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From Parameter Estimation to Dispersion
of Nonstationary Gauss-Markov Processes

Peida Tian, Student Member, IEEE, Victoria Kostina, Member, IEEE

Abstract—This paper provides a precise error analysis for the
maximum likelihood estimate â(uuu) of the parameter a given
samples uuu = (u1, . . . , un)

> drawn from a nonstationary Gauss-
Markov process Ui = aUi−1 + Zi, i ≥ 1, where a > 1,
U0 = 0, and Zi’s are independent Gaussian random variables
with zero mean and variance σ2. We show a tight nonasymptotic
exponentially decaying bound on the tail probability of the
estimation error. Unlike previous works, our bound is tight
already for a sample size of the order of hundreds. We apply the
new estimation bound to find the dispersion for lossy compression
of nonstationary Gauss-Markov sources. We show that the
dispersion is given by the same integral formula derived in
our previous work [1] for the (asymptotically) stationary Gauss-
Markov sources, i.e., |a| < 1. New ideas in the nonstationary case
include a deeper understanding of the scaling of the maximum
eigenvalue of the covariance matrix of the source sequence, and
new techniques in the derivation of our estimation error bound.

Index Terms—Parameter estimation, maximum likelihood esti-
mator, unstable processes, finite blocklength analysis, lossy com-
pression, sources with memory, rate-distortion theory, covering
in stochastic processes.

I. INTRODUCTION

In parameter estimation, given a sample xxx drawn according to
a distribution f(θ0;x) in the family {f(θ;xxx) : θ ∈ Θ}, where
the set Θ is known and θ0 is unknown but nonrandom, the goal
is to design a good estimate for the underlying parameter θ0.
Many problems in science and engineering can be formulated in
the form of parameter estimation, including binary hypothesis
testing in statistics (with |Θ| = 2) and system identification in
the study of dynamical systems [2]. In this paper, we investigate
the use of parameter estimation in the nonasymptotic analysis
for lossy compression of nonstationary scalar Gauss-Markov
sources.

A scalar Gauss-Markov process {Ui}∞i=1 is a random process
defined as

Ui = aUi−1 + Zi, i ≥ 1, (1)

where U0 = 0 and Zi’s are independent Gaussian random
variables with zero mean and variance σ2, Zi ∼ N (0, σ2).
We assume without loss of generality that a ≥ 0 1. We
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1Otherwise, we instead consider the random process {U ′i}∞i=1 defined by
the invertible mapping U ′i , (−1)iUi which satisfies U ′i = (−a)U ′i−1 +

(−1)iZi, where (−1)iZi’s are also independent zero-mean Gaussian random
variables with variance σ2.

make the distinctions between the following three cases: the
(asymptotically) stationary case refers to 0 < a < 1 in (1); the
unit-root case to a = 1 2; and the nonstationary case to a > 1.
This paper mostly focuses on the nonstationary case.

Gauss-Markov processes have been extensively studied by
researchers from many different fields. In the statistical analysis
of time series, the Gauss-Markov process is a special case of
the autoregressive–moving-average (ARMA) models [3, Chap.
3]. In economics, the process (1) with a = 1 is used to
model the stochastic structure of the velocity of money [4],
see also [5, Sec. 5]. In information theory, Burg’s maximum
entropy theorem [6, Th. 12.6.1] states that a p-th order Gauss-
Markov process attains the maximum entropy rate among
all stochastic processes under the autocorrelation constraints
E [XiXi+k] = αk, k = 0, . . . , p, ∀i.

Our primary motivation for studying the Gauss-Markov
process is to understand the role of memory in nonasymptotic
rate-distortion theory. The Gauss-Markov process (1) is one of
the simplest models for information sources with memory. The
rate-distortion function (RDF) [7] captures the rate-distortion
tradeoff when the coding length tends to infinity. The RDF is
known in a few cases including the Gauss-Markov process [8].
The central question in nonasymptotic rate-distortion theory is
to characterize the rate-distortion tradeoff when the coding
length is constrained to be finite, and the dispersion is
the main quantity of interest. The dispersion of stationary
memoryless sources was found in [9], [10]. The dispersion
of information sources with memory is largely unknown. Our
previous work [1] found the dispersion of the stationary Gauss-
Markov source. One of the key ideas in [1] is to construct a
typical set based on â(u), the maximum likelihood estimate
(MLE) of a given samples u = (u1, . . . , un)>. For a typical
u, â(u) is close to a.

The MLE â(u) of the parameter a is given by [1, App. F-A]

â(uuu) =

∑n−1
i=1 uiui+1∑n−1
i=1 u

2
i

. (2)

For 0 < a < 1, our previous work [1, Th. 5] provided a
tight bound on the tail probability of the estimation error
â(U)− a. Using different tools, for a > 1, this paper derives
an exponentially decaying upper bound on the tail probability of
â(UUU)−a. This result complements the large body of works [11–
15] studying various aspects of the MLE â(u). Our bound is
nonasymptotic and is tighter than existing bounds, see Fig. 1
in Section III-A below for a comparison. As an application of
the error bound, we find the dispersion for the nonstationary
Gauss-Markov source. Although the dispersion is represented

2Technically, the unit-root case is also nonstationary.
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by the same formula as the one we derived for the stationary
case [1, Eq. (57)], the analyses of the two scenarios differ
significantly. In fact, after the RDF of the stationary Gauss-
Markov source was derived [16] (see also [17, Th. 4.5.3]), it
still took several decades to completely understand the RDF of
the nonstationary one [8, 18, 19], see the detailed discussions
in Section IV below.

Notations: For n ∈ N, we denote by [n] the set {1, 2, ..., n}.
We use the standard O(·), o(·), Θ(·), Ω(·) and ω(·) notations
to characterize functions according to their asymptotic growth
rates. Namely, let f(n) and g(n) be two functions of n, then
f(n) = O(g(n)) means there exists a constant M > 0 and
n0 ∈ N such that |f(n)| ≤M |g(n)| for any n ≥ n0; f(n) =
o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = Θ(g(n))
means there exist positive constants c1, c2 and n0 ∈ N such that
c1g(n) ≤ f(n) ≤ c2g(n) for any n ≥ n0; f(n) = Ω(g(n)) if
and only if g(n) = O(f(n)); and f(n) = ω(g(n)) if and only
if limn→∞

f(n)
g(n) = +∞. For a matrix M, we denote by M>

its transpose, by ‖M‖ its operator norm (the largest singular
value) and by µ1(M) ≤ . . . ≤ µn(M) its eigenvalues listed in
non-decreasing order. We use Sc to denote the complement of
a set S. All logarithms and exponentials are base e.

II. PREVIOUS WORKS

A. Parameter Estimation

The MLE â(u) of the parameter a given samples uuu =
(u1, . . . , un)> drawn from the Gauss-Markov source (1) is
given in (2). This paper derives a nonasymptotic fine-grained
large deviations analysis of the estimation error. Given an error
threshold η > 0, define the error exponents P+

n and P−n as

P+
n , −

1

n
logP [â(U)− a > η] , (3)

P−n , −
1

n
logP [â(U)− a < −η] . (4)

We also define Pn as

Pn , −
1

n
logP [|â(U)− a| > η] . (5)

The estimator â(U) in (2) has been extensively studied in
the statistics [11, 12] and economics [20, 21] communities. An
estimator â(U) is said to be weakly consistent if the estimation
error â(U) − a converges to 0 in probability, and strongly
consistent if â(U)−a converges to 0 almost surely, as n tends
to infinity. Mann and Wald [20] and Rubin [21] showed that the
estimator â(U) is weakly consistent for any a ∈ R. Decades
later, Rissanen and Caines [12] proved the strong consistency
of the maximum likelihood estimator for the general stationary
vector Gaussian ARMA processes, which implies that the
estimator â(U) is strongly consistent for 0 < a < 1. To
better understand how the error â(U)− a scales as n tends to
infinity, researchers turned to study the limiting distribution of
the normalized estimation error h(n)(â(U)− a) for a careful
choice of the standardizing function h(n):

h(n) ,


√

n
1−a2 , |a| < 1,

n√
2
, |a| = 1,

|a|n
a2−1 , |a| > 1.

(6)

Mann and Wald [20] and White [11] showed that the dis-
tribution of the normalized estimation error h(n)(â(U)− a)
converges to N (0, 1) for |a| < 1; to the Cauchy distribution
with the probability density function 1

π(1+x2) for |a| > 1;

and for |a| = 1, to the distribution of B2(1)−1
2
∫ 1
0
B2(t) dt

, where
{B(t) : t ∈ [0, 1]} is a Brownian motion.

Generalizations of the above results in several directions have
also been investigated. In [20, Sec. 4], the maximum likelihood
estimator for the p-th order stationary autoregressive processes
with Zi’s being i.i.d. zero-mean and bounded moments random
variables (not necessarily Gaussian) was shown to be weakly
consistent, and the scaled estimation errors

√
n(âj−aj) for j =

1, . . . , p were shown to converge in distribution to the Gaussian
random variables as n tends to infinity. Anderson [22, Sec. 3]
studied the limiting distribution of the maximum likelihood
estimator for a nonstationary vector version of the process (1).
Chan and Wei [23] studied the performance of the estimation
error when a is not a constant but approaches to 1 from below
in the order of 1/n.

Another line of work closely related to this paper is the large
deviation principle (LDP) [24, Ch. 1.2] on â(U)− a [13, 14].
Bercu et al. [13] showed that for 0 < a < 1, the estimation
error â(U)− a satisfies

lim
n→∞

Pn = Is(η), (7)

where the rate function Is(η) is given in [13, Prop. 8]. For
a > 1, Worms [14, Thm. 1] proved that

lim inf
n→∞

Pn ≥ Ins(η), (8)

where Ins(η) is specified in [14, Th. 1] as the optimal value
of an optimization problem. A bound similar to (8) for the
unit-root case was also presented in [14, Th. 1].

