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ABSTRACT

A column of ionized mercury vapor is placed in a parallel plate 
transmission line and the resulting reflection coefficient observed. From 
the measurement of reflection coefficient as a function of discharge current, 
plasma resonance is demonstrated. In accordance with the theory applied, but 
in contrast to the results of other investigators, resonance is found at only 
one value of discharge current. The discharge current required to produce 
resonance is measured as a function of frequency. The functional dependence 
observed is as predicted by theory, but the current is higher than the 
theoretical value. The discharge current required to produce resonance is 
measured as a function of gas pressure. The dependence that is found follows 
that predicted theoretically at higher gas pressures, but deviates sharply 
from the theoretical form at lower gas pressures.
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1.

The discovery and utilization of scatter propagation (1) has led to 

interest in the details of the mechanism of this mode of "beyond-the-horizon" 

radio transmission. Some investigators (2, 3) have examined the possibility 

that the ionized trails from meteors may play an important part in this 

mode of propagation. It is well known (4) that strong radio echoes may be 

obtained from meteor trails.

It has been pointed out by Herlofson (2) that under certain conditions 

a resonance effect may exist in the scattering of a plane wave by an ionized 

cylinder. When this resonance effect occurs, the effective scattering dia- 

meter of the cylinder may be many times greater than its physical diameter. 

The presence of this enhanced effectiveness of scattering may be correlated 

with the excitation of "plasma resonance", an effect apparently first des­

cribed by Eckersley (5).

The phenomenon of "plasma resonance" involves the existence of a 

frequency at which a particular configuration of an ionized gas will be 

strongly excited by an externally generated electric field. The frequency 

at which this occurs, called the critical frequency by Herlofson, depends on 

both the shape of the plasma and which of its possible modes is excited.

This frequency is distinct from the "plasma frequency" familiar to workers 

in the field of gaseous discharges. However, for certain shapes, the fre­

quencies may assume the same value.

Only a few investigators have done experimental work in the field of 

plasma resonance. In 1931 Tonks (6, 7) reported a series of experiments in 

which he placed a discharge tube between the plates of a parallel plate 

capacitor. He verified the existence of plasma resonance, and the depen­

dence of the phenomenon on the shape of the plasma. However, his method 

did not permit a quantitative evaluation of the effect of the presence of
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the plasma on the terminal impedance of the parallel plate capacitor. Tonks 

observed changes in the impedance of the capacitor at discharge tube currents 

other than that at which plasma resonance was expected to occur. In 1951 

Romell (8) reported the results of an experiment in which 30 centimeter 

radiation was beamed at a discharge tube 3 cm in diameter and the back- 

scattered signal observed. Romell observed pronounced back scattering at 

several values of discharge tube current. He measured only relative values 

of the back-scattered signal, and was, therefore, unable to obtain any 

quantitative relation between the magnitude of the signal and the parameters 

describing the plasma.

It appeared that it would be of interest to perform an experiment in

which the properties of the plasma resonance of an ionized column could be

more carefully studied. Such an experiment was performed by placing a cylin- 

drical section of a gaseous discharge tube between the conductors of a 

parallel plate transmission line. Theoretical relations were developed 

connecting the reflection coefficient measured on the line with the charac- 

teristics of the gaseous discharge. A description of the experiment and a 

comparison of the theoretical and experimental results is presented here.

II THEORETICAL RELATIONS

A. Nomenclature

A Arbitrary constant

B Arbitrary constant

Bn Nth order scattering amplitude

B/A Reflection coefficient

C Capacitance per unit width

D Scattering diameter
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E Electric field strength

H Magnetic field strength
Hn(1) Hankel function, nth order, first kind
Hn(1)' Derivative of Hn(1) with respect to its argument

I Current in discharge tube

Jn Bessel function, nth order

J'n Derivative of Jn with respect to its argument

Κ Dielectric constant relative to free space

Μ Line dipole moment

Μ' Line dipole moment

Μ" Line dipole moment

Νe Number of electrons per unit length

pmn Associated Legendre polynomial

Q Charge per unit width

R Function of radius only

Τe Electron temperature

U Potential function of complex potential

V Stream function of complex potential

W Complex potential, W = U + iV

w1 Complex potential, line charge between planes

Zo Characteristic impedance

Ζs Shunt impedance

a Cylinder radius

a' Fractional radius

an Constant depending on n

as Constant depending on s

b Outer cylinder radius; Distance between planes
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d Width of parallel plate line

e Charge on electron; Base of natural logarithms

g Ellipse parameter, g = (m2 - n2)1/2

i Imaginary unit, √-1

j Current density

k Propagation constant

k' Propagation constant in medium of ϵ'

kn(q) Constant depending on n and q

m Mass of electron; Semi-major axis of ellipse; Index of 
summation

n Electron concentration; Mode number; Index of summation; 
Semi-minor axis of ellipse

no Electron concentration at cylinder axis

n̅ Mean electron concentration

nu Electron concentration for resonance in uniform plasma

P Arbitrary constant

po Gas pressure reduced to 0°C

q Index of summation

r Radius in cylindrical coordinates r, φ, z, and spherical 
coordinates r, θ, φ

s Index of summation

t Time

u Distance from plane to charge

V Velocity

x Coordinate position, rectangular coordinates x, y, z

y Coordinate position, rectangular coordinates x, y, z

z Coordinate position, rectangular coordinates x, y, z

α Angle; Parameter describing non-uniform plasma

β Damping factor for Plasma, β  = νc/ω
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γ Parameter describing non-uniform dielectric constant

δ Fractional length, dimensionless

ϵ Dielectric constant

ϵ' Dielectric constant of plasma

ϵo Dielectric constant of free space

ϵc Dielectric constant at cylinder axis

θ Colatitude angle in spherical coordinates r, θ, φ

λ Free space wavelength; Elec ron mean free path

μo Permeability of free space

νc Collision frequency

0̸ Scalar potential

φ Polar angle in cylindrical coordinates r, φ, z;
Azimuth angle in spherical coordinates r, θ, φ

ω Circular frequency

Note: All formulas are in rationalized MKS units.

The dielectric properties of an ionized plasma have been extensively 

studied theoretically (9-11) and experimentally (11-13). An idealized 

treatment of the problem is presented here primarily for reference.

In the plasma of an electrical discharge, positively and negatively 

charged particles are present in equal numbers. In the type of discharge 

considered the negative particles are electrons and the positive are ions. 

However, the mass of the lightest positive ion is almost 2000 times that of 

an electron, whereas they carry the same charge. As a consequence, the elec- 

tric forces on electrons and ions are the same, but the motions induced by 

an electric field are thousands of times greater for electrons than for 

ions. For this reason it is permissible to treat the plasma as though it 

were composed of electrons only.

B. Dielectric Properties of a Plasma
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It is customary to neglect magnetic forces in comparison to elec- 

tric forces. This is justified if the imposed frequency is high compared 

to the gyro-magnetic frequency (roughly 1 megacycle in the earth's field), 

and the induced velocity small compared to the velocity of light.

