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ABSTRACT
Relative spacecraft navigation based on Global Navigation Satellite System (GNSS) has been already successfully
performed in low earth orbit (LEO). Very high accuracy, of the order of the millimeter, has been achieved in post-
processing using carrier phase differential GNSS (CDGNSS) and recovering the integer number of wavelength (Am-
biguity) between the GNSS transmitters and the receiver. However the performance achievable on-board, in real time,
above LEO and the GNSS constellation would be significantly lower due to limited computational resources, weaker
signals, and worse geometric dilution of precision (GDOP). At the same time, monocular vision provides lower ac-
curacy than CDGNSS when there is significant spacecraft separation, and it becomes even lower for larger baselines
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and wider field of views (FOVs). In order to increase the robustness, continuity, and accuracy of a real-time on-board
GNSS-based relative navigation solution in a GNSS degraded environment such as Geosynchronous and High Earth
Orbits, we propose a novel navigation architecture based on a tight fusion of carrier phase GNSS observations and
monocular vision-based measurements, which enables fast autonomous relative pose estimation of cooperative space-
craft also in case of high GDOP and low GNSS visibility, where the GNSS signals are degraded, weak, or cannot be
tracked continuously.

In this paper we describe the architecture and implementation of a multi-sensor navigation solution and validate the
proposed method in simulation. We use a dataset of images synthetically generated according to a chaser/target relative
motion in Geostationary Earth Orbit (GEO) and realistic carrier phase and code-based GNSS observations simulated
at the receiver position in the same orbits. We demonstrate that our fusion solution provides higher accuracy, higher
robustness, and faster ambiguity resolution in case of degraded GNSS signal conditions, even when using high FOV
cameras.

1 INTRODUCTION
Autonomous pose estimation of nearby orbiting objects is a key capability for space missions such as On-Orbit Ser-
vicing, On-Orbit Assembly, Active Debris Removal, Formation Flying, and the autonomous control of swarms of
spacecraft. In most cases pose estimation must be directly performed in real time in order to enable autonomous rel-
ative navigation during close proximity operations, which are otherwise infeasible when based on ground-in-the-loop
commands, due to communication delays and lack of coverage. Several technologies can be used to for autonomous
pose estimation, depending on the operational environment, characteristics of the orbiting target, and on-board re-
sources.

If the orbiting target spacecraft is actively cooperative, i.e. equipped with a Global Navigation Satellites Sys-
tem (GNSS) receiver and a communication link or a RF transmitting and receiving antenna, GNSS [32], [36], [29],
[30] or RF based relative navigation can be a very accurate solution. It becomes possible to use millimeter accu-
rate GNSS carrier-phase range observations instead of the standard meter accurate code-phase range observations to
perform Carrier-phase Differential GNSS (CDGNSS), as done already using observations collected in some existing
missions [44], [38]. Millimeter level accuracy has been achieved for relative positioning in Low Earth Orbit (LEO)
missions by filtering GPS carrier phase measurements in post-processing with a model of the relative dynamics [44].
However, multipath (self-induced or induced by the other satellite), limited on-board computational resources, and im-
perfect knowledge of the spacecraft attitudes reduce the accuracy achievable on board in real time to the centimeter or
decimeter level [22]. Indeed, the highest accuracy can be reached only in a fixed solution, which means only once the
exact integer number of radio wavelengths between the GNSS transmitters and the receiver has been calculated [20],
[42]. A low number of available GNSS satellites, low signal-to-noise-ratio (SNR), and poor receiver/transmitters rela-
tive geometry can prevent a fixed solution, only allowing a less accurate float solution. Therefore, the performance and
robustness drastically decrease in higher earth orbits above the GNSS constellations when processing much weaker
GNSS signals coming from the side lobes of the GNSS transmitters antennas, which results in significantly higher
receiver noise and in signal outages [12], [13]. At the same time, monocular vision is another common technology for
relative navigation [14]; however it typically provides lower accuracy than CDGNSS, particularly for larger baselines
and wider field of views (FOVs).

In order to increase the robustness, continuity, and accuracy of a real-time on-board GNSS-based solution for
relative spacecraft navigation, we propose a novel navigation architecture based on a tight fusion of carrier phase
GNSS observations and monocular vision-based measurements that enables autonomous pose estimation of coopera-
tive spacecraft in Low Earth Orbit (LEO) as well as in higher earth orbits with lower GNSS visibility.

Previous work has mainly focused on loosely coupling GNSS with vision [43], or deeply coupling the tracking
modules of a GNSS receiver with a vision-aided inertial system, to reduce the receiver noise bandwidth by compen-
sating for the user dynamics [8], [35]. In [34], it has been shown that one can couple vision with carrier-phase GNSS
observations when utilizing a fixed base station to improve localization on earth and speed of ambiguity recovery. Un-
like in other studies, in our architecture the vision-based observations are tightly fused with carrier-phase observations
to provide accurate and robust real-time relative navigation between two non-stationary vehicles, both in an earth orbit.

We explore the robustness of our algorithm at different signal noise levels and satellite availability, as well as
with different optical parameters. We show that our solution provides: 1) higher accuracy than if using GNSS or
vision alone; 2) higher robustness than if using GNSS only or vision only (high accuracy also in case of GNSS signal
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Figure 1: DGNSS-Vision integration architecture.

degradation and in case of larger baselines and larger FOVs); 3) successful GNSS ambiguity resolution also in case
of degraded GNSS signal conditions, when it would not be possible with GNSS only; 4) GNSS ambiguity resolution
drastically faster than with GNSS only, enabling real-time application.

