
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Thermal modeling of the TMT
Telescope

Myung Cho, Andrew Corredor, Konstantinos Vogiatzis,
George Angeli

Myung Cho, Andrew Corredor, Konstantinos Vogiatzis, George Angeli,
"Thermal modeling of the TMT Telescope," Proc. SPIE 8336, Integrated
Modeling of Complex Optomechanical Systems, 83360V (10 November
2011); doi: 10.1117/12.915634

Event: Integrated Modeling of Complex Optomechanical Systems, 2011,
Kiruna, Sweden

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Sep 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Thermal Modeling of the TMT Telescope 
 

Myung Cho*1, Andrew Corredor2, Konstantinos Vogiatzis3, George Angeli3 
 

1GSMT Program Office, National Optical Astronomy Observatory 
950 N. Cherry Ave., Tucson, AZ 85719 

2Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, AZ 85721 
3TMT Project Office, California Institute of Technology, Pasadena, CA 91125 

 
ABSTRACT 

Thermal modeling of the Thirty Meter Telescope (TMT) was conducted for evaluations of thermal performances by 
finite element (FE) and optical analysis tools.  The thermal FE models consist of the telescope optical assembly systems, 
instruments, laser facility, control and electronic equipments, and telescope structural members.  A three-consecutive-day 
thermal environment data was implemented for the thermal boundary created by Computational Fluid Dynamics (CFD) 
based on the environment conditions of the TMT site. Temporal and spatial temperature distributions of the optical 
assembly systems and the telescope structure were calculated under the environmental thermal conditions including air 
convections, conductions, heat flux loadings, and radiations.  With the calculated temperature distributions, the thermo-
elastic analysis was performed to predict thermal deformations of the telescope structure and the optical systems. The 
line of sight calculation was made using the thermally induced deformations of the optics and structures. Merit function 
routines (MFR) were utilized to calculate the Optical Path Difference (OPD) maps after repositioning the optics based on 
a best fit of M1 segment deformations. The goal of this thermal modeling is to integrate the mechanical and optical 
deformations in order to simulate the thermal effects with the TMT site environment data from CFD. 

Keywords: Telescope structure thermal analysis, TMT site environment data, thermal response, Merit function 
calculations, thermo-elastic analysis, TMT telescope. 

 
1. INTRODUCTION 

 
Large telescopes commonly require high fidelity modeling to predict the performances. For ground-based extremely 
large telescopes, thermal modeling of the telescope systems is highly inter-related with many design parameters and 
environments; therefore, it is sophisticated in predicting the performances. Integrated modeling of extremely large 
telescopes is highly demanding. For such telescopes, balancing the performance between wind buffeting and mirror and 
dome seeing has always been one of the challenging requirements to fulfill scientific goals[1].  A three-year 
environmental measurement of the TMT baseline site[7] and Computational Fluid Dynamics (CFD) techniques provide 
the thermal environment parameters surrounding the TMT structure. For thermal finite element models, the 
environmental record and CFD predictions provide expected flow fields and thermal boundary conditions in terms of 
ambient air profiles, convection coefficients, heat fluxes, and radiation properties. These parameters were implemented 
to predict thermal responses and thermal deformations of the TMT optics and the structure [9].   
 
TMT will achieve excellent image quality for both seeing limited and adaptive optics (AO) modes of operation. The 
seeing limited mode is evaluated with the normalized point-source sensitivity (PSSN) [16].    For primary mirror control 
system (M1CS), AO performance is achieved when seeing-limited performance is achieved. Overall thermal modeling 
data flow schematic in the TMT is shown in Figure 1.  Modeling framework requires interaction matrices that are inputs 
to or outputs from several other interface modules and analyses. Certain analysis often uses a quasi-static model, whereas 
the rest require varying degrees of fidelity of dynamic modeling in the Monte-Carlo Framework. 
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The main philosophy in this thermal modeling is to develop appropriate models to address specific required operational 
scenarios. The thermal results from the operation will be able to provide a telescope thermal control strategy, confirm 
error budget allocation in telescope pointing, M1CS actuator stroke, Secondary mirror (M2) hexapod range, and other 
thermally induced deformations in the telescope structure members. In addition, these thermal results are to be utilized to 
provide input to wavefront control strategy and TMT optics performance modeling. 
 

   
 

Fig. 1.  Data flow in thermal modelling in Monte-Carlo Framework.  
 
Thermal analysis for the Thirty Meter Telescope Structure was performed using finite element analysis in ANSYS. In 
such analysis, the entire telescope structure was modeled and analyzed under different thermal loads. The temperature 
distribution on the model was calculated using predetermined heat loads for both Horizon pointing (Zenith angle = 90º, 
Daytime Maintenance/Service Configuration) and Observation configurations (Zenith Angle = 32º, Nighttime Observing 
Configuration). The present analysis was performed in order to predict the thermal responses of the telescope structure 
during a 3 day/night period of continuous operation.  
 
The thermal finite element models developed were based on the dimensions and physical properties of the structural 
version of the telescope finite element model created by Empire Dynamic Structures, Ltd [11].  The telescope models 
analyzed in this report incorporate the entire elevation structure, the azimuth structure, the foundation pier structure and 
the Nasmyth platforms as shown below in Figures 2. (a) and (b).  Moreover, the major structural components in the 
telescope and the instruments located on both Nasmyth platforms were modeled in order to analyze the thermal effects 
on the structure due to the heat conductive, heat convective and heat radiative loads.  
 

 
                                 (a)                                                                (b)                                                                 (c) 

Fig. 2. (a) FEM Telescope Structure used for daytime operation (Zenith angle = 90º) ; (b) FEM Telescope Structure used for night 
time operation (Zenith angle = 32º); (c) Thermal environment of the telescope. 
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 The thermal environment of the telescope is shown in Figure 2(c). The boundary conditions specified on the telescope 
model are the following: 

• Heat dissipation from M1 actuators, instruments and the heat dumps located on the Nasmyth platforms. 
• Convection of air on the telescope structure’s surfaces excluding the foundation pier. 
• Radiation exchange from surface to surface, and radiation losses to the environment.  