The equation of motion of an electron is given by

which may be written

where m is the electron mass, e the charge on the electron, and v 

the velocity of the electron; E is the electric field, and νc is the 

collision frequency. It may be seen that m νc v is a retarding or damp- 

ing force. Its form was suggested by Eccles (14) in 1912. Everhart and 

Brown (10) show that under certain conditions Margeneau's results (9) 

reduce to this form at sufficiently high frequency.

If all quantities vary as e-iωt, the electrons' equation of motion 

may be written

- i ω m v + m νc = E e 

which may be solved to give

If n is the electron concentration, the current density J is 

given by n e v, hence the current density may be written

If this result is substituted in Maxwell's Equation ∇ x H = j - iωϵoE 

there is obtained
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If the presence of the electrons is considered to modify the dielectric 

constant, then Maxwell's equation may be written ∇ x H = -iωϵ'E, where

(1)

It should be noted that the modified dielectric constant is complex, 

having an imaginary part if collisions are present. It should be noted 

also that the effect of the presence of the plasma is to decrease the dielec- 

tric constant of free space. This is different from nearly all real dielectric 

substances, which have dielectric constants greater than that of free space.

If the electron concentration is large enough or the frequency low enough, 

the dielectric constant may become negative. It should also be noted that 

a plasma is a strongly dispersive medium, since its properties are frequency 

dependent.

C. The Equations Governing Scattering.

In this section the equations describing the scattering of a plane 

wave by an infinite cylindrical plasma will be presented. The case where

the electron concentration is a function only of the radial distance from

the center of the cylinder will be considered.

Maxwell's equations are, using the results of the last section

∇ x E = iωμoH, ∇ x H = -iω ϵ' E.

Taking the curl of each gives

∇ x ∇ x E = iω μo ∇ x H, ∇ x ∇ x H = -iω ∇ x ϵ' E.

The curl must operate on ϵ', since it is taken to be a function of position. 

Using the vector identity
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∇ x ϵ' E = ∇ ϵ' x E + ϵ' ∇ x E

and substituting to get equations in E and H only , 

∇ x ∇ x E = i ω μo(-iωϵ' E)

(2)

It is the case of perpendicular incidence, where the electric vector 

of the plane wave is transverse to the axis of the cylinder, that may give

At this point two separate cases can be distinguished. In the case

where the electric vector of the incoming wave traveling in the positive x

direction, is parallel to the axis of the column, taken to be the z axis,

all scattered radiation will have an electric vector with only a z component

and the equation in E will become a scalar rather than a vector equation.

Similarly, where the electric vector is perpendicular to the axis of the

cylinder, the H vector in the incoming and scattered radiation will have

only a z component. In this case the equation in H will be a scalar 

equation. Writing for -∇2 for ∇ x ∇ x and k2 for ω2 μo ϵo, there 

are obtained

Since ϵ' is a function of only the radial distance r, these become, in

cylindrical coordinates, r, φ, z

and for the case of perpendicular incidence



rise to resonant scattering. No further reference will be made to the 

case of parallel incidence.

9.

D. Scattering by a Homogeneous Dielectric Cylinder

If the electron concentration in a plasma is uniform, the dielectric 

constant within the plasma is not a function of position. It is possible in 

this case to consider a long cylindrical column of plasma to be an infinitely 

long homogeneous cylinder of dielectric material, its dielectric constant 

being given by equation 1. For the case of a plane wave incident upon such 

a cylinder, whose axis is normal to the direction of propagation, it is 

possible to obtain an expression for the scattered radiation by the Fourier-

Lamé method.

Consider a plane wave traveling in the positive x direction, with

electric field in the y direction, striking a cylinder of radius a and

dielectric constant ϵ' centered on the z axis. The incident magnetic 

field is taken to be of unit strength, and to vary as eikx e-iωt. The 

scattered magnetic field, Η, lies entirely in the z direction. A result 

given in Smythe (15), page 503, may be used to obtain H. After changing 

the notation this becomes

where

(3)

In the expressions above r and φ are polar coordinates in the

x-y plane. Jn is the Bessel function of the nth order and first kind. J'n 
is the derivative of Jn with respect to its argument. H(1)n is the Hankel 

function of the first kind and Hn(1)'. its derivative with respect to its 

argument. The quantity k is equal to ω(μoϵo)1/2 or 2π/λ, λ being
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the wavelength of the incident radiation in free space. The quantity k' 
is equal to ω(μoϵ')1/2. The symbol δon represents the Kronecker delta, 

equal to zero if n ≠ 0, and unity if n = 0.

Each Bn represents the strength of the nth mode of scattered radia-

tion, n = 1 corresponding to the dipole mode. The various Bn may be used 

to compute the scattering diameter of the cylinder. The scattering diameter 

is defined as the diameter of a fictitious cylinder which abstracts from the 

incident wave all the power contained in the portion of the wave front it 

subtends and reradiates this power in such a way as to duplicate the scat-

tered radiation.

The total scattered power may be found by integrating the power per 

unit area around a cylinder of unit height and a very large radius. If this 

power is set equal to the power incident upon an area of unit height and 

width D, the quantity D so determined is the scattering diameter. It 

is usually expressed nondimensionally as kD. Since the incident radiation 

that produced the scattered field given by equation 2 was assumed to be of 

unit amplitude, the procedure outlined will give

where H* denotes the conjugate of H. Recalling that

we can write

, where
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tering diameter may be written

or

(4)

From equation 4, it is apparent that each Bn contributes to the 

scattering diameter according to the square of its modulus.

(5)

It may be seen that only terms of the form will sur-

vive the integration, since cos mφ cos nφ dφ = 0, m ≠ n. Now

noting that , the expression for scat­

E. Scattering by a Thin Cylinder

It is of interest to determine the scattering properties of a cylin-

der whose radius is very much smaller than a wavelength. Using the series 

representations valid for small values of the argument to represent the

various Bessel functions in equation 3

and for any ratio ϵ'/ϵo. 

It may be seen that if ϵ'/ϵo = -1, Bn = 1 independent of the 

value of n. This indicates that for very small values of ka, each 

mode is scattered equally when ϵ'/ϵo = -1, and the scattering diameter 

is infinite. This rather remarkable result appears more reasonable when

the expression for ϵ' given in equation 1 is examined. It is seen that

if νc > 0, then ϵ'/ϵo cannot become equal to -1, but must always have

an imaginary part. The ratio νc/ω may be considered a damping factor for 
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the plasma. Introducing the quantity β, where β = νc/ω, equation 1 

may be written

If n., the electron concentration, is such that the real part of ϵ'

becomes -ϵo, then 

and

From this expression for |Bn| it may be seen that for any finite 

β, no matter how small, the amplitude of the higher order modes will vanish 

and the scattering diameter remain finite. To consider a numerical case

take ka = .1 and β = .01. These parameters represent a cylindrical 

plasma having a diameter about 1/30 of the wavelength of the incident radia-

tion, with a collision frequency of about 1/20 the frequency of the incident 
radiation. For this case |B1| ≈ .9 and |B2| ≈ .003. It is apparent 

that by far the greatest contribution to the scattering diameter is from the 

dipole mode. But even with only the dipole mode contributing the scattering 

diameter is much larger than the physical diameter. It may be seen from 

equation 4 that in this case the scattering diameter D ≈ λ/2, more than 

fifteen times the actual diameter of the cylinder.
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F. Quasi-Static-Resonance of Other Shapes

It has been shown that resonance exists for a column whose radius is

vanishingly small compared to a wavelength. This indicates that some in- 

sight into the nature of the phenomena may be gained by consideration of 

situations in which radiation effects are neglected. This will give in- 

formation concerning the field distributions and resonant frequencies, but 

can, of course, give no information on the damping due to radiation.

