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The study of the dielectric properties of a lattice composed of 

identical metallic or dielectric elements of various geometries has re- 

ceived considerable attention in recent years in connection with the prac- 

tical application of such structures for polarizing devices, microwave 

lenses, and radome materials. It has been shown by the author1 that, 

for spacings and element dimensions small with respect to wavelength, 

the dielectric constant of a completely general uniform lattice of identi­

cal elements may be represented by a tensor (ke) which may be written in 

functional form as

where (T) is the structural anisotropy tensor which is related to the 

geometry of the lattice and (δ) is the polarizability tensor of the 

elements of the lattice. (δ) describes element anisotropy which may be 

due to material, the shape of the element, or both. An example of a lat-

tice element displaying only material anisotropy is a ferrite or gaseous

element of spherical shape immersed in a magnetostatic field. An example

of shape anisotropy is the case of metallic or dielectric objects of non-

spherical shape. In general, then, for spacing and element dimensions 

small compared to wavelength, there can be three orders of anisotropy in 

a lattice—structural or lattice anisotropy, material anisotropy, and 

anisotropy because of element shape. Examples of each type are described

and discussed in detail in the aforementioned reference. A fourth order

of anisotropy, which is related to the granularity of the lattice and be- 

comes important at higher frequencies will be described and investigated
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I. Introduction
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in this paper.

It is usually important that the artificial material be as close as

possible in physical properties to a real dielectric. This requires that 

it should be isotropic; that is, the structure should exhibit the same

properties for a plane wave propagating through it in any direction.

This behavior requires that (ke) reduce to a scalar which, in turn, 

demands that (T) and (δ) become scalars, except for the special case 

in which the structural anisotropy of the array is compensated for by the 

element anisotropy in which case (ke) is reduced to a scalar. The struc­

tural anisotropy tensor (T) will reduce to a scalar only if the lattice 

is cubical, while (δ) becomes a scalar only if the geometry and material 

of the lattice elements are so restricted that the induced fields may be

represented by a set of three mutually perpendicular static dipoles on 

the lattice points.1 Isotropic behavior further requires that the moments 

of the resultant dipoles must be proportional to the inducing field. The

proportionality factor is a scalar independent of direction. However, at

shorter wavelengths the representation of the lattice elements by static

dipoles will not be valid and the medium becomes anisotropic. The main

objective of this paper is to evaluate the anisotropy produced by the

finite ratio of wavelength to element spacing and to show that the

Clausius-Mosotti relation so often used in predicting the properties of

artificial lattice dielectrics is a satisfactory approximation only if the

spacing is very small with respect to wavelength.

II. Static Model of Triad Medium

The constitutive dielectric parameters for uniform space arrays of 

generalized structural geometry composed of similarly oriented elements 

of completely generalized material and shape have been derived by the 

author.1 The theoretical procedure employed in evaluating these parameters



3.

is analogous to the classical method used in the study of the dielectric 

properties of nonpolar media, and assumes that the disturbing action of

each element on a uniform static field can be allowed for if each gen-

eralized particle is replaced by a set of three mutually perpendicular

static dipoles. This assumption implies the restriction that element

size and spacing be small compared to wavelength.

The structure under consideration in this paper is a cubical lattice

of arbitrary isotropic elements. Isotropic elements may best be simulated 

by objects whose geometry and material is so restricted that the induced 

fields may be represented by three mutually perpendicular static dipoles. 

Isotropy further requires that the moments of the resultant dipole must 

be proportional to the inducing field and that the proportionality factor 

is a scalar independent of direction. Therefore, in order to represent a

collection of arbitrary isotropic elements, the lattice structure under

consideration in this paper will consist of a triad of three mutually

perpendicular elements and will, hereafter, be referred to as a triad

medium. The material and geometry of these elements will be restricted

so that only static dipoles will be induced. The moments of these dipoles

are proportional to the components of the inducing field in the corres- 

ponding direction with a scalar proportionality constant which will be

denoted by δ . Of course, the isotropic element could also have been 

represented by a sphere of diameter small compared to wavelength. The 

fundamental dielectric parameters for this lattice structure may be ob-

tained from the results of the aforementioned article. The dielectric 

constant tensor (ke) when interaction between lattice elements is neg- 

lected, is given by

(1)
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where (δ), the polarizability tensor, is defined by the relation