The problem of estimating the parameter a from a block
of outcomes of the Gauss-Markov source (1) is one of the
simplest versions in recent studies of machine learning for
dynamical systems [15, 25–28]. One objective of those studies
is to obtain tight performance bounds on the least-squares
estimates of the system parameters A,B,C,D from a single
input / output trajectory {wi,yi}ni=1 in the state-space model:

xi+1 = Axi + Bwi + zi, (9)
yi = Cxi + Dwi + vi, (10)

where xi,wi, zi,vi’s are random vectors of certain dimen-
sions and the system parameters A,B,C,D are matrices of
appropriate dimensions [25, 26]. The Gauss-Markov process
in (1) can be written as the state-space model with B = D = 0,
C = 1 and vi = 0. For stable systems, ‖A‖ < 1, Oymak
and Ozay [26, Thm. 3.1] showed that the estimation error in
spectral norm is O(1/

√
n) with high probability, where n is

the number of samples. For the subclass of the regular unstable
systems [28, Def. 3], Faradonbeh et al. [28, Thm. 1] proved
that the probability of estimation error exceeding a positive
threshold in spectral norm decays exponentially in n. For
the Gauss-Markov processes considered in the present paper,
Simchowitz et al. [25, Thm. B.1] and Sarkar and Rakhlin [27,
Prop. 5.2] presented tail bounds on the estimation error of the
MLE.
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These studies on the limiting distribution and the LDP of
the estimation error are asymptotic. To our knowledge, there
are two nonasymptotic lower bounds on P+

n and P−n . For any
a ∈ R, Rantzer [15, Th. 4] showed that

P+
n (and P−n ) ≥ 1

2
log(1 + η2). (11)

Bercu and Touati [29, Cor. 5.2] proved that

P+
n (and P−n ) ≥ η2

2(1 + yη)
, (12)

where yη is the unique positive solution to (1+x) log(1+x)−
x − η2 = 0 in x. Both bounds (11) and (12) do not capture
the dependence on a and n, and are the same for P+

n and
P−n . All the bounds in [15, 25–28] are either optimal only
order-wise or involve implicit constants. Our main result on
parameter estimation is a tight nonasymptotic lower bound on
P+
n and P−n . For larger a, the lower bound becomes larger,

which suggests that unstable systems are easier to estimate than
stable ones, an observation consistent with [25]. The proof is
inspired by Rantzer [15, Lem. 5], but our result significantly
improves (11) and (12), see Fig. 1 for a comparison. Most
of our results generalize to the case where Zi’s are i.i.d. sub-
Gaussian random variables, see Theorem 4 in Section III-A
below.

B. Nonasymptotic Rate-distortion Theory

Given a distortion threshold d > 0, an excess-distortion
probability ε ∈ (0, 1) and M ∈ N, an (n,M, d, ε) lossy
compression code for a random vector U = (U1, . . . , Un)> of
length n consists of an encoder fn : Rn → [M ], and a decoder
gn : [M ] → Rn, such that P [d (UUU, gn (fn(UUU))) > d] ≤ ε,
where d(·, ·) is the distortion measure. In this paper, we consider
the mean squared error (MSE) distortion: ∀ uuu,vvv ∈ Rn,

d(uuu,vvv) ,
1

n

n∑
i=1

(ui − vi)2. (13)

The minimum achievable code size and source coding rate are
defined respectively by

M?(n, d, ε) , min {M ∈ N : ∃ (n,M, d, ε) code} , (14)

R(n, d, ε) ,
1

n
logM?(n, d, ε). (15)

The core problem in the nonasymptotic rate-distortion theory is
to characterize R(n, d, ε). For stationary memoryless sources,
Ingber and Kochman [9] (finite-alphabet and Gaussian sources)
and Kostina and Verdú [10] (abstract sources) showed that the
minimum achievable source coding rate satisfies a Gaussian
approximation of form (68) in Section III-C below. In this paper,
we extend our previous analysis [1, Th. 1] of the stationary
Gauss-Markov source to the nonstationary one. One of the
key ideas behind this extension is to construct a typical set
using the MLE of a, and to use our estimation error bound to
probabilistically characterize that set.

III. MAIN RESULTS

A. Error Exponent Bounds in Parameter Estimation

We first present our nonasymptotic bounds on P+
n and P−n

using two sequences {α`}`∈N and {β`}`∈N defined as follows.
Throughout the paper, σ2 > 0 and a > 1 are fixed constants.
For η > 0 and a parameter s > 0, let {α`}`∈N be the following
sequence

α1 ,
σ2s2 − 2ηs

2
, (16)

α` =
[a2 + 2σ2s(a+ η)]α`−1 + α1

1− 2σ2α`−1
, ∀` ≥ 2. (17)

Similarly, let {β`}`∈N be the following sequence

β1 ,
σ2s2 − 2ηs

2
, (18)

β` =
[a2 + 2σ2s(−a+ η)]β`−1 + β1

1− 2σ2β`−1
, ∀` ≥ 2. (19)

Note the slight difference between (17) and (19). Both se-
quences depend on η and s. We derive closed-form expressions
and analyze the convergence properties of α` and β` in
Appendix A-B below. For η > 0 and n ∈ N, we define the
following sets

S+n ,
{
s ∈ R : s > 0, α` <

1

2σ2
, ∀` ∈ [n]

}
, (20)

S−n ,
{
s ∈ R : s > 0, β` <

1

2σ2
, ∀` ∈ [n]

}
. (21)

Theorem 1. For any constant η > 0, the estimator (2) satisfies
for any n ≥ 2,

P+
n ≥ sup

s∈S+
n

1

2n

n−1∑
`=1

log
(
1− 2σ2α`

)
, (22)

P−n ≥ sup
s∈S−n

1

2n

n−1∑
`=1

log
(
1− 2σ2β`

)
, (23)

where {α`}`∈N and {β`}`∈N are defined in (17) and (19),
respectively, and S+n and S−n are defined in (20) and (21),
respectively.

Proof. Appendix A-A. �

The proof of Theorem 1 is a detailed analysis of the Chernoff
bound using the tower property of conditional expectations.
The proof is motivated by [15, Lem. 5], but our analysis is
more accurate and the result is significantly tighter, see Fig. 1
and Fig. 3 for comparisons. Theorem 1 gives the best bound
that can be obtained from the Chernoff bound. In view of the
Gärtner-Ellis theorem [24, Th. 2.3.6], we conjecture that the
bounds (22) and (23) can be reversed in the limit of large n.
One recovers Rantzer’s lower bound (11) by setting s = η/σ2

and bounding α` as α` ≤ α1 (due to the monotonicity of
α`, see Appendix A-B below) in Theorem 1. We explicitly
state where we diverge from [15, Lem. 5] in the proof in
Appendix A-A below.
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Fig. 1: Numerical simulations for a = 1.2 and η = 10−3.

The exact characterization of S+n and S−n for each n using
η is involved. One can see from the definitions (20) and (21)
that

S+1 = S−1 =

{
s ∈ R : 0 < s <

η +
√

1 + η2

σ2

}
, (24)

and S+n+1 ⊆ S+n and S−n+1 ⊆ S−n for any n ≥ 1. To obtain the
set S+n+1 from S+n , we need to solve αn+1 <

1
2σ2 , which is

equivalent to solving an inequality involving a polynomial of
degree n+ 2 in s. Fig. 2 presents a plot of S+n for n = 1, ..., 5.
Despite the complexity of the sets S+n and S−n , the limits

S+∞ , lim
n→∞

S+n =
⋂
n≥1

S+n , (25)

S−∞ , lim
n→∞

S−n =
⋂
n≥1

S−n , (26)

can be characterized in terms of the interval

Iη ,
(

0,
2η

σ2

)
. (27)

Lemma 1. Fix any constant η > 0. It holds that

S+∞ = Iη ∪
{

2η

σ2

}
, (28)

S−∞ % Iη ∪
{

2η

σ2

}
. (29)

Proof. Appendix A-C. �

Using Lemma 1 and taking limits in Theorem 1, we obtain
the following result.

Theorem 2. Fix any constant η > 0. It holds that

lim inf
n→∞

P+
n ≥ I+(a, η) , log(a+ 2η), (30)

lim inf
n→∞

P−n ≥ I−(a, η), (31)

lim inf
n→∞

Pn ≥ I−(a, η), (32)

where

I−(a, η) ,


log a, 0 < η ≤ η1,
1
2 log 2aη−(a2−1)

1−(η−a)2 , η1 < η < η2,

log(2η − a), η ≥ η2,
(33)

where the thresholds η1 and η2 are given by

η1 ,
a2 − 1

a
, (34)

η2 ,
3a+

√
a2 + 8

4
. (35)

Proof. We prove (30) and (31) in Appendix A-D. The
bound (32) follows from (30) and (31) since

P [|â(U)− a| > η]

=P [(â(U)− a) > η] + P [(â(U)− a) < −η] (36)

and

lim inf
n→∞

Pn

= lim inf
n→∞

min
{
P+
n , P

−
n

}
(37)

≥I−(a, η). (38)

�

Remark 1. The results in (28) and (29), and (30) and (31)
indicate the asymmetry between P+

n and P−n : the set S−∞
contains more elements than S+∞, and I+(a, η) > I−(a, η),
which suggests that the maximum likelihood estimator â(U)
is more likely to underestimate a than overestimate it.
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Fig. 2: Numerical computation of the sets S+n for a = 1.2 and η = 0.1. Each horizontal line corresponds to n = 1, ..., 5 in the
bottom-up order. Within each horizontal line, the red thick parts denote the ranges of s for which αn < 1

2σ2 , and the blue thin
region is where αn ≥ 1

2σ2 . The plot for S−n is similar.

Fig. 3 presents a comparison of (32), Worms’ bound (8),
Rantzer’s bound (11) and Bercu and Touati (12). Worms’
bound (8) is tighter than Rantzer’s bound (11) when η is
small, and looser for large η. Our bound (32) is tighter than
both of them for any η > 0.

If η = ηn > 0 is a sequence decreasing to 0, it is easy to
see that Theorem 1 still holds. For Theorem 2 to remain valid,
we require that the speed with which ηn decreases to zero is
no smaller than 1√

n
, which essentially ensures that the right

sides of (22) and (23) still converge to the right sides of (30)
and (31), respectively. Let ηn be a positive sequence such that

ηn = ω

(
1√
n

)
. (39)

Theorem 3. For any σ2 > 0 and a > 1, let η = ηn > 0
satisfy (39). Then, Theorem 1 holds, and Theorem 2 holds
with (30) and (31) replaced, respectively, by

lim inf
n→∞

P+
n ≥ log a, (40)

lim inf
n→∞

P−n ≥ log a. (41)

Proof. Appendix A-E. �

The following corollary to Theorem 3 is used in Section III-C
below to derive the dispersion of nonstationary Gauss-Markov
sources.

Corollary 1. For any σ2 > 0 and any a > 1, there exists a
constant c ≥ 1

2 log(a) such that for all n large enough,

P

[
|â(U)− a| ≥

√
log logn

n

]
≤ 2e−cn. (42)

We now generalize the above results to the case where Zi’s
in (1) are zero-mean σ-sub-Gaussian random variables.

Definition 1 (sub-Gaussian random variable, e.g. [30, Def.
2.7]). Fix σ > 0. A random variable Z ∈ R with mean µ
is said to be σ-sub-Gaussian with variance proxy σ2 if its
moment-generating function (MGF) satisfies

E[es(Z−µ)] ≤ eσ
2s2

2 , (43)

for all s ∈ R.

One important property of σ-sub-Gaussian random variables
is the following well-known bound on the MGF of quadratic
functions of σ-sub-Gaussian random variables.

Lemma 2 ([15, Prop. 2]). Let Z be a σ-sub-Gaussian random
variable with mean µ. Then

E exp(sZ2) ≤ 1√
1− 2σ2s

exp

(
sµ2

1− 2σ2s

)
(44)

for any s < 1
2σ2 .