The remainder of the paper is organized as follows. In Section 2, we describe the high level architecture and the
implementation of the proposed multi-sensor navigation solution. In Section 3 we analyze and validate the proposed
method, using a dataset of images synthetically generated according to a chaser/target relative motion in Geostationary
Earth Orbit (GEO), along with realistic code-based and carrier-based GNSS observations simulated at the receiver
position. Finally in Section 4, we draw the conclusion.

2 ARCHITECTURE AND IMPLEMENTATION

2.1 High Level Architecture
The complete architecture is shown in Fig. 1. Two satellites A and B, are assumed to be equipped with a GNSS
receiver, a monocular camera, a star tracker, and a communication link. The GNSS receivers are pointed at the earth,
while the cameras are pointed at each other, as much as possible. The satellites are also provided with LEDs for visual
tracking. Both can receive GNSS signals and so can time-synchronize to flash the LEDs. The receiver to camera
calibration is known. An on-board orbital filter based on GNSS code observations is used to estimate the absolute
kinematic state x̂abs of satellite A. The absolute kinematic state estimate of satellite A is used as prior in a batch filter
that estimates the relative kinematic state x̂rel between satellite A and B, by fusing monocular images (of satellite A
with the respect to satellite B and vice versa) with GNSS code and carrier phase observations (collected on board
satellite A and B and shared between them using the RF communication link). The relative state estimate x̂rel is fused
with the predicted relative kinematic state obtained through the model of the relative orbital dynamics, in a sequential
filter that provides a further refined relative state ˆ̂xrel estimate at higher output rates.

2.2 Notation
The following notation is assumed in the rest of the paper.
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• P j,t
A is the pseudo range measurement, from satellite j to the receiver at A at time t,

• ρ
j,t

A is the true range from satellite j to the receiver at A at time t,

• φ
j,t

A is the tracked phase for satellite j to the receiver at A,

• xt
A is the position of observer A,

• RA is the star tracker attitude estimate of A,

• Ni
A is the integer ambiguity for satellite i and the receiver at A,

• pk
A is the 3D position of LED k of observer A, in its body frame,

• ∇∆p˚q
ji,t
AB “ p˚

j
A´˚

i
Aq´ p˚

j
B´˚

i
Bq is the double difference of parameter ˚ at time t, relative to transmitters i, j

and receivers A, B,

• T A
B is the transformation from coordinate system B to coordinate system A, considered as an element of SEp3q.

We let G denote a GNSS receiver frame, B a center of mass (body) frame, and C a camera frame for each satellite.
The relative transformations are denoted by T C

R,A and T C
R,B. We will often shorten it to T C

R when it is understood we
are working with a particular satellite. We will use A and B as shorthand for the frames B in A and B respectively.

The transformation from frame A to B (omitting the t) can be written as T B
A ppq“RB

Appq`xB
A, where RB

A“pR
Bq´1RA

and xB
A “ pR

Bq´1pxA´ xBq. The relative position will be xt
A´ xt

B “ ∆xt .

2.3 GNSS Receiver and Signals
The main characteristics of the assumed receiver, relevant for the presented study, are summarized in Table 1. For
this study, we assumed a receiver able to process signals down to 20 dB-Hz, as in GEO, this sensitivity is higher
enough to track most of the available (and at least four) GPS L1 C/A signals [17]. This is not a strong assumption as a
sensitivity of 15 dB-Hz with the legacy GPS L1 C/A has been achieved in [9], with a spaecborne receiver specifically
conceived for autonomous GNSS-based orbit determination above the GNSS constellation. We also assumed that
the receiver has enough tracking channels to simultaneously track all available signals. For absolute navigation,
when using code measurements, the receiver is assumed to process GPS signals with two different frequencies: L1
and L5. The processing of the L1 C/A signal is always assumed in signal acquisition (otherwise the primary code
chipping rate of the L5 signal, being 10 times higher than the one of the L1 signal, would cause a significantly longer
acquisition processing). Afterwards, once the L1 C/A is acquired, also GPS L5Q can be tracked, by exploiting the
frequency relation between L1 and L5 and their code synchronization. The L5-band civilian signals are particularly
advantageous, as their power is slightly higher than the L1 signals and they chipping rates is higher, yielding a lower
tracking noise jitter for weak signal conditions in the ranging measurements. In addition, they have a pilot (data-free)
channels that allows for longer integration time, enabling higher sensitivity of the receiver. At the same time, we
also consider the L1-band, to process dual frequency iono-free combinations and for aiding the acquisition of the L5
frequency band signals. In relative navigation when using more precise carrier phase measurements and iono-free
double differences, instead only the L1 frequency is used for the sake of simplicity.