 
The heat dissipated from the Secondary Mirror (M2), the Tertiary Mirror (M3) and the hydrostatic bearings on the 
telescope structure have also been included in this analysis. The variables in the thermal environment of the TMT are as 
follows: 

h(x,y,z,t): Heat transfer coefficient (varies depending on time and location) 
qINST: Instrument heat dissipation 
qM1: M1 Heat dissipation 
qM2: M2 Heat dissipation  
qM3: M3 Heat dissipation  
qRAD: Radiation Surface to surface 
qH.D.: Heat dumps dissipation 
qSKY: Radiation losses (Night Sky) 
T(x,y,z,t)AIR: Air Temperature 
T(x,y,z,t): Surface temperature 
 

With finite element methods, detailed analyses have been performed on the telescope. The thermal response of the finite 
element thermal model was calculated for both observation and maintenance/service configurations during the three day 
and night period of operation.  
 

2. THERMAL ANALYSIS 
 
2.1.1 Thermal Loads and Boundary Conditions 
 
In order to evaluate the thermal response of the telescope appropriately, the entire telescope structure model utilizes well 
defined telescope operation boundary conditions and the site environment conditions. Such conditions were air 
convection on the telescope’s surfaces; heat dissipation from M1 actuators, the instruments and heat dumps on the 
Nasmyth platform; radiation exchange from surface to surface and radiation losses to the environment. Furthermore, 
extended thermal analyses have been conducted in order to quantify the thermal results.  
 
A three-consecutive-day thermal environment data was implemented to predict thermal responses of the telescope 
structure. The thermal environment data and thermal boundary condition was created by CFD based on the environment 
conditions of the TMT site [14]. Daytime environment data was simulated by CFD analysis when the telescope structure 
and the air inside the enclosure are controlled by air conditioner.  In general, the ambient air temperatures and heat 
convection coefficients are parameterized to account for the average temperature of the previous night and predicted 
temperature of the following night. Nighttime environment data was also simulated by CFD analysis based on 
representative nights from the Stochastic Framework, or the Standard Year [14].  Stochastic Framework contains a 3-year 
record of environmental parameters, telescope orientations, and observing data [15]. The ambient air temperatures and 
heat convection coefficients were sampled at every two minutes over the telescope structure.  In this paper, the following 
analyses were performed with the three-consecutive-day thermal environment data: 
 
For each of the three days, thermal analysis was performed for Day and Night mode as follows:   

• Case A: Daytime Mode - Combined thermal loads (Air convection and conduction) 
• Case B: Nighttime Mode - Combined thermal loads (Air convection, Radiation and conduction) 

 
2.1.2 Air temperature variation 
 
Extensive CFD analyses have been performed to quantify air flows inside the enclosure. Moreover, some simulation 
schemes have been developed for the air temperature distribution around the telescope. For the Maintenance, Service, or 
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day time Air Conditioning Configuration, the spatial variation of the air temperature occurs in three zones as depicted in 
Figure 3; in addition, the three time-dependent air temperature profiles used for the each daytime configuration are 
shown in Figures 4(a). Such profiles show the variation in air temperature during the 12.5 hour heat cycle. 
 

 
                             (a)                                                                         (b)                                                          (c) 
Fig. 3. Typical spatial and temporal variations of air temperature on TMT telescope structure,  (a) Temperatures of stratified daytime 
air in enclosure; (b) Ambient air temperature in time, hours; (c) Three zones identified  in finite-element model of telescope structure. 

 
For the night-time mode, Observation Configuration, ambient air temperature profiles were implemented and applied on 
the telescope structure. The effects from the temporal and spatial variations of the air temperature on the telescope for 
each nighttime (11.5 hour heat cycle) configuration were evaluated. Typical temporal variation of the air temperature on 
the telescope for the second nighttime is depicted in Figure 4(b). In Figure 4(a) for the third day, two air conditioning 
predictions during the day time are shown for the third night operation. Thermal analysis was made for both predictions, 
and results were summarized for the Prediction: V2. 
 

                    
                                                                          (a)                                                                         (b)                                                           
Fig. 4. Typical spatial and temporal variations of air temperature on TMT telescope structure,  (a) Air temperature temporal 
distributions for 3 days and nights; (b)  Ambient air temperature in time, hours for second night and  Air temperature spatial 
distribution at 1 hour from the beginning of the second night. 
 
2.1.3 Conduction Analysis (Heat Dissipation) 

The conduction effects on the telescope were determined based on the heat dissipation from the instruments, the heat 
dumps located on the Nasmyth platforms, and the heat dissipated by the M1 actuators. Heat dissipations from M2, M3, 
and the hydrostatic bearings on the telescope structure were also included in the present analysis; they are additional 
loads from the previous thermal performance analysis.  The heat dissipated by each component is listed in Table 1. It is 
noted that in both daytime and nighttime configurations, the heat flow values shown on Table 1 were assumed to be 
constant for the duration of the heat cycle.  

Table 1: Heat Dissipation for Daytime and nighttime configurations (for M1, heat load of 5W/segment was applied). 
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                     Nighttime Heat Dumps Daytime Heat Dumps 

Item Name Shape/Qty. Volume 
Surface 
area (m2) 

N AA 
(kW) 

N AA from 
Glyc (kW) D AA (kW) 

D AA from   
Glyc (kW) 

NFIRAOS optical bench(4*4*8) Box Space envelope drawing 160.0 -1 0 -1 0 
NFIRAOS electronics cabinet 1 3.7 (W) x 2 (H) x 0.9 (D) 25.1 0.2 0.4 0.2 0.4 
               
IRMS/WIRC Cylinder 2 (Dia.) x 4 (H) 31.4 0.1   0.1   
WIRC electronics cabinet 3 1.8 (W) x 2 (H) x 0.9 (D) 14.0   0.09   0.09 
               