Equality holds in (43) and (44) when Z is Gaussian. In
particular, the right side of (44) is the MGF of the noncentral
χ2-distributed random variable Z2.

Theorem 4 (Generalization to sub-Gaussian case). Theorems 1–
3 and Lemma 1 remain valid for the estimator (2) when Zi’s
in (1) are i.i.d. zero-mean σ-sub-Gaussian random variables.

Proof. The generalizations of Theorems 1–3 and Lemma 1
from the Gaussian to sub-Gaussian case only require minor
changes in the corresponding proofs. See Appendix A-F for
the details. �

B. Nonasymptotic Rate-distortion Theory

We review some definitions before we can discuss our
main results on the dispersion of nonstationary Gauss-Markov
processes.
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Fig. 3: Comparisons of our lower bound (32) and previous works (8), (11) and (12). a = 1.2.

1) Rate-distortion functions: For a random process {Xi}∞i=1,
the n-th order rate-distortion function RX(d) is defined as

RX(d) , inf
PY |X :

E[d(X,Y )]≤d

1

n
I(X;Y ), (45)

where X = (X1, . . . , Xn)> is the n-dimensional random
vector. The rate-distortion function RX(d) is defined as

RX(d) , lim sup
n→∞

RX(d). (46)

Under the average distortion criterion, the informational
quantity RX(d) has been shown to be equal to the minimum
achievable source coding rate as the blocklength n goes to
infinity, see [7] for discrete memoryless sources and [31] for
general ergodic sources. Gray [8, Th. 2] proved a coding
theorem for the Gaussian autoregressive processes, which
include the Gauss-Markov source as a special case, under
average mean-squared error. Closed-form expressions for
RX(d) and RX(d) are known only for a few special random
processes including the Gaussian autoregressive processes [8].
Specializing Gray’s result [8, Eq. (22)] to our Gauss-Markov
source (1), we write down the n-th order reverse waterfilling
solution for the n-th order rate-distortion function RU (d):

RU (d) =
1

n

n∑
i=1

1

2
log max

(
µi,

σ2

θn

)
, (47)

d =
1

n

n∑
i=1

min

(
θn,

σ2

µi

)
, (48)

where θn > 0 is the water level, and µi’s are the eigenvalues of
A>A, where A is the following n× n lower triangular matrix:

Aij =


1, i = j,

−a, i = j + 1,

0, otherwise.
(49)

The rate-distortion function RU (d) of the Gauss-Markov source
is given by the limiting reverse waterfilling:

RU (d) =
1

2π

∫ π

−π

1

2
log max

(
g(w),

σ2

θ

)
dw, (50)

d =
1

2π

∫ π

−π
min

(
θ,

σ2

g(w)

)
dw, (51)

where

g(w) , 1 + a2 − 2a cos(w). (52)

It is well-known [7] that the rate-distortion function of the
Gaussian memoryless source {Zi} is

RZ(d) = max

(
0,

1

2
log

σ2

d

)
. (53)

See Fig. 4 for a plot of RU (d) and RZ(d).
2) Critical and maximum distortions: In view of (51), there

are two special water levels θmin and θmax, defined as follows:

θmin , min
w∈[−π,π]

σ2

g(w)
=

σ2

(a+ 1)2
(54)

and

θmax , max
w∈[−π,π]

σ2

g(w)
=

σ2

(a− 1)2
. (55)

The critical distortion dc is defined as the distortion corre-
sponding to water level θmin. By (51), we have

dc = θmin =
σ2

(a+ 1)2
. (56)

The maximum distortion dmax is defined as the distortion
corresponding to water level θmax. By (51), we have

dmax =
1

2π

∫ π

−π

σ2

g(w)
dw. (57)
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Fig. 4: Rate-distortion functions. a = 1.2.

Using similar techniques as in [1, Eq. (169)–(172)], one can
obtain

dmax =
σ2

a2 − 1
. (58)

In this paper, we always consider a fixed distortion threshold
d such that 0 < d < dmax.

3) Decorrelation: For the Gauss-Markov source {Ui}+∞i=1

in (1), we refer to the transformed random vector

X , S>U (59)

as the decorrelation of U , where U = (U1, . . . , Un)> and
S is the orthornomal matrix that diagonalizes (A>A)−1. The
decorrelation X has independent coordinates

Xi ∼ N (0, σ2
i ), (60)

where

σ2
i ,

σ2

µi
(61)

are eigenvalues of the covariance matrix of U , or, equivalently,
of the covariance matrix of X:

ΣU = ΣX = σ2(A>A)−1. (62)

The minimum achievable source coding rates (defined in (15))
for lossy compression of U and X are equal, as are their
rate-distortion functions: RU (d) = RX(d), see [1, Sec. III.A]
for the details.

4) Operational dispersion: In nonasymptotic rate-distortion
theory, the operational dispersion VU (d) captures the conver-
gence rate of the minimum achievable source coding rate to
the rate-distortion function. Formally, it is defined as

VU (d) , lim
ε→0

lim sup
n→∞

n

(
R(n, d, ε)− RU (d)

Q−1(ε)

)2

, (63)

where Q−1 denotes the inverse Q-function. The main result in
the second part of this paper gives VU (d) for the nonstationary
Gauss-Markov source.

5) Informational dispersion: The d-tilted information, intro-
duced in [10, Def. 6], is the key random variable that governs
the nonasymptotic fundamental limits in the rate-distortion the-
ory. Using (47), (48), (60), and the equivalence between U and
its decorrelation X in Section III-B3 above, one can show [1,
Eq. (55) and (228)] that the d-tilted information U (u, d) in
u for the Gauss-Markov source satisfies U (u, d) = X(x, d),
and

X (x, d) =

n∑
i=1

min(θn, σ
2
i )

2θn

(
x2i
σ2
i

− 1

)
+

1

2

n∑
i=1

log
max(θn, σ

2
i )

θn
, (64)

where θn > 0 is given by (48), and x , S>u.
In lossy compression of stationary and memoryless sources,

the mean and the variance of the d-tilted information are
equal to the rate-distortion function and the dispersion, respec-
tively [10, Th. 12]. This paper provides a natural extension
of the above fact to nonstationary Gauss-Markov sources.
The main result in this second part of the paper establishes
the equality between operational dispersion (63) and the
informational dispersion, defined as

VU (d) , lim sup
n→∞

1

n
Var [U (U , d)] . (65)

Lemma 3. The informational dispersion of the nonstationary
Gauss-Markov source is given by

VU (d) =
1

4π

∫ π

−π
min

[
1,

(
σ2

θg(w)

)2
]
dw, (66)

where θ > 0 is given in (51), and g is in (52).
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Proof. Appendix B-A. �

It is known [10, Eq. (94)] [9, Sec. IV] that the informational
dispersion for the Gaussian memoryless source {Zi} is

VZ(d) =
1

2
, ∀d ∈ (0, σ2). (67)

See Fig. 5 for a plot of VU (d) and VZ(d).

C. Dispersion of the Nonstationary Gauss-Markov Processes

We now state our main results on the dispersion of the
nonstationary Gauss-Markov sources.

Theorem 5 (Gaussian approximation). Consider the Gauss-
Markov source (1) with a > 1. For any fixed excess-distortion
probability ε ∈ (0, 1) and distortion threshold d ∈ (0, dmax),
the minimum achievable source coding rate R(n, d, ε) admits
the following Gaussian approximation:

R(n, d, ε) = RU (d) +Q−1(ε)

√
VU (d)

n
+ o

(
1√
n

)
, (68)

where Q−1 denotes the inverse Q-function; the rate-distortion
function RU (d) is given in (50); the informational dispersion
VU (d) is given in (66).

We prove the converse and achievability directions of
Theorem 5, stated in the following two theorems, respectively.

Theorem 6 (Converse). In the setting the Theorem 5, the
minimum achievable source coding rate satisfies

R(n, d, ε) ≥ RU (d) +

√
VU (d)

n
Q−1(ε)− log n

2n
+O

(
1

n

)
.

(69)

Proof. The converse proof is similar to that in the asymptot-
ically stationary case in [1, Th. 7]. See Appendix D for the
details. �

Theorem 7 (Achievability). In the setting the Theorem 5, the
minimum achievable source coding rate satisfies

R(n, d, ε) ≤ RU (d) +

√
VU (d)

n
Q−1(ε) +O

(
1√

n log n

)
.

(70)

Proof. See the discussions in Section III-D below. �

Remark 2. Gray [8, Eq. (24)] showed the following relation
between the rate-distortion functions of the Gauss-Markov
source and the Gaussian memoryless source:{

RU (d) = RZ(d), d ∈ (0, dc],

RU (d) > RZ(d), d ∈ (dc, dmax),
(71)

where RZ(d) is in (53) above. Using Lemma 3, one can easily
show (in the same way as [1, Cor. 1]) that their dispersions
are also comparable:{

VU (d) = VZ(d), d ∈ (0, dc],

VU (d) < VZ(d), d ∈ (dc, σ
2),

(72)

where VZ(d) is in (67) above. The results (71) and (72) imply
that for low distortions d ∈ (0, dc), the minimum achievable

source coding rate in compressing the Gauss-Markov source
and the Gaussian memoryless source are the same up to second-
order terms, a phenomenon we observed in the stationary case
as well [1, Cor. 1]. See Fig. 4 and Fig. 5 for a visualization
of (71) and (72), respectively.

Remark 3. For the red solid curve in Fig. 4, we have

RU (dmax) = log a. (73)

This result has an interesting connection to the problem of
control under communication constraints [32] [33, Th. 1] [34,
Prop. 3.1], where it was shown that the minimum rate to
asymptotically stabilize a linear, discrete-time, scalar system
is also log a, suggesting that stability is unattained with any
rate lower than log a even if an infinite lookahead is allowed.
We present two ways to obtain (73). The first one is to
directly use (94) in Section IV-A below. For θ = θmax, we
have RK(dmax) = 0 in (93), then (73) immediately follows
from (94). The second method relies on (50). For θ = θmax,
observe from (50) that

RU (dmax) =
1

4π

∫ π

−π
log(g(w)) dw. (74)

Then, computing the integral (74) using Lemma 6 in Ap-
pendix B-B below yields (73).

Remark 4. The coordinates of the two special points P1 and
P2 on the red solid curve in Fig. 5 are given by

P1 = (dc, 1/2), P2 =

(
dmax,

(1 + a2)(a− 1)

2(a+ 1)3

)
. (75)

The derivation for P2 is the same as that in the stationary
case [1, Eq. (61)] except that we need to compute the residue
at 1/a instead of at a, see [1, App. B-A] for details.

