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ABSTRACT

Future radio surveys will generate catalogues of tens of millions of radio sources, for which redshift

estimates will be essential to achieve many of the science goals. However, spectroscopic data will be

available for only a small fraction of these sources, and in most cases even the optical and infrared

photometry will be of limited quality. Furthermore, radio sources tend to be at higher redshift than

most optical sources (most radio surveys have a median redshift greater than 1) and so a significant

fraction of radio sources hosts differ from those for which most photometric redshift templates are

designed. We therefore need to develop new techniques for estimating the redshifts of radio sources.

As a starting point in this process, we evaluate a number of machine-learning techniques for estimating

redshift, together with a conventional template-fitting technique. We pay special attention to how the

performance is affected by the incompleteness of the training sample and by sparseness of the parameter

space or by limited availability of ancillary multi-wavelength data. As expected, we find that the quality

of the photometric-redshift degrades as the quality of the photometry decreases, but that even with

the limited quality of photometry available for all sky-surveys, useful redshift information is available

for the majority of sources, particularly at low redshift. We find that a template-fitting technique

performs best in the presence of high-quality and almost complete multi-band photometry, especially

if radio sources that are also X-ray emitting are treated separately, using specific templates and priors.
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When we reduced the quality of photometry to match that available for the EMU all-sky radio survey,

the quality of the template-fitting degraded and became comparable to some of the machine learning

methods. Machine learning techniques currently perform better at low redshift than at high redshift,

because of incompleteness of the currently available training data at high redshifts.

Keywords: Photometric Redshift – galaxies – radio sources

1. INTRODUCTION

Next-generation radio surveys will generate catalogues of tens of millions of galaxies (Norris 2017b). Much of the

science generated by these surveys depends on the availability of identifications and redshifts for each radio source.

However, in spite of recent advances, even multi-object spectroscopy can only provide redshifts for a small fraction of

these galaxies. Instead, only photometric redshifts (hereafter photoz’s) can provide the necessary redshift information

for the large samples of radio sources.

In this context we focus on an extensive radio survey, the Evolutionary Map of the Universe (EMU), which has been

designed to use the new ASKAP radio telescope to make a deep (∼ 10µJy/beam target rms) radio survey covering

the entire Southern Sky and extending as far North as 30o (Norris et al. 2011). EMU aims to detect about 70 million

sources, about half of which are expected to be star-forming galaxies and the rest Active Galactic Nuclei (AGN). EMU’s

key science goals include tracing the evolution of galaxies from the early Universe to the present day, and using the

distribution of radio sources to explore the large-scale structure and cosmological parameters of the Universe. These

goals require redshift estimates for a significant fraction of the sources. In particular, AGN represent an important

challenge to photometric redshift techniques (see Salvato et al. 2018, for a review).

Since the early pioneering work (Baum 1962; Butchins 1981; Loh & Spillar 1986), many different methods to

evaluate photoz’s have been implemented and extensively tested on a wide range of data. A comprehensive review of

these techniques has recently been published by Salvato et al. (2018).

All these methods use some a-priori knowledge gained either from spectroscopy or from physical assumptions,

to deduce the function that maps the parameter space of photometric observables onto the spectroscopic redshift

distribution. Methods can be roughly divided into two categories: (i) SED (Spectral Energy Distribution) template

fitting, and (ii) machine learning (ML) techniques.

Template fitting techniques (e.g. Arnouts et al. 1999; Beńıtez 2000; Bolzonella et al. 2011; Brammer et al. 2010;

Duncan et al. 2018a) rely on a library of template galaxy spectra which are then shifted to different redshifts and

fitted to the observed photometric data points. The various implementations differ in the way the template library is

assembled (from real galaxy spectra or from synthetic spectra), in the possible inclusion of emission lines (crucial to

model AGN and starburst spectra), and on the ability to use priors and in the fitting procedure adopted. The techniques

used to extract the photometric measurements, the number of bands, and the simultaneity of the measurements can

all profoundly affect the photoz accuracy. For example, single band extractions give worse redshifts than combined

extractions. Most template fitting techniques do not use wavelengths longer than the infrared, since the templates are

not well defined at longer wavelength. Notable exceptions are Rowan-Robinson et al. (2008) who used early IRAC

data up to 8µm from the SWIRE survey, Aretxaga et al. (2007) who used radio and far-infrared data, and Pearson et

al. (2013) who used Herschel and sub-mm data. Here we use the Le Phare (Arnouts et al. 1999; Ilbert et al. 2006)

code (see Section 4.1) with optical and near-infrared data.

Machine learning (ML) based techniques first introduced by Tagliaferri et al. (2003); Firth et al. (2002), use

the a-priori knowledge from a “training set” of objects (also known as a Knowledge Base or KB) for which accurate

spectroscopic redshifts are available. Implementations include random forest, neural networks, nearest neighbours,

support vector machines, Gaussian process regression, and self-organised maps. Recent developments include the

ability to generate probability density functions (PDFs) for the redshifts, rather than a single most likely point

estimation (Amaro et al. 2017, 2018; Duncan et al. 2018b), and the ability to take account of spectral variability

(Pasquet-Itam & Pasquet 2017). Masters et al. (2015) also discuss the effect of the biases introduced by the a priori

information.

Several studies have compared the relative merits of ML and template approaches (Hildebrandt et al. 2008; Dahlen et

al. 2013; Abdalla et al. 2011). For example, ML methods cannot effectively estimate photometric redshifts for objects

fainter than the spectroscopic limit, or for rare objects that are not represented in the training sample. Throughout

this paper, and for all foreseeable ML applications, the training data and the target data must be limited to the
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same limiting magnitude. Template fitting methods can estimate redshifts of rare or peculiar objects as long as a

representative template is included in the library. Key advantages of the template fitting methods are: (i) they can

be extrapolated beyond the spectroscopic limit and, (ii) they can provide an estimate of the galaxy spectroscopic type

and thus morphology, providing by default (iii) also a quality of the fit. Template fitting procedures also provide a

redshift probability distribution function, which has only recently become available from ML codes.

However, if the KB samples the observed parameter space well, and the properties of sources in the KB closely match

those in the target data, ML methods can be more accurate than template fitting. Furthermore, they do not require an

a priori hypothesis about the underlying physics, and they can use non-photometric information such as morphology,

radio polarization, photometric gradients (Gieseke et al. 2011; Norris et al. 2013) or even the spectroscopic type

provided by template fitting procedures (Cavuoti et al. 2017).