IRIS Cylinder 2 (Dia.) x 4 (H) 31.4 0.1   0.1   
IRIS electronics cabinet 4 2.4 (W) x 2 (H) x 0.9 (D) 17.5   0.25   0.25 
               
NIRES-B/NIRES-R Cylinder 1 (Dia.) x 1.5 (H) 6.3 0.1   0.1   
NIRES electronics cabinet 3 1.8 (W) x 2 (H) x 0.9 (D) 14.0   0.075   0.075 
               
APS Box 3 (W) x 1 (H) x 4 (D) 38.0 0.1   0.1   
APS electronics cabinet 2 1.2 (W) x 1.2 (H) x 0.9 (D) 7.2   0.25   0.25 
               

MIRAO Box 
1.3 (W) x 2.85 (H) x 2.2 
(D) 25.7 0.1   0.1   

MIRES Cylinder 1.5 (Dia.) x 3.8 (H) 21.4 0.1 0.075 0.1 0.075 
MIRAO/MIRES electronics 
cabinet 3 1.8 (W) x 2 (H) x 0.9 (D) 14.0   0.1   0.1 
               
WFOS Cylinder 7 (Dia.) x 11.7 (D) 334.1 0.1   0.1   
WFOS electronics cabinet 3 1.8 (W) x 2 (H) x 0.9 (D) 14.0   0.3   0.3 
               
HROS Box 11 (W) x 4 (H) x 10 (D) 388.0 0.1   0.1   
HROS electronics cabinet 3 1.8 (W) x 2 (H) x 0.9 (D) 14.0   0.75   0.75 
HROS enclosure cooling Box 2 (W) x 2 (H) x 2 (D) 24.0   0.25   0.25 
               
IRMOS Cylinder 4 (Dia.) x 5.9 (D) 99.2 0.1   0.1   
IRMOS meat locker Box 1 (W) x 2 (H) x 2 (D) 16.0   0.25   0.25 
IRMOS electronics cabinet 7 4.3 (W) x 2 (H) x 0.9 (D) 28.5   0.75   0.75 
M1          2.5   2.5 
M2 Cell    0.25 0.25 0.25 0.25 
M2 Cell control    0.3 0.3 0.3 0.3 
M2 Hexapod    0.21 0.21 0.21 0.21 
M2 Hexapod control       0.3 0.3 0.3 0.3 
M3 Cell    0.25 0.25 0.25 0.25 
M3 Cell control    0.3 0.3 0.3 0.3 
M3 Positioner    0.33 0.33 0.33 0.33 
M3 Positioner control       0.3 0.3 0.3 0.3 
        
Elevation Structure         0.56   0.56 
Azimuth Bearings         0.15   0.15 
LGF/LSE (AZ in -Y) Box Space envelope drawing   0.2 0.48 0 0.48 
LGF/LSE (AZ in +Y) Box Space envelope drawing  0.2 0.48 0 0.48 
LGF/LSE top end and BTO (with control)      0 0.13 0 0.13 

 
2.2 Finite Element Models 
 
For temperature distribution of the Telescope structure, thermal finite element models were established using ANSYS. 
The beams, trusses, and supports of the telescope were modeled using thermal conductive elements (LINK33), and the 
C-Rings were modeled using thermal shell elements (SHELL 57). In addition to these elements, thermal convective 
(LINK32) and radiative (LINK31) elements were created in order to perform the convection and radiation analysis, 
respectively. Such link elements simplify the complexity of the analysis by allowing the input of surface convective and 
radiative areas, and emissivity coefficients without having to create solid models for the convective and radiative 
analyses. Additionally, a super-element (MATRIX50) was used in order to perform the radiation analysis between 
surfaces (C-Rings). The finite element models used in this analysis are shown in Figures 2(a) and (b). By ANSYS 
thermal analysis, the temperature distribution for each of the different cases described previously was calculated. 
 
2.3 Thermal Analysis Results - Daytime Configuration 
 
2.3.1 Daytime Mode - Combined thermal loads (Air convection and conduction) 
 
The thermal response results obtained for a sample thermal analysis, Second Day Daytime mode (Case A), are presented 
in this section. In such case, the heat dissipation values from Table 1 were applied to the respective instruments, M1 
actuators and heat dumps on the telescope model at telescope Zenith angle of 90 degrees. Moreover, air convection was 
applied on the Telescope’s surfaces with different heat transfer coefficients depending on the spatial location. For the 
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primary mirror support system (M1SS), five (5) heat transfer coefficients were implemented with values varying from 1 
W/m2 ºC to 3 W/m2 ºC, as depicted in Figure 5. 
 

 
      Fig. 5. Spatial distribution of heat transfer coefficient on M1SS           Fig. 6. Temperature Distribution (Case A of 2nd day) 

All the other components in the structure were assumed to have a heat transfer coefficient of 3 W/m2ºC. The air 
temperature profile described previously in section 2.1.2 and these heat transfer coefficients were used to obtain the 
temperature response for the telescope’s daytime configuration (Day 2). The maximum and minimum temperature 
responses obtained for the telescope from the analysis were 4.38 ºC and -0.505 ºC, respectively (Figure 6).   
     
2.3.2 Nighttime Mode - Combined thermal loads (Air convection, Radiation and conduction)  
 
In a similar manner, the thermal response obtained for a sample thermal analysis (2nd Nighttime - Case B) is presented in 
this section. Here, heat dissipations from the instruments, M1 actuators and heat dumps on the structure were applied to 
the telescope model having a zenith angle of 32 degrees (Observation configuration). Moreover, Heat transfer 
coefficients and temperature values were implemented from CFD simulations; such data was utilized for the application 
of the air convection load on 30 different regions on the telescope. Some of these regions were identified and are shown 
in Figure 7(a). Additionally, the heat transfer coefficient temporal and spatial variations for each of the three nights of 
operation were implemented. 
 