Starting with the problem of a cylinder of radius a and dielectric 

constant ϵ' immersed in a medium of constant ϵo, the potential outside 

the cylinder may be expressed as Ar-n cos nφ and the potential inside as 

Brn cos nφ, where A and B are arbitrary constants. By equating poten­

tials and normal displacements at the surface of the cylinder the equations

Aan cos nφ = Ba-n cos nφ

ϵ'n Aan-1 cos nφ = -n B ϵo a-n-1 cos nφ

are obtained. These may be simplified to read

a2n A - B = 0

ϵ' a2n A + ϵoB = 0

which is satisfied if

or ϵ' = -ϵo.

Hence, all the possible modes of free oscillation are satisfied by 

the same value of ϵ', and all occur at the same frequency. This will 

serve to explain the scattering behavior of a cylinder as found previously.

For a dielectric sphere, the potential outside may be taken as 
Ar-(n+1) Pnm(cos θ) sin mφ, and that inside as Brn Pnm(cos θ) sin mφ. 

Here spherical coordinates are used, with θ being the colatitude angle,
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and Pnm the associated Legendre function. The same procedure used for the 

cylinder gives the result

For a sphere of plasma the various modes possible do not all occur at

the same frequency, To produce dipole resonance, it is necessary that

ϵ' = -2ϵo.

For an infinite half-space of dielectric ϵ' occupying the region

x > 0, the region x < 0 being free space, with dielectric constant ϵo,

the following potentials may be used. For x > 0, 0̸ = A ϵ-px sin py; 

for x < 0, 0̸ B ϵbx sin py. Here 0 ̸is the potential, and A, B, and p 

are arbitrary constants. Equating potentials and normal displacements at 

the boundary gives the result

It is instructive to consider the case of an elliptic cylinder to 

further illustrate the dependence of plasma resonance on the shape of the

plasma and its manner of excitation.

In Smythe (15), page 97, an expression is derived for the potential

outside of an elliptic cylinder under the influence of a uniform field. 

Changing notation slightly the potential is given by

In the expression above, the field of strength E makes an angle α 

with the major axis of the cylinder. W is a complex potential U + iV,

U being the potential function and V the stream function. The coor- 

dinate position is z = x + iy, and the major axis of the ellipse lies

along the x axis. The quantities A' and A" are given by

ϵ' = -ϵo.
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where ϵ' is the dielectric constant of the cylinder, ϵo the constant

of free space, m the semi-major axis of the ellipse, and n its semi-minor 

axis. The quantity g is determined by g2 = m2 - n2.

If in the equation for W, only very large values of z are consi­

dered, the approximation

If α = 0, the field is aligned the major axis of the ellipse and

when

. Hence it may be seen that if the major axis is aligned 

with the field, there is an equivalent induced dipole moment

whereas for the minor axis aligned with the field 

the equivalent dipole moment is

These dipole moments may be expressed as

may be used. The cor-

responding expression for W becomes

, the field is aligned with the minor axis of the ellipse and

The potential of a line dipole of moment M per unit length is given by
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. If m = n = a, the case

reduces to that of a circular cylinder and the dipole moment becomes

and resonance occurs when ϵ' = -ϵo, a result obtained previously.

From these results it is seen that the frequency of plasma resonance

depends not only on the shape of the plasma but on the mode of oscillation 

excited by the external field.

G. Gaseous Discharge Tube in a Parallel Plate Line

1. The Idealized Case. In an experiment in which an obstacle is placed 

in the vicinity of the conductors of a transmission line, some of the proper- 

ties of the obstacle may be deduced from its position relative to the line 

together with a measurement of the reflection coefficient produced by the

obstacle.

In the case where a voltage wave of the form Aeikx, traveling in the

positive x direction, encounters an obstacle at x = 0, a reflected wave 

of the form Be-ikx will be generated. The quotient Β/A, a complex quantity

in general, is called the reflection coefficient or reflection factor. If

the obstacle is considered to present to the line an equivalent shunt im-

pedance Zs, and the characteristic impedance of the line is Zo, then 

If the field is along the major axis, the induced dipole becomes in-

finite and resonance occurs when . For the field along the

minor axis, resonance occurs when

(6)
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the reflection coefficient is given by:

In the quasi-static case the field in the neighborhood of the ob­

stacle is found by solving Laplace's equation. The equivalent shunt 

impedance is given by i/ωC, where C is the added capacitance that may 

be considered to exist at the location of the obstacle due to its presence.

To find the capacitance induced by a dielectric rod midway between 

the plates of a parallel plate transmission line, consider the width of 

the line to be very great compared to its spacing, and consider a typical 

section in a plane at right angles to the plates and parallel to the axis

of propagation. The problem is thus reduced to the two-dimensional situa- 

tion of parallel planes with a dielectric rod between them, its axis 

parallel to the planes.

The problem may be set up as follows. A dielectric rod of radius a 

and dielectric constant ϵ' has its center at the origin in the complex 

z plane. Located at x = b/2 and x = -b/2 are conducting planes. In 

the region remote from the rod a potential of the form W = E z exists in 

the region between the planes. To find the equivalent capacitance it is 

necessary to find the charge induced on the conducting planes by the rod.

In the case where the diameter of the rod is very much smaller than 

the distance between the planes, this may be approximated by finding the 

dipole moment induced in the rod by a uniform field in free space, and re- 

placing the rod by this equivalent line dipole.

In Smythe (15), page 86, an expression is given for the potential due

(7)
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to a line charge between parallel conducting planes. Changing notation 

slightly this may be written

Here W1 is the complex potential, the conducting planes are at y = 0, 

and y = b. A line charge of unit strength per unit length is located at 

z = iu. The potential W due to a line dipole of strength M at y = u 

may be found as follows

(8)

The charge Q induced by the dipole on the plane y = 0 may be expressed

as
Q = ϵo [V(x = ∞, y = 0) - V(x = -∞, y = 0)]

(9)

It may be seen that the charge induced does not depend on u, the 

location of the dipole. As a consequence the charge induced by a multipole 

of high order is zero, since such a multipole may be constructed by a super- 

position of dipoles. In other words, the position of the dipole affects only 

the distribution of charge, but not its total amount, so the total charge

since V is the stream function. Noting that , the

equation for Q becomes
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induced by any multipole comprised of equal and opposite dipoles is zero.