The complementary nature of the two techniques have also inspired approaches that use a hybrid of SED fitting and

machine learning in a single collaborative framework, which improve the accuracy of photoz estimates (e.g. Cavuoti

et al. 2017b; Duncan et al. 2018b).

The quality of photoz’s might be expected to improve with the depth of the data and thus a smaller photometric

error, the number of the bands available, and a decreasing spacing between the filters (e.g. Budavári & Szalay 2008;

Beńıtez et al. 2009). While this is usually true for template fitting methods, this is not necessarily true for ML methods

where additional parameters, or features, may increase the noise and decrease performance. For example, increasing

the number of bands may increase the incompleteness of the data, and reduce the density of training points in the

parameter space, thereby increasing the noise in the photoz’s. Instead, the choice of the features to be used should be

optimized by a feature selection phase (Brescia et al. 2013; D’Isanto et al. 2018). Polsterer et al. (2014) and Cavuoti

et al. (2014) have shown that, assuming that the automatic feature selection can identify crucial parameters, feature

selection should be data-driven rather than driven by astronomical reasoning.

Most studies comparing the performance of photoz methods have been based on optically-selected samples, omitting

outlier sources such as AGN and Starburst galaxies, which dominate radio-selected samples. Furthermore, the median

redshift of sources found in EMU is expected to be z ∼ 1.2, which is very different from the median redshift z < 0.2

of most wide optical surveys (Norris et al. 2011). Most of the high-redshift radio sources are high-z radio-loud AGN,

which are relatively rare in optical surveys because they are faint at optical wavelengths. For example, about half the

sources in modern radio surveys host an AGN (Norris et al. 2013), most of which are detected only in very deep

X-ray surveys (La Franca et al. 2012; Smolčić et al. 2017).

In template fitting techniques, the choice of the library of templates plays a crucial role. While a standard library can

be used for computing photoz for normal galaxies at any redshift and depth, alternative templates must be considered

when working on radio or X-ray selected sources. In particular, for X-ray sources, the library of templates change with

the depth of the X-ray survey (e.g. Salvato et al. 2011; Hsu et al. 2014).

Furthermore, current templates generally do not use wavelengths beyond ∼ 5 µm whereas ML methods can use

radio, IR, and X-ray data to improve the photoz accuracy.

An additional challenge that is faced when computing photoz for large radio surveys such as EMU, is that the

photometry will heterogeneous, using different photometric catalogs of different depths. This is in contrast to deep

optical pencil-beam surveys, where images are registered to the same astrometric frame and the photometry is then

measured with the same aperture, taking into account the different point spread functions. For example, Table 4

compares the photometric data that is avaialable for COSMOS and that is predicted will be available for EMU.

As a result, comparisons of photometric redshift techniques performed on optically-selected samples do not necessarily

reflect their performance on radio-selected samples. This is addressed by Duncan et al. (2018a,b), whose work is

complementary to this paper. Duncan et al. use a different regression technique from any used here (Gaussian process

regression, or Kliging) but, more importantly, divide their data into several classes (star-forming, IR AGN, etc) and

separately train their algorithms on these classes, and combine the results from the different sets, together with the

results from template fitting, using a Bayesian estimator. This combination of results is very successful, but here our

focus is different. While we want to quantify the quality of the photoz that will be available for EMU and compare

it with what is available for pencil beam surveys, we also want to understand whether flagging the sources that are

known to be X-ray or variable AGN can improve the results. Finally, we want to see whether using radio and X-ray

fluxes can improve the performances of ML algorithms. We do this in the COSMOS field, comparing the performance

of a number of photoz techniques, on a sample of sources detected in radio, at the same depth that will be available

for COSMOS.
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Previous analysis of this field based on 31 filters (13 broad bands, 6 narrow bands and 12 intermediate bands) with

a typical depth of 26 mag (AB) allowed template fitting methods to predict photoz’s with an accuracy better than

0.015 for normal galaxies (Ilbert et al. 2009) and for a sample of X-ray selected galaxies (Salvato et al. 2009, 2011).

In this paper, §2 presents the data and overall experimental approach; §3 describes the individual methods, §4
describes the methods and tests, and §5 presents the 16 cases that we tested. In §6 and §7 we compare and discuss

the results from the various methods.

2. THE DATA

The data from the COSMOS project are publicly available1 and provide an ideal benchmark for this project (Scoville

et al. 2007). COSMOS covers a 2 sq. deg. field: an area large enough to reduce cosmic variance and to sample the

bright and rare objects. It has a large spectroscopic follow-up pursued using optical and near-infrared spectrographs

mounted on the largest telescopes available, curated into a master spectroscopic catalog by Salvato, thus increasing

the sampling completeness. It has deep, multi-epoch multi-wavelength observations from X-ray (XMM, Chandra) to

radio (VLA), including UV (Galex, Zamojski et al. (2007), optical (broad band photometry from SDSS, CFHT,

intermediate and narrow band photometry from SUBARU (Taniguchi et al. 2007)), NIR and MIR (McCracken et al.

2010; Sanders et al. 2007, Ultravista and Spitzer-IRAC bands)). The data are highly homogeneous, since images have

been registered to a common grid and convolved to a common PSF and fluxes computed in a common aperture. When

this work started, the only multiwavelength COSMOS catalog available (Ilbert et al. 2009) reported magnitudes

instead of fluxes like the latest version (Laigle et al. 2016). This added a complication to the computation of the

photoz, for both SED fitting and ML algorithms. All data have been corrected for extinction, and magnitudes (AB)

are computed in a 3 arcsec aperture.

The COSMOS survey is complemented by VLA (Schinnerer et al. 2007, 2010) XMM-Newton (Hasinger et al. 2007;

Brusa et al. 2010) and Chandra (Civano et al. 2012) observations. VLA-COSMOS provides radio coverage of the field

with roughly the same depth and resolution expected for EMU. The COSMOS field is currently being surveyed to an

even greater depth using the VLA(Smolčić et al. 2017) but those data are not used in this paper. Herrera Ruiz et al.