D. Lossy AEP and Parameter Estimation

Central to the proof of Theorem 7 are the random coding
bound [10, Cor. 11] and the following second-order refinement
of the “lossy AEP” (asymptotic equipartition property) for
nonstationary Gauss-Markov sources:

Lemma 4. For the Gauss-Markov source (1) with a > 1, let
X be the decorrelation of U in (59), let Y ? be the minimizer
of (45), and let X(X, d) be the d-tilted information given
by (64). Then,

P
[
log

1

PY ? (B (XXX, d))
≥ XXX(XXX, d) + p(n)

]
≤ 1

q(n)
, (76)

where

p(n) , c1(log n)c2 + c3 log n+ c4, (77)

q(n) , Θ(log n), (78)

with constants ci’s, i = 1, ..., 4 satisfying c1, c2, c3 > 0.

Proof. Appendix E-D. �

The precise connection between the lossy AEP and
the achievability proof is the following. Assume we have
shown (76) for p(n) and q(n) satisfying p(n) = ω(1) and
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Fig. 5: Dispersions. a = 1.2

q(n) = ω(1). Then, using Propositions 1 and 2 in Appendix C
below, one can apply the proof in [1, Sec. V-C] to obtain

R(n, d, ε) ≤ RU (d) +

√
VU (d)

n
Q−1(ε)+

K1 log log n

n
+
p(n)

n
+

K2√
nq(n)

, (79)

where K1 > 0 is a universal constant and K2 is a constant
depending on ε. Hence, in order to obtain the second-order
term in (79), we require in (76) that

p(n) = o(
√
n), (80)

q(n) = ω(1). (81)

Therefore, Theorem 7 follows immediately from (79) with the
choices of p(n) and q(n) in (77) and (78), respectively. We
have O(·) in (70) since K2 could be positive or negative. The
rest of the paper focuses on the proof of Lemma 4.

The proof of lossy AEP in the form of Lemma 4 is technical
even for stationary memoryless sources. A lossy AEP for
stationary α-mixing processes was derived in [35, Cor. 17].
The idea in [10, Lem. 2] is to form a typical set of source
outcomes (the set Fn in [10, Lem. 4]) using the product of the
empirical distributions [10, Eq. (270)]: PX̂ × . . .× PX̂ , where
PX̂(x) , 1

n

∑n
i=1 1{xi = x} is the empirical distribution of a

given source sequence x, and then to show that the inequality
inside the bracket in (76) holds for x ∈ Fn. The Gauss-Markov
source is not memoryless and it is nonstationary for a > 1. To
form a typical set of source outcomes, we define the following
proxy random variable using the estimator â(u).

Definition 2 (Proxy random variable). For each sequence u
of length n generated by the Gauss-Markov source, define
the proxy random variable X̂ as an n-dimensional Gaussian

random vector with independent coordinates, each of which
follows the distribution N (0, σ̂2

i ) with

σ̂2
1 , σ

2â(u)2n, (82)

σ̂2
i ,

σ2

1 + â(u)2 − 2â(u) cos iπ
n+1

, i = 2, ..., n. (83)

The proxy random variables in Definition 2 differ from that
in [1, Eq. (119)] in the behavior of the largest variance σ̂2

1 .

Remark 5. Since the proxy random variable X̂ depends on
the realization of U , Definition 2 defines the joint distribution
of (X, X̂), where X is the decorrelation of U in (59).

The following convex optimization problem will be instru-
mental: for any two random vectors X and Y with distributions
PX and PY , respectively, define

R(X,Y , d) , inf
PF |X :

E[d(X,F )]≤d

1

n
D(PF |X ||PY |PX), (84)

where D(PF |X ||PY |PX) is the conditional relative entropy.
Denote the minimizer of (84) by F ?. See [1, Sec. II-B] for
a discussion on various aspects of this optimization problem.
For each x, define for each i = 1, ..., n,

mi(x) , E
[
(F̂ ?i − xi)2|X̂i = xi

]
, (85)

where F̂
?

= (F̂ ?1 , . . . , F̂
?
n)> is the random variable that

achieves R(X̂,Y ?, d), and Y ? is the random variable that
achieves RX(d) in (45). Denote ηn as

ηn ,

√
log log n

n
. (86)

The typical set for the Gauss-Markov source is defined as
follows.
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Definition 3 (Typical set [1, Def. 1]). For any d ∈ (0, dmax),
n ≥ 2 and a constant p > 0, define T (n, p) to be the set of
vectors u ∈ Rn that satisfy the following conditions:

|â(u)− a| ≤ ηn, (87)∣∣∣∣∣ 1n
n∑
i=1

(
x2i
σ2
i

)
− (2k − 1)!!

∣∣∣∣∣ ≤ 2, k = 1, 2, 3, (88)∣∣∣∣∣ 1n
n∑
i=1

mi(x)− d

∣∣∣∣∣ ≤ pηn, (89)

where x = S>u is the decorrelation (59).

The typical set in Definition 3 is in the same form as that
in the stationary case [1, Def. 2], but the definition of proxy
random variables and the analysis are different.

Theorem 8. For any d ∈ (0, dmax), there exists a constant
p > 0 such that the probability that the Gauss-Markov source
produces a typical sequence satisfies

P [U ∈ T (n, p)] ≥ 1−Θ

(
1

log n

)
. (90)

Proof. Appendix E-B. �

Let E denote the event inside the square bracket in (76).
Then, we prove Lemma 4 by intersecting E with the typical set
T (n, p) and the complement T (n, p)c, respectively, and then
bounding the probability of the two intersections separately.
See Appendix E-D for the details.

IV. DISCUSSION

A. Differences between Stationary and Nonstationary Gauss-
Markov Processes

It took several decades [8, 16, 18, 19, 36] to completely
understand the difference in rate-distortion functions between
stationary and nonstationary Gaussian autoregressive sources.
We briefly summarize this subtle difference here to make the
point that generalizing results from the stationary case to the
nonstationary one is natural but nontrivial.

Since det(A) = 1, the eigenvalues µi’s of A>A satisfy
n∏
i=1

µi = 1. (91)

Using (91), (47) can be equivalently rewritten as

RU (d) =
1

n

n∑
i=1

max

(
0,

1

2
log

σ2
i

θn

)
, (92)

where θn > 0 is given in (48) and σ2
i ’s are given in (61).

Both (47) and (92) are valid expressions for the n-th order
rate-distortion function RU (d), regardless of whether the source
is stationary or nonstationary. The classical Kolmogorov reverse
waterfilling result [16, Eq. (18)], obtained by taking the limit
in (92), implies that the rate-distortion function of the stationary
Gauss-Markov source (0 < a < 1) is given by (K stands for
Kolmogorov)

RK(d) =
1

2π

∫ π

−π
max

(
0,

1

2
log

σ2

θg(w)

)
dw, (93)

where θ > 0 is given in (51) and g(w) is given in (52).
While (50) and (51) are valid for both stationary and non-
stationary cases, Hashimoto and Arimoto [18] noticed in
1980 that (93) is not correct for the nonstationary Gaussian
autoregressive source. The reason is the different asymptotic
behaviors of the eigenvalues µi’s of A>A (49) in the stationary
and nonstationary cases: while in the stationary case, the
spectrum is bounded away from zero, in the nonstationary case,
the smallest eigenvalue µ1 approaches 0, causing a discontinuity.
By treating that smallest eigenvalue in a special way, they
extended (93) [18, Th. 2] (HA stands for the authors of [18]) 3

RHA(d) = RK(d) + log(max(a, 1)) (94)

to both stationary and nonstationary Gauss-Markov sources.
In 2008, Gray and Hashimoto [19] showed the equivalence
between RHA(d) in (94), obtained by taking a limit in (92),
and Gray’s result RU (d) in (50), obtained by taking a limit
in (47).

The tool that allows one to take limits in (92) and (47) is the
following theorem on the asymptotic eigenvalue distribution
of the almost Toeplitz matrix A>A, which is the (rescaled)
inverse of the covariance matrix (62). Denote

α , min
w∈[−π,π]

g(w) = (a− 1)2, (95)

and

β , max
w∈[−π,π]

g(w) = (a+ 1)2. (96)

To indicate the dependence on n, we change the notation a
little bit to denote µn,i, i = 1, . . . , n the eigenvalues of A>A
listed in increasing order. Gray [37, Th. 2.4] generalized the
result of Grenander and Szegö [38, Th. in Sec. 5.2] on the
asymptotic eigenvalue distribution of Toeplitz forms to that of
matrices that are asymptotically equivalent to Toeplitz forms,
see [37, Chap. 2.3] for the details. Define

α′ , inf
n∈N, i∈[n]

µn,i. (97)

Theorem 9 (Gray [8, Eq. (19)], Hashimoto and Arimoto [18,
Th. 1]). For any continuous function F (t) over the interval

t ∈ [α′, β] , (98)

the eigenvalues µn,i’s of the rescaled inverse covariance matrix
in (62) of U , or, equivalently, X , satisfy

lim
n→∞

1

n

n∑
i=1

F (µn,i) =
1

2π

∫ π

−π
F (g(w)) dw, (99)

where g(w) is defined in (52).

The eigenvalues µn,i’s behave quite differently in the
following three cases, leading the subtle difference in rate-
distortion functions.

1) For the stationary case a ∈ (0, 1), it can be easily
shown [1, Eq. (71)] that α′ = α > 0 and all eigenvalues
µn,i’s lie in between α and β. Kolmogorov’s formula (93)

3For the general higher-order Gaussian autoregressive source, the correction
term needed in (94) depends on the unstable roots of the characteristic
polynomial of the source, see [18, Th. 2] for the details.
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is obtained by applying Theorem 9 to (92) using the
function

FK(t) , max

(
0,

1

2
log

σ2

θt

)
, (100)

where θ > 0 is given by (51).
2) For unit-root processes / Wiener processes a = 1, closed-

form expressions of µn,i’s are given by Berger [36, Eq.
(2)]. Those results imply that the smallest eigenvalue µn,1
is of order Θ

(
1
n2

)
and α′ = α = 0. Using the same

function as in (100), Berger obtained the rate-distortion
functions for the Wiener processes a = 1 [36, Eq. 4] 4.

3) For the nonstationary case a > 1, we have α′ = 0 < α,
the smallest eigenvalue µn,1 is of order Θ(a−2n) and
the largest n − 1 eigenvalues lie in between α and β.
This behavior of eigenvalues was shown by Hashimoto
and Arimoto [18, Lemma] for higher-order Gaussian
autoregressive sources, and we will show a refined version
for the Gauss-Markov source in Lemma 5 below. As
pointed out by [18, Th. 1], an application of Theorem 9
using the function (100) fails to yield the correct rate-
distortion function for nonstationary sources due to the
discontinuity of FK(t) at 0.
Gray [8, Eq. (22)] and Hashimoto and Arimoto [18]
circumvent the above difficulty in two different ways,
which lead to (50) and (94), respectively. Gray [8] applied
Theorem 9 on (47) using the function

FG(t) =
1

2
log max

(
t,
σ2

θ

)
, (101)

which is indeed continuous at 0, while Hashimoto and
Arimoto [18, Th. 2] still use the function FK(t) but
consider µn,1 and µn,i, i ≥ 2 separately:

1

n

n∑
i=2

FK(µn,i) +
1

n
FK(µn,1), (102)

which in the limit yields (94) by plugging µn,1 = Θ(a−2n)
into (100).