(2)

where (T) is the diagonal tensor given by1

III. Dynamic Model of Triad Medium—Method 1.

Equations (1) and (2) are valid only if the spacing between the 

elements of the lattice remains small compared to the wavelength. This 

restriction can be removed by taking into consideration the total field

scattered by the dipole elements rather than simply the static dipole

contribution. As has already been emphasized, such a computation would

N = number of elements per unit volume,

denotes the resultant dipole moment of the triad at lattice points, 

ε0 = permittivity of free space, E0 = the incident electric vector, 

and P = the polarization vector. The derivation of Eq. (1) assumes 

that the field acting on each individual element in the presence of the 

others remains equal to the externally applied field. If the contribu­

tion of all elements in the exciting field of each element is taken

into consideration, the dielectric constant is given by



5.

be valuable in determining the approximation involved in lattice problems 

with specialized element geometries such as disks, strips, etc. where the 

static approximation has frequently been used by many authors.

In this cynamic model in which total scattered fields are consi-

dered, a semi-infinite region of the lattice is considered as shown in

Fig. 1. A plane wave polarized in the y direction is incident from 

the left. The total field in the lattice medium is given by

(3)

where Ey is the y component of the exciting electric field at 

(Χ, Y, Ζ) and consists of the incident field Eyinc plus the contributions 

of the scattered fields Eys from the remaining elements (see Fig. 1).

The amplitude of the field scattered by a triad of mutually perpendicular 

dipoles is given by,

where is the incident field on the triad and is the distance from

the center of the triad to the point of observation. Since all the ele­

ments in the plane z = Z are influenced by the exciting field, in the

same way, the exciting electric and magnetic fields are a function of the 

z coordinate only. The only restriction that will be imposed is that 

the geometry of the elements is such as to insure a predominantly dipole 

field; the higher multipole excitation should be small to insure isotropy.

The bulk constants, as used here, are such that the usual results 

derivable from Maxwell's equation in an ordinary dielectric medium hold
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in any macroscopic region of the loaded material. The idea of macroscopic 

field expresses the concept of an average field in a region large compared 

to the mean spacing between the loading particles.

Using the expression for the field scattered by a single triad of 

dipoles, the total scattered field at the point (X, Y, Z) equals

where

and

Σ' signifies that the field arising from the element (X, Y, Z) is to 

be omitted from the summation. Since the expression for is slowly

varying with respect to m1, m2, and m3, the summation can be replaced by 

an integration by using the trapezoidal rule. Changing variables to 

α = m1d, β = m2d, γ = m3d the triple summation becomes

(4)
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where

and these may be integrated by parts, the integrated part vanishing at 

both limits; the fourth term of the integrand integrated with respect to 

α and β gives

(5)

This integral is evaluated by performing a transformation to polar coor- 

dinate system centered at (X, Y). The second integration around the point 

(X, Y, Z) corresponds to the omission from the summation of the field of 

the particle at that point. If for this term the near field is considered, 

that is, the highest power of

Substitution of the results of Eqs. (5) and (6) in Eq. (3) gives

(6)

The first integrand involves terms like

in the integrand, the second

integral reduces to
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(7)

The solution of Eq. (7) for the exciting field is obtained by operating 

on both sides of the equation with [(∂2/∂z2) + k2]. This gives

(8)

(9)

(10)

(11)

It can be easily shown that

kxx = kyy = kzz,

and replacing 1∕d3 by N, number of elements per unit volume, the

The expression under the integral sign yields

Substituting this result in Eq. (8) yields the differential equation

the solution of which is

Since the elements of the medium consist of electric dipoles, the permea- 

bility of the medium is unity and therefore

(12)



dielectric tensor is given by

9.