(2017) have observed all these sources with VLBI, and confirm that a significant fraction of them are high-redshift

radio-loud AGN. Sargent et al. (2010) argue that 99.9% of the VLA-COSMOS data have a secure optical counterpart,

although, since some of the radio sources are likely to be very high redshift radio-loud AGN, which are extremely faint

at optical/IR wavelengths, a small fraction of these are likely to be mis-identifications.

The VLA-COSMOS 1.4 GHz sample consists of 2242 sources with optical counterparts (Sargent et al. 2010). In

this paper, we use as our primary set a subsample of 757 sources that have reliable spectroscopic redshifts. We call

this our “spectroscopic KB”. Of the 757 sources in the KB, 91 have X-ray fluxes measured by XMM (Brusa et al.

2010) and an additional (i.e. excluding those also detected by XMM) 158 have X-ray fluxes measured by Chandra

(Civano et al. 2012; Marchesi et al. 2016).

From this vast array of data, a total of 45 different photometric measurements, or “features”, were used in the

experiments here and are listed in Table 5. Except where stated otherwise, all data were used in all experiments.

3. EXPERIMENTAL APPROACH

We ran the experiment as a “blind data challenge”, in which different groups (all of whom are co-authors of this

paper) were invited to test their algorithms on the KB, with the challenge being run by a control group. Machine

learning techniques require the KB to be split into two subsets called the ’training’ and ’test’ set respectively. These

two subsets need to be disjoint and to map the parameter space representatively. For the experiments described here,

the control group provided the testers with the training set, which includes redshifts, and the blind test set, which does

not include redshifts. The testers then used the training set to train their algorithms. The trained algorithms were

then applied to the test set to yield a set of estimated redshifts. These were then passed back to the control group

who compared them with the true spectroscopic redshifts, to evaluate the algorithms in terms of standard statistical

indicators.

As well as evaluating the test on the best data available, we are interested in the sensitivity of the tests to the

number of bands available, the sensitivity of the photometry, whether radio flux density is used, and whether X-ray

detected AGN are included in the training sets. These tests were therefore varied in four ways:

1 http://irsa.ipac.caltech.edu/data/COSMOS/

http://irsa.ipac.caltech.edu/data/COSMOS/
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• Variation 1: Bias: In general, spectroscopy tends to be available on sources that are brighter than the

population of sources for which we wish to obtain photometric redshifts. Here we test the ability of the techniques

to train on a brighter sample of sources and extrapolate that training to a larger sample containing fainter sources.

We therefore performed two variations: In the “Bright” variation, the training set was chosen to be the optically

brightest 50% of sources, selected in the i band. In the “Random” variation, the training set was randomly

chosen from the parent sample of 757 objects. In both cases, because of an implementation detail, the fraction

was not exactly half. In the “Bright” variation, 391 sources were in the training set, and 366 were in the test

set. In the “Random” variation, 343 sources were in the training set, and 414 were in the test set.

• Variation 2: Depth As discussed in Sec. 1, all-sky photometry surveys will be much shallower than the deep

data available in pencil-beam fields such as COSMOS. For example, over most of the area of EMU, the only

optical/infrared surveys (listed in Table 4 along with their limiting magnitudes), available in the next year will

be the SkyMapper(Wolf et al. 2018), ALLWISE (Wright et al. 2010), and VHS (McMahon et al. 2013), while

smaller but still significant areas will be covered by DES (Dark Energy Survey Collaboration et al. 2016) and

other surveys. This will introduce incompleteness in these large surveys, and a significant fraction of objects

will only have upper limits on their photometry in some bands. At X-ray wavelengths, eROSITA (Merloni et

al. 2012) will provide an all-sky catalog that is expected to be about 30 times deeper than ROSAT (Boller

et al. 2016), which is still much shallower than XMM-COSMOS, for example. We simulated this effect by

performing two variations. In the “Deep” variation, the training set used the deepest data available in the KB.

For example, these data include the Spitzer-IRAC measurements (Sanders et al. 2007), which are available only

in small regions of the sky. In the “Shallow” variation, the training set used shallower data to simulate the data

available to the EMU survey. Specifically, (i) Spitzer-IRAC data was limited to bands 1 and 2 and to the depth

of the ALLWISE data (Wright et al. 2010), and (ii) optical photometry data for sources fainter than i = 22 was

removed, i.e. keeping the sources that are about 1 magnitude fainter than what is expected for the final depth of

SkyMapper. For the same reason, we also included only broad band photometry in the “Shallow” data, removing

narrow and intermediate band photometry. None of these reductions in the quality of the data affected the size

of the training (391, 343) and test (366, 414) sets. However, these changes typically removed optical photometry

for about one third of sources, and infrared photometry for about two thirds of sources.

• Variation 3: Radio: template fitting techniques typically do not use wavelengths longer than the mir-infrared,

since the templates are not well defined at long wavelengths. However, ML methods can in principle use radio

data too. To our knowledge, no systematic study of whether the radio fluxes may be used to help constrain

photoz’s has been performed using ML methods. To see if the inclusion of radio data made a difference, testers

were asked to incorporate radio data in their tests in the “radio=Y” variation, and to ignore them in the

“radio=N” variation. This did not affect the size of the training and test sets.

• Variation 4: X-ray AGN: In previous template fitting in the COSMOS (e.g. Salvato et al. 2009), X-ray

detected sources were treated differently, by using different libraries and priors. Here we test how ML techniques

are affected by the presence of these sources and whether knowing in advance that they are AGN can help to

improve the results. To see if the presence of AGN affected the results, X-ray AGN detected by XMM were

excluded from the training sets in the “X-ray=N” variation, and included in the “X-ray=Y” variation. However,

it should be noted that since most radio-loud AGN are not detected in X-rays, this test does not remove all

AGN. Furthermore, Chandra data in this field were not available at the time of these tests and so were not

used in this process. As a result of this variation, the size of the training set used in the “X-ray=N” tests was

reduced to 302 and 278 objects respectively in the “bright” and “random” samples, and the size of the test set

was correspondingly increased to 455 and 479.

These four variations are not independent and so each of them must be combined along with the other variations.