The signal tracking configuration assumed for the receiver is reported in Table 2. In absolute navigation, in
order to estimate the position and velocity of the chaser (satellite A) in the Earth Centered Inertial Frame (ECI), we
assume to process code-based pseudorange observations and pseudorange rate observations derived from Doppler
shift measurements of the receiver carrier frequency of both GPS L1 C/A and GPS L5 available signals. The relative
position and velocity estimation between the chaser and the target (satellite B) are estimated by double differencing
both code-based pseudorange observations and the more accurate ambiguous carrier phase-based observations of only
GPS L1 C/A.
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Processed Signals: GPS L1 C/A, GPS L5
Acquisition and Tracking

Sensitivity: 20 dB-Hz
L1 C/A Acquisition

and Synchronization time: 5 min
Initial Clock Offset: 10 km
Initial Clock Drift: 100 m/s

Table 1: Assumed GNSS receiver characteristics.

Ionosphere Navigation Signals Observations
Crossing Module

Not Absolute GPS L5Q Code-based
Yes Absolute GPS L1 C/A and L5Q Code-based

Iono-free Combination
Not Relative GPS L1 C/A Carrier Phase and Code

Double Differences
Yes Relative GPS L1 C/A Carrier Phase and Code

Double Differences

Table 2: Tracking configurations.

2.4 Monocular Image Processing, Feature Extraction and Matching
Different pose determination approaches exist for pose determination based on monocular images, depending on
whether the target is cooperative, uncooperative, known or unknown. The relative attitude and position (pose) of a
Target Body Frame (TBF) with respect to the Camera Reference Frame (CRF) on board the chaser can be estimated
using a number of features that are extracted from the acquired image. In our previous study [14] we focused on
uncooperative targets, while here we assume a cooperative target, equipped with a set of artificial markers, i.e. LEDs
and a RF transmitter. The artificial markers produce more distinguishable landmarks compared to natural features
(e.g., corners) and their 3D position in TBF is already known since they are artificially placed on the target surface,
according to specific known patterns. As a result, they can be easily detected in the acquired image.

In this study we assume a monocular camera on board both satellite A and B. In order to validate the proposed
methods, as described in Section 3, different field of views (FOVs), different target geometries, and different illumi-
nation conditions were considered. In particular, we used two representative geometries, one of the Aura Spacecraft
[1] and one of a 2U CubeSat [2]. According to these target geometries, camera parameters and a relative translational
and rotational trajectory described in Section 3, synthetic images were generated using the tool Blender [3]. Figs. 2
and 3 are an example of respectively the Aura spacecraft seen from a camera with FOV “ 32˝ at 40m distance and
the 2U CubeSat seen from the same distance with FOV “ 6˝. For the majority of the data we focused on the CubeSat
geometry with a fixed camera FOV of 90˝ as it is possible to cover most of the possible views with a few of these
cameras, which would allow constant visibility of the target.

Figure 2: Aura spacecraft. Figure 3: 2U CubeSat.
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Figure 4: Feature extracted of the Aura spacecraft. Figure 5: Feature extracted of the 2U CubeSat.

In a first step, the acquired monocular images are processed to extract the 2D coordinates of n markers’ centroid
in the image frame. The clocks of the two satellites can be synchronized by their communication link and the GNSS
receivers, so they can actively turn LEDs on and off in synchronization with the camera data capture. The satellite can
capture an image with the LEDs on and then one with them off, allowing them to be subtracted to give a better contrast
with the background (see Figs. 4 and 5). By utilizing the knowledge of the relative attitudes provided by the assumed
star tracker measurements, the extracted points can be matched to the corresponding markers’ 3D locations in the TBF,
resulting in n 2D-to-3D point correspondences. The problem of estimating the pose of a calibrated camera given a
set of n 3D points in the world and their corresponding 2D projections in the image is known as Perspective-n-Point
(PnP). If among the n 2D-to-3D point correspondences at least three are non-collinear in the TBF, the relative pose
can be recovered [45]. Subsequent matching of extracted points to their 3D locations is done through optical tracking.

To solve the PnP problem, the correspondences between the extracted 2D points and the 3D locations of the LEDs
that correspond to these points needs to be determined. Since the rotations of the chaser and the target are known
within a small degree of error, and the camera intrinsics are known, we can determine the projections of the 3D LED
locations onto the 2D image plane, up to scale and translation, with a small degree of error. Thus, the problem of
establishing correspondences between the sets of extracted 2D points and of 3D LED locations is a problem of rigid
point set registration with the addition of scaling and with a known rotation, between the sets of extracted 2D points
and projected 2D points.

To solve the point set registration problem, the coherent point drift (CPD) algorithm [33] was used. To generate
the initial set of 2D projections, an initial relative translation between the chaser and target can be obtained from the
absolute navigation filters. Faster convergence will be achieved if the sets of initial projections and extracted points
are closer. A simple method of choosing this initial relative translation is to assume the cameras of the chaser and
target are pointed directly at each other, and that the distance between the chaser and target is such that a sufficient
proportion (for example, 50%) of estimated 2D projections lie within the bounds of most extreme extracted 2D points.

In the CPD rigid point set registration algorithm, the step in which the rotation matrix R is updated was removed,
fixing R as its initialized value, the identity matrix, so that the scale s and translation t are the only transformations
between the sets of estimated projections and extracted points for which we solve. After convergence, correspondences
between the 2D extracted points and 3D LED locations are chosen by picking, for each extracted point, the LED
whose projection has the highest probability of correspondence according to the probability matrix P computed by the
algorithm, given that this probability is sufficiently high (in this case, exceeds a threshold of 90%). If no projection has
a sufficiently large correspondence probability, the LED is assumed to not be visible in the image frame. In practice,
this highest probability is very often either 0 or 1, so the choice of whether to discard a correspondence is clear.