This result will be used later.

Using equation 6, which gives the dipole moment induced in a cylinder

by a uniform field, the expression for Q may be written

Since the capacitance C is equal to

per unit width becomes

For a parallel plate line, whose width d is great compared to its 

spacing b, a result in Smythe (15), page 466, gives for the characteristic 

impedance

(10)

It should be noted that the expression for

and , the shunt impedance

The reflection coefficient may be calculated from the expressions for 

Zs and Zo. Using equation 7, and the relation k = ω(μoϵo)1/2

is very similar to

that for B1, the amplitude of the dipole mode scattering of a small cylin- 

der in free space, since from equation 5
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The expressions cannot be derived from each other, since they apply

to different physical situations.

2. Effect of Quasi-Static Approximation. It is difficult to account 

rigorously for the effect of using a quasi-static solution. In general, 

it is customary to take such a solution as satisfactory if all distances 

of importance are small compared with λ/2π.

In the case of a cylinder of radius a between the plates of parallel 

plate line, the excitation of the cylinder by the traveling wave is not in

phase at all points on the cylinder. The phase difference in radians across

the diameter of the cylinder is given by , which is 2ka.

The charge induced on the plates by the cylinder is spread out rather

than concentrated at the center line of the cylinder. The extent of this 

spreading out may be estimated from equation 8, giving the potential between 

the parallel planes due to a dipole between them. Placing the dipole midway 

between the planes, the potential becomes

where W is the complex potential, the planes being at y = 0 and y = b. 

This may be simplified to give

The charge Q' induced on the lower plane between x = a and x = -a is 

given by
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From equation 9 the total charge induced on the plate is The frac-

tion of the total charge included in a distance a either side of the center 

of the cylinder is then tanh . For a cylindrical plasma whose diameter 

is half the distance between the plates of the transmission line, 90% of the 

induced charge is concentrated in a distance equal to the diameter of the 

plasma. For such a cylinder a significant dimension pertaining to the spread- 

ing out of charge may be taken to be 2a. The ratio of this distance to the 

quantity 2π/λ is 2ka.

For the experiments to be described, the quantity 2ka had a value 

of .14 at 300 megacycles, and it is assumed that this is sufficiently small 

compared to unity to permit the use of a quasi-static solution.

3∙ Effect of Non-Uniform Plasma Density. Equation 2, the differential

equation governing scattering for the case of perpendicular incidence, is

difficult to solve if the dielectric constant is not uniform. Interest in

the problem has centered on the Gaussian distribution,

since this is assumed to represent the electron concentration in a meteor 

trail. Mackinson and Slade (16) attempted to approximate the solution by 

breaking the column up into five regions, adjusting the concentration in 

each to approximate a Gaussian distribution. They then employed the Fourier-

Lamé method to solve the problem. Their results indicated the presence of 

five resonant frequencies. The applicability of this result was questioned 

by Keitel (17) who cited a paper of his own (18). Keitel performed numeri- 

cal computations on a high-speed digital computer to obtain scattering

amplitudes for columns having Gaussian distributions of electron density.

His results for a column of ka = .1, β = 10-4 did not indicate any
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appreciable resonant response. The same quantity of electrons uniformly 

distributed over a column of radius a would display a very strong resonance.

Herlofson (2) attacked the problem by considering a uniform cylindri­

cal plasma surrounded by a thin shell in which the electron concentration

dropped linearly to zero. He concluded that the presence of concentration 

gradient would reduce the amplitude of the scattering coefficient and broaden 

the resonant peak. Herlofson's results are of uncertain use if the thickness

of the shell is not small compared to the radius of the column, and do not

represent any obtainable physical situation very closely.

In a gaseous discharge tube the electron concentration is usually taken

(19) to be noJo where r is the radius within the cylindrical plasma 

a the radius of the confining tube, and a' a length related to the mean 

free path. Jo is the Bessel function of zero order. This distribution is 

very close to that given by where . A solu-

tion for this parabolic distribution of electron density may be obtained

using the quasi-static approximation.

Equation 2, being a differential equation in Η, the magnetic field,

is of no utility in the quasi-static approximation. The differential equa­

tion to be satisfied may be derived from Maxwell's equation ∇ ∙ D = ∇ ∙ ϵ'E = 0 

Using the vector identity E ∙ ∇ϵ' + ϵ' ∇ ∙ E = 0, and defining the potential 

0̸ by E = - ∇ 0̸, there is obtained . In cylindrical 

coordinates, with e’ a function of r only, this equation becomes

If a product solution of the form 0̸ = R(r) cos φ is assumed, this 

differential equation may be written
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Recognizing that when γ ≈ 0, this equation is solved by 0̸  = Ar, 

a solution of the form R = Ar g(r) is substituted. This gives a differen­

tial equation for g(r)

If a series solution of the form

If ϵ' = ϵc(1 - γ r2), the differential equation becomes

asrs is substituted, 

it is found that

where

If at r = 1 the dielectric constant changes abruptly to that of 

free space, then a criterion for resonance may be determined. Assuming a

potential outside the cylinder of the form and equating potentials 

and normal displacements at the boundary, the criterion for resonance be-

comes

This quantity may be related to α, the parameter in the equation 

for electron concentration by recalling equation 1 relating dielectric con-

stant to electron concentration. If the electron concentration necessary to 

produce resonance in a uniform cylinder is denoted by nu, and collisions 

are neglected, equation 1 becomes
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Using the criterion for resonance ϵc = -ϵo f(γ) two relations may be obtained 

may be written.

Figure 1 shows graphically the relation between

Since it has been assumed that , the relations between the

various parameters become

In a cylinder In which the electron concentration is given by

the mean electron concentration is given by . From this

the equation

and α. It may

be seen that for small departures from uniform concentration the mean electron 

density necessary for resonance is almost unchanged. For α = .11, corres­

ponding to the experimental situation at a mercury vapor pressure of 1.54 x 10-3 mm 

(see section on "Properties of a Gaseous Discharge"), the necessary increase in 

electron density is only .12%. Therefore no correction is made for non-unifrm 

plasma density.

4. Effect of Finite Cylinder Radius. To calculate the capacitance that is 

added by the dielectric rod when its radius is comparable to the spacing, it 

is necessary to take account of the fact that the field due to the presence of 

the rod produces a redistribution of charge on the planes.

In order to accomplish this an iterative procedure may be utilized.

First, the field from the rod induced by the uniform field between the
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planes may be found. Next, the effect on this field due to the presence of 

the planes may be obtained. The effect of the rod on the additional field

of the planes may then be found. This process may then be repeated as often 

as necessary. The procedure is similar to that used by Smythe (15) page 118, 

for finding the field in the neighborhood of two spheres by successive itera- 

tion of images. A step-by-step illustration of the procedure is given in 

Figure 2.