The combination of these variations resulted in a set of 16 experiments, listed in Table 1, which shows the size of the

training and test sets and the number of features. In all cases (except for Le Phare), the tests were trained on the

training set provided, and then applied to the entire test set, which includes members of the training set. The control

group then removed the sources in the training set from the test set before evaluating the results. Le Phare was tested

only in the variation 1,2,4, with X-ray detected AGN either treated as galaxies (X-ray=N), or separately (X-ray=Y).
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Figure 1. Histograms of the brightness and redshift distributions of the whole KB and the bright and random samples, with
respect to the distribution in magnitude and redshift for the entire sample. Panel a) the R magnitude distribution of the entire
VLA COSMOS data set, the subset of those with redshifts (which constitutes the whole KB in this paper), and the bright and
random training samples. Panel b): the redshift distribution of the entire KB in this paper, and the bright and random training
samples.

In Figure 1 we show the resulting magnitude and redshift distribution for the bright and random training and test

sets. We also report the magnitude distribution of the entire sample.

For consistency in this paper, we adopt the following terminology. An “experiment” is one of the sixteen listed in

Table 1. A “test” occurs when one of these experiments is undertaken by one of the six “methods” listed in Sec. 4.

4. THE METHODS

We used the Le Phare template fitting method as a baseline. and compared four different machine learning based

methods with it: the k-nearest neighbours (kNN), two different implementations of Random Forest (RF), and the

Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA). Here we discuss the implementation of each of

them.

For each ML test, the method used the training sets whose size is shown in Table 1, and the test sets consisted of all

members of the KB that were not included in the training set. The size of the test set for each experiment is shown at

the top of Table 3. The number of redshifts estimated is generally lower than this number, for two reasons. First, each

algorithm has different ways of handling missing values. The Dameware platform, used by RF-NA and MLPQNA,

removes features or objects for which data are missing, resulting in the reduced size of the data sets shown in Table

2. kNN also omitted objects with missing values, but where possible used subspaces of features that were detected to

measure an alternative kNN distance. The R platform, used by RF-JHU, uses the rfimpute function which replaces
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Id. CODE KB bias depth Radio X-ray # training # test # training

sources sources features

A1 BDNY Bright Deep N Y 391 366 44

B1 BDYY Bright Deep Y Y 391 366 45

C1 BDNN Bright Deep N N 302 455 44

D1 BDYN Bright Deep Y N 302 455 45

E1 BSNY Bright Shallow N Y 391 366 44

F1 BSYY Bright Shallow Y Y 391 366 45

G1 BSNN Bright Shallow N N 302 455 44

H1 BSYN Bright Shallow Y N 302 455 45

A2 RDNY Random Deep N Y 343 414 44

B2 RDYY Random Deep Y Y 343 414 45

C2 RDNN Random Deep N N 278 479 44

D2 RDYN Random Deep Y N 278 479 45

E2 RSNY Random Shallow N Y 343 414 44

F2 RSYY Random Shallow Y Y 343 414 45

G2 RSNN Random Shallow N N 278 479 44

H2 RSYN Random Shallow Y N 278 479 45

Table 1. Summary of the 16 experiments. Column 1: identification code; column 2: mnemonic code; column 3: Bright or
Random training set; column 4: shallowness of optical/IR data; column 5: radio fluxes used (Y) or not used (N) in training;
column 6: bright X ray detected AGN included (Y) or not included (N) in the training set; column 7: number of sources in the
training set; column 8: number of sources in the test set; column 9: number of features in the training set. The test set has the
same number of features minus one, corresponding to the spectroscopic redshift.

missing values by a weighted average of those with similar redshift using another random forest. Furthermore, before

analysing the results, we removed from the test set any invalid results in which the method had failed, as indicated by

a NaN (Not-a-Number) in the estimated redshift. The actual number of valid results in the test set for each test is

indicated by N in each entry of Table 3.

4.1. Le Phare

The Le Phare code is public2 (Arnouts et al. 1999; Ilbert et al. 2006) and has been extensively tested (Hildebrandt

et al. 2008; Dahlen et al. 2013; Cavuoti et al. 2017; Santini et al. 2015, e.g.,) for photoz and stellar mass computations.

It is also the code used by the COSMOS collaboration. In this way we can easily compare the results between radio

and optically selected galaxies. Le Phare can account for the intergalactic medium, and for the contribution of the

emission lines to the templates. The code also allows the use of various types of priors. Here we used the absolute

magnitude, which enables better constraints on the photometric redshifts of AGN (Salvato et al. 2009, 2011, e.g.,).

The photometric redshift can be computed either by minimising the χ2 (zBEST), or by marginalising over the best

solution for each of the templates in use (zML). In both cases, in addition to the (zBEST) and (zML), 1σ and 3σ upper

and lower errors are computed, together with the probability distribution function P(z). Le Phare shares the properties

of most common SED template fitting methods (e.g., Hildebrandt et al. 2010; Dahlen et al. 2013). For example, in most

such methods, a residual bias may be caused by an imperfect fit of the template to the data, inaccurate photometry,

or insufficient data. However, Le Phare has frequently shown a better robustness than some other algorithms to such

problems (Hildebrandt et al. 2010).

In this work, we used the library of templates and extinction laws from Ilbert et al. (2009) for all the sources in the

experiments where the information on the X-ray nature of the source was ignored. In the experiments where the X-ray

information was used, the X-ray selected sources were treated separately, using the same libraries and extinction laws

2 http://www.cfht.hawaii.edu/∼arnouts/LePhare/LePhare.html

http://www.cfht.hawaii.edu/~arnouts/Le Phare/Le Phare.html
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as in Salvato et al. (2011), who also used X-ray and morphological information before setting the priors and choosing

the correct set of templates. Then, depending on whether the source was point-like or extended in optical images, a

prior on absolute magnitude was imposed when running Le Phare.

For the extended sources, Mg could vary between -8 and -24 (typical range for normal galaxies and low luminosity

AGN, dominated by the host). For the point-like sources, we allowed a range in Mg between -20 and -30, which is

typical for bright AGN and QSO, also at high redshift. For all the experiments we allowed a redshift solutions up to

z = 7, in steps of 0.01.

Since template fitting does not use a training set, and the overall results do not depend on the size of the test set, it

would be meaningless to run Le Phare for those different experiments that differ only by varying the training set. We

therefore ran Le Phare on the entire sample of 757 objects, in four different experiments as shown in Table 3.