The night-time record is 11.5h long and the temporal sampling rate is 2 minutes. A set of 30 key points were identified 
for the data interface between CFD model and FE models. The ambient air temperatures and convection coefficients 
temporal distributions were spatially mapped over the key points and then further interpolation was employed over the 
FE models. Figures 7(a) and (b) show the locations of these key points. They consist of 12 points on M1, one 
representative point on M2 and one on M3, one for each of the two elevation rings, 4 on the Nasmyth platforms, 4 on the 
telescope pier and 6 on the corners of the hex ring. 
 

    
Fig. 7. (a) Telescope locations where ambient temperature and heat transfer coefficient are reported for FEA boundary conditions, (b) 

Specified air convection regions on M1SS. 
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Additionally, the heat transfer coefficient temporal and spatial variations for each of the three nights of operation were 
implemented in the model. A typical variation for the second night is shown on Figure 8.  
 

 
Fig. 8. Temporal and spatial variation of heat transfer coefficient (2nd Night) 

 
In addition to the convective and conductive conditions, radiation heat loads were applied on the telescope model. For 
this case the background temperature was assumed to be two degrees cooler than the air temperature (T = Tair – 2 º C). 
Moreover, emissivity values were assigned to the components on the telescope; the following are their corresponding 
values: 

• M1 Support Structure (M1SS): Front ε = 0.6, Back ε = 1.0, Intermediate ε = 0.8 
• Structure above M1, ε = 0.4 
• Structure behind M1SS, ε = 1.0 
• Nasmyth platform and instrument supports, ε = 0.8 
• Instrument Supports, ε = 1.0 
• Instruments, ε = 0.4 
• No Radiation Loads were applied on the concrete piers 

 
Furthermore, radiative flux was applied on the top end of the telescope structure. Three sections were chosen on the 
model, and the corresponding values utilized for the radiative flux are as follows: 

• M2: Q” = -40 W/m² (Constant during period of operation) 
• Diagonal Supports: Q” = -20 W/m² (Constant during period of operation) 
• Hexagonal Truss: Q” = -4.5 W/m² (Constant during period of operation)     

 
2.3.3  Daytime/Nighttime Modes - Combined thermal loads (Air convection, Radiation and conduction)  
 
The thermal response of both the telescope structure and M1SS during the three days/nights were calculated. The thermal 
environment data described in section 2.1.2 and the thermal loads presented in sections 2.3.1 and 2.3.2 were utilized to 
obtain the temperature distributions. The maximum and minimum temperatures calculated for the structure and M1SS at 
different sample times during the three days/ are shown in the following Table. 
 

Table 2. Thermal response of the telescope and M1SS. 
 

                         Telescope Temperature                               M1SS Temperature 

Maximum (º C) Minimum (º C) Maximum (º C) Minimum (º C) 

First Day (t = 12.5 hrs) 5.32 0.014 3.214 1.928 

First Night (t = 11.5 hrs) 2.653 -1.32 2.65 -1.29 

Second Day (t = 12.5 hrs) 4.38 -0.505 2.842 1.079 

Second Night (t = 11.5 hrs) 4.09 0.17 3.69 0.59 

Third Day (t = 12.5 hrs) 7.322 0.534 5.716 2.041 

Third Night (t = 11.5 hrs) 5.62 1.66 5.25 2.75 

        h(t) 0 – 6 hrs                                             6 – 9 hrs                                                 9 – 11.5 hrs 
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2.4 Thermo-elastic Analysis 

The thermal deformation of the telescope was calculated for both the maintenance/service configuration and the 
observation configuration using the thermal responses obtained from the 3 day/night heat cycle of continuous operation.  
From the thermal analyses performed in Cases A and B, the nodal temperature obtained every hour was applied to the 
horizon-pointing and observation configuration telescope models in order to perform the thermo-elastic analysis. The 
nodal temperature obtained every hour was used as the heat load in order to obtain the thermal deformation of the 
telescope. For the thermo-elastic analysis, the structural finite element model created by Empire Dynamic Structures, 
Ltd. was utilized. The displacements on the x, y, and z directions were constrained at the concrete pier for both daytime 
and nighttime configurations. 
 
2.4.3 Thermal Deformation (Daytime/Nighttime Configurations) 

The thermal deformation of the telescope and the primary mirror support structure (M1SS) for the three days/nights and 
were calculated using the temperature responses at every hour from the combined loads cases described in section 2.1.1. 
The maximum and minimum displacements obtained for both the telescope structure and M1SS on the z direction are 
listed in the following Table. 
 

Table 3. Thermal deformations of the structure and M1SS. 
 

                 Displacement (z direction)                Displacement (z direction) 

Telescope (max.) Telescope (min.) M1SS (max.) M1SS (min.) 

First Day (t = 12.5 hrs) 233 μm  -141 μm 49.4 μm  -97.3 μm 

First Night (t = 11.5 hrs) 433 μm -993 μm 218 μm -419 μm 

Second Day (t = 12.5 hrs) 168 μm -273 μm 117 μm -57.1 μm 

Second Night (t = 11.5 hrs) 227 μm -344 μm 145 μm -344 μm 

Third Day (t = 12.5 hrs) 795 μm  -554 μm 94.8 μm  -350 μm 

Third Night (t = 11.5 hrs) 793 μm  -187 μm 406 μm -29.5 μm 

 
          

 
Fig. 9.a. Sample Thermal deformation of structure, t = 11.5 hrs     Fig. 9.b. Sample Thermal deformation of  M1SS, t = 11.5 hrs  

3. MERIT FUNCTION CALCULATIONS  
 
The thermal responses of the telescope structure were demonstrated in the previous chapter including the temperature 
distribution of each portion of the telescope structure as a function of time over an observing night. Merit function 
routine (MFR) was implemented for 3 night time hours under the observatory thermal environment conditions using a 3-

Displacement in Z:   
max = 227 μm;  min = -344 μm 

Displacement in Z:   
max = 145 μm;  min = -344 μm 
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consecutive day at the TMT site. The MFR is a mechanism to integrate a finite element modeling tool with an opto-
mechanical modeling platform which can provide enhanced capabilities to directly calculate the relevant system 
performance parameters. Current MFR[12] demonstrates the mathematical basis of these calculations, describes the 
implementation in ANSYS, MATLAB and ZEMAX, and shows some representative results for the Thirty Meter 
Telescope structure. 
 