A complex potential W outside of the rod but due to its presence may 

be expressed as

since the rod contains no net charge and its field must die off at infinity. 

Each Cn may be related to the strength of an nth order multipole located 

at the origin. Of all these multipoles, only the dipole, corresponding to 

n = 1, can induce net charge on the planes.

If a field due to the charges on the planes is expressed as

which is permissible since the field must be finite at the origin, then a

relation may be written between the components An of an external field due 

to charges on the planes, and the components Cn of the field produced from

it by the dielectric rod. This relation may be obtained by equating poten­

tials and the normal displacements at the surface of the rod, and is given by

It may be seen that only the A1 term in the expression for the potential 

due to charges on the planes contributes to the induction of dipole moment
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in the cylinder, the A1 term being the uniform field component of the 

potential between the planes.

The effect of the presence of the planes on the potential due to a 

multipole at the origin may be calculated by replacing them with an infinite 

set of images of the multipole located at x = ± mb, m ranging from one 

to infinity. If the potential of a multipole at the origin is given by 

Cnz-n, the potential due to the presence of the planes may be expressed as

It is desirable to express this in the form of W = Arzr, since this 

will be necessary for the iterative procedure to be followed. By the use of

Maclaurin's Series

where Wr(0) represents the rth derivative of W(z), evaluated at z = 0. 

Proceeding formally
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is all that is needed to proceed with the iteration procedure.

First, the uniform field between the plates has a potential given by

W = Ez, hence for this field only A1 exists and its value is given by E. 

This is the first term in the expression for the total uniform field.

The corresponding field due to the presence of the rod is given by

hence for n + r odd, Wr(0) = 0, and for n + r even

but by a well-known relationship, (20)

where Bn is the Bernoulli Number, B1 ≈ 1/6, B2 = 1/30, etc. and hence

and finally , so

n + r even

This, together with the previously obtained relation

all other Cn being zero.
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The field produced by the presence of the plates may be expressed as

since only C1 exists.

The important r = 1 term giving the second contribution to the uni- 

form field is

The multipoles that are produced from this field by the rod are given 

by

This in turn induces charges on the plates. The desired A1 term is given 

by

This is equivalent to

It may be seen that qth repeated application of the iteration process 

will give a similar result which can be expressed by

where k4, k8, . . . , will be functions of q only. As the process is
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where q becomes large k4(q), k8(q), . . . , will approach limiting values 

k4, k8, . . . .

To evaluate the value of the sum

or

In order to evaluate the contribution of this series for smaller values 

of a/b , note that the excess over the value unity must decrease at least as 
rapidly as (a/b)4. Hence for a rod whose diameter is half the distance be­

tween the planes, the maximum value the series can have is

This expression can be written as

continued they will each approach a limiting value as the fields become more 

similar. The total uniform field may be written as

, the case of

a conducting cylinder may be considered. In this case ϵ'/ϵo becomes in­

finite and the factor [(ϵ'/ϵo) - 1]/[(ϵ'/ϵo) + 1] becomes unity. In the case 

of the limiting value , when the conducting cylinder is just touching 

the planes, the field must become infinite. Hence we can write

or

1.0135. As a consequence, the total field for values of a/b less than 1/4 

is given to an accuracy of better than 1.5% by the expression
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From equation 6, the total dipole moment M induced is given by

Since by equation 9, the total charge Q induced on plates a distance b 

apart by a dipole of strength M is M/b , and since C = Q/Eb, the capa- 

citance per unit width due to the presence of the dielectric rod is given by

Hence equation 10, giving the reflection coefficient in the idealized 

case, must be modified to include the effect of finite cylinder radius. The

reflection coefficient becomes

(11)

5. Effect of Finite Tubing Thickness. In the laboratory, an approximately 

uniform plasma must be produced in a confined cylinder. The characteristics 

of the tube that confines the discharge have an effect on the phenomena ob-

served.
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Following the method used by Smythe (15) in finding the scattering 

due to a uniform dielectric cylinder, the scattered radiation from a cylin- 

der of radius a and dielectric constant ϵ', surrounded by a concentric 

cylindrical shell of outer radius b and dielectric constant ϵ" may be 

found. The result is as given in equation 3 except that Bn is modified. 

For this case the expression for Bn becomes

where

If, in the expression above, the leading terms in the expansions for 

the Bessel functions are substituted for the functions themselves, and n 

set equal to unity, the dipole mode scattering amplitude for small ka can 

be found. If the imaginary part of the denominator is set equal to zero, to 

make the modulus of the scattered dipole mode amplitude a maximum, the fol~

lowing equation is obtained:

and if b = a(1 + δ), ϵ" = K ϵo, and terms in δ2 are neglected
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This same result may be obtained very simply by considering the 

quasi-static case of concentric dielectric cylinders. The radius of the 

inner cylinder is a and its dielectric constant ϵ', the radius of 

the outer cylinder b and its dielectric constant ϵ".

Potentials may be assumed of the form

was 1.143. Substituting these quantities in equation 12 gives the re-

sult ϵ' = -1.52 ϵo at resonance. 

cos θ outside the outer

cylinder, cos θ + Cr cos θ within the outer cylinder, and Dr cos θ 

within the inner cylinder. If potentials and normal displacements are 

equated at the boundaries, four equations are obtained. The determinant 

formed by the coefficients of the four unknowns may be set equal to zero 

to give the relation for free oscillation.

Performing these operations results in the equation

(12)

If is set equal to K, b equal to a(1 + δ), and terms in

δ2 are neglected, this expression becomes

which is identical to that previously obtained.

The effect of the dielectric walls is to require the inner dielectric 

constant to be more negative (the electron concentration greater) for 

resonance to occur than would be the case in their absence.

For the experiment described here, the tubing was No .774 pyrex, 

having a relative dielectric constant of 4.3 at 300 megacycles. The ratio
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6. Effect of Finite Line Width. In the idealized case it was assumed

that the width of the parallel plate transmission line was very great 

compared to its spacing, and its characteristics were computed for a typical 

section. In a practical case these results may be modified by the presence 

of the edges of the plates.

Where the cylindrical plasma extends far beyond the edges of the 

plates, the degree of coupling of an element of length of the plasma to 

the plates falls off rapidly beyond the edges. This may be seen by follow- 

ing a line of force from the top of the upper plate to the bottom of the 

lower plate. The potential difference along the line of force between the 

points where it enters and leaves the cylinder may be taken as a crude 

measure of the degree of coupling. The potential difference across a dia- 

meter of the cylinder decreases with increasing distance from the edge.

From the results in the discussion "Effect of Finite Cylinder Radius" 

it may be seen that the resonant frequency of the cylindrical plasma is 

modified by the presence of the parallel plates. For a dielectric cylinder 

of radius a in line of infinite width and spacing b, the dielectric 

constant for resonance is given by

whereas for the same cylinder in free space the dielectric constant for 

resonance would be ϵ' = -ϵo. It is apparent that each element of length 

of the plasma will contribute to the total shunt admittance, but that the 

magnitude and phase angle of its contribution will depend on the location 

of the element. The contribution of all the plasma outside the region be- 

tween the plates may be approximately compared to that of the plasma within
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the region between the plates by a comparison of the relative contributions 

of these regions to the total capacitance per unit length of the transmission

line.