4.2. kNN

kNN is a standard regression method in machine learning, and takes into account the similarities of objects in

the n-dimensional feature space defined by the input parameters. kNN is widely used for computing photometric

redshift (Gieseke et al. 2011; Polsterer et al. 2013; Cavuoti et al. 2017), and has also been used to estimate redshift

uncertainties for SDSS sources (Oyaizu et al. 2008).

The principle of kNN is that the observed parameter space (OPS) defined by the input features is populated using

the objects in the spectroscopic KB. Typically, the features are photometry measured at a number of optical and

infrared wavelengths, but as radio photometry becomes deeper in next-generation radio surveys, radio features are

also likely to be important. In addition to photometric measurements, the feature space can also include other source

characteristics such as polarization or morphological parameters.

The photometric redshift for an object not in the KB is then evaluated by looking at the k nearest neighbours of

the object in the OPS, where “nearest neighbour” of a source is defined by the Chebyshev distance d to other objects

in the parameter space, defined as:

da =
∑
i

|xi − x0|a (1)

where xi and x0 are, respectively the coordinates in the n-dimensional feature space (i.e. the OPS) of the i−th point

in the KB, and of the point for which we need to derive the estimate; a is an exponent which can be adapted to the

problem. In the case a = 2, the Chebyshev distance reduces to the traditional Euclidean distance, while a = 1 leads

to the so called Manhattan distance.

“k” is an integer number typically about 10, but the optimal value can be inferred by running the routine in a

loop with k varying within a certain range and then comparing the results based on a specific evaluation metric. The

optimal value for a can also be identified empirically by looping through different values of a.

Once the k nearest neighbours with a spectroscopic redshift have been identified, the redshift of the queried source

can be obtained as, e.g. the mean or the median of the neighbour redshifts.

The computational time needed to execute kNN can be dramatically shortened by implementing specific spatial data

structures, e.g. kd-trees (Gieseke et al. 2011; Polsterer et al. 2013), enabling its application to massive data sets (Zinn

et al. 2012; Luken et al. 2018).

The kNN algorithm works best if the reference data set are shaped such that the feature space is populated homo-

geneously, i.e. avoiding strong concentrations in a certain region, or sparsely-populated regions. In the tests described

here, we made no correction for any excess sources in any of the given training samples.

Instead, to distribute the photometric data over the parameter space for each band, we replaced the magnitudes

magi and magi+1 by a colour ci = magi−magi+1. This operation reduces the effective number of dimensions n of the

feature space by 1. We then normalized the colours, to distribute the data uniformly in the feature space, by replacing

each colour cj by (cj/cmax), where cmax is the maximum value of cj .

The redshift of each object in the test set was then estimated by taking the mean redshift of the k nearest neighbours

of the object. For this work, the optimal value of k was inferred by choosing the value of k that gave the best fit in

the training set, and was allowed to vary from test to test, but was typically around 10.

In this implementation of kNN, missing data were handled by constructing different independent sub-feature spaces,

populated by the remaining data. As a result, when the data are sparse (as in the shallow experiments) the number

of training objects in any one feature space drops even more, resulting in poor performance when data are sparse and

poorly-sampled.
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Table 2. Numbers of objects and features used in the MLPQNA and RF-NA training sets, after deleting invalid data.

Experiment objects features

A1 53 28

B1 53 29

C1 16 28

D1 16 29

E1 391 7

F1 391 8

G1 302 8

H1 302 9

A2 316 29

B2 316 30

C2 269 29

D2 269 30

E2 270 5

F2 270 6

G2 228 5

H2 228 6

.

4.3. Random forest

Random Forest is a popular non-parametric regression technique which learns by generating a forest of random

decision trees, by following the variations in the parameter space of the training sample objects. Random Forest

combines two successful techniques (CART (Breiman 1984) and Bagging (Breiman 1996)) with a novel approach to

dimensionality reduction (random subspace sampling; Ho et al. 1998) to produce an ensemble classifier (Breiman

2001). This method has been successfully applied to photometric redshift estimation (e.g., Carliles et al. 2010; Carrasco

et al. 2015; Cavuoti et al. 2017; Fotopoulou et al. 2018; Salvato et al. 2018, and references there).

The problem is posed as the estimation of the conditional mean of the response values (redshift in this case)

conditioned on feature values (photometry). The only assumption about the population is that its distribution is

continuous. The algorithm first generates a set of bootstrap samples from the training set. Each bootstrap sample is

then used to train a separate randomized regression tree. Each tree recursively partitions the training set. Partitioning

stops when a node contains a minimum specified number of training set objects, typically between five and ten. The

mean response over the points in the node is that individual tree’s estimate of the response for any new test points

that are classified into that node. The ensemble estimate for a given point is then the mean of the individual tree

estimates for that point.

Some advantages of this technique are: (i) the training time scales relatively well with feature dimensionality,

naturally tending to condition on those features which are most informative, while the regression time is essentially in-

dependent of dimensionality; (ii) it is computationally relatively fast after the training phase even with low-dimensional

input spaces; (iii) it behaves somewhat like kNN, but with the benefit of being invariant to scale differences between

dimensions; (iv) it assumes very little about the underlying population distribution; and, finally, (v) it has very few

user-defined parameters, and thus has a gentle learning curve, typically performing well even with default parameter

values.

The primary caveat with this technique is that, as a non-parametric technique, it relies heavily on data, so that data

sparsity may become an issue as the dimensionality of the feature space increases, as is the case in the present setting.

We used two different implementations of RF.

The RF-NA implementation used the DAMEWARE platform3 (Brescia et al. 2014), with 1000 trees without limiting

the depth of the tree (i.e. the nodes were expanded until all leaves are pure). It used the raw photometry, rather than

deriving colours from the photometry. Unfortunately the input data for RF-NA had to be heavily censored to remove

objects or features that contained missing values, resulting in the numbers of objects and features shown in Table 2.

3 http://dame.dsf.unina.it/dameware.html
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The RF-JHU implementation used the R package (R Core Team 2013), with 500 trees, working on the raw pho-

tometry, rather than deriving colours from the photometry. Missing data were replaced where possible by interpolated

data using the rfimpute function, which replaces missing values by a weighted average of those with similar redshift

using another random forest, resulting in more available data for some tests, compared to other techniques that used

heavily censored data.

