete (ca. 5-10 min) after which it was quickly poured into ice-cold sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(30 \mathrm{~mL})$. (Note: prolonged reaction times result in rapid product decomposition.) The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude residue was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to provide enone $\mathbf{1 1}$ as a pale yellow oil ($234.3 \mathrm{mg}, 68 \%$ yield); $\mathrm{R}_{f}=0.55\left(30 \% \mathrm{EtOAc}\right.$ in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25} 1.5\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.63 (m, 2H), 2.43-2.41 (m, 2H), 2.31-2.23(m, 2H), 2.17-2.09 (m, 2H), 2.03-2.01 (m, 1H), $1.70-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.0,202.8,161.9,147.1,146.5$, 134.1, 124.9, 112.2, 47.3, 47.1, 36.2, 34.5, 30.7, 26.8, 26.1, 21.1, 19.9; IR (Neat Film, NaCl) 3071.3, 2920.7, 2715.1, 1697.5, 1644.9, 1436.1, 1407.7, 1377.7, 1297.7, 1267.7, 1195.4, 1092.7, 1054.5, 1010.1, 928.3, 896.8, $790.2 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 281.1512, found 281.1504.

(5aS,6R,9R,9aS)-9-methyl-6-(prop-1-en-2-yl)-3,5,5a,6,7,8,9,9a-octahydro-1Hcyclopenta $[a]$ naphthalene-1,4(2H)-dione (22)
To a vial containing catalyst $\mathbf{A}(16 \mathrm{mg}, 15 \mathrm{~mol} \%)$ under N_{2} was added a solution of enone 11 (75 $\mathrm{mg}, 0.29 \mathrm{mmol}$) in dioxane (5 mL). To the stirring reaction was added catalytic $1,1,3,3-$ tetramethylguanidine (TMG, $5 \mu \mathrm{~L}, 14 \mathrm{~mol} \%$). The resulting yellow solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h after which it was heated to $35^{\circ} \mathrm{C}$ and stirred for an additional 1 h . The solution was further heated to $45^{\circ} \mathrm{C}$ and stirred for 12 h . Upon completion, the diastereomeric mixture was treated with 2 N aq. $\mathrm{HCl}(5 \mathrm{~mL})$ and heated to $60^{\circ} \mathrm{C}$ until deemed complete by TLC (ca. 48 h$)$. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc (3 X 20 mL). (Note: the product will remain in the aqueous layer if neutralized with base). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexanes) to afford ene-dione 22 as a viscous yellow oil ($31 \mathrm{mg}, 41 \%$ yield; $\mathrm{R}_{f}=0.65(20 \% \mathrm{EtOAc}$ in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-111.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}$, $1 \mathrm{H}), 2.93-2.58(\mathrm{~m}, 6 \mathrm{H}), 2.28-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.4,199.5,157.6,151.6,146.3,142.6,121.4,112.3,50.1,45.6,40.9,36.0,33.8,27.1$, 23.3, 22.2, 15.3; IR (Neat Film, NaCl) 2919.9, 2891.1, 1715.8, 1677.2, 1642.8, 1438.0, 1251.6, 1200.2, 114.3, $893.0 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.1698$, found 259.1686.

2-((5R,6S)-6-allyl-2-methyl-5-(prop-1-en-2-yl)cyclohex-1-en-1-yl)cyclopent-2-en-1-one (23)
To a $0^{\circ} \mathrm{C}$ mixture of methyltriphenylphosphonium bromide ($429 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.5$ equiv) in THF (4 mL) was added 1 M KOt - Bu in THF ($1.0 \mathrm{~mL}, 1.3$ equiv). The reagent mixture was stirred for 10 min after which a solution of aldehyde $20(242 \mathrm{mg}, 0.8 \mathrm{mmol})$ in THF (4 mL) was added dropwise over 1 min . The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ until deemed complete by TLC (ca. 1 h). Subsequently, a solution of AcOH in $\mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$ was added, followed by solid oxalic acid•dihydrate ($100 \mathrm{mg}, 1.0$ equiv). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until deemed complete by TLC (ca. 1 h) after which it was poured into $2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 X 20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography ($15 \%-20 \%$ EtOAc in hexanes) to provide enone 23 as a pale yellow oil (174.1 $\mathrm{mg}, 85 \%$ yield); $\mathrm{R}_{f}=0.50$ (20\% EtOAc in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-31.9$ (c 1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.75(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.7,160.4,147.8,146.8,136.9,133.3$, 125.9, $115.9,110.9,43.9,39.7,36.2,34.6,30.2,26.6,25.1,21.0,20.4$; IR (Neat Film, NaCl) 3071.6, 2974.8, 2924.2, 2859.1, 1703.5, 1642.8, 1440.1, 1406.5, 1375.8, 1297.7, 1255.9, 1195.0, 1093.5, 1001.1, $908.5,889.4,790.9 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 257.1905$, found 257.1899.