B. New Results on the Spectrum of the Covariance Matrix

The following result on the scaling of the eigenvalues µn,i’s
refines [18, Lemma].

Lemma 5. Fix a > 1. For any i = 2, . . . , n, the eigenvalues
of A>A are bounded as

ξn−1,i−1 ≤ µn,i ≤ ξn,i, (103)

where

ξn,i , 1 + a2 − 2a cos

(
iπ

n+ 1

)
. (104)

The smallest eigenvalue is bounded as

2 log a+
c2
n
≥ − 1

n
logµn,1 ≥ 2 log a− c1

n
, (105)

4To be precise, although the rate-distortion function for the Wiener process
is correct in [36, Eq. 4], the proof there is not rigorous since in this case
α′ = α = 0 but FK(t) is not continuous at t = 0 as pointed out in [19, Eq.
(23)]. Therefore, the limit leading to [36, Eq. 4] needs extra justifications.

where c1 > 0 and c2 are constants given by

c1 = 2 log(a+ 1) +
aπ

a2 − 1
, (106)

c2 = 2 log
a

a2 − 1
+

2aπ

a2 − 1
. (107)

Proof. Appendix B-C. �

Remark 6. The constant c1 in (106) is positive, while c2 in (107)
can be positive, zero or negative, depending on the value of
a > 1. Lemma 5 indicates that a−2n is a good approximation to
µn,1. Using (104) and (103), we deduce that for i = 2, . . . , n,

µn,i ∈ [α, β]. (108)

Based on Lemma 5, we obtain a nonasymptotic version of
Theorem 9, which is useful in the analysis of the dispersion,
in particular, in Proposition 1 in Appendix C-A below.

Theorem 10. Fix any a > 1. For any bounded, L-Lipschitz
and nondecreasing function (or nonincreasing function) F (t)
over the interval (98) and any n ≥ 1, the eigenvalues µn,i’s
of A>A satisfy∣∣∣∣∣ 1n

n∑
i=1

F (µn,i)−
1

2π

∫ π

−π
F (g(w)) dw

∣∣∣∣∣ ≤ CL
n
, (109)

where g(w) is defined in (52) and CL > 0 is a constant that
depends on L and the maximum absolute value of F .

Proof. Appendix B-D. �

V. CONCLUSION

In this paper, we obtain a nonasymptotic bound (Theorem 1)
on the estimation error of the maximum likelihood estimator of
the parameter a of the nonstationary scalar Gauss-Markov pro-
cess. An asymptotic bound (Theorem 2) follows immediately.
Numerical simulations in Fig. 1 confirm the tightness of our
estimation error bounds compared to previous works. As an
application of the estimation error bound (Corollary 1), we find
the dispersion for lossy compression of the nonstationary Gauss-
Markov sources (Theorem 5). Future research directions include
generalizing the error exponent bounds in this paper, applicable
to identification of scalar dynamical systems, to vector systems,
and finding the dispersion of the Wiener process.

APPENDIX A

A. Proof of Theorem 1

Proof. We present the proof of (22). The proof of (23) is
similar, which we omit here. For any n ≥ 2, denote by Fn
the σ-algebra generated by Z1, . . . , Zn. For any s > 0, η > 0,
and n ≥ 2, we denote the following random variable

Wn , exp

{
s

n−1∑
i=1

(UiZi+1 − ηU2
i )

}
. (110)

By the Chernoff bound, we have

P [â(U)− a ≥ η] ≤ inf
s>0

E [Wn] . (111)
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To compute E [Wn], we first condition on Fn−1. Since Zn is
the only term in Wn that does not belong to Fn−1, we have

E [Wn]

=E
{
Wn−1 · E[exp(s(Un−1Zn − ηU2

n−1))|Fn−1]
}

(112)

=E
[
Wn−1 · exp(α1U

2
n−1)

]
, (113)

where α1 is the deterministic function of s and η defined in (16),
and (113) follows from the moment generating function of Zn.
To obtain a recursion, we condition on Fn−2. Since U2

n−1 and
Un−2Zn−1 are the only two terms in Wn−1 · exp(α1U

2
n−1)

that do not belong to Fn−2, we use the relation Un−1 =
aUn−2 + Zn−1 and we complete squares in Zn−1 to obtain

Wn−1 · exp(α1U
2
n−1)

=Wn−2 · exp
{
α1

(
Zn−1 + (a+

s

2α1
)Un−2

)2

+

(a2α1 − sη)U2
n−2 − α1

(
a+

s

2α1

)2

U2
n−2

}
. (114)

Furthermore, using the formula for the moment generating
function of the noncentral χ2-distributed random variable(

Zn−1 +

(
a+

s

2α1

)
Un−2

)2

(115)

with 1 degree of freedom, we obtain

E
[
Wn−1 · exp(α1U

2
n−1)

]
=

1√
1− 2σ2α1

E
[
Wn−2 · exp(α2U

2
n−2)

]
. (116)

This is where our method diverges from Rantzer [15, Lem. 5],
who chooses s = η

σ2 and bounds α2 ≤ α1 (due to property (A4)
in Appendix A-B below) in (116). Instead, by conditioning on
Fn−3 in (116) and repeating the above recursion, we compute
E [Wn] exactly using the sequence {α`}:

E [Wn] = exp

{
−1

2

n−1∑
`=1

log(1− 2σ2α`)

}
. (117)

If s 6∈ S+n then E [Wn] = +∞. Therefore,

inf
s>0

E [Wn] = inf
s∈S+

n

E [Wn] . (118)

�

B. Properties of the Sequences α` and β`
We derive several important elementary properties about the

sequences α` and β`. First, we consider α`. We find the two
fixed points r1 < r2 of the recursive relation (17) by solving
the following quadratic equation in x:

2σ2x2 + [a2 + 2σ2s(a+ η)− 1]x+ α1 = 0. (119)

(A1) For any s > 0 and η > 0, (119) has two roots r1 < r2,
and r1 < 0. The two roots r1 and r2 are given by

r1 =
−[a2 + 2σ2(a+ η)s− 1]−

√
∆

4σ2
, (120)

r2 =
−[a2 + 2σ2(a+ η)s− 1] +

√
∆

4σ2
, (121)

where ∆ denotes the discriminant of (119), given by

∆ = 4σ4[(a+ η)2 − 1]s2+

4σ2[(a+ η)(a2 − 1) + 2η]s+ (a2 − 1)2. (122)

Proof. This is verified by noting that the discriminant ∆
satisfies

∆ > (a2 − 1)2 > 0, (123)

where a > 1 is used. Then, it is easy to see from (120)
that r1 < 0. �

(A2) For 2η
σ2 6= s > 0 and η > 0, the sequence

{
α`−r1
α`−r2

}
`∈N

is
a geometric sequence with common ratio

q ,
[a2 + 2σ2s(a+ η)] + 2σ2r1
[a2 + 2σ2s(a+ η)] + 2σ2r2

. (124)

Furthermore,

q ∈ (0, 1), (125)

and it follows immediately that

α` = r1 +
(r1 − r2)α1−r1

α1−r2 q
`−1

1− α1−r1
α1−r2 q

`−1 , (126)

= r2 +
r2 − r1

α1−r1
α1−r2 q

`−1 − 1
. (127)

Proof. Using the recursion (17) and the fact that r1
and r2 are the fixed points of (17), one can verify that{
α`−r1
α`−r2

}
`∈N

is a geometric sequence with common ratio
q given by (124). The relation (125) is verified by direct
computations using (120) and (121). �

(A3) For any 2η
σ2 6= s > 0 and η > 0, we have

lim
`→∞

α` = r1. (128)

For s = 2η
σ2 , we have α` = 0 = r2 > r1, ∀` ≥ 1.

Proof. The limit (128) follows from (125) and (126).
Plugging s = 2η

σ2 into (16) yields α1 = 0, which implies
α` = 0 for ` ≥ 1 by (17). �

(A4) For any s ∈ Iη, we have α` < 0, which decreases to
r1 geometrically. For s > 2η

σ2 , (128) still holds, but the
convergence is not monotone: there exists an `? ≥ 1 such
that α` > 0 and increases to α`? for 1 ≤ ` ≤ `?; and
α` < 0 and increases to r1 for ` > `?.
Proof. Due to (127), the monotonicity of α` depends on
the signs of r2− r1 and α1−r1

α1−r2 . Note that r2− r1 > 0 by
(A1). Plugging x = α1 into (119), we have

(α1 − r1)(α1 − r2) = (a+ σ2s)2α1. (129)

Since for s ∈ Iη we have α1 < 0 by (16), (129) implies
that α1−r1

α1−r2 < 0 for any s ∈ Iη . This immediately implies
that α` decreases to r1 due to (126) and (127). Therefore,
α` ≤ α1 < 0, ∀` ≥ 1. For any s > 2η

σ2 , we have α1 > 0
and α1−r1

α1−r2 > 0. In fact, since r1 < 0, we have α1 >

r2, which implies α1−r1
α1−r2 > 1. Therefore, the conclusion

follows from (127). �

(A5) For any η > 0, the root r1 in (120) is a decreasing function
in s > 0.
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Proof. Direct computation using (120) and (122). Here
we rely on a > 1. �

The sequence β` is analyzed similarly, although it is slightly
more involved than α`. We only consider 0 < s ≤ 2η

σ2 in the
rest of this section. We find the two fixed points t1 < t2 of
the recursive relation (19) by solving the following quadratic
equation in x:

2σ2x2 + [a2 + 2σ2s(−a+ η)− 1]x+ β1 = 0. (130)

(B1) For s = 2η
σ2 , we have β` = 0, ∀` ≥ 1. For any η > 0 and

s ∈ Iη, (130) has two distinct roots t1 < 0 < t2, given
by

t1 =
−[a2 + 2σ2s(−a+ η)− 1]−

√
Γ

4σ2
, (131)

t2 =
−[a2 + 2σ2s(−a+ η)− 1] +

√
Γ

4σ2
, (132)

where the discriminant Γ of (130) is

Γ = 4σ4[(−a+ η)2 − 1]s2+

4σ2[(−a+ η)(a2 − 1) + 2η]s+ (a2 − 1)2. (133)

Proof. We verify that Γ > 0 for any η > 0 and s ∈ Iη.
The reason that Γ > 0 is not as obvious as (123) is due
to the subtle difference between (122) and (133) in the
negative sign of a. Note that Γ in (133) is a quadratic
equation in s and the discriminant of Γ is given by (with
some elementary manipulations)

γ = 16σ4(2aη − a2 + 1)2 ≥ 0. (134)