(13)

(T1) is defined by Eq. (2). This expression for the dielectric tensor 

(ke) is identical with the expression obtained by electrostatic considera­

tions [see Eq. (2)] and represents the Clausius-Mosotti relations for an 

isotropic dielectric. This result clearly demonstrates that consideration

of the retardation effects of the fields induced in the elements of the

array, for practical purposes, can only give results identical to those

obtained from simple electrostatic considerations. This degeneration of

the exact solution is the result of the approximation used in evaluating

the summations occurring in the formulation of the problem. The trape-

zoidal rule which was used to carry out this summation has been previously 

used by many authors in problems of this type.2 Since in this paper 

simple dipole excitation only is considered, it has been possible to quan- 

titatively explore the extent to which the use of the trapezoidal rule is 

valid in lattice problems of the type described. The foregoing analysis 

clearly indicates the limitations of the method. The application of the 

trapezoidal rule restricts the spacing to values small with respect to λ

In this section another formulation will be used to carry on a 

rigorous solution of the problem. The expression for the vector potential 

A may be expressed in terms of a Green's function and a source distribu­

tion function. The Green's function for the lattice structure being con- 

sidered may be written as

IV. Dynamic Model of Triad Medium -- Method 2.
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where

The definition of Green's function is similar to the conventional defini-

tion of a three-dimensional Green's function. The Floquet type phase

variation between sources has been omitted in this definition and will be

absorbed in the current distribution. Let

to the current distribution at the center of the coordinate system. The

vector potential is expressible in this way in terms of the current on the 

elements of the infinite unbounded three-dimensional array. The exact amp­

litude of each mode depends, of course, on the specified excitation. For

dipolar fields the current distribution is uniform and

is the current distribution, dv is the volume element. The field at 

the point

may be expres-

sed in terms of dipole moments as follows:

is,

represent a vector whose

magnitude is equal to the propagation constant and whose sense is the 

direction of propagation. The current distribution on the (m1, m2, m3)th 

dipole triad will be related by the factor
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(14)

. The vector operators are taken with respect to the field point r but 

in view of the form of the operand, these operators may act upon the source 

point

(15)

where

and

(16)

where is a unit vector in the direction of the dipole moment vector

is defined by

The left hand side of Eq. (15) is a slowly converging series. A more

tractable form can be obtained by using the Poisson summation formula.3

The Poisson formula for an infinite triple sum may be written as

without changing the value of the expression. If the observation 

point is chosen to be the origin of the coordinate system, the expression

for the total field becomes
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An essential restriction in the application of this formula is that con- 

tinuity of the function is required. However, f(m1, m2, m3) is not 

continuous at (m1 = 0, m2 = 0, m3 = 0), but since this term is not in- 

cluded in the summation, the difficulty is avoided. Furthermore, the

integral

must be convergent. In the present application this integral has the form

Assuming that k equals kr - jki, where ki is a small positive quantity, 

it can easily be shown that this integral converges. The assumption of an 

imaginary part for k is a valid one, since the medium is always lossy.

The integration can be performed by a transformation to polar coordinates 

(see Eq. 5), ki may be allowed to approach zero after integration.

Applying Eq. (16) and (A9) of the Appendix to Eq. (15) yields

(17)
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In Eq. (17) the term in the brackets is the result of the application of 

Poisson's summation formula for a finite term (see Appendix, Eq. (A9)] to 

the term at (m1= 0, m2 = 0, m3 = 0). L represents the sum of the single 

term, single terms and double terms appearing in Eq. (A9). In this appli­

cation L is simply the sum of a finite number of terms. The first integral 

in Eq. (17) is evaluated in the appendix [see appendix Eqs. (A1) to (A5)]. 

Substituting this value gives

(18)

(19)

(20)

The electric moment of an element of the triad medium is given by

Solving Eqs. (18) and (19) simultaneously gives
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This is the most general expression for the propagation constant of the 

triad mcdium. Using Eq. (A11) of the Appendix, Eq. (19) becomes

(21)

After multiplying both sides 

of Eq. (21) by p, the summation term may be written as

Equation (21) is expressed in terms of the reciprocal lattice vectors

and The expression for κ in terms of the derivatives of

is more convenient since in this case it is easier to evaluate the derivatives 

than the integrals. It is seen that Eq. (21) is not defined when is so

chosen that

This is, however, precisely the condition for Bragg reflections in a lattice. 