(6aS,7R)-10-methyl-7-(prop-1-en-2-yl)-3,6,6a,7,8,9-hexahydrobenzo[e]azulen-1(2H)-one (24)

In a nitrogen-filled glovebox, anhydrous $\mathrm{CeCl}_{3}(149 \mathrm{mg}, 1.0$ equiv) was added to the reaction vessel. The vessel was sealed, removed from the glove box, and placed under a N_{2} atmosphere. To the solid CeCl_{3} was added a solution of enone $23(183 \mathrm{mg}, 0.61 \mathrm{mmol})$ in THF ($6 \mathrm{~mL}, 0.1 \mathrm{M}$). The reaction was cooled to $0^{\circ} \mathrm{C}$ and stirred for several min, after which it was treated with 1 M vinylmagnesium bromide in THF ($1.2 \mathrm{~mL}, 3$ equiv). The reaction was stirred at the designated temperature until deemed complete by TLC (ca. 30 min). (Note: In cases where the reaction remained incomplete, an additional 1 equiv of vinyl Grignard solution was added). Upon completion, the reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 X 30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The crude residue was partially purified by passing through a plug of silica (20% EtOAc in hexanes) to provide bis-allyl alcohol $\mathbf{2 5}$ as a $1: 1$ mixture of diastereomers. The mixture was committed to the next reaction without further purification. The crude mixture was dissolved in benchtop $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Under air, the reaction was treated with PDC ($451 \mathrm{mg}, 1.20 \mathrm{mmol}, 2$ equiv) and celite (100 mg), and the mixture was allowed to warm to $23^{\circ} \mathrm{C}$ over 2 h . Upon completion, the black mixture was passed through a plug of silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, concentrated in vacuo, and subjected to column
chromatography (15% EtOAc in hexanes) to provide dienone 26 as a pale yellow oil (82 mg) that was satisfactorily pure for the next reaction. A reaction vessel was charged with Hoveyda-Grubbs II catalyst ($6.9 \mathrm{mg}, 5 \mathrm{~mol} \%$). Upon purging with N_{2}, a solution of semi-pure dienone $26(82 \mathrm{mg})$ in THF (10 mL) was added, and the resulting solution was heated to $40{ }^{\circ} \mathrm{C}$ for 12 h . Upon completion, the solution was allowed to cool to $23^{\circ} \mathrm{C}$, and the catalyst was quenched by addition of ethyl vinyl ether (2 drops). After stirring for 5 min , the solution was concentrated in vacuo, and the resulting residue was purified by column chromatography ($10 \%-20 \%$ EtOAc in hexanes) to provide tricycle 24 as a pale yellow oil ($39 \mathrm{mg}, 25 \%$ yield over 3 steps), which could be crystallized from hexanes ($35{ }^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$); $\mathrm{R}_{f}=0.40\left(20 \%\right.$ EtOAc in hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-168.5\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.27-6.23(\mathrm{~m}, 1 \mathrm{H}), 6.07-6.04(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.73(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.17-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.52(\mathrm{~s}$, $3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,165.7,147.3,142.4,141.2,133.9,125.7,124.6,111.2$, 46.2, 41.6, 39.6, 35.3, 31.8, 30.0, 23.6, 22.8, 21.3; IR (Neat Film, NaCl) 3009.8, 2912.5, 1696.9, $1585.0,1430.0,1318.2,1295.2,1112.2,894.9 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ONa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 277.1563$, found 277.1572 .

NMR and IR Spectra of New Compounds

(

\section*{
 -147.9597

-142.3836

135.6568
-132.2881

(

Infrared spectrum (Thin Film, $\mathbf{N a C l}$) of compound $\mathbf{2 4}$

X-Ray Crystal Structure Analysis of 24 (V19305)

X-Ray Structure Determination

Low-temperature diffraction data (ϕ-and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with $\mathrm{Cu} K_{\alpha}$ radiation ($\lambda=1.54178 \AA$) from an $\mathrm{I} \mu \mathrm{S}$ micro-source for the structure of compound V19305. The structure was solved by direct methods using SHELXS
${ }^{1}$ and refined against F^{2} on all data by full-matrix least squares with SHELXL-2017 ${ }^{2}$ using established refinement techniques. ${ }^{3}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Compound V19305 crystallizes in the orthorhombic space group $P 2_{12} 2_{1}$ with one molecule in the asymmetric unit.