Hence, in general, (133) has two roots (distinct when
η 6= a2−1

2a ) and Γ could be positive or negative. However,
an analysis of two cases (−a+ η)2 − 1 ≥ 0 and (−a+
η)2 − 1 < 0 reveals that Γ > 0 for any η > 0 and
s ∈ Iη. Therefore, (130) has two distinct roots t1 < t2
given in (131) and (132) above. From (130), we have
t1t2 = β1

2σ2 , which is negative for s ∈ Iη. Therefore, we
have t1 < 0 < t2. �

(B2) For any η > 0 and s ∈ Iη, the sequence
{
β`−t1
β`−t2

}
is a

geometric sequence with common ratio

p ,
[a2 + 2σ2s(−a+ η)] + 2σ2t1
[a2 + 2σ2s(−a+ η)] + 2σ2t2

. (135)

In addition, for any η > 0 and s ∈ Iη , we also have

p ∈ (0, 1). (136)

It follows immediately that

β` = t1 +
(t1 − t2)β1−t1

β1−t2 p
`−1

1− β1−t1
β1−t2 p

`−1
, (137)

= t2 +
t2 − t1

β1−t1
β1−t2 p

`−1 − 1
. (138)

Proof. The derivation is similar to that of (A2) above for
α`. �

(B3) For any η > 0 and s ∈ Iη , we have β` ≤ β1 < 0 and β`
decreases to t1 geometrically:

lim
`→∞

β` = t1. (139)

Proof. This can be verified using (137) and (138) by
noticing that t2 − t1 > 0 and for s ∈ Iη ,

(β1 − t1)(β2 − t2) = (a− σ2s)2β1 < 0. (140)

�

(B4) For any constant a > 1, recall the two thresholds η1 and
η2, defined in (34) and (35) in Section III-A, respectively.
Then,
a) When 0 < η ≤ η1, the root t1 in (131) is an increasing

function in s ∈ Iη .
b) When η ≥ η2, t1 is a decreasing function in s ∈ Iη .
c) When η1 < η < η2, t1 is a decreasing function in
s ∈ (0, s?); and an increasing function in s ∈

(
s?, 2ησ2

)
,

where s? is the unique solution in the interval Iη to

dt1
ds

∣∣∣
s=s?

= 0, (141)

and s? is given by

s? ,
aη(η − η1)

σ2(1− (η − a)2)
. (142)

Proof. Using (131) and (133), we compute the derivatives
of t1 as follows:

dt1
ds

= −η − a
2
− 1√

Γ

{
σ2[(−a+ η)2 − 1]s

+
1

2
[(−a+ η)(a2 − 1) + 2η]

}
, (143)

d2t1
ds2

=
σ2(2aη − a2 + 1)2

Γ
3
2

≥ 0. (144)

To simplify notations, denote by L(s) the first derivative:

L(s) ,
dt1
ds

(s). (145)

From (143), we have

L(0) =
−a2 (η − η1)

a2 − 1
, (146)

and

L

(
2η

σ2

)
={−2(2η−a)(η−η2)(η−η′2)

(a−2η)2−1 , η ∈
(
0, a−12

)
∪
(
a+1
2 ,+∞

)
η

1−(a−2η)2 , η ∈
(
a−1
2 , a+1

2

)
,

(147)

where η′2 is given by

η′2 ,
3a−

√
a2 + 8

4
. (148)

Since L(s) is an increasing function in s due to (144),
to determine the monotonicity of t1, we only need to
consider the following three cases.
a) When L(0) ≥ 0, or equivalently, 0 < η ≤ η1, we have
L(s) ≥ 0 for any s ∈ Iη. Hence, t1 is an increasing
function in s.
b) When L

(
2η
σ2

)
≤ 0, we have L(s) ≤ 0 for any s ∈

Iη. Hence, t1 is a decreasing function in s. We now
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show that L
(
2η
σ2

)
≤ 0 is equivalent to η ≥ η2. When

η ∈
(
a−1
2 , a+1

2

)
, we have L

(
2η
σ2

)
> 0 by (147) and

η > 0. When η ∈
(
0, a−12

)
∪
(
a+1
2 ,+∞

)
, it is easy to

see from (147) that L
(
2η
σ2

)
≤ 0 is equivalent to η ∈

[η′2, a/2] ∪ [η2,+∞). Hence, the equivalent condition for
L
(
2η
σ2

)
≤ 0 is η ∈ [η2,+∞).

c) When L(0) < 0 and L
(
2η
σ2

)
> 0, or equivalently,

η ∈ (η1, η2), solving (141) using (143) yields (142). Since
L(s) is monotonically increasing due to (144), we know
that s? given by (142) is the unique solution to (141)
in Iη, and L(s) ≤ 0 for s ∈ (0, s?] and L(s) > 0 for
s ∈ (s?, 2η/σ2). �

C. Proof of Lemma 1

Proof. We first prove Iη ∪ { 2ησ2 } ⊆ S+∞. Property (A4) above
in Appendix A-B implies that for any 0 < s ≤ 2η

σ2 , we have
α` ≤ 0 < 1

2σ2 . Hence Iη ∪ { 2ησ2 } ⊂ S+n for any n ≥ 1. To
show the other direction S+∞ ⊆ Iη ∪ {

2η
σ2 }, it suffices to show

that for any s > 2η
σ2 , there exists n ∈ N such that αn ≥ 1

2σ2 .
Let `? be the integer defined in property (A4) above. Then, `?

satisfies the following two conditions

α1 − r1
α1 − r2

q`
?−1 ≥ 1, (149)

α1 − r1
α1 − r2

q`
?

< 1. (150)

We show that α`? ≥ 1
2σ2 , which would complete the proof.

Due to r2 − r1 > 0, using (127) and (150), we have

α`? ≥ r2 +
r2 − r1
1
q − 1

(151)

=
r2 − r1q

1− q
(152)

=
1

2σ2
, (153)

where (153) 5 is by plugging (120), (121) and (124) into (152).
To show (29), for any 0 < s ≤ 2η

σ2 , we have β` ≤ 0 <
1

2σ2 , ∀` ≥ 1, hence Iη ∪ { 2ησ2 } ⊆ S−∞. The other direction
cannot hold since we can find many counterexamples, e.g.,
a = 1.2, σ2 = 1, η = 0.15 and s = 0.35 > 2η

σ2 , where the
sequence β` increases monotonically to t1 ≈ 0.0411 < 1

2σ2 .
Hence, in this case, 0.35 ∈ S−∞ but 0.35 6∈

(
0, 2ησ2

]
. �

D. Proof of Theorem 2

Proof. Theorem 1 and Lemma 1 imply that for any s ∈ Iη,
we have

lim inf
n→∞

P+
n ≥ lim

n→∞

1

2n

n−1∑
`=1

log(1− 2σ2α`), (154)

where recall that α` depends on s. By (128), the continuity of
the function x 7→ log(1−x) and the Cesàro mean convergence,
we have

lim inf
n→∞

P+
n ≥

1

2
log(1− 2σ2r1), (155)

5It is pretty amazing that (153) is in fact an equality.

where r1 is given in (120). Since (155) holds for any s ∈ Iη ,
using Property (A5) in Appendix A-B above and supremiz-
ing (155) over s ∈ Iη , we obtain (30). That is, plugging s = 2η

σ2

into (155) yields (30).
Similarly, to show (31), using Property (B3) in Ap-

pendix A-B above, we have

lim inf
n→∞

P−n ≥ sup
s∈Iη

1

2
log(1− 2σ2t1). (156)

Then, by Property (B4) in Appendix A-B above, the supermizer
s′ in (156) is given by

s′ =


0, 0 < η ≤ η1
s?, η1 < η < η2
2η
σ2 , η ≥ η2,

(157)

where s? is given by (142). Plugging (157) into (156)
yields (31). �

E. Proof of Theorem 3
Proof. For any sequence ηn decreasing to 0, the proof of
Theorem 1 in Appendix A-A above remains valid. We present
the proof of (40), and omit that of (41), which is similar.
In this regime, for each n ≥ 1, the proof of Lemma 1 in
Appendix A-C implies that(

0,
2ηn
σ2

)
⊂ S+n , (158)

therefore, in (22), we choose

s = sn =
ηn
σ2
∈ S+n . (159)

First, using (120), (121) (124) and the choice (159), we
determine the asymptotic behavior of quantities involved in
determining α` in (126) and (127), summarized in TABLE I.

α1 r1 r2 r2 − r1 q −α1−r1
α1−r2

−Θ(η2n) −Θ(1) Θ(η2n) Θ(1) Θ(1) Θ(1/η2n)

TABLE I: Order dependence in ηn of the quantities involved
in determining α` in (126) and (127).

We make two remarks before proceeding further. It can be
easily verified from (124) that the common ratio q is a constant
belonging to (0, 1) and

lim
η→0

q =
1

a2
∈ (0, 1). (160)

Hence, for all large n, q is bounded by positive constants
between 0 and 1. Besides, from (120), we have

lim
η→0

r1 = −a
2 − 1

2σ2
. (161)

Second, from (126), (22) and the choice (159), we have

P+
n

≥n− 1

2n
log(1− 2σ2r1)+

1

2n

n−1∑
`=1

log

1− 2σ2(r2 − r1)

1− 2σ2r1
·

(
−α1−r1
α1−r2

)
q`−1

1 +
(
−α1−r1
α1−r2

)
q`−1

 .

(162)
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Using the inequality log(1− x) ≥ x
x−1 , ∀x ∈ (0, 1), we have

P+
n

≥n− 1

2n
log(1− 2σ2r1)+

1

2n

n−1∑
`=1

−1
1−2σ2r2

2σ2(r2−r1) + 1−2σ2r1
2σ2(r2−r1) ·

1(
−α1−r1
α1−r2

)
q`−1

. (163)

Since 1− 2σ2r2 > 0 due to (121), we can further bound P+
n

as

P+
n ≥

n− 1

2n
log(1− 2σ2r1)−

1

n

(
n−1∑
`=1

q`−1

)
2σ2(r2 − r1)

1− 2σ2r1
·
(
−α1 − r1
α1 − r2

)
(164)

≥ n− 1

2n
log(1− 2σ2r1)−

1

n

2σ2(r2 − r1)

(1− 2σ2r1)(1− q)
·
(
−α1 − r1
α1 − r2

)
(165)

=
n− 1

2n
log(1− 2σ2r1)− 1

nΘ(η2n)
, (166)

where in the last step we used the results in TABLE I. Due to
the assumption (39) on ηn and (161), we obtain (40). �

F. Proof of Theorem 4

Proof. We point out the proof changes in generalizing to
the sub-Gaussian case. There are two changes to be made
in the proof of Theorem 1 in Appendix A-A above, the
equality from (112) to (113) is replaced by ≤ since Zn is
σ-sub-Gaussian; the equality in (116) is replaced by ≤ due
to Lemma 2. The rest of the proof for Theorem 1 remains
the same for the sub-Gaussian case. Since Lemma 1 and
Theorem 2, 3 depend only on the properties of the sequences
α` and β` and not on the distribution of Zn’s as long as
Theorem 1 holds, their proofs remain exactly the same for the
sub-Gaussian case. �

APPENDIX B

A. Proof of Lemma 3

Proof. Taking variances of both sides of (64), we obtain

VU (d) = lim sup
n→∞

1

2n

n∑
i=1

min

[
1,

(
σ2
i

θn

)2
]
. (167)

Note that limn→∞ θn = θ, where θ > 0 is the water level
given by (51). Applying Theorem 9 to (167) with the function

F (t) ,
1

2
min

[
1,

(
σ2

θt

)2
]
, (168)

we obtain (66). Note that the function F (t) in (168) is
continuous at t = 0. �

B. An Integral

Lemma 6. For any constant r ∈ [−1, 1], it holds that∫ π

−π
log(1− r cos(w)) dw = 4π log

√
1 + r +

√
1− r

2
.