Since in the case under consideration there exists coupling between the triad 

elements, can never assume values which describe Bragg reflections; hence 

the series can always be considered to converge for the purpose of this paper.

Evaluation of the Propagation Constant.



(22)

15.

This is a rapidly converging series so that a small number of terms yields 

reasonably accurate results.5 The evaluation of L involves a simple εub- 

stitution for m1, m2, m3 in F(m1, m2, m3) which is defined by Eq. (15). 

The third term in the right-hand side of Eq. (21) is the integral

(23)

The integrand of (23) can be written as

(24)

where

where R = (x21 + x22 + x23)1/2. This expression involves terms like
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(25)

(26)

The convergence of Eq. (23) can be demonstrated by considering the term 

involving the highest power of 1/R,

which shows that the integral of Eq. (23) is convergent. Engineering ap­

proximations may be used to reduce the number of terms to be integrated in 

Eq. (24). These approximations will depend on the magnitudes of the ratio 

of spacing to wavelength and the degree of accuracy desired. For d∕λ < 1 

the consideration of the terms with the highest powers of 1/R is suffi- 

ciently accurate.

The expressions commencing with the fourth term in Eq. (21) are terms 

involving derivatives. The values of the derivatives at the limits (-1, -1, -1) 

and (1 ,1, 1) do not increase as the order of the derivatives increases. 

Therefore the evaluation of the first few terms will be sufficient for an

accurate determination of κ.

Simplification of Eq. (22) after the aforementioned evaluation results 

in an equation of the form

where Qij is a function of κx1 , κx2, κx3 and k. (Q) will be
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referred to as the high frequency anisotropy tensor. In order that Eq. (26)

have a solution other than the trivial solution px1 = px2 = px3 = 0,it is 

necessary and sufficient that the determinant

(27)

Equation (27) is a function of κx1, κx2, κx3 and κ. In order to find

the propagation constant in a given direction 0 ̸and θ with respect to a 

spherical coordinate system three more equations may be written

(28)

The simultaneous solution of Eq. (27) and Eq. (28) yields the propagation 

constant to any desired direction.

To illustrate the suggested technique for the evaluation of the general 

results given in Eq. (22), the propagation constant is computed for values of

kd < 1 and κx1d < 1. In this frequency range, the expression for 

f(x1, x2, x3) may be expressed by a finite number of terms of its series rep­

resentation, making possible an exact evaluation of the propagation constant.

It is assumed that the propagation is along the direction x1, in which 

case Eqs. (27) and (28) become
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The simultaneous solution of these equations gives a relation between 

κx1d and kd, which is plotted in Fig. 2. (In Fig. 2, K represents 

κx1.) The details of the solution are given in Appendix B.

An examination of the elements of the high-frequency anisotropy 

tensor (Q) given in Eq. (B4) in Appendix B, shows that the magnitude of 

the off diagonal elements are small in comparison with the diagonal terms 

for the range of frequencies considered in this computation. The computa­

tion in Appendix B clearly indicates that the magnitude of anisotropy will 

depend on the relative importance of the off diagonal terms. Therefore 

for this case the anisotropy introduced is small. However, at shorter 

wavelengths, the magnitude of the off diagonal elements of (Q) becomes im- 

portant, introducing large anisotropies the magnitude of which is a function 

of frequency.

A comparison of the curves in Fig. 3 shows that for the larger value 

of (d∕a), corresponding to the case of small dipole moments or small ele­

ment density (see Appendix B for the definition of a), the dependence of

κx1∕k on frequency is not as significant as for dipoles of large dipole 

moment or large element density. The dielectric constant kx1x1 evaluated 

from the slope of the curve for d/a in the neighborhood of κx1 d = 0, 

kd = 0 gives

and

For the same value of d/a, the Clausius Mosotti relation gives 

kx1x1 = 1.55. This is in excellent agreement.



For spacings small compared with wavelength, the resultant dipole 

moment may be considered perpendicular to the propagation constants (see 

Sec. I and II). In this particular case, for the first Brillouin zone 

n1 = n2 = n3 = 0, Eq. (21) reduces to

(29)

To compare the expression in Eq. (29) with that obtained in Sec. II, the 

same approximation used in that section for the evaluation of the near 

fields will be used here. Therefore, in Eq. (29) representation of

(30)

is taken parallel to the x1 axis; L defined by Eq. (A10) in

the appendix, reduces to 0. Carrying on the integration yields

with the notation of Sec. I, the dielectric tensor may be written as

19.