Since telescope behaviors due to thermal impacts are of the main interest in this study, the merit function calculations are 
based on the Least Square fit algorithm rather than minimizing the maximum stroke motions. In this chapter, typical 
MFR results are to be discussed in detail for a sample thermal case, the end of the second night. The MFR calculation 
was made for the 3 night time hours. These results were generated from the structure finite element model Revision 11.3 
[11], based on MFR revision 8.2.   

                  
 
              Fig. 10(a). Thermal Deformation in Z-axis  (M1-Cell) from FE              Fig. 10(b). Unaligned M1 segment OPD map 
 
As a sample thermal case, the mechanical deformations and MFR results at the end of the second night are discussed in 
this section.  The deformed shape of the segment support cell was calculated for the sample nighttime case at telescope 
zenith of 32 degrees.   The maximum and minimum deformations of the segment support cell were calculated to be 120 
micron and 200 microns along the local z-axis, respectively.  The RMS of 93 micron was calculated over the entire 
primary mirror segments (Figure 10(a)). Based on this deformation, MFR calculates the M1 segment unaligned OPD 
map. The RMS of 205 microns in OPD was calculated (Figure 10(b), which matches well with the RMS thermal 
deformation of 93 microns (scale factor of two between the surface error and WFE). MFR also calculates the M1 
segment motions and the actuator motions to maintain M1 phasing.  The maximum required actuator stroke to maintain 
M1 phasing was 320 microns. The distribution of required actuator range across the primary mirror for this sample 
nighttime case was calculated. A positive actuator stroke corresponds to moving the segment away from the sky and its 
magnitude was measured perpendicular to the mirror surface. Figure 11 shows a histogram of required actuator stroke 
over the entire primary segments for the same case. This demonstrates the required actuator motions and its magnitude 
distributions to keep the segment from the thermal deformations. 

               
Fig. 11(a). Actuator stroke motion required to maintain M1 phasing               Fig. 11(b). Histogram of actuator stroke motion  
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MFR calculates the residual M1 segment motions after re-aligning the optics.  The maximum motion of a segment 
relative to the best fit mirror location is 159 microns decenter with RMS segment decenter of 86.3 microns and the mean 
of 77.6 microns. MFR also calculates segment rotation clocking motions.  The maximum clocking is 9.44E-4 degrees 
with RMS clocking of 3.74E-4 degrees and the mean of 1.13E-4 degrees.  These are the actuator motions to maintain M1 
phasing due to thermal responses for the sample nighttime case.  The distribution of the segment motions and the relative 
motion between segments were also calculated.  The maximum gap change between segments is 45 microns with a 
maximum shear, segment motion parallel to gap, displacement of 26 microns. 
 

4. THERMAL ANALYSIS OF M1 SEGMENT ASSEMBLY (M1SA) 
 
4.1 Thermal Loads and Boundary Conditions  
 
In order to evaluate the thermal response of the segment assembly for a realistic thermal environment, reasonably well 
defined telescope operation boundary conditions were assumed for the entire segment assembly. Various analyses were 
conducted in order to estimate the thermal responses and the thermal results Typical thermal conditions include air 
convection on the front and back surfaces of the segment as well as air convection on the surface of the support hardware 
component, and heat generation from the actuators and pre-amps of edge sensors. Several operational and service 
scenarios were considered and the responses were investigated.  
 
4.1.1 Air temperature variation 
 
Extensive CFD analyses have been performed to quantify air flows inside the enclosure. Moreover, some simulation 
schemes have been developed for the air temperature distribution around the optics. For the current analysis, a time-
dependent air temperature was assumed to have a linear variation. During a 24 hour cycle, the maximum air temperature 
difference relative to the temperature of the mirror was assumed to be 2 ºC as shown in Figure 12(a). In the analysis over 
the 24 hour thermal cycle period, the applied temperature loads were assumed to be absolute, rather than a temperature 
difference between the mirror and ambient conditions. It was further assumed that a time of zero hours indicates sunset 
or the beginning of night. The air temperature was applied on both front and back surfaces of the segment, the surface of 
mirror cell components, edge sensors and pre-amps. 
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Fig. 12.  Thermal loads, (a) Ambient air temperature profile, (b) Heat flow profiles of pre-amps and cell actuators. 
 
4.1.2 Heat Generation (Radiation) 
 
The segment will absorb heat on the back surface due to radiation coming from the three heat generating actuators and 
the six heat generating pre-amps. The heat dissipated by each of the actuators is 1 W and the heat dissipated by each pre-
amp is 0.3 W as shown in Figure 12(b). It was further assumed that the heat flow was constant for the first 10 hours with 
a maximum of 1 W for the actuators and 0.3 W for the pre-amps. The heat sources are equivalent to uniform heat 
generation rates of 110.2 W/m3 per actuator and 1128.5 W/m3 per pre-amp. These six pre-amps were located at 50 
percent the distance along the radius and separated by 60 degrees. Currently, the analysis assumes that they are mounted 
on the back of the mirror segment. However, the pre-amps will be relocated to the segment support assembly (SSA) to 
reduce the thermal interactions with the mirror segment. 
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4.1.3 Sample Scenario Cases 
 
For the sample scenario thermal case, the following four thermal boundary and loading conditions are considered as:  
 
 1. Reference thermal Case 

 Ambient air temperature (air is warmer by 2ºC than reference)  
 Front surface temperature: Tf = 0ºC ; Back surface: Tb = 0.15ºC ;  
 Heat transfer coefficient:  Front:  Hf = 6 W/m²C,  Back:  Hb = 3 W/m²C  
 Heat flow Qa : ACT= 4.0 W ; Qs : PA= 1.8 W 
 In summary: Hf =2* Hb; Tb = Tf +0.15;  ACT=4W;  PA=1.8W  