(169)

Proof. Denote

I(r) ,
∫ π

−π
log(1− r cos(w)) dw. (170)

By Leibniz’s rule for differentiation under the integral sign,
we have

dI(r)

dr
=

∫ π

−π

∂

∂r
log(1− r cos(w)) dw (171)

= −2 ·
∫ π

0

cosw

1− r cosw
dw. (172)

With the change of variable u = tan
(
w
2

)
and partial-fraction

decomposition, we obtain the closed-form solution to the
integral in (172):

dI(r)

dr
=

2π

r
− 2π

r
√

1− r2
. (173)

It can be easily verified by directly taking derivatives that the
right-side of (169) is indeed the antiderivative of (173). �

C. Proof of Lemma 5

Proof. The bound (103) is obtained by partitioning A>A into
its leading principal submatrix of order n−1 and then applying
the Cauchy interlacing theorem to that partition, see [1, Lem.
1] for details. To obtain (105), observe from (91)

µn,1 =

(
n∏
i=2

µn,i

)−1
. (174)

Combining (174) and (103) yields

Ln ≥ −
1

n
logµn,1 ≥ Rn, (175)

where

Ln ,
1

n

n∑
i=2

log ξn,i and Rn ,
1

n

n−1∑
i=1

log ξn−1,i. (176)

Plugging (104) into (176) and then taking the limit, we obtain

lim
n→∞

Ln = lim
n→∞

Rn

=
1

π

∫ π

0

log(1 + a2 − 2a cos(w)) dw (177)

= 2 log a, (178)

where the last equality is due to Lemma 6 in Appendix B-B
above. In the rest of the proof, we obtain the following
refinement of (178): for any n ≥ 1,

Rn ≥ 2 log a− c1
n
, (179)

Ln ≤ 2 log a+
c2
n
, (180)
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where c1 and c2 are the constants given by (106) and (107)
in Lemma 5, respectively. Then, (105) will follow directly
from (175), (179) and (180).

The proofs of the refinements (179) and (180) are similar,
and both are based on the elementary relations between
Riemann sums and their corresponding integrals. We present
the proof of (179), and omit that of (180). Note that the
function h(w) , 1

π log(1 + a2 − 2a cos(w)) is an increasing
function in w ∈ [0, π], and its derivative is bounded above
by M1 , 2a

π(a2−1) for any fixed a > 1. Therefore, from (104)
and (176), we have∣∣∣∣Rn +

1

n
log(a+ 1)2 − 1

π

∫ π

0

log(g(w)) dw

∣∣∣∣ ≤ M1π
2

2n
,

(181)

and (179) follows immediately. �

D. Proof of Theorem 10

Proof. From Lemma 5, we know that α′ = 0 < α (recall (95)
and (97)). Since g(w) is an even function, we have

I ,
1

2π

∫ π

−π
F (g(w)) dw (182)

=
1

π

∫ π

0

F (g(w)) dw. (183)

Denote the maximum absolute value of F over the interval (98)
by T > 0. It is easy to check that the function F (g(w)) is
2aL-Lipschitz since F (·) is L-Lipschitz and the derivative of
g(w) is bounded by 2a. For the following Riemann sum

Sn ,
1

n

n∑
i=1

F

(
g

(
iπ

n

))
, (184)

the Lipschitz property implies that

|Sn − I| ≤
2aL

πn
. (185)

For i ≥ 2, rewrite (104) and (103) as

g

(
(i− 1)π

n

)
≤ µn,i ≤ g

(
iπ

n+ 1

)
. (186)

Suppose, according to the assumption of Theorem 10, that
F (t) is a non-decreasing function (the non-increasing case is
analyzed similarly). Denote the sum in (109) as

Qn ,
1

n

n∑
i=1

F (µn,i). (187)

Then, separating F (µn,1) from Qn and applying (186), we
have

Qn ≥ Sn −
2T

n
, (188)

Qn ≤
n+ 1

n
Sn+1 +

3T

n
. (189)

Therefore, there is a constant CL > 0 depending on L and T
such that (109) holds. �

APPENDIX C

In the rest of the paper, we frequently use the following
notations. For any given distortion threshold d > 0, let θ > 0
be the water level corresponding to d in the limiting reverse
waterfilling (51). For each n ≥ 1, let θn be the water level
corresponding to d in the n-th order reverse waterfilling (48),
and let dn be the distortion associated to the water level θ in the
n-th order reverse waterfilling (48). For clarity, we explicitly
write down

d =
1

n

n∑
i=1

min(θn, σ
2
i ), (190)

dn =
1

n

n∑
i=1

min(θ, σ2
i ), (191)

where σ2
i ’s are given in (61). Note the d and θ are constants

independent of n, while dn and θn are functions of n. There
is no direct reverse waterfilling relation between dn and θn. It
is easy to see that

lim
n→∞

θn = θ, (192)

and

lim
n→∞

dn = d. (193)

A. Expectation and Variance of the d-tilted Information

Proposition 1. For any d ∈ (0, dmax) and n ≥ 1, let dn be
defined in (191) in Appendix C above. Then, the expectation
and variance of the d-tilted information U (U , dn) satisfy∣∣∣∣ 1nE [U (U , dn)]− RU (d)

∣∣∣∣ ≤ C1

n
, (194)∣∣∣∣ 1nV [U (U , dn)]− VU (d)

∣∣∣∣ ≤ C2

n
, (195)

where RU (d) and VU (d) are the rate-distortion function
given in (50) and the informational dispersion given in (66),
respectively, and C1 and C2 are positive constants.

Proof. Similar to (64), one can obtain

U (U , dn) =

n∑
i=1

min(θ, σ2
i )

2θ

(
X2
i

σ2
i

− 1

)
+

1

2

n∑
i=1

log
max(θ, σ2

i )

θ
, (196)

where X = (X1, . . . , Xn)> is the decorrelation of U defined
in (59). Using (60) and taking expectations and variances of
both sides of (196), we have

1

n
E [U (U , dn)] =

1

2n

n∑
i=1

log max

(
1 ,

σ2
i

θ

)
, (197)

1

n
Var [U (U , dn)] =

1

2n

n∑
i=1

min

(
1 ,

σ4
i

θ2

)
. (198)

Applying Theorem 10 to (197) with the function FG(t) defined
in (101) yields (194). Similarly, applying Theorem 10 to (198)
with the function (168) yields (195). �
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Proposition 1 and its proof are similar to those of [1, Eq.
(95)–(96)]. The difference is that we apply Theorem 10, which
is the nonstationary version of [1, Th. 4], to a different function
in (197).

B. Approximation of the d-tilted Information

The following proposition approximates the d-tilted infor-
mation U (U , d) by U (U , dn). The proof in [1, App. D-B]
works through for the nonstationary case as well.

Proposition 2. For any d ∈ (0, dmax), there exists a constant
t > 0 (depending on d only) such that

P [|U (U , d)− U (U , dn)| > t] ≤ 1

n
, (199)

where dn is defined in (191).

APPENDIX D
CONVERSE PROOF

The following lemma is a direct application of the general
converse result by Kostina and Verdú [10] to the Gauss-Markov
source.

Lemma 7 ([10, Th. 7]). Fix d ∈ (0, dmax). Any (n,M, d, ε)
code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp(−γ)} , (200)

where X = (X1, . . . , Xn)> is the decorrelation (59) of the
Gauss-Markov source U .

Proof of Theorem 6. With Lemma 7 and the established Propo-
sitions 1 and 2, the proof is the same as the converse proof in the
asymptotically stationary case [1, Th. 7, Eq. (97)–(109)]. �

APPENDIX E
LOSSY AEP

A. Notations

For the optimization problem R(X,Y , d) in (84), the
generalized tilted information is given by [10, Eq. (28)]

ΛY (x, δ, d) , −δnd− logE [exp(−nδd (x,Y ))] , (201)

where x ∈ R, δ > 0 and d ∈ (0, dmax). For properties of the
generalized tilted information, see [10, App. D]. For clarity,
we list the notations used throughout this section:

1) X denotes the decorrelation of U defined in (59);
2) X̂ is the proxy random variable of X defined in Defini-

tion 2 in Section III-D above;
3) For any Y , the random vector F ? achieves R (X,Y , d)

in (84);
4) For Y ? that achieves RX(d) in (45), F̂

?
is the random

vector that achieves R
(
X̂,Y ?, d

)
;

5) We denote λ? the negative slope of RX(d):

λ? , −R′X(d). (202)

Given any source outcome u, let x be the decorrelation
of u. Define λ(x) as

λ(x) , −R′(X̂,Y ?, d). (203)

6) Comparing the definitions of d-tilted information and the
generalized tilted information, one can see that [1, Eq.
(18)]

X(x, d) = ΛY ?(x, λ?, d). (204)

7) Recalling (60) and applying the reverse waterfilling
result [6, Th. 10.3.3], we know that the coordinates of
Y ? are independent and satisfy

Y ?i ∼ N (0, ν2i ), (205)

where

ν2i , max(0, σ2
i − θn), (206)

with θn > 0 given in (190).

B. Proof of Theorem 8

The proof is similar to [1, Th. 12], and we point out the
differences between the two.

1) Our Corollary 1 implies that the condition (87) is vio-
lated with probability at most Θ (e−cn) for a constant
c > 1

2 log(a). This is much stronger than the bound
Θ
(

1
poly logn

)
in the stationary case [1, Th. 6].

2) The Berry-Esseen theorem implies that the condition (88)
is violated with probability at most Θ

(
1√
n

)
. This is the

same as the stationary case [1, Eq. (279)–(280)].
3) Similar to [1, Eq. (281)–(299), (305)–(313)] (with minor

distinctions discussed next), we can show that there exists
a constant p > 0 such that the condition (89) is violated
with probability at most Θ

(
1

logn

)
. The relations [1, Eq.