Table 1. Crystal data and structure refinement for V19305.

Identification code	V 19305	
Empirical formula	C 18 H 22 O	
Formula weight	254.35	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 2122_{1} 1$	$\mathrm{a}=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=6.7708(6) \AA$	$\mathrm{b}=90^{\circ}$.
	$\mathrm{b}=10.8979(10) \AA$	$\mathrm{g}=90^{\circ}$.
	$\mathrm{c}=19.414(2) \AA$	
Volume	$1432.5(2) \AA^{3}$	
Z	4	
Density (calculated)	$1.179 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.541 \mathrm{~mm}^{-1}$	
F(000)	552	

Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$0.350 \times 0.300 \times 0.150 \mathrm{~mm}^{3}$
4.555 to 74.559°.
$-8<=h<=8,-13<=k<=13,-24<=1<=24$
48838
$2938[\mathrm{R}(\mathrm{int})=0.0345]$
99.9 \%

Semi-empirical from equivalents
0.7538 and 0.6977

Full-matrix least-squares on F^{2}
2938/0/174
1.059
$\mathrm{R} 1=0.0282, \mathrm{wR} 2=0.0699$
$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0700$
0.10(4)
n/a
0.172 and -0.158 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for V19305. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	7111(2)	2852(1)	6676(1)	16(1)
$\mathrm{C}(2)$	5291(2)	2699(1)	7094(1)	18(1)
$\mathrm{O}(1)$	4865(2)	1814(1)	7449(1)	25(1)
C(3)	4012(2)	3832(1)	6999(1)	23(1)
C(4)	5034(2)	4576(1)	6436(1)	22(1)
C(5)	6946(2)	3901(1)	6303(1)	17(1)
C(6)	8389(2)	4420(1)	5831(1)	20(1)
C(7)	9894(2)	3860(1)	5516(1)	21(1)
C(8)	10489(2)	2534(1)	5518(1)	22(1)
C(9)	9146(2)	1577(1)	5867(1)	16(1)
C(10)	10099(2)	302(1)	5786(1)	18(1)
C(15)	8664(2)	-766(1)	5788(1)	18(1)
C(16)	6898(2)	-743(1)	6084(1)	22(1)
C(17)	9404(3)	-1896(1)	5419(1)	27(1)
C(11)	11718(2)	133(1)	6336(1)	21(1)
C(12)	10898(2)	276(1)	7063(1)	20(1)
C(13)	9533(2)	1357(1)	7152(1)	17(1)
C(18)	9244(2)	1734(1)	7891(1)	21(1)
C(14)	8673(2)	1915(1)	6613(1)	15(1)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for V19305.

$\mathrm{C}(1)-\mathrm{C}(5)$	1.3575(18)
$\mathrm{C}(1)-\mathrm{C}(14)$	1.4751(18)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.4843(18)
$\mathrm{C}(2)-\mathrm{O}(1)$	1.2201(18)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.5198(19)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.526(2)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.5119(19)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	1.454(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.335(2)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	1.500 (2)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	1.5408(18)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(14)$	1.5278(18)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.5411(17)
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000
$\mathrm{C}(10)-\mathrm{C}(15)$	1.5166(19)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.5414(19)
$\mathrm{C}(10)-\mathrm{H}(10)$	1.0000
$\mathrm{C}(15)-\mathrm{C}(16)$	1.327(2)
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.5105(19)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9500
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(12)$	1.524(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900

$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.5073 (19)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	1.3436 (18)
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.5048(19)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(14)$	126.68(12)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108.52(12)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$	124.24(11)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	126.43(13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	125.18(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.39(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	105.08(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.7
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	104.58(11)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.8
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.9
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	127.50(13)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	112.91(12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.56(12)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	128.54(13)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	115.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	115.7
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	130.09(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	115.0

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	115.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.62(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	107.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	107.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.4
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	106.9
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	112.21(11)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	113.70(11)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	108.55(11)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{H}(9)$	107.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	107.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	107.4
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	115.06(11)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	111.22(11)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.56(11)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{H}(10)$	106.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	106.9
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	106.9
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$	121.35(13)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(10)$	124.36(13)
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(10)$	114.29(12)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	120.0
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	120.0
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	111.74(11)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.3
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.3