2. Extra Heat Case 
 Hf =2* Hb ; Tb = Tf +0.30;  ACT=9W;  PA=1.8W 

3. Vent Closed Case 
 Hf = Hb =2; Tb = Tf +0.30; ACT=9W;  PA=1.8W 

4. 24 hours Op: No AC + Reference Case 
 Day time: Hf =1.6; Hb =2.3; Tb = Tf =0.00;  ACT=9W;  PA=1.8W 
 Night time: Hf =2* Hb; Tb = Tf +0.15;  ACT=4W 

 
4.2 Finite Element Models 
 
In order to calculate the temperature distribution of the TMT M1 assembly, a finite element of the entire mirror assembly 
was generated using ANSYS. The hexagonal segment was modeled with 4 layers of thermal elements (SOLID70) and 
shell elements (SHELL57) were created on its front and back surfaces to facilitate the application of thermal loads. In 
addition, the mirror cell components, the edge sensors, and pre-amps were modeled using thermal elements (SOLID 70). 
Shell elements (SHELL57) were created on their surfaces, as well, in order to apply thermal loads. Some components in 
the Segment Support Assembly (SSA) which are not thermally significant were excluded from the FE thermal models for 
computational efficiency. Finally, a super-element (MATRIX50) was used in order to perform the radiation analysis 
between surfaces (segment and components). The finite element model used in this analysis is shown in Figure 13(b). By 
conducting a thermal analysis in ANSYS, the thermal time constant and the temperature distribution for the different 
cases described in section 2.1 were calculated. 
 
 
 
 
 
 
 
 
 
 
 

  (a) (b) 
Fig. 13.  M1 and SSA and thermal finite element model.  (a) M1 segment and SSA model developed by IMTEC,  

(b)  Segment and SSA thermal FE model 
 
 
4.3 Thermal Analysis and Thermo-elastic Analysis 
 
For the thermal time constant, a convection analysis was performed with a segment thermal FE model. An air convection 
was applied on the front and back surfaces having heat transfer coefficients of 5 W/m2 ºC and 1 W/m2 ºC, respectively. 
Air convection along the edge of the segment was disregarded. The convection coefficient of 5 W/m2 ºC on the front 
surface is approximately equivalent to a wind velocity of 1m/sec inside the enclosure based on a CFD analysis. The 
thermal time constant (τ) of 5 hours was calculated by obtaining the required time for the mirror to reach 3.7 ºC as 1/e of 
the initial temperature at 10ºC.   The thermal response of the convection case shows the peak temperature reached 0.97 
ºC at 6 hours. For the heat generation case, a radiation analysis was performed using the heat flow shown in Figure 12(b). 
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Due to radiation, the front surface reached the maximum temperature of 0.45 ºC. Detailed thermal responses for both 
convection and radiation cases were discussed in reference [9].  
 
Moreover, the temperature distribution of the mirror was calculated by combining the thermal loads used in the previous 
cases (air convection and radiative heat generation). The thermal response was plotted over time using nodes from the 
front surface and back surface of the mirror positioned at a pre-amp location. The peak temperature responses obtained 
were 2.21 ºC and 1.30 ºC on the back and front surface, respectively, occurring at 7.5 hours. Therefore, the temperature 
gradient at the peak response was 0.914 ºC through the thickness of the mirror. The temperature distribution at the peak 
of the mirror back surface is shown in Figure 14(a). This figure vividly shows the foot-print of six pre-amps in red and 
three actuators in green. Additionally, the effects of conduction through the rod flexures were investigated. From the 
radiation analysis it was observed that conduction through the rod flexures was insignificant since their conductive areas 
are small compared to other components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
          (a)             (b) 

Fig.  14.  Temperature distributions for combined Reference case: (a) Temperature distribution on the mirror back surface at 7.5 
hours. (b) Thermal deformation calculated over the entire optical surface before PTF corrections. 

The thermal deformation of the hexagonal segment was calculated using the thermal response from the peak temperature 
during the 24 hour thermal cycle. From the combined thermal loading analysis performed, the nodal temperature at 7.5 
hours was applied to the segment model in order to perform the thermo-elastic analysis. Furthermore, the thermal 
elements in ANSYS, SOLID70 and SHELL57, were converted to structural elements SOLID45 and SHELL41, 
respectively. 
 
For the thermo-elastic analysis, the model was constrained by three points on the back surface. These supports were 
located at 67 percent the distance along the radius and separated by 120 degrees. A kinematic 3-point constraint was used 
for the boundary conditions. From the thermo-elastic analysis the segment deformation was obtained. A peak-valley 
surface error of 4.6 nm and RMS surface error of 0.3 nm was calculated over the optical surface. This optical surface can 
be further improved by correcting piston, tilts, and focus (PTF) aberrations.   This correction can be achieved either by 
M1 active optics or other compensation Look-Up Table. The optical surface maps of the maximum thermal response 
before corrections are shown in Figure 14(b). The optical surface RMS error of 0.3 nm was reduced to 0.1 nm after 
corrections.  
 

5. THERMAL ANALYSIS OF M2 ASSEMBLY (M2CA) 
 
5.1  Thermal Loads and Boundary Conditions  
 
In order to evaluate the thermal response of the secondary mirror, various thermal loads and boundary conditions were 
considered. Seven thermal environment cases, four unit loads and three combined loads, were performed using a 
simplified full thermal FE model of the M2 cell assembly (M2CA). This paper addresses the most recent test scenario, 
Combined boundary conditions with convective heating, constant heat flux. Results for other thermal loads and boundary 
condition cases are described in more detail in reference [9].  All test environments were performed over a thermal cycle 
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period of 24 hours, where a time of zero hours indicates sunset or the beginning of night.  Additionally, the applied 
temperature loads were assumed to be absolute, not a temperature difference between the mirror and ambient conditions. 
 