(281)–(291)] remains the same for the nonstationary case
except that the justification of [1, Eq. (286)] needs to be
modified since in the nonstationary case, [1, Eq. (307),
(308), (313)] hold only for i = 2, ..., n but not for i = 1
due to Lemma 5. In order to justify [1, Eq. (286)], we
separately consider the case when i = 1 and i ≥ 2 in [1,
Eq. (305)–(313)]. Since ν21 = σ2

1 − θn = Θ
(
a2n
)

and
λ(x) = Θ(1), in the nonstationary case, we replace [1,
Eq. (305)–(306)] by

1

n

n∑
i=1

m̄i(xi)−
1

n

n∑
i=1

mi(x) (207)

=
1

n

n∑
i=2

2ν4i (λ(x)− λ?)
(1 + 2λ(x)ν2i )(1 + 2λ?ν2i )

+

1

n

n∑
i=2

2x2i ν
2
i (2 + 2λ(x)ν2i + 2λ?ν2i )(λ(x)− λ?)

(1 + 2λ(x)ν2i )2(1 + 2λ?ν2i )2
+

+O

(
1

n

)
, (208)

and restrict the summation in [1, Eq. (309)–(313)] to
be i = 2, ..., n. Combining this modified version of [1,
Eq. (309)–(313)] and (208) implies [1, Eq. (286)] for the
nonstationary case. In addition, due to 1) and 2) above, the
right side of [1, Eq. (293)] is strengthened to be Θ

(
1√
n

)
,
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and hence the right side of [1, Eq. (297)] is strengthened
to be Θ

(
1

logn

)
by choosing the constant p such that

p ≥ A′′1 +
√

2β, (209)

where A′′1 > 0 is the constant in [1, Eq. (286)] and β
defined in [1, Eq. (288)] is bounded. The reason that β is
bounded is that [1, Eq. (288)] has a limit when n tends
to infinity, due to [1, Eq. (285)] and Theorem 9.

4) In [1, Eq. (311)–(312)], we used the following bound: for
any u ∈ T (n, p) and x = S>u, it holds that

|λ(x)− λ?| ≤ B1ηn, (210)

where B1 > 0 is a constant and ηn is in (86). In
the stationary case, the bound (210) follows from [1,
Lem. 6 and Eq. (128)]. In the nonstationary case, due
to Lemma 5, [1, Eq. (128)] holds only for i = 2, ..., n,
while for i = 1, we have∣∣σ̂2

1(x)− σ2
1

∣∣ ≤ O (ρ2n1 ) , (211)

where ρ1 ∈ (a, a2) is a constant. The bound (211) follows
from Lemma 5 and Corollary 1. Then, to justify (210)
in the nonstationary case, we again separately consider
i = 1 and i ≥ 2 in [1, Proof of Lem. 6]. Specifically, we
rewrite [1, Eq. (222)] as

λ(x)

=

Θ(a−4n) +
∑

i≥2:σ̂2
i>θ̂n

1

(1 + 2λ(x)ν2i )2

/
O (ρ2n2 )+

∑
i≥2:σ̂2

i>θ̂n

2(σ̂2
i − σ2

i + θn)

(1 + 2λ(x)ν2i )2

 , (212)

where ρ2 , ρ1
a2 ∈ (0, 1) and θ̂n > 0 is the water level

matched to d via the n-th order reverse waterfilling (48)
over {σ̂2

i }ni=1. It is easy to see from (212) that

λ(x)

=O(ρn3 ) +

 ∑
i≥2:σ̂2

i>θ̂n

1

(1 + 2λ(x)ν2i )2

/
 ∑
i≥2:σ̂2

i>θ̂n

2(σ̂2
i − σ2

i + θn)

(1 + 2λ(x)ν2i )2

 , (213)

where ρ3 ∈ (0, 1) is a constant. Then, similar to [1, Eq.
(223)–(227)], plugging the bound [1, Eq. (128)], which
holds only for i = 2, ..., n, into (213) yields (210).

With these modifications above, the proof of Theorem 8 follows
in a similar way as [1, Th. 12]. �

C. Auxiliary Lemmas

Lemma 8 (Lower bound on the probability of distortion balls).
Fix d ∈ (0, dmax). For any n large enough and any u ∈ T (n, p)

defined in Definition 3 in Section III-D above, and γ defined
in (242) below, it holds that

P
[
d− γ ≤ d

(
xxx, F̂

?
)
≤ d |X̂XX = xxx

]
≥ K1√

n
, (214)

where K1 > 0 is a constant and F̂
?

is in 3) in Appendix E-A
above.

Proof. Appendix E-E. �

Lemma 9. Fix d ∈ (0, dmax) and ε ∈ (0, 1). There exists
constants C and K2 > 0 such that for all n large enough,

P [ΛY ? (XXX,λ(X), d) ≤ ΛY ? (X, λ?, d) + C log n]

≥1− K2√
n
, (215)

where λ? and λ(X) are defined in (202) and (203), respec-
tively.

Proof. The proof of Lemma 9 is the same as [1, Eq. (314)–
(333)] except that we strengthen the right side of [1, Eq. (322)]
to be Θ(e−cn) for a constant c > 1

2 log(a) due to Corollary 1.
�

D. Proof of Lemma 4

After we have proved Lemmas 8 and 9, the proof of Lemma 4
is almost the same as that in the stationary case [1, Eq. (270)-
(278)]. For completeness, we sketch the proof here. We weaken
the bound [10, Lem. 1] by setting PX̂ as PX̂ and PY as PY ?

to obtain that for any x ∈ Rn,

log
1

PY ?(Bd(x))

≤ inf
γ>0

ΛY ?(x, λ(x), d) + λ(x)nγ−

logP
[
d− γ ≤ d

(
x, F̂

?
)
≤ d|X̂ = x

]
, (216)

where λ(x) is in (203). Let E denote the event inside the
square brackets in (76). Then,

P[E ]

=P[E ∩ T (n, p)] + P[E ∩ T (n, p)c] (217)

≤P
[
ΛY ?(X, λ(X), d) ≥ ΛY ?(X, λ?, d) + p(n)− λ(X)nγ−

1

2
log n+ logK1, T (n, p)

]
+ P[T (n, p)c] (218)

≤P
[
ΛY ?(X, λ(X), d) ≥ ΛY ?(X, λ?, d) + C log n

]
+

P[T (n, p)c] (219)

≤ 1

q(n)
, (220)

where
• (218) is due to (216) and Lemma 8;
• From (218) to (219), we used the fact that for u ∈ T (n, p),
λ(x) can be bounded by∣∣∣∣λ(x)− 1

2θ

∣∣∣∣ ≤ B1, (221)

where B1 > 0 is a constant and θ > 0 is given by (51).
The bound (221) is obtained by the same argument as that



19

in the stationary case [1, Eq. (273)]; γ is chosen in (242)
below; the constants ci’s, i = 1, ...4 in (77) are chosen as

c1 = B1 +
1

2θ
, (222)

c2 = B4, (223)

c3 = C +
1

2
, (224)

c4 = − logK1, (225)

where B4 > 0 is given in (241) below and K1 and C are
the same constants in Lemmas 8 and 9, respectively.

• (220) is due to Lemma 9 and Theorem 8.

�

E. Proof of Lemma 8

Proof. The proof is similar to the stationary case [1, Lem.
10]. We streamline the proof and point out the differences.
Conditioned on X̂ = x, the random variable

d
(
xxx, F̂

?
)

=
1

n

n∑
i=1

(
F̂ ?i − xi

)2
(226)

follows a noncentral χ2-distribution with (at most) n degrees
of freedom, since it is shown in [1, Eq. (282) and Lem. 4] that
conditioned on X̂ = x, the distribution of the random variable
F̂ ?i − xi is given by

N
(

−xi
1 + 2λ(x)ν2i

,
ν2i

1 + 2λ(x)ν2i

)
, (227)

where ν2i ’s are given in (206). Then, the conditional expectation
is given by

E
[
d
(
x, F̂

?
)
|X̂ = x

]
=

1

n

n∑
i=1

mi(x), (228)

where mi(x) is defined in (85) in Section III-C above. In view
of (226), (228) and (89), we expect that d

(
x, F̂

?
)

concentrates

around d conditioned on X̂ = x for u ∈ T (n, p). Note that
the proof of Theorem 8 related to (89) is different from the
one in the stationary case, see Appendix E-B above for the
details. To simplify notations, we denote the variances as

Vi(xxx) , Var
[(
F̂ ?i − xi

)2
|X̂XX = xxx

]
, (229)

V (xxx) ,

√√√√ 1

n

n∑
i=1

Vi(xxx). (230)

Due to (227) and (89), we see (F̂i − xi)2’s have finite second-
and third- order absolute moments. That is, we have

V (x) = Θ(1), (231)

for u ∈ T (n, p). Therefore, we can apply the Berry-Esseen
theorem. Hence,

P
[
d− γ ≤ d

(
xxx, F̂

?
)
≤ d |X̂XX = xxx

]
=P

[
n(d− γ)−

∑n
i=1mi(xxx)√

nV (xxx)

≤ 1√
nV (xxx)

n∑
i=1

[(
F̂ ?i − xi

)2
−mi(xxx)

]

≤
nd−

∑n
i=1mi(xxx)√
nV (xxx)

|X̂XX = xxx

]
(232)

≥Φ

(
nd−

∑n
i=1mi(xxx)√
nV (xxx)

)
− Φ

(
n(d− γ)−

∑n
i=1mi(xxx)√

nV (xxx)

)
− 2B1√

n
(233)

=

√
nγ

V (xxx)
Φ′(ξ)− 2B1√

n
, (234)

where
• (233) follows from the Berry-Esseen theorem; B1 > 0 is

a constant, and

Φ(t) ,
1√
2π

∫ t

−∞
e−

τ2

2 dτ (235)

is the cumulative distribution function of the standard
Gaussian distribution;

• (234) is due to the mean value theorem and

Φ′(t) =
1√
2π
e−

t2

2 ; (236)

• In (234), ξ satisfies

n(d− γ)−
∑n
i=1mi(xxx)√

nV (xxx)
≤ ξ ≤

nd−
∑n
i=1mi(xxx)√
nV (xxx)

.

(237)

By (89) and (231), we see that there is a constant B2 > 0
such that ∣∣∣∣nd−∑n

i=1mi(x)√
nV (x)

∣∣∣∣ ≤ B2

√
log log n. (238)

Hence, as long as γ in (237) satisfies

γ ≤ O(ηn), (239)

where ηn is defined in (86), there exists a constant B3 > 0
such that

|ξ| ≤ B3

√
log log n. (240)

Let B4 > 0 be a constant such that

B4 ≥
B2

3

2
+ 1, (241)

and choose γ as

γ ,
(log n)B4

n
, (242)

which satisfies (239). Then, plugging the
bounds (231), (240), (241) and (242) into (234), we
conclude that there exists a constant K1 > 0 such that (234)
is further bounded from below by K1√

n
. �
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