2.5 DGNSS-Vision Fusion Batch Filter
With respect to the high level architecture of Fig. 1, this filter provides the first estimate x̂rel of the relative kinematic
state between satellite A and B.

2.5.1 Variables

We run the batch over time points t P rk, ls, solving for ∆xt and xt
A at each second, along with the double differenced

carrier phase integer ambiguities ∇∆pNq j1
AB as long as satellite 1 and j maintain phase lock.
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If phase lock is lost and restablished then a new constant integer ambiguity is calculated and treated as a new
variable. In the case that the base satellite (here satellite ’1’) loses lock, we can characterize subsequent double
difference measurements by ∇∆N ji

AB “ ∇∆N j1
AB´∇∆Ni1

AB when using satellite i as a base.

2.5.2 Measurements

The ranges correspond to ρ
j

A as
∥∥∥xt

j´T G
B,Axt

A

∥∥∥, and similarly for ρ
j

B. Then the double differenced phase measurements
are characterized by

λL1∇∆pφq
j1
AB “ ∇∆pρq

j1
AB`λL1∇∆pNq j1

AB`∇∆pwq j1
AB. (1)

We define wi,t
A as the double differenced carrier phase measurement error. The measurement will then have a covariance

matrix of σφ p2I` 2Jq where σφ

λL1
is the estimated phase measurement standard deviation, I is the pJ´ 1qˆ pJ´ 1q

identity matrix, and J is the pJ´1qˆpJ´1q unit matrix.
Let PB be the projection operator for B’s linear camera, and the observation of LED k of A at time t in B’s camera

be ok
B. This is characterized by

ok,t
B “ PBpT

B,t
A ppk

Aqq` ε
k,t
B . (2)

ε
k,t
B is the point image localization error assumed to be N p0, σ2

o q. We do a similar measurement for ok,t
A . The

observations are obtained by using the known geometry of the satellite LED and the shared star-tracker pose.
We also create an extra constraint on the relative positions by utilizing the code-based pseudorange measurements

as
∇∆pPq j1

AB “ ∇∆pρq
j1
AB`∇∆pνq

j1
AB, (3)

For each variable we can incorporate priors such as x̂t
A from the absolute filter or ∆̂xt propagated from the rela-

tive filter. We can also propagate the floating solutions for ∇∆pNq ji
AB as ∇̂∆N ji

AB, along with their resulting marginal
covariances from previous solutions.

2.5.3 Factor Graph Formulation

To incorporate multiple measurement types and test different conditions, we propose to structure the filter as a factor
graph, as is similar to what is done for SLAM implementations [26]. Figure 6 shows an example formulation, which
captures the variable relationships and sparse structure. Assuming the noise is Gaussian we can apply graph ordering
techniques to have a more efficient representation of the underlying data when doing cholesky factorization [21] for
when we solve the locally linearized problem using sparse linear algebra.

2.5.4 Iterative Solution

To solve for the MAP (maximum a posteriori) estimate of ∆xl , we initially linearize the least square problem obtained
from the factor graph, similar to what is done in [32, 34]. This gives us a sparse linear equation of the form

A∆y“ b, (4)

where A is determined by the Jacobian and covariances of our measurements and b by the residuals and covariances.
∆y is the linear correction to our state

y“

»

–

xt
A

∆xt

∇∆pNq j1
AB

fi

fl . (5)

This is approximated as a linear regression problem with normal noise on b. The least square estimate is obtained as

|∆y“ pAJAq´1AJb, (6)

with Q “ pAJAq´1 being the covariance of the solution. As discussed above, we can use the graph representation to
get an efficient sparse ordering of A under the constraint that the double-differenced integer ambiguities ∇∆pNq j1

AB are
the last terms, that gives us an efficient way to do the cholesky factorization RJR “ A to solve for the float solution
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Figure 6: Batch filter as a factor graph.

|∆y. Then using R we can obtain QN , the covariance of the float 

∇∆pNq j1
AB terms, and use the MLAMBDA method [19]

to solve
min

∇∆pNq j1
ABPZJ´1

p


∇∆pNq j1
AB´∇∆pNq j1

ABq
JQ´1

N p


∇∆pNq j1
AB´∇∆pNq j1

ABq. (7)

After we solve for ∇∆pNq j1
AB, we can correct and then fix the integer terms and then solve the cost function by

doing a standard iterated nonlinear least squares solution for our factor graph. After convergence a new set of double
differenced integer ambiguity corrections is computed in the same way, with the algorithm terminating once the ambi-

guities do not change. We can then use the covariance QN along with ∇∆pNq j1
AB as the prior ̂

∇∆pNq j1
AB for subsequent

batches.