Here E, F, and K are the elliptic integrals whose moduli are k or k' ,

as indicated, and k2 + k2 = 1. The transmission line used for the experi­

ments described here had a ratio of b/d = 5.72. The approximation for C 

used in the idealized case gives a capacitance of 5.72 ϵo per unit length, 

whereas the use of the exact expression results in a capacitance per unit 

length of 7.22 ϵo. (This correlates well with the fact that the ratio b/d 

was adjusted to match 50 ohm line, which would theoretically require a capa- 

citance of 7.55 ϵo per unit length.) It may be seen from these figures that 

about 75% of the total capacitance may be attributed to the region between the 

plates.
Since the plasma outside the plates is less effective in producing 

shunt admittance than that between the plates, somewhat less than 25% of the 

total admittance will be due to the portion of the plasma not between the 

plates. It is difficult to make any quantitative modification of the results 

from the idealized case to account for this situation.

H. Properties of a Gaseous Discharge.

To predict the reflection coefficient due to the presence of a plasma

If the plates of width d were very wide compared to their spacing 

b, the capacitance between them would be per unit length. The actual 

capacitance per unit length, C, may be found from a relation in Smythe (15), 

page 109.

, where
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in a transmission line it is necessary to know the mean electron concentra­

tion in the discharge tube, the radial variation of this concentration, and 

the collision frequency.

At present the state of understanding of the processes occurring in 

the cylindrical positive column or plasma of a gaseous discharge is such 

that only reasonably close numerical values may be calculated for these quan- 

tities. Experimental work in this field involves techniques of considerable 

difficulty. The disparity between the values obtained by different investi - 

gators for a quantity such as mean electron density may be as great as a 

factor of two. In general, however, the experimental values determined by 

careful investigators will fall within 30-40% of the value expected.

A rather complete theoretical treatment of the low pressure mercury 

vapor discharge, together with a summary of experimental results, is given 

by Klarfeld (2l). Using his results, two important parameters of the dis- 

charge may be determined. The first of these is Ne/I, which is the number 

of electrons per unit length of the tube per ampere of discharge current.

The second of these is Te, the electron temperature. These are both func- 

tions of the quantity apo, a being the radius of the discharge tube, and 

po the gas pressure reduced to 0°C.

The situation regarding the radial variation of electron density is 

somewhat less clear cut. Ambipolar diffusion theory indicates that the 

electron density should be given by where no is the den- 

sity on the axis and a the radius of the tube. It can be shown (19) that 

if diffusion takes place for electrons of all energies, and if the mean free 

path is the same for electrons of all energies, then a' = 3/4 λ, where λ 

is the electron mean free path. While neither of these conditions is closely 

approximated in a typical mercury vapor discharge, Howe (19) measured radial
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distributions that agreed fairly well with the assumption that the mean

free path was that computed by using the collision cross section for elec- 

trons in mercury vapor measured by Brode (22) at an energy corresponding 

to the electron temperature. Radial distributions measured by Killian (23) 

do not fit this assumption as well. Nonetheless, it appears that this as­

sumption offers a satisfactory method of calculating the radial variation

of electron concentration in terms of the known parameters describing the

discharge.

With regard to the collision frequency, the situation is also not 

clear cut. Margenau's (9) theory of the high frequency behavior of a plasma 

gives the complex conductivity for the assumption that the mean free path of 

electrons does not depend on their velocity. Everhart and Brown (11) show 

that for high frequencies Margenau's expression is equivalent to equation 1. 

Adler (13) measured the complex conductivity of a mercury vapor discharge 

and concluded that the assumption of a mean free path independent of velocity 

gives satisfactory agreement with the measured complex conductivity. Adler 

computed a value for the mean free path of electrons in a mercury vapor dis-

charge.
A reasonable procedure for predicting β, the damping factor for the 

plasma, is to use Margenau's theory together with Adler’s measured value of 

the mean free path. This procedure gives the result

where is the mean velocity corresponding to the electron temperature

, k being Boltzman's constant, and λ the mean free

path of the electrons.

J. Summary of Theoretical Relations

By use of Klarfeld's (21) relation connecting Ne/I with apo, 

the number of electrons per unit length of cylindrical plasma may be

Te,  
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determined. The only quantities necessary for this determination are the 

discharge tube radius; the temperature of the condensed mercury; the tem­

perature of the mercury vapor; and the discharge tube current. By use of 

equation 1 which relates the plasma dielectric constant, ϵ', to n, the 

electron concentration; the electron concentration necessary to produce the 

condition ϵ' = -ϵo may be determined. For this to be done the only experi- 

mental quantity that needs to be known is the frequency. If it is assumed 

that the plasma density in the discharge tube is uniform, and that resonance 

occurs when ϵ' = -ϵo, the discharge tube current that will produce reson- 

ance may be computed. This discharge current must be corrected to account 

for the various approximations made in obtaining the result ϵ' = -ϵo at 

resonance.

By use of Klarfeld's relation connecting Te, the electron tempera­

ture, with apo; together with the relation from kinetic theory

that relates electron temperature to mean electron velocity, 

the mean velocity may be determined. Using Brode's (22) data, a collision 

cross section corresponding to this velocity may be found. Using this cross 

section and the pressure po, a value of mean free path may be calculated. 

The quantity a', which is necessary to compute electron concentration 

gradient, may be calculated from this mean free path. From a and a' the 

ratio of electron concentration at the wall to that at the axis may be calcu- 

lated. For the experiment reported here, the smallest value of this ratio 

that was obtained from this procedure is .64, corresponding to a pressure 

of 3.13 x 153 mm Hg. From the section "Effect of Non-uniform Plasma Density" 

it may be seen that this corresponds to an increase of 2.5% in the electron 

concentration necessary for resonance. Since at all other pressures the 

correction is even smaller, no correction was made for non-uniform concentra­

tion.
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It is shown in the section "Effect of Finite Tubing Thickness" that 

the presence of the pyrex tube used would cause resonance to occur 

ϵ'/ϵo = -1.52.

It is shown in the section "Effect of Finite Cylinder Radius", that 

in a very wide line, resonance would occur at ϵ'/ϵo = -1.52, the ratio 

a/b = 1∕4 having been used in this experiment. It is shown in the section 

"Effect of Finite Line Width" that the correction for the finite width would 

reduce the excess over -1 by less than 25%. Since the amount of this reduc- 

tion is uncertain, the full amount may be used.

The corrections due to tubing thickness and finite width both being 

small, it may be assumed that they are superimposable. This results in a 

figure ϵ'/ϵo = -2.31 at resonance.

The current required to produce an electron density corresponding to 

ϵ'/ϵo = -2.31 may be calculated by the method outlined previously. This 

procedure was used to give the theoretical curve in Figure 9, showing current 

for resonance versus frequency, and Figure 11, showing current for resonance

versus gas pressure.

To calculate β, the damping factor of the plasma, a result of Adler 

(13) is utilized. From measurements of the complex conductivity in a mer­

cury vapor discharge, he found that the assumption of a mean free path of

9.5 x 10-3 cm at 1 millimeter pressure gave agreement with his experimental 

results. (The pressure range covered by Adler's experiments overlapped but 

was generally higher than that used here.) Using this mean free path, and 

the mean velocity corresponding to Te, the factor β may be calculated 

from Margenau's results (9) given in the section "Properties of a Gaseous 

Discharge". This procedure was used to give the theoretical curve in Figure 

10, showing β versus frequency, and Figure 12, showing β versus gas pres­

sure.
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From equation 11, a value of β may be computed using the measured

value of at resonance. The calculated curves in Figure 7 showing

versus current, and Figure 8, showing the angle of versus current, are 

simply plots of these quantities from equation 11. These calculated curves 

were made without reference to values that might be obtained from the theory 

of the gas discharge.

III EXPERIMENTAL APPARATUS AND TECHNIQUES

A. Choice of Experimental Method

Scattering experiments in free space require rather formidable tech- 

niques in order to obtain accurate results. One particular difficulty lies 

in separating the desired scattered radiation from energy scattered by mis­

cellaneous objects in the ficinity of experimental area. A second difficulty 

is measuring the scattered radiation in the presence of the incident radia­

tion.
A generally accepted technique involves the use of an artificial 

ground plane many wavelengths in extent. A probe is used to sample the

total field in the neighborhood of the scattering specimen. All experimental 

apparatus other than the radiating antenna, the scattering object, and the 

probe are located below the ground plane. In general, the scatterer is bi­

sected by the ground plane so only a half model is necessary.

While this technique is satisfactory for experiments involving three-

dimensional scatters, it leaves a great deal to be desired if applied to

the two-dimensional problem of scattering by an ionized column where the 

electric vector is transverse to the column. Also, apart from the two- 

dimensional nature of the problem, there are difficulties in applying the 

method to an ionized column formed by a gaseous discharge.

The basic trouble is that in the neighborhood of the ground plane



the electric field is normal to the ground plane. This requires the axis 

of the column be parallel with the ground plane. If the ground plane is 

slotted to admit the column the field3 in the neighborhood of the column are 

severely distorted. The ground plane cannot, of course, continue through 

the column as this would short out the voltage maintaining the discharge.

If a discharge of special section is constructed, such that placed upon the 

ground plane it represents half a cylinder, then the ion concentration is no 

longer approximately uniform, in fact it does not even have radial symmetry.

If the column is located some distance above the ground plane, then many of 

the advantages of the method are lost, since the necessary leads to the 

column and the probe disturb the fields.

In addition to the specialized difficulties caused by the scatterer

being a gaseous discharge, there are those connected with the two-dimensional

nature of the problem. It would be desirable to have the column at least

several wavelengths long in order to reduce the importance of end effects.

In addition the long column should be in an approximately plane wave, which

means the radiator must be several column-lengths from the column. As a con-

sequence of these two requirements the ground plane must be many wavelengths

in extent to represent a satisfactory experimental situation.

The cost and complexity of applying the ground plane method to inves­

tigating the scattering of a plane wave incident on an ionized column with 

the electric vector transverse to the axis of the column, leads to examination 

of other experiments which may display the phenomena involved in free space 

reflection. The most obvious of these is to span a waveguide with a discharge 

in such a way that the axis of the discharge is transverse to the field.

Using a gaseous discharge tube in a waveguide has many features that 

make the experimental situation better than in free space. Since the energy 

is confined to the interior of the guide there are, in general, no radio fre­

40.



quency fields around the measuring apparatus. A wealth of conventional ap- 

paratus exists for measurement of standing wave ratio in waveguides. However, 

the dimensions of waveguide must be comparable to the wavelength of the radia- 

tion to be scattered or the guide will not propagate energy. This limits the 

use of this technique to relatively high frequencies, and, in turn, entails 

certain disadvantages. It is desirable to have the radius of the discharge 

tube small compared to a wavelength. The reason for this is the simplified 

theoretical interpretation of the experimental results that may be made. To 

make the quantity ka equal to 0.1 or less at 3000 megacycles, the radius of 

the discharge tube must be less than .16 cm. However, even for this small a 

diameter, no adequate theory is available for the effect of a dielectric rod

in a waveguide with its axis transverse to the electric field.

Consideration of these difficulties led to examination of the possibility

of conducting a scattering experiment in a parallel plate transmission line.

A parallel plate line will allow propagation of a TEM wave of any frequency. 

Furthermore, if the line width is large compared to the spacing, a nearly

uniform electric field exists between the plates. Hence the field to which

the discharge is exposed is almost identical to that seen by a column exposed

to a plane wave in free space. With care the leakage of energy may be held 

to a low enough value so that no difficulty need be experienced from stray 

fields. It was felt that an experiment using a parallel plate line represented 

a good working compromise between the experimental difficulties of the free

space methods and the restrictions implicit in the waveguide method.

B, Description of Apparatus

A parallel plate transmission line was designed and fabricated for this 

experiment. The line consisted of a uniform central section 48" long and 

tapered matching sections 20" long at each end. The matching sections were 

attached to the parallel plates by short strips of flexible shim stock to

41.
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allow the taper to be adjustable. The pieces comprising each matching section 

were trapezoids, 10 inches wide where they were joined to the 10-inch wide 

uniform line, and 3/4 inches wide at the other end. The pieces comprising the 

line were fabricated of 1/8-inch thick aluminum sheet. They were supported by 

insulators of adjustable length within a rigid wooden frame. By adjustment 

of the insulator heights the line spacing could be made uniform over its entire 

length, and the taper of the matching sections adjusted as required.

In the experiments reported here the central section of the line was set

at 1.75 inches, with a maximum variation of .030 inch from point to point.

The small ends of the matching sections were fastened directly to RG58A/U 

coaxial cable having 50 ohms characteristic resistance. Figure 3 is a photo­

graph illustrating certain features of the construction of the transmission

line assembly.

It was necessary to build a standing wave ratio indicator for the line. 

After several attempts, an indicator was designed that was sensitive enough 

to give satisfactory readings and yet was free from "hand capacity" effects.

The sensing portion of the indicator was made of two small pieces of brass 

sheet, each of about 1/3 square inch area, placed about 3/4 inch apart. This 

sensing portion could be moved along the line in such a way that its plates

moved parallel to the line while they projected into the space between the 

conductors of the line. The depth of projection into the line was constant 

within about .020 inch. A silicon diode, type 1N21B, was connected between 

the plates of the sensing probe, and each plate connected through a 500-ohm

resistor to the conductors of a short coaxial cable.