, defined by Eq. (15), by the first term of its series expres-

sion yields

where
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(31)

This is identical with the results of Sec. I and II and very clearly in­

dicates the limitations of the method given in those sections. Consider­

ing the expression in (21), it is seen that for large values of λ∕d,

Eq. (31) is a very good approximation since the contribution of terms 

n1, n2, and n3 ≠ 0 considered negligible. On the other hand, for 

d of the order of λ , the contribution of the terms when n1, n2, and 

n3 ≠ 0 is important and must be considered. Therefore it can be seen that 

the Clausius-Mosotti relation is a very good approximation for large values 

of λ∕d. For general values of the ratio λ/d, on the other hand, the 

complete expression derived in this section must be used. The result ex- 

pressed in Eq. (21) is very general and quantitatively predicts that part 

of the anisotropy of an artificial dielectric which is due to the finite

ratio of wavelength to element spacing. Since the design of artificial 

dielectrics to simulate real dielectrics is an important practical problem, 

these results are useful in calculating how far short of this goal the ar-

tiricial structures fall with respect to the simulation of truly isotropic

characteristics.

The expression given by Eq. (31) shows that the dielectric constant of 

the lattice may be less than or greater than unity for negative or positive 

polarizabilities respectively. The elements of the polarizability tensor 

will be positive if the dipoles are operated at a frequency below their 

resonant frequency and will be negative if operated above.

To obtain a dielectric constant of unity, the lattice medium must be 

embedded in a dielectric binder of appropriate dielectric constant. The 

expression for the dielectric constant corresponding to Eq. (31) for the
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case in which the lattice is embedded in a uniform dielectric with

dielectric constant km, is given by

(32)

For the composite dielectric tensor to be a unity tensor, the following

relation must be satisfied

(33)

The corresponding scalar equation is

with similar equations of kmx2x2 and kmx3x3. This relation is plotted

in Fig. 2. Since ordinary embedding dielectric materials have a dielectric 

constant greater than one, only the portion of the curve to the right of 

x = 1 is of interest. There are two distinct regions of importance. For 

the first region, 1< km < 4 , the polarizability is negative and there-

fore the medium has to be operated at a frequency above the resonant fre­

quency of the triad elements. For the region km > 4, the polarizability

is positive and therefore the medium has to be operated at a frequency 

below the resonant frequency.

In certain applications of isotropic artificial dielectrics such as

in radome design, it is important to obtain dielectrics with an index of 

refraction of unity. In order for this to be true, not only must the 

dielectric constant be unity, but the relative permeability must also be 

equal to 1. The relative permeability may be made equal to unity by prop- 

erly restricting the geometry of the elements so that magnetic dipole 

fields are not induced. Consequently in order to have a reflectionless
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and also isotropic dielectric, the geometry of the cubical lattice must

be so restricted that the anisotropy caused by the finite ratio of wave-

length to spacing is negligible. Furthermore, the material and shape of

elements must be so restricted that neither higher order multipoles 

(electric or magnetic) nor magnetic dipoles are excited. Work is con- 

tinuing on the realizability of the triad elements for such arrays.

V. Conclusion.

Three different approaches have been used to evaluate the expression

for the dielectric parameters of a cubical lattice with isotropic elements.

a) A molecular analogy with a consideration of static dipole interac­

tion leading to the Clausius-Mosotti relations.

b) An analysis based on the summation of scattered time-varying 

fields in which it is demonstrated that the use of the trapezoidal summa-

tion approximation which is so frequently used in these problems, completely

removes retardation effects. The results obtained in this case could much

more easily have been obtained directly from static considerations.

c) An exact solution valid for all values of spacing to wavelength 

ratio. In this case, the importance of the retardation effect in the

general result for the propagation constant of the composite medium is

clearly seen. This exact solution also brings to light a type of aniso- 

tropy existing in artificial structures which has usually been ignored in 

previous investigations. This is an anisotropic effect which exists even 

in arrays composed of isotropic elements arranged in structurally isotropic 

patterns; it is an isotropy caused by the granularity of the artificial 

structure that becomes increasingly important at higher frequencies when 

the interelement spacing becomes appreciable in terms of wavelength. This 

effect is calculated in the paper in terms of the high-frequency anisotropy
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tensor, Q.

This investigation also has direct application in the design of 

isotropic materials for the control and direction of microwave energy.

By varying the frequency of operation above and below the resonant 

frequency of the triad elements, the effective dielectric constant can

be made less than or greater than unity, respectively. If the triad

medium is embedded in a uniform dielectric, it is possible to simulate

materials with dielectric constant of unity. Such material may be useful 

in applications in which a reflectionless dielectric is required.
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APPENDIX A

24.

(a) Evaluation of the Expression S

In order to evaluate

the change of variables x1d = y1, x2d = y2, and x3d = y3 is made. 

Hence the expression for S becomes

Consider the expression

(A3)

(A1)

the Fourier transform of this expression with respect to y1 is

(A2)

Taking the Fourier transform of the right-hand side of Eq. (A2) with respect 

to y2 gives
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The Fourier transform expression on the right-hand side of (A3) with 

respect to y3 yields

With the use of well-known relations of operational calculus the expression

for S reduces to

(A5)

and
(A6)

(A4)

(b) Poisson Summation Formula for a Finite Sum

A relation similar to Eq. (16) will be desired for a finite sum. For 

simplicity, the derivation will be carried through in one dimension. The 

derivation for the three-dimensional case is similar and the result only

will be stated.

If in the interval m ≤ x ≤ m + 1, f(y) meets the requirements for 

representation as a Fourier series, the following equations give the value 

of that representation both in the open interval and at the end points of 

the interval m ≤ y ≤ m + 1
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If both sides are summed up from m = a + 1 to m = b - 1 and if 

-[f(a) + f(b)]∕2 is added to both sides, the Poisson transformation for 

a finite sum is obtained.

(A7)

The first two terms on the right-hand side of Eq. (A7) are the results of 

approximating a summation by an integration using the trapezoidal rule; 

hence the last term of Eq. (A7) can be considered as the correction to the 

trapezoidal rule. In some cases this trapezoidal part is quite accurate 

in summing the series, thus transferring difficulty from summing f(m) to 

integrating the same function. Integrating the last integral in Eq. (A7) 

P times yields

(A8)

where

is the Riemann Zeta function. This derivation can be extended to the three-

dimensional case, giving
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Changing Eq. (A9) into a form similar to Eq.(A8) results in

(A9)
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(A10)

where L represents the sum of the single terms, single sums and double sums.
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In Eq. (A10)

(A11)

The evaluation of L in Eq. (22) gives

(B1)

indicates circular permutation of (x, y, z). Unless the 

derivatives increase very rapidly the transformed series in Eq. (A10) may be

written as

APPENDIX B

Solution of Equation Pet Q = 0
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The integral in Eq. (22) gives

(B2)

The expressions in (B2) are evaluated by considering the first three terms 

of the series expansion of f(x1, x2, x3). The expressions involving the 

derivatives yield
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(B3)

It is assumed that the polarizability δ of the lattice elements is equi- 

valent to that of a spherically shaped conducting scatterer. Therefore δ 

will be substituted by 4πε0a3, where a is the equivalent radius of the 

triad elements when replaced by conducting spheres.

The substitution of the expressions given by (B1), (B2), (B3) and 

δ = 4πε0a3 in Eq. (22) yields for the elements of Det Q
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gives a relation between (κx1d) and (kd), which is plotted in Fig. 2.

It should be pointed out that because of the rapid convergence of the series 

appearing in the expressions for the elements of Det Q , only a very small 

number of terms was necessary to plot Fig. 2.

(B4)

Substitution of the previous expressions in

(B5)
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Fig. 1 Plane Polarized Wave Incident on Region z > 0 Containing 
Triad Elements in Cubic Lattice of Side d.



Fig. 2. Propagation constants for various ratios d/a.



Fig. 3 Graphical Representation of