2.6 GNSS-based Orbital Filter for Absolute Navigation
The adaptive orbital filter developed in [16] was adopted to provide an accurate absolute state estimate x̂abs, which
includes chaser position vector rabs and velocity vector vabs in the ECI frame, as well as the receiver clock bias dρt
and drift d 9ρt . The filter processes directly a vector of the available GNSS code-based pseudoranges P and a vector of
their corresponding pseudorange rates 9P. It is based on a reduced dynamic approach, which augments the state vector
with empirical accelerations ae, in order to compensate for mismodeling errors of the spacecraft dynamics. The state
vector and the measurement vector are defined as follows.

xabs “ rrabs,vabs,dρt ,d 9ρt ,aes
J, (8)

zabs “ rP, 9PsJ (9)

In this implementation, an Extended Kalman Filter (EKF) was used to fuse the GNSS observations zabs and their
prediction hpx̂absq, obtained propagating the last estimate x̂abs. Spacecraft’s absolute position and velocity vectors in
the ECI are predicted by integrating the dynamics of the spacecraft:

apr, tq “ agpr, tq`aspr, tq`ampr, tq`asr ppr, tq`arpr, tq (10)

where r is the position vector and t is dynamical time, a is the total acceleration of the spacecraft, ag the acceleration
due to Earth’s gravity, as the acceleration due to the Sun, am the acceleration due to the Moon and asr p the one due to the
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solar radiation pressure. A complete description of each orbital force implementation can be found in [10]. In addition,
in the reduced-dynamic implementation, the pseudo-stochastic parameters ae representing the empirical accelerations,
are modelled as first order stationary Gauss-Markov process, therefore exponentially correlated. The filter makes use
of an adaptive tuning of the covariance matrix of the measurements, as function of the pseudorange and pseudorange
rate predicted errors, function of the carrier-to-noise-ratio of the processed signals at the receiver position [16]. Being
the GNSS observations and their dynamics–based prediction characterized by dissimilar error characteristics, their
fusion can provide a position and velocity estimation more accurate than the one achievable individually. The filter
was tuned and adapted to be used in GEO, processing GPS L1 and L5 dual frequency observations. A complete
description of the orbital filter architecture and implementation is provided in the previous studies [16], [11] and [10].

2.7 Relative Navigation Filter
A relative navigation filter that makes use of the relative translational orbital dynamics between chaser and target
[46] was implemented and used to further process the relative position estimate of the batch filter x̂rel and to provide a
refined estimate ˆ̂xrel with higher output rate. In this study, as in [15], we adopted a special form of the Kalman filter, the
H-infinity or minimax filter [41], based on the H-infinity optimal estimation that guarantees the smallest estimation
energy error for all possible disturbances of the fixed energy. Such a filter minimizes the worst case estimation
error without any assumptions on the probability distribution of the system and measurement noise and therefore can
better handle modelling errors and noise uncertainty, resulting more robust when processing optical measurements
in presence of variable illumination conditions. As consequence, it outperforms the standard Kalman Filter [27],
which instead guarantees an optimal estimation by minimizing the expected variance of the estimation error under the
assumption that system and measurement noise have white Gaussian distribution. In general, a linear model of the
system and of the measurements, can be represented as follows.

xk`1 “Φkxk`wk, (11)
zk “ Hkxk` vk (12)

where the subscript k indicates the k-th time step, xk, zk, Φk´1, Hk, wk and vk are respectively the state vector, the
measurement vector, the transition matrix, the measurement matrix, the system noise and the measurement noise,
random with possibly unknown statistics or deterministic, potentially nonzero mean.

According to [41], the following formulation can be used for the discrete time prediction and update filtering steps.

Kk “ PkrI´θPk`HJk R´1
k HkPks

´1HJk R´1
k , (13)

x̂k`1 “Φkx̂k`ΦkKkpzk´Hkx̂kq, (14)

Pk`1 “ΦkPkrI´θPk`HJk R´1
k HkPks

´1
Φ
J
k `Qk, (15)

where Kk is the filter gain, Pk is the covariance of the filter, θ is a performance bound specified by the user, while Qk
and Rk are the covariance matrices respectively associated with wk and vk, symmetric. In our case, the state vector and
the measurement vector are defined as follows.

xrel “ rrrel ,vrel s
J, zrel “ rr̂rel , v̂rel s

J (16)

where r̂rel and v̂rel are respectively the relative position and velocity estimates of the batch filter described in Section
2.5.

3 SIMULATED PERFORMANCES
The proposed methods were validated in simulation. We used a dataset of images synthetically generated according
to a chaser/target relative motion in Geostationary Earth Orbit (GEO), and realistic carrier phase and code GNSS
observations simulated at the receiver position in the same orbit, taking into account all different GNSS signal delay
sources as well as their availability based on their carrier-to-noise-ratio and receiver sensitivity.
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Semi Major Axis: 42167.043348 km
Eccentricity: 0.000289
Inclination: 0.081 deg

Argument of Perigee: 354.152 deg
Right Ascension of

the Ascending Node (RAAN): 68.784 deg
Mean Anomaly: 240.837 deg

Table 3: Initial Keplerian orbital parameters of the considered chaser orbit.

Target initial separation: 15 m along chaser velocity axis
(Position of TBF in LVLH frame) (y axis of the LVLH frame)
Target initial relative rotation rate: 1 deg/s around one principal axis of the TBF

(Rotation rate of TBF in LVLH frame) ([0 1 0] deg/s)
Chaser camera boresight direction: aligned with chaser velocity axis

([0 1 0])

Table 4: Initial relative kinematics.

3.1 Simulation Models
3.1.1 Absolute Kinematics and Dynamics

The orbit assumed for the chaser (satellite A) was the one of the Intelsat 904 (IS-904) communication satellite (see
Fig. 7), launched on February 23rd 2002 and still active [4]. The initial Keplerian orbital parameters at time 00:00 of
May 26th 2016 are reported in the Table 3, downloaded from the Standard Object Data Service of AGI’s (Analytical
Graphics INC) library. Then, the motion of the receiver was propagated by the precise STK HPOP propagator [5] from
the initial condition as function of the perturbing accelerations (such as the full Earth gravitational field, third-body
gravity, atmospheric drag and solar radiation pressure). The receiver antenna was assumed to be Earth pointing.