5.2 Finite Element Models 
 
There were three different finite element models utilized for the analysis in ANSYS.  The first model was a simple 60 
degree wedge of the mirror itself.  The second model was an extended version of the first with a simplified cell and 
support structure, as shown in Figure 15(c).  The final variation was a simplified, but complete 360 degree model.  It was 
necessary to simplify the final variation more than the second model due to computational limitations and efficiency due 
to the increase in element numbers. Based on investigation and the results of the first two models, the following four 
assessments were made to achieve the final model.  First, conduction through the support rods is negligible due to a small 
cross-sectional area.  Additionally, the invar material joining the mirror to the support rods further limits conductive 
effects.  Second, conduction up the sides of the cell wall is negligible due to a high conductive resistance in the direction 
of heat flow.  Third, due to limitations in ANSYS, symmetry conditions are not supported for surface-to-surface 
radiation; therefore, a 60 degree wedge is not accurate.  Lastly, radiation exchange between the cell wall sides and mirror 
sides is negligible due to the second assumption and the relatively small surface areas of interaction.  In other words, 
convection dominates, and only the area of the mirror’s back surface is large enough for radiation to affect mirror 
performance during operation. 

The ANSYS FE models were created using the thermal elements SOLID70, LINK33, SHELL57, and MATRIX50.  
SOLID70 was used to create the four element mirror layers and the single layer cell frame.  LINK33 was used to 
simulate conduction through the support rods from the cell plate to the mirror’s back surface.  SHELL57 was used to 
calculate the view factors between the radiating surfaces.  Finally, MATRIX50 was used to implement the calculated 
view factors and simulate the surface-to-surface radiation effects.  

    
                             (a)                                                                         (b)                                                          (c) 

 
Fig. 15.  Secondary mirror Cell Assembly and an M2CA thermal finite element model.  (a) M2 Cell Assembly (M2CA) 

developed by NOAO – shown in a half model, (b) Thermal boundary – convection coefficients, (c) FE 1/6 model of 
mirror and support/cell.  

 
5.3 Thermal Analysis Results 
 
For the thermal time constant, a convection analysis was performed with the M2 thermal FE mirror-only model. An air 
convection was applied on the front and back surfaces having heat transfer coefficients of 3 W/m2 ºC and 1 W/m2 ºC, 
respectively. Air convection along the edge of the mirror was incorporated. The thermal time constant (τ) of 14 hours 
was calculated by obtaining the required time for the mirror to reach 3.7 ºC as 1/e of the initial temperature at 10ºC.    
The thermal response of the latest thermal loads and boundary conditions (mirror with constant heat flux, surface-to-
surface radiation exchange, and warm convection) was calculated.  The peak occurring at 1.5 hours indicates the exposed 
front surface temperature is warmer than the back enclosed surface by approximately 0.095ºC.  Conversely, the dip at 
11.0 hours indicates the back surface is warmer than the front surface by 0.065ºC.  It is apparent that the h1 and h2 
convection coefficients applied on the M2 surfaces dictates the general shape of the temperature difference.  The shape 
resembles the applied load shown in Figure 12(a), further supporting that convection is the dominant heat transfer mode.  
Neglecting the edge effects, the temperature delta across the surface is relatively uniform. 
 
The thermal response analysis performed on the TMT secondary mirror was used to obtain a thermo-elastic deformation.    
The thermo-elastic deformations of interest occur at the point in time of maximum front-to-back surface temperature 
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difference.  This front-to-back surface temperature difference commonly contributes to the overall focus change of the 
mirror. Therefore, displacements along the optical axis (the z-direction in the FE models) are of interest for all analyses.  
The temperature distribution from the latest thermal loads and boundary condition was applied to evaluate the optical 
thermal deformation. A kinematic 3-point constrained was applied on the secondary mirror around the 20% radial zone 
from the center.  The maximum z-displacement is 7.2nm from the thermal deformation as shown in Figure 16(a).   The 
deflection is in the negative direction, toward the cell structure.  This is in agreement with the temperature delta results; 
the warmer front mirror surface is more expanded than its relatively cooler back mirror surface.  The maximum 
displacement vector magnitude (x-, y-, and z-direction), was found to be 11.3nm toward the cell structure. The maximum 
thermo-elastic response can be further improved by correcting piston, tilts, and focus aberrations.  This correction can be 
achieved either by M2 active optics or other compensation Look-Up table.  The optical surface maps of the maximum 
response before and after the corrections are shown in Figure 16(b) and 16(c) when M2 is at a face up position.  The 
optical surface RMS errors were calculated over the entire optical surface.  Before corrections, the maximum peak-to-
valley (PV) distance was 7.2nm with an RMS error of 2.2nm.  After corrections, the maximum PV distance was 1.2nm 
with an RMS error of only 0.3nm. The thermal response calculations assume M2 is at a face up position. 
 

   
 
 (a) (b) (c) 

Fig. 16. (a) thermo-elastic deformation - combined, warm, constant heat flux at 1.5 hours, (b) thermal deformation 
calculated over the entire optical surface before PTF corrections, (c) the optical thermal deformation after PTF 
corrections.  

6. THERMAL ANALYSIS OF M3 ASSEMBLY (M3CA) 
 
6.1  Thermal Loads and Boundary Conditions  

All thermal loads and boundary conditions applied to the tertiary mirror are the same as those applied to the secondary 
mirror with a few exceptions.  Based on the similarities between the secondary and tertiary mirrors, the analysis was only 
performed for an extended, simplified tertiary cell model. Details for the boundary conditions and scenarios are described 
in [5].  It is also important to note that the convection coefficients applied on M3CA follow the same rules as those for 
M2CA.  All participating surfaces enclosed within the cell structure were assigned a convection coefficient of h = 1 
W/m2°C while the exposed front surface was assigned a convection coefficient of h = 3 W/m2°C, which corresponds to a 
wind speed of 1 m/s. 