4.4. MLPQNA

The MLPQNA algorithm is a type of neural net consisting of a multilayer perceptron (MLP) in which the learning

rule uses the Quasi Newton Algorithm (QNA) to find the stationary point of a function. MLPQNA makes use of the

Limited memory - Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm (Byrd et al. 1994), originally designed for

problems with a large number of features.

The implemented MLPQNA model uses Tikhonov regularization (Tikhonov et al. 1995), based on the weight

decay as regularization factor. When such factor is accurately chosen, then generalization error of the trained neural

network can be improved, and training can be accelerated. In real problems the best decay regularization value is

unknown. It must be heuristically experimented within the range of 0.001 (weak regularization) up to 100 (very strong

regularization) and has a strong impact on the computing time (the lower its value, the greater the computing time).

In order to achieve the weight decay rule, the method minimizes the generic merit function f = E + λS/2, where E is

the training error function, S is the sum of squares of network weights and the decay coefficient λ controls the amount

of smoothing applied to the cyclic training process. The optimization is then performed until the training error is

below the constant value imposed by the user (generally 0.001). In particular, to estimate the photo-z regression result

at each training iteration, MLPQNA uses the following composite merit function, based on the Least Square Error +

Tikhonov regularization,

f =

Nsources∑
i=1

(yi − ti)2

2
+
λ ‖W‖2

2

where y and t are, respectively, output (estimated photo-z) and target (zspec) for each input source, while λ = 0.1

and W is the MLP weight matrix.

The learning rule used to update the MLP weight matrix at each training iteration makes use of the Quasi Newton

rule, a Newton’s method based on the calculation of the Hessian of the training error, more effective in avoiding the

local minima of the error function and more accurate in the error function trend follow-up, thus achieving a powerful

capability to find the absolute minimum error of the optimization problem (Brescia et al. 2013).

As for the RF-NA method, it used the raw photometry, rather than deriving colours from the photometry, and the

input data had to be heavily censored to remove objects or features that contained missing values, resulting in the

numbers of objects and features shown in Table 2. The analytical details of the MLPQNA method, as well as its

performances on different data sets, have been extensively discussed elsewhere (Brescia et al. 2013; Cavuoti et al.

2015b, 2012, 2014). For these tests we used the MLPQNA implementation that is available as a public service under

the DAMEWARE platform (Brescia et al. 2014).
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Experiment A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 F2 G2 H2

Code BDNY BDYY BDNN BDYN BSNY BSYY BSNN BSYN RDNY RDYY RDNN RDYN RSNY RSYY RSNN RSYN

Training set size 391 391 302 302 391 391 302 302 343 343 278 278 343 343 278 278

Max test set size 366 366 457 457 366 366 457 457 416 416 481 481 416 416 481 481

kNN N= 366 366 293 293 366 366 293 438 414 414 322 322 414 414 322 322

NMAD= 0.15 0.15 0.13 0.14 0.1 0.48 0.1 err 0.05 0.05 0.05 0.04 0.23 0.24 0.22 0.22

η= 56 58 58 59 31 95 28 95 18 18 11 11 49 52 49 52

β= 44 42 27 26 69 5 46 5 82 82 60 60 51 48 34 32

RF-JHU N= 366 366 438 438 366 366 438 414 414 467 467 414 414 467 467

NMAD= 0.11 0.12 0.12 0.12 43 0.45 err 0.07 0.07 0.07 0.07 0.09 0.09 0.1 0.1

η= 28 27 28 30 95 95 95 15 15 16 16 20 19 21 19

β= 72 73 69 67 5 5 5 85 85 82 82 80 81 77 79

RF-NA N= 366 366 293 293 366 366 293 293 414 414 322 322 414 414 322 322

NMAD= 0.13 0.12 0.16 0.17 0.11 0.09 0.12 0.12 0.07 0.07 0.06 0.06 0.13 0.13 0.11 0.1

η= 33 25 86 83 28 22 35 33 14 15 8 7 36 36 28 25

β= 67 75 9 11 72 78 42 43 86 85 62 62 64 64 48 50

MLPQNA N= 366 366 293 293 366 366 293 293 414 414 322 322 414 414 322 322

NMAD= 0.2 0.25 0.15 0.14 0.13 0.12 0.08 0.09 0.06 0.06 0.05 0.05 0.12 0.14 0.11 0.12

η= 80 88 36 31 40 40 22 27 17 19 14 13 36 38 27 32

β= 20 12 41 44 60 60 50 47 83 81 58 58 64 62 49 46

Le Phare N= 757 571 509 549 757 571 509 549

NMAD= 0.02 0.01 0.08 0.08 0.02 0.01 0.08 0.08

η= 5 3 22 23 5 3 22 23

β= 95 73 52 56 95 73 52 56

Table 3. Results of the 16 experiments. Line 2 of the header gives the code as described in §3: Bias (Bright/Random), IR Depth
(Deep/Shallow), Radio (Y/N), X-ray (Y/N). Column 1: method name; column 2: metric: N=number of redshifts estimated,
σ=standard deviation of estimated-true, η=percentage of outliers, β= overall success rate, expressed as a percentage, as defined
in the text.
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5. RESULTS OF THE EXPERIMENTS

We summarise the results of the tests in Table 3 and present a plot for each test in Figures 2 to 11. We define

the error on each measurement ∆z = zspec − zphot, and we define an “outlier” as being a measurement for which

|∆z| ≥ 0.15 ∗ (1 + zspec). The upper panel of each plot shows the distribution of zspec vs. zphot, and the lower panel

shows the normalized residuals ∆z
zspec+1 vs zspec. The dashed blue lines mark the position of the outlier region defined

by |∆z| ≥ 0.15 ∗ (1 + zspec). The dashed red line marks the locus of zspec = zphot.

In the Table we list: the number N of points used in the test set; σ = standard deviation (∆z) ; the normalised median

absolute deviation = NMAD = 1.4826∗ (median(|∆z|) ; and the fraction of outliers η for which ∆z > 0.15∗ (1∗ zspec).
Because the fraction of outliers does not take into account the reduction in the sample size due to missing or bad data,

we also define an overall success rate β as the number of correct (i.e. non-outlier) redshifts divided by the total sample

size, expressed as a percentage.