3.1.2 Relative Kinematics and Dynamics

The assumed relative transnational trajectory of the target (satellite B) with respect to the chaser (satellite A) is identi-
fied by the initial conditions reported in Table 4 and propagated by integrating the nonlinear dynamics model presented
in [24], which describes the eccentric trajectory of the target in the LVLH (Local Vertical Local Horizontal) reference
frame of the chaser. The relative rotational dynamics is propagated as suggested in [39], combining the Euler equations
for both chaser and target.

3.1.3 GNSS Constellation, Signals and Observations

The GPS constellation was modelled according to the almanac of the 1st July 2005 that includes a total of 29 satellites
(PRN from 1 to 31 except 12 and 17)), as illustrated in Fig. 7.

Taking into account gain patterns of both transmitter and receiver antennas and free space signal propagation
losses, the signal power levels received at the receiver’s antenna position were modelled as in equation (1) of the
previous study [12], according to the guaranteed minimum received signal power (see [7] and [6]) for both GPS
signals considered. 3D receiver and transmitters’ antenna patterns for each satellite and for each frequency of the
constellation were used. Figure 8 illustrates the ones for the GPS L1 block IIF for example. Note that each curve
represents the gain vs elevation for a different azimuth. The gain is normalized to 0 dB at boresight (located at 0 deg
elevation). More details about the assumed transmitters’ antenna patterns can be found in [40]. Figure 9 shows the
antenna pattern assumed for the receiver, designed for the reception of GNSS signals at GEO in [31] to increase the
gain for only the signals coming from the transmitter’s side lobes.
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Figure 7: Chaser orbit and GPS constellation.

Figure 8: Transmitters’ antenna patterns. Figure 9: Receiver antenna pattern.

Note that although only the GPS constellation and signals are considered in this study, the results are extendible
also to the case of other constellations, or to the case of combined constellations for which better availability and thus
better Geometric Dilution Of Precision (GDOP) and performance can be reached.

The code-based GNSS pseudorange observations were modelled according to the previous study [18], accounting
for transmitters’ clock error and broadcast ephemeris error, atmospheric delay, multipath effect and receiver errors.
The specific strategy (described in [18]) was adopted here to deal with possible ionospheric delays. When only one
frequency is available (this is possible since different antenna patterns are used for L1 and for L5), all the signals that
cross the ionosphere (and the troposphere as well below) are simply discarded. Instead, when two frequencies fm1 and
fm2 from the same GNSS satellite are processed at the receiver position providing two measurements m1 and m2, we
also process the signals crossing the ionosphere, assuming a ionosphere-free combination of the two measurements as
follows.

σ
2
i f “

1
pωm1,m2´1q2

rω2
m1,m2σ

2
m1`σ

2
m2s (17)

where ω2
m1,m2 “

f 2
m1

f 2
m2 , for fm1 ą fm2 and σ2

m is the variance for the frquency fm. We considered a standard deviation
value of 0.5 m for transmitter’s clock and broadcast ephemeris errors [23], a standard deviation of 0.2 m for possible
multipath [28]. As done in [17], the receiver error was modeled as function of the receiver characteristics and of the
carrier-to-noise-ratio C{N0 to account for the large variations of the signals power level at the receiver position above
the GPS constellation (see Eq. (2:4) of [17]).

The pseudorange rates were modelled from the Doppler shift measurements of the received carrier frequency, by
simply multiplying the Doppler shift observation with the wavelength of the carrier. The Doppler tracking jitter was
assumed as the main source of error in Doppler frequency estimation, modelled as function of the power level at the
receiver position (see Eq. (2:7) of [17]).

The carrier-phase observations for GPS L1 C/A were modelled according to [37], taking into account multipath,
antenna phases-center variation and thermal noise as function of the receiver characteristics and signals power level at
the receiver position (see Eq. (9) of [37]). In the GEO scenario considered in this study, the maximum carrier phase
measurement noise is 0.0115 m. However, in higher orbits, as in a earth to moon transfer orbits, even larger thermal
noise would be experienced due to the processing of weaker signals. In addition higher multipath (here assumed of
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0.005 m [37]) self-induced or induced by other spacecraft could be experienced in space [25].

3.2 Test Cases
Different tests were performed to validate the robustness in ambiguity resolution of the proposed DGNSS-Vision
fusion (described in Section 2.5) and the robustness and accuracy of the same solution x̂rel , as well as of the solution
ˆ̂xrel refined by means of the dynamics filter (described in Section 2.7), in relative position and velocity estimation.

In addition, we compared the GNSS/Vision integrated relative navigation solutions x̂rel and ˆ̂xrel to the one achiev-
able when using only GNSS and only Vision. Then we evaluated them also in case of reduced GNSS availability (when
only a limited number of GNSS observations are available) and for different FOVs. The same tests were performed
for both target geometries of Figs. 2 and 3. In this study we will report the results obtained for the CubeSat of Fig. 3.