$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.9
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$114.21(11)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.7
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.7
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$124.23(12)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$122.00(12)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	$113.77(12)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	$124.00(12)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$122.59(12)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(9)$	$113.32(11)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for V19305. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$19(1)$	$14(1)$	$14(1)$	$-3(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(2)$	$20(1)$	$18(1)$	$17(1)$	$-3(1)$	$-1(1)$	$0(1)$
$\mathrm{O}(1)$	$25(1)$	$23(1)$	$28(1)$	$5(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(3)$	$24(1)$	$21(1)$	$24(1)$	$-3(1)$	$2(1)$	$5(1)$
$\mathrm{C}(4)$	$26(1)$	$18(1)$	$22(1)$	$-2(1)$	$-2(1)$	$5(1)$
$\mathrm{C}(5)$	$22(1)$	$14(1)$	$15(1)$	$-4(1)$	$-3(1)$	$0(1)$
$\mathrm{C}(6)$	$28(1)$	$14(1)$	$18(1)$	$2(1)$	$-4(1)$	$-3(1)$
$\mathrm{C}(7)$	$26(1)$	$18(1)$	$19(1)$	$4(1)$	$1(1)$	$-6(1)$
$\mathrm{C}(8)$	$26(1)$	$18(1)$	$21(1)$	$2(1)$	$7(1)$	$-1(1)$
$\mathrm{C}(9)$	$17(1)$	$14(1)$	$16(1)$	$2(1)$	$1(1)$	$0(1)$
$\mathrm{C}(10)$	$18(1)$	$16(1)$	$18(1)$	$0(1)$	$4(1)$	$2(1)$
$\mathrm{C}(15)$	$23(1)$	$16(1)$	$17(1)$	$1(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(16)$	$21(1)$	$19(1)$	$27(1)$	$-1(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(17)$	$34(1)$	$18(1)$	$30(1)$	$-4(1)$	$2(1)$	$2(1)$
$\mathrm{C}(11)$	$14(1)$	$19(1)$	$30(1)$	$1(1)$	$0(1)$	$2(1)$
$\mathrm{C}(12)$	$19(1)$	$18(1)$	$24(1)$	$4(1)$	$-5(1)$	$0(1)$
$\mathrm{C}(13)$	$16(1)$	$16(1)$	$19(1)$	$1(1)$	$-2(1)$	$-4(1)$
$\mathrm{C}(18)$	$28(1)$	$19(1)$	$17(1)$	$2(1)$	$-5(1)$	$-3(1)$
$\mathrm{C}(14)$	$15(1)$	$13(1)$	$16(1)$	$1(1)$	$0(1)$	$-3(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for V19305.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(3A)	3934	4309	7432	28
H(3B)	2659	3601	6856	28
H(4A)	4214	4607	6015	26
H(4B)	5293	5425	6594	26
H(6)	8241	5270	5734	24
H(7)	10716	4384	5250	25
H(8A)	11803	2480	5739	26
H(8B)	10660	2280	5032	26
H(9)	7869	1565	5608	19
H(10)	10775	294	5328	21
H(16A)	6071	-1447	6066	27
H(16B)	6461	-23	6314	27
H(17A)	8433	-2558	5465	41
H(17B)	10662	-2156	5622	41
H(17C)	9599	-1708	4930	41
H(11A)	12311	-693	6287	25
H(11B)	12773	747	6261	25
H(12A)	10176	-482	7187	24
H(12B)	12017	364	7387	24
H(18A)	8262	2394	7915	32
H(18B)	10501	2027	8080	32
H(18C)	8782	1029	8159	32

Table 6. Torsion angles [${ }^{\circ}$] for V19305.

$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	173.96(14)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	2.0(2)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-5.26(15)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-177.21(12)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-172.03(14)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	7.20(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-6.34(14)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	-9.2(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	179.09(13)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	172.73(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	1.03 (15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$3.51(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-174.72(12)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	20.2(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-161.89(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	4.0(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	6.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	-53.97(17)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	179.52(12)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	81.49(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-152.87(11)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-44.68(15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	80.97(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	-24.94(19)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	100.38(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(17)$	155.08(12)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(17)$	-79.61(15)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-70.33(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	58.00(14)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-44.76(16)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	18.31(18)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	-161.66(12)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	-9.3(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	170.73(12)

$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$174.39(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$-5.6(2)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$138.53(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$-51.01(19)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(9)$	$-44.87(18)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(9)$	$125.60(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-104.09(14)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$19.59(18)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(1)$	$79.25(14)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(1)$	$-157.07(11)$

[1] Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
[2] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
[3] Müller, P. Crystallography Reviews 2009, 15, 57-83.