At the other end of the cable the d.c. voltage that was developed across 

an 800-ohm resistor was read by an elementary potentiometer arrangement. The 

potential from a mercury cell, reduced to a suitable value, was applied to the
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terminals of a precision voltage divider, and the divider ratio set to null 

a sensitive galvanometer connected between the divider and the 800-ohm ter­

minating resistor. By these means a divider reading proportional to the 

square of the voltage on the line could be made easily and accurately.

Figure 4 is a photograph of the standing wave ratio indicator assembly.

A mercury vapor discharge tube was designed and fabricated for the

purpose of providing the cylindrical plasma. The entire tube was 36 inches 

long, so when the tube was placed between the 10-inch wide plates of the

line, both the anode and cathode were well removed from the high field re- 

gion. An oxide-coated, electrically heated thermionic cathode was used. The 

entire cathode assembly was taken from a type 866A mercury vapor rectifier.

Two side arms were provided near the anode end of the tube. One was

used as a mercury reservoir, and the second to provide a connection to the 

vacuum pumping system. A photograph of the discharge tube, Figure 5, shows

the details of its construction.

In operation, the vacuum pump was run continuously. The pressure of

mercury vapor in the discharge tube was very nearly the vapor pressure of

mercury at the temperature of the constant temperature bath. This condition

was assured by making the pumping speed of the line connecting the upper

sidearm to the vacuum system very low compared to the pumping speed of the

lower sidearm.

A General Radio Type 857-A oscillator was used as a source of radio 

frequency energy. It was isolated from the transmission line by a 10-decibel 

pad. The power transmitted through the line was absorbed in a 50-ohm ter­

minating resistor.

Power for heating the filament and maintaining the discharge was sup- 

plied from well-regulated supplies. A resistance of at least 1000 ohms was
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always used in series with the discharge tube.

A general view of the experimental apparatus, with each important com­

ponent labeled, is shown in Figure 6.

C. Calibration and Operating Technique

Before any data could be taken, it was necessary to minimize the 

residual standing wave ratio of the transmission line. This was easily 

accomplished by adjustment of the tapered matching sections. Sending and 

receiving ends were interchanged several times during this procedure to 

ensure the proper termination of both ends of the line. A residual standing 

wave ratio of 1.04 at 300 megacycles, and less than 1.15 at all frequencies 

between 175 and 450 megacycles, was achieved.

The linearity of the standing wave indicator was checked by making a 

standing wave survey with the receiving end termination removed. For a per-

fect square law detector, the readings obtained would describe a wave of the

form . The readings obtained showed a maximum deviation 

from this curve of less than ± 1% maximum reading.

A copper tube was placed in the line at the position to be occupied by 

the discharge tube. This was equivalent to the condition ϵ' = ∞ in equa- 

tion 11. The measured standing wave ratio was 1.17, versus a calculated

value of 1.15.

During these preliminary standing wave surveys it was observed that the 

reading of the standing wave indicator was affected by only about two or 

three parts in 1000 due to movement of its cable, touching the galvanometer 

housing, moving about the room, etc. However, at attempt was made to minimize 

movement of any large conducting object in the vicinity of the line during the 

course of taking data.
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The usual procedure in taking data was to fix the frequency of the 

oscillator, fix the temperature of the constant temperature bath, and, at a 

selected value of discharge current to record the maximum and minimum values 

read at the standing wave ratio indicator. From their ratio the magnitude

of the reflection coefficient could be obtained. The mean of these values

was then computed and the position of the probe on the line adjusted so as 

to produce a reading equal to this mean. This position was used to determine 

the phase angle of the reflection coefficient. The discharge current was

then changed and the procedure repeated.

No time lag in reaching a steady state was observed following a change 

in discharge current. When the temperature of the condensed mercury was 

changed, about one minute was required before equilibrium was attained.

The only inconvenience noted in operating the apparatus was the neces- 

sity for constant attention to the temperature bath. A temperature change of 

only .2°F was sufficient to produce an observable change in standing wave 

ratio.

IV RESULTS AND DISCUSSION

Figures 7 and 8 show the results of a series of runs in which the dis- 

charge current was varied while the gas pressure and frequency were kept 

constant. The different symbols represent runs made on different days. Figure

7 shows voltage standing wave ratio as a function of discharge current. Volt-

age standing wave ratio is related to the modulus of the reflection coefficient

, by the relation VSWR = , and is a somewhat more familiar

quantity than . Figure 8 shows the argument or angle of the complex

quantity as a function of discharge current.

The calculated curves presented in Figures 7 and 8 are derived from
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equation 11 only. Using this equation, the damping factor for the plasma, 

β, may be computed from the observed maximum value of . If this quantity 

is substituted back in equation 11, and use made of the fact that electron 

concentration is directly proportional to current, the modulus and argument

of at all values of discharge current may be calculated from the value 

of discharge current where reaches its maximum.

It may be observed that the shapes of the experimental curves are sig- 

nificantly different from those calculated. Probably most of this difference 

is due to the effect of finite line width. In contrast to the experimental 

results of Tonks (6) and Romell (8), pronounced resonant response was observed 

at only one value of discharge current.

Figures 9 and 10 show the results of a series of runs in which the fre- 

quency was varied and the discharge current necessary to produce resonance 

compared with the experimental values observed. The difference between the

two values is somewhat greater than might be expected, but may be due to the 

approximations made by Klarfeld (2l) in deriving the therry from which the 

theoretical curve was computed.

The damping factor β, shown in Figure 10 as a function of frequency, 

was computed from the standing wave ratio at resonance. The wide disagree­

ment between the theoretical and experimental values is probably due to the 

effect of finite line width. The finite width causes the portion of the 

plasma remote from the plates to become resonant at a slightly lower current 

than that portion of the plasma between the plates. As a consequence the 

resonance is broadened and the apparent value of the damping factor, β, is

increased.

Figures 11 and 12 show the results of a series of runs in which the gas
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pressure was varied and the discharge current necessary to produce resonance

was observed. The disparity noted between the theoretical and experimental

values Is nearly in constant ratio at gas pressures in excess of about 10-3 mm 

Hg. Below this pressure the curves are totally different. It would be of 

interest to make probe measurements of the electron density in the low gas 

pressure region in an effort to find a cause for this discrepancy.

Figure 12, showing β as a function of gas pressure, was computed from 

the standing wave ratio at resonance. As in the case of β versus frequency 

shown in Figure 10, the disagreement between the theoretical and experimental 

curves may be attributed to the effect of finite width.
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V FIGURES

Figure 1. Mean Density for Resonance versus α



Figure 2. Illustration of Successive Images.



Figure 3. Details of Transmission Line

Figure 5. Gaseous Discharge Tube

Figure 4. Standing Wave Ratio Indicator





Figure 7. Standing Wave Ratio versus Discharge Current



Figure 8. Angle of Β/A is Discharge Current



Figure 9. Current for Resonance vs. Frequency



Figure 10. β versus Frequency



Figure 11. Current for Resonance va. Gas Pressure



Figure 12. β versus Gas Pressure