3.3 Results
Table 5 shows the results from trying to recover the integer ambiguity in a single time step with the method described
in Section 2.5, assuming only 5 available satellites while varying the underlying carrier phase noise σφ from the
minimum value simulated for this scenario to its maximum (0.0115 m) and to values four times higher.

Table 6 shows how likely it is to recover the integer ambiguity over a given time span (a batch size of 4 corresponds
to 4 seconds) and satellite count, assuming the phase noise is 0.0115 m. The GNSS-Vision fusion algorithm was able
to very quickly recover the ambiguity in situations where conventionally GNSS is extremely slow, particularly when
the phase tracked satellite count is very low.

Table 7 analyzes the effects of different fields of view of the camera. In this simulation, it was assumed that the
camera could see at most 9 LEDs at any given time point, to compensate for their reduced visibility at larger FOVs.
The vision based points measurements were also given a conservative standard deviation of 1 pixel, even though
standard localization algorithms are usually subpixel in accuracy. The standard deviations are from the unfiltered
position estimates while using the phase noise of 0.0115 m. We note that the GNSS-vision result is not affected very
much by an increasing FOV despite the recovered vision solution becoming much worse. This is explained by the
error covariances of the GNSS and Vision solutions being complementary due to the Relative Passive Orbit, where the
optical axis is approximately perpendicular to the radial vector to the target which is the dominating error component
of GNSS, as shown in Fig. 10.

Table 8 compares the mean recovery times between a GNSS only and GNSS-vision system under different satellite
counts and carrier phase noises, when the receivers maintains a PLL lock on the carrier signal and the priors on the
floating double difference ambiguity errors are propagated between batches. Recovery times for low noise and high
satellite counts are similar to what is achieved in [32], where unique resolution happens within about 3 seconds. The
authors expect that for larger GDOP at higher altitudes the recovery times for the GNSS only systems will be much
slower.

Figure 11 shows the norm of the error of the absolute state (position and velocity) estimation vector x̂abs. Thanks
to the assumed high receiver sensitivity, an average of 25 GPS satellites are available over time with an average GDOP
of 4.5. An accuracy better than 1 m and of 1 mm/s in absolute position and absolute velocity estimation is achieved
adopting the dynamics filter described in Section 2.6. Figs. 12, 13 and 14 show the error norm of the relative state
estimates x̂rel and ˆ̂xrel , respectively when fusing GNSS with vision, when using only GNSS and when using only
monocular vision. Clearly the GNSS-Vision integrated solution with a std of the error smaller than 2 mm, outperforms
the one obtained with vision and GNSS individually, with a std of the error of respectively 2.5 cm and 5 mm. In
Figs. 15 and 16 we can see what is the effect of a reduced GNSS signal availability. Figure 15 shows the absolute state
estimation error (in position and velocity), when, starting from the 5500th second only 3 and 2 GPS observations are
used, instead of all the available ones. As expected, when less than four observations are available the filter estimation
error starts to slowly diverge. Figure 16 shows what is the effect in the relative state estimation; in the time window
between the 5500th and 6000th seconds, neither the estimate of the GNSS-Vision batch filter x̂rel nor the refined
estimate ˆ̂xrel are affected by the drift in absolute estimation and by the reduced number of available GPS observations.
Following the sudden drop of GPS observations from 25 to 3 and from 25 to 2 at the 5500th second, the GNSS-Vision
batch filter estimates become noisier, however the dynamics filter is able to robustly limit the loss of accuracy from
1.8 mm to 2.2 and 2.5 mm respectively for 3 and 2 only available GPS observations.
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σφ (m): 0.001 0.003 0.005 0.0075 0.01 0.0125 0.015 0.02 0.025 0.03 0.035 0.04
GNSS only (%): 3.3 1.0 0.03 0 0.1 0.1 0.1 0.1 0 0 0 0

GNSS-vision (%): 100.0 100.0 99.9 99.2 96.7 89.5 81.4 63.1 54.1 49.6 48.2 46.7

Table 5: % of ambiguities recovered from a single batch filter step, 5 satellites, FOV = 90˝

Satellites (#): 4 5 6 10 15 20 25 All
GNSS only (%): Batch size 1 0.0 0.0 0.2 4.2 38.1 87.4 98.0 98.0

Batch size 2 0.0 0.0 0.4 21.4 90.8 99.8 100.0 100.0
Batch size 3 0.0 0.4 1.0 45.3 98.4 100.0 100.0 100.0
Batch size 4 0.0 0.4 1.2 64.9 99.8 99.8 100.0 100.0

GNSS-vision (%): Batch size 1 83.8 88.2 90.6 99.8 100.0 100.0 100.0 100.0
Batch size 2 98.4 99.4 99.6 100.0 100.0 100.0 100.0 100.0
Batch size 3 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 6: % of ambiguities recovered from a single time step batch σφ “ 0.0115, FOV = 90˝

4 CONCLUSION AND FUTURE WORK
Although CDGNSS positioning is more accurate than a code-based DGNSS, it is characterized by a longer conver-
gence time and lower robustness, particularly in degraded environments such as in GEO and in higher earth orbits,

Figure 10: GNSS and Vision error ellipsoids, FOV “ 90˝, σφ “ 0.0115.