 

          
 

                                     (a)                                                          (b)                                                      (c) 
Fig.  17.  Tertiary mirror Cell Assembly and an M3CA thermal finite element model.  (a) M3 Cell Assembly (M3CA) developed by 

NOAO, (b) Thermal FE model of mirror and cell (simplified thermal model). 
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6.2 Thermal Analysis Results 
 
For the thermal time constant, a convection analysis was performed with a M3 thermal FE model. An air convection was 
applied on the front and back surfaces having heat transfer coefficients of 3 W/m2 ºC and 1 W/m2 ºC, respectively. Air 
convection along the edge of the M3 was also included. The thermal time constant (τ) of 14 hours was calculated by 
obtaining the required time for the mirror to reach 3.7 ºC as 1/e of the initial temperature at 10ºC.    
 
The latest thermal loads and boundary condition for the tertiary mirror was a combined case of warm convection with 
constant heat flux and surface-to-surface radiation.  Neglecting the edges, which show the highest temperatures due to an 
added convection effect on the sides, the maximum temperature reached for this test case was approximately 0.57°C.  
Additionally, the transient temperature response plots are the same as in the previous section for M2 despite the 
differences in mirror shape between the M2 and the M3.  These results further support that convection, although small, is 
still the dominant mode of heat transfer. 
 
The temperature difference between the front and back surfaces for the tertiary mirror with warm convection, constant 
heat flux, and surface-to-surface radiation were obtained.  The results are similar to those for the secondary mirror, 
following the form of the applied warm convection thermal load. The maximum temperature differences are 0.10°C at 
1.5 hours and 0.045°C at 11.5 hours.   
 
6.3 Thermo-elastic Analysis for Latest Combined Loads 
 
The temperature distribution from the latest thermal scenario was applied to evaluate the M3 thermal deformation.  For 
the thermo-elastic deformation calculations, the temperature distribution at the point in time of maximum front-to-back 
surface temperature difference at 1.5 hours was utilized.  As with M1SA and M2CA, M3CA also utilized a 3-point 
kinematic constraint. 
 
The optical surface deformation was calculated. The resulting surface is shown in Figure 18(a) when M3 is at a face up 
position. The optical surface RMS error of 11.3nm was calculated over the entire optical surface. For the 15-minute field 
of view (FOV), nine sub-apertures were constructed to simulate the thermal print-through effects over the M3 for the 
multiple instrument locations. The surface map of each of the nine sub-apertures for the print-through and the RMS 
surface errors are shown in Figure 18(b). This optical surface error can be further improved by correcting piston, tilts, 
and focus (PTF) aberrations.  Corrections can be achieved either by M3 active optics or other compensation Look-Up 
table. The optical surface map after corrections is shown in shown in Figure 18(c). This demonstrates that the thermal 
deformation can be corrected almost entirely by the M3 active optics. 

 

        
 

(a)                                                                   (b)                                                                 (c) 
Fig. 18.  M3 deformation at 1.5 hours for the combined case (warm convection, surface radiation, constant heat flux). (a) 

Thermal deformation print-through calculated over the entire optical surface before PTF corrections, (b) Thermal 
deformation maps of each of 9 Sub-apertures and RMS surface errors, (c) the optical thermal deformation after PTF 
corrections. The thermal response calculations assume M3 is at a face up position. 
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7. SUMMARY  
 
Overall thermal modeling data flow and the interface was addressed as a part of the integrated modeling efforts of the 
TMT telescope.  Temporal and spatial temperature distributions of the telescope structure were calculated under various 
thermal conditions including air convections, conductions, heat flux loadings, and radiations.  A three-consecutive-day 
thermal environment data was implemented for the thermal analysis and the thermo-elastic analysis was made to predict 
thermal deformations of the telescope structure at every hour for the three days. A set of 30 key points were identified for 
the data interface between CFD model and FE models. The ambient air temperatures and convection coefficients in 
temporal space were spatially mapped over the key points and then further interpolation was employed over the FE 
models. 
 
Through the thermal response analysis for the telescope, time history responses of the temperature of the M1SS, M2, and 
M3 for the three nights were calculated.  For primary mirror (M1), a typical segment located at a 70% radius along the 
local y-axis was considered. These thermal deformation results were translated to a data format which can be further 
analyzed for the optical performance. Additionally, thermal effects solely from conductions due to heat sources on the 
telescope structures were calculated. As expected, the conduction response was localized and its impact on the optics is 
insignificant.  The maximum thermally induced M1 motions is about 400 microns, which is much less than the 
deformation of 2mm induced by the gravity. In addition, we calculated the average temperature differences between the 
telescope parts to accommodate thermal expansion and contraction of the telescope steel structures. The average 
temperature differences over the entire telescope structure are 1.9 ºC and 3.7 ºC at the end of the second night and the 
third night, respectively.  Merit function calculations under the observatory thermal environment conditions using a 3-
consecutive day at the TMT site. These MFR calculations are based on a Least Square fit algorithm rather than 
minimizing the maximum stroke motions. The MFR calculation summary shows the thermal effects are within the error 
budget. 

Table 4.  Thermal responses of the TMT optics over three nights 

                                    
 
For the TMT M1 assembly, M2CA, and M3CA, thermal responses from the finite element analysis demonstrated that 
convection was the most dominant mode of heat transfer, followed by radiation and conduction, respectively.  For the 
TMT M1 assembly as a reference case, the peak thermal response on the mirror under air convection and radiative heat 
transfer was calculated to be 2.21 ºC at 7.5 hours, along with thermal gradient of 0.914 ºC. From a thermo-elastic 
analysis with the peak thermal loading, a PV surface error of 4 nm was obtained over the optical surface with an RMS 
error of 0.3 nm before performing PTF corrections. After correcting pistons, tilts and focus aberrations, the PV on the 
optical surface reduced to 1.2 nm with an RMS error of 0.1 nm. The thermal results of both the M3 and the M2 were 
very similar. The maximum optical surface displacement of M2 was found at 7.2nm with an RMS surface error of 
2.2nm.   With M2 active optics, the optical surface PV error was reduced to 1.2nm and RMS to 0.3nm after piston, tilts, 
and focus corrections. The tertiary mirror demonstrated greater displacement, reaching maximums of around 49.0nm 
normal to its front surface.  With M3 active optics, the optical surface was corrected almost entirely after piston, tilts, and 
focus corrections. 
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