In each plot we identify the sources that were classified as AGN on the basis of mid-infrared colours (Chang et al.

2017; Donley et al. 2012), or an X-ray detection by Chandra or XMM.

5.1. Results from the Le Phare experiments

Le Phare does not use a training set, and instead fits the data to astrophysically-derived templates. We therefore

ran Le Phare on the entire sample of 757 objects. The templates do not include radio photometry, and thus for none

of the experiments with radio=Y we have a result from Le Phare. The results are shown in Figure 2.

Predictably, Le Phare performs better than any of the other techniques when using all available data, but progres-

sively degrades as the quality of the available data is reduced. In particular, when only shallow, broad band photometry

is available, systematics appear –photoz constant over a large range of redshift ranges– because the key features such

as the 4000Å fall within bands.

5.2. Results from the BRIGHT biased experiments

Experiments A1 to H1 train each algorithm on a brighter data set, then apply it to the full data set. If this were an

effective strategy, it would be invaluable to future surveys, since spectroscopy is often not available on fainter objects.

However, no supervised machine learning techniques perform well in circumstances in which the training set differs

significantly from the test set, and this is reflected in the results shown in Table 3. This experiment demonstrates

that, training on a brighter part of the galaxy distribution does not provide enough information for the algorithm to

be able to extrapolate to fainter objects. While this result may appear trivial, it is a warning that larger and deeper

spectroscopic surveys are essential to train algorithms to measure redshifts for surveys such as EMU . Given the poor

quality of the results, we do not show the plots for each experiment, but instead show a representative sample in

Figure 3.
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5.3. Results on the RANDOM DEEP experiments

As may be expected, compared to their performance on the BRIGHT experiments, the machine learning methods

perform better on a randomly selected training set, which matches the test set. Here we summarize the results of these

experiments on the RANDOM DEEP experiments, in which the full-depth data in the KB are used.

5.3.1. Experiment A2: RDNY

In this experiment, the full-depth COSMOS data, including X-ray sources, are used, and radio data are not used

to train the algorithms. As shown in Fig. 4, all ML methods perform well, with an overall succss rate β in the range

82–86%. The best performing overall are kNN and MLPQNA, followed by RF-JHU, which has a smaller fraction

of outliers but a slightly larger σ. kNN performs overall well, but seems to be affected by systematics, with the

largest around z ∼ 1, presumably because of the paucity of neighbours at high redshift. MLPQNA tends to seriously

overestimate the redshift of the very nearby sources.

5.3.2. Experiment B2: RDYY

This experiment (B2) differs from the previous one (A2) only in that the radio data are included in the training set.

In most cases the results of B2 are almost indistinguishable from those of A2. For MLPQNA the standard deviation is

halved by the inclusion of radio data, bringing back to the correct redshift the sources that in the previous experiment

had an overestimated redshift. In most cases, for all the methods, the majority of the outliers are the sources that

a posteriori were found to be AGN. We conclude that adding a single radio photometry measurement to an existing

excellent optical/IR photometric data set can limit the fraction of high-redshift outliers. At low redshift, UV data can

be used for this purpose, but for EMU, the GALEX data available is too shallow to be useful in most cases.

5.3.3. Experiment C2: RDNN

This experiment (C2) differs from A2 in that XMM X-ray sources are excluded from the training and test sets. All

methods, with the exception of RF-JHU, had a lower outlier rate on this variation than on A2, but also a lower sample

size, resulting in a lower overall success rate. RF-JHU performed similarly in the two experiments, and ended up with

a significantly higher success rate than the other methods.

As shown in Fig. 6 the lowest outlier rate σNMAD, is obtained with MLPQNA, RF-NA and kNN. RF-NA has almost

half the fraction of outliers than MLPQNA which shows a systematic pattern at zphot ∼ 2.9. kNN tends systematically

to put the sources at zphot ∼ 0.6 for all the sources above zspec ∼ 0.6, probably for the same reason discussed in the

first experiment.

5.3.4. Experiment D2: RDYN

D2 differs from C2 in that radio fluxes are used in the training process. As shown in Fig. 7, all tests performed

very similarly or slightly worse than C2. The lowest outlier rates are achieved by MLPQNA, RF-NA and kNN, whilst

RF-JHU assigns the greatest absolute number of non-outlier redshifts because of its lower failure rate. All methods

perform poorly at redshifts higher than ∼ 1.0, where training points become scarce.

5.4. Results on the RANDOM SHALLOW experiments

In the RANDOM SHALLOW experiments, we deliberately degrade the quality of the optical/IR photometric data

to simulate the photometric data that will be available for EMU.

5.4.1. Experiment E2: RSNY

In this experiment, the training sample included the XMM detected sources and we used degraded photometry data,

without using the Radio data. Naturally the results are not as good as the full-depth data, but the results of E2, shown

in Figure 8, still represent a valuable source of redshifts for large radio surveys. The RF-JHU algorithm performs the

best, with 20% outliers and σ = 0.1, β = 82%, but it fails above z = 1.

5.4.2. Experiment F2: RSYY

F2 differs from E2 by including radio data. The results, shown in Figure 9, show that all methods have a success

rate that is not significantly different from E2, confirming that the addition of a single radio photometric point does

not provide useful information.
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5.4.3. Experiment G2: RSNN

G2 differs from F2 by excluding radio and X-ray data. The results, shown in Figure 10, show that MLPQNA and

RF-JHU outlier rates are improved by omitting these data, although their success rates are lower. Thus, when the

photometric data set is poorly sampled, the results will be improved by flagging AGN. For example, flagging all the

EMU sources that are detected by eROSITA, will improve the quality of the photometric redshifts for the remaining

sources.

5.4.4. Experiment H2: RSYN

H2 differs from G2 by including radio data. Figure 11 shows that MLPQNA has a smaller number of systematic

outliers than G2, but a slightly lower overall success rate. In addition RF-JHU and RF-NA improve on the outliers

and have a slightly hight overall succss rate than G2. In this experiment the large outliers are mainly the AGN that

were unidentified at the time of performing the experiment.

6. DISCUSSION

When given all the available data (experiment A2), Le Phare performed better than any of the ML methods, and

performed even better when the X-ray sources were treated separately (C2). Also when the photometry is reduced,

its performance are overall superior, but comparable to to RF-JHU in terms of accuracy and fraction of outliers.

In the RANDOM-DEEP experiments (A2 to D2), all algorithms performed quite well (with NMAD ∼ 0.05-0.07, and

η ∼ 10-15%, compared to 0.01-0.02 and 3-5%, respectively, for Le Phare), with RF-NA typically performing rather

better than the others, and MLPQNA often best at high redshift. However, the high reliability of both MLPQNA

and RF-NA are obtained at the cost of reducing the number of sources for which a photometric redshift is provided,

resulting in an overall success rate of ∼ 65% for MLPQNA and RF-NA, compared with about 80% for RF-JHU. The

lack of photoz for about 1/3 of the sources indicate that these sources are not represented by the training sample.

kNN generally performed well at low redshifts, but had a greater tendency than the other techniques to fail at z ≥ 1,

presumably because of the paucity of neighbours at high redshift.

In the RANDOM-SHALLOW experiments (E2 to H2), all algorithms performed less well than with the deeper data

(with NMAD ∼ 0.1-0.2, η ∼ 10-15%, compared to 3-5% for Le Phare), with RF-NA typically performing rather better

than the others. The best performing was RF-JHU and the worst performing was kNN, which essentially failed on

these data. Luken et al. (2018) has shown that kNN is capable of good performance on low sensitivity data, and

subsequent experiments have shown that that particular implementation of kNN tends to fail on training sets smaller

than ∼ 100 objects.

Nevertheless, it is encouraging that most methods give useful results even on the shallow data. For example, of

the 70 million EMU sources, about 70% are likely to have photometry (from SkyMapper, SDSS, VHS, and WISE)

comparable to that used in experiments E2 to H2, and RF-JHU was able to provide redshifts for ∼ 80% of these, with

an NMAD ∼ 0.1. This level of scatter is quite adequate for many of the EMU science goals, and having redshifts for

≥ 50% of the EMU sources will significantly enhance the science from EMU.

Nevertheless, it is likely that even better results can be obtained by (i) making full use of the available multi-

frequency radio data, and (ii) developing the algorithms further to optimise them for the limited data available for

most EMU sources. Further work is continuing (e.g. Luken et al. 2018) to achieve this.

7. CONCLUSION

We have tested a number of photometric redshift techniques, including both template-fitting and machine learning

techniques, on high-quality photometric data in the COSMOS field, and also explored reducing the quality of the

photometric data to match that available from all-sky radio surveys such as EMU. We find that:

• Given high-quality multi-band photometry such as is available for the COSMOS data, the template-fitting Le

Phare technique outperforms the machine learning techniques tested here, especially when X-ray sources are

omitted.

• When the quality of the photometry is reduced to match that available for the EMU all-sky radio survey, both

the template-fitting and the machine learning techniques give comparable results, typically with ∼ 20-30% of

sources appearing as outliers, and with NMAD ∼ 0.1-0.2.
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Field X-ray UV OPTICAL NIR MIR Radio

Flux magnitude magnitude magnitude magnitude Flux

COSMOS XMM,Chandra GALEX 22 bandsa J,H,K IRAC band 1 VLA

∼ 10−14ergs−1cm−2 25 ∼ 26 ∼23.5 5 µJy 10 µJy/bm rms

EMU eROSITA GALEX Skymapper (5 bands) VHS (Y,J,H,K) WISE W1 EMU

∼ 10−14ergs−1cm−2 20.4 ∼ 21.5 ∼20 26 µJy 10 µJy/bm rms

Table 4. Comparison of multiwavelength coverage for COSMOS and for the EMU all-sky survey.

• Most machine learning techniques perform better at z < 1 than at higher redshifts, presumably because of the

paucity of training data at higher redshifts.

• This level of redshift information from reduced-sensitivity data is still valuable and will result in a significant

enhancement to the science from these surveys.

In this first set of experiments, we have set a baseline which will no doubt be improved on by further work in this

field. Particularly important future directions are to (i) obtain better training data for radio sources at high redshifts,

and (ii) continue developing the algorithms, optimizing them for the lower quality photometry likely to be available,

(iii) develop techniques to measure a probability distribution function for the result, rather than a single value, (iv)

use measured or estimated uncertainties as a weighting function on the input data, and (v) use the combination of

several different techniques to estimate reliability and to detect possible catastrophic failures.
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id parameter note

1 u cfht U photometry from CFHT Megaprime

2 B subaru B photometry from Subaru Suprime-cam

3 V subaru V photometry from Subaru Suprime-cam

4 g subaru G photometry from Subaru Suprime-cam

5 r subaru R photometry from Subaru Suprime-cam

6 i subaru I photometry from Subaru Suprime-cam

7 z subaru Z photometry from Subaru Suprime-cam

8 J wfcam J photometry from UKIRT WFCAM

9 H wircam H photometry from CFHT Wircam

10 flamingos Ks Ks photometry from Gemini FLAMINGOS

11 K wircam K photometry from CFHT Wircam

12 i cfht I photometry from CFHT Megaprime

13 u SDSS u’ photometry from SDSS

14 g SDSS g’ photometry from SDSS

15 r SDSS r’ photometry from SDSS

16 i SDSS i’ photometry from SDSS

17 z SDSS z’ photometry from SDSS

18 f814 Subaru Suprime-cam 814nm

19 IB427 Subaru Suprime-cam 427nm

20 IB464 Subaru Suprime-cam 464nm

21 IB484 Subaru Suprime-cam 484nm

22 IB505 Subaru Suprime-cam 505nm

23 IB527 Subaru Suprime-cam 527nm

24 IB574 Subaru Suprime-cam 574nm

25 IB624 Subaru Suprime-cam 624nm

26 IB679 Subaru Suprime-cam 679nm

27 IB709 Subaru Suprime-cam 709nm

28 IB738 Subaru Suprime-cam 738nm

29 IB767 Subaru Suprime-cam 767nm

30 IB827 Subaru Suprime-cam 827nm

31 NB711 Subaru Suprime-cam 711nm

32 NB816 Subaru Suprime-cam 816nm

33 ch1 IRAC band 1 (3.6 µm)

34 ch2 IRAC band 2 (4.5 µm)

35 ch3 IRAC band 3 (5.8 µm)

36 ch4 IRAC band