Figure 11: GNSS absolute estimation error. Figure 12: DGNSS-Vision error.
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Satellites (#): 4 5 6 10 15 20 25 All
GNSS only (m): ´ ´ ´ 0.047 0.033 0.027 0.026 0.026

GNSS-vision (m): 6˝ 0.010 0.008 0.008 0.007 0.007 0.006 0.006 0.005
10˝ 0.010 0.010 0.010 0.008 0.008 0.007 0.006 0.006
20˝ 0.014 0.012 0.012 0.009 0.008 0.007 0.006 0.006
35˝ 0.015 0.013 0.012 0.009 0.008 0.007 0.006 0.006
90˝ 0.015 0.013 0.012 0.009 0.008 0.006 0.005 0.005
120˝ 0.015 0.013 0.012 0.009 0.008 0.007 0.006 0.006
FOV 6˝ 10˝ 20˝ 35˝ 90˝ 120˝

Vision only (m): 0.011 0.018 0.035 0.064 0.205 0.345

Table 7: Standard deviation (m) of recovered ∆x when ambiguity recovery is successful, σφ “ 0.0115

GNSS-only/GNSS-vision (s)
Satellites (#): 2 3 4 5 6 10 15 20

σφ pmq
0.001 ´{5.9 ´{1.1 149.4{1.0 77.6{1.0 15.6{1.0 1.0{1.0 1.0{1.0 1.0{1.0
0.003 ´{6.1 ´{1.1 149.4{1.0 81.1{1.0 36.1{1.0 1.4{1.0 1.0{1.0 1.0{1.0
0.005 ´{5.9 ´{1.1 149.7{1.0 89.1{1.0 40.4{1.0 2.2{1.0 1.0{1.0 1.0{1.0

0.0075 ´{6.9 ´{2.1 149.7{1.0 91.1{1.0 69.8{1.0 3.7{1.0 1.3{1.0 1.0{1.0
0.010 ´{6.1 ´{3.6 149.7{1.1 130.1{1.1 83.8{1.0 5.4{1.0 1.6{1.0 1.0{1.0

0.0125 ´{6.6 ´{4.9 149.7{1.3 139.7{1.2 63.0{1.0 7.6{1.0 2.1{1.0 1.0{1.0
0.015 ´{6.6 ´{4.9 149.8{1.7 142.7{1.6 73.1{1.3 9.3{1.1 2.8{1.0 1.7{1.0
0.020 ´{6.6 ´{5.6 150.5{2.1 144.5{2.0 100.0{1.8 11.6{1.2 4.0{1.1 2.5{1.1
0.025 ´{6.7 ´{6.5 150.3{2.4 148.5{2.2 97.3{2.2 15.0{1.4 5.7{1.4 3.3{1.3
0.030 ´{8.3 ´{6.4 150.7{3.8 148.1{3.2 106.4{2.7 23.3{1.9 8.1{1.8 4.7{1.8
0.035 ´{8.1 ´{6.0 151.4{3.9 147.5{3.5 107.9{3.3 17.7{2.2 8.7{2.2 5.4{2.2

Table 8: Average time (s) to recover double differenced integer ambiguity, FOV “ 90˝

Figure 13: GNSS only error. Figure 14: Vision only error.

characterized by weak signals and high GDOP and in presence of strong multipath. The fusion of monocular images
with the CDGNSS observations in a tight integration was used to achieve higher relative positioning accuracy, better
robustness, and better continuity when navigating in space above the GNSS constellation. The vision-based estimates
are exploited to aid to the ambiguity resolution and to increase the accuracy achievable when using carrier-phase track-
ing measurements. A precise ambiguity recovery is obtained even when fewer than 4 satellites maintain phase lock,
when only GNSS would otherwise fail. At the same time the integrated DGNSS-Vision solution is also more accurate
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Figure 15: Absolute error with reduced visibility. Figure 16: Relative error with reduced visibility.

and robust than the vision only solution, which is strongly affected by the distance of the target, FOV and illumination
conditions.

The proposed method was validated with numerical simulations, using a dataset of images synthetically generated
according to a chaser/target relative motion in Geostationary Earth Orbit (GEO), and realistic carrier phase and code
GNSS observations simulated at the receiver position in the same orbit, taking into account all different GNSS signal
delay sources as well as their availability based on their carrier-to-noise-ratio and receiver sensitivity. It is shown that
an accuracy better than 2 mm and 0.01 mm/s is achieved with the proposed solution refined with a relative dynamics
filter. The achieved accuracy is better than the accuracy achievable when using DGNSS or vision only for large relative
distances, different FOVs, low GNSS signal-to-noise ratios, and high GDOP values.

In the future, higher orbits up to the Moon will be considered. These orbits are characterized by weaker signals,
reduced satellite availability, and larger GDOP, so the benefits resulting from the fusion should be greater. Due to
maintained stability with a large FOV image and fast ambiguity recovery, this approach would be an ideal candidate
for formation flying and autonomous swarm applications where the risk of collision is much higher and there may not
be the time to wait for a solution convergence. With enough cooperative receivers, the factor graph formulation could
be used to decentralize the problem as has been done in some SLAM applications.

This algorithm also suggests the possibility of fusing higher frequency optical measurements with higher carrier
phase sampling rates. When vision is present, the code based pseudorange measurements are not strictly necessary. A
higher sampling frequency would potentially allow sub-second ambiguity recovery. This approach will be investigated.
Finally the dynamics filter will be fused into the batch estimator for a more robust and accurate solution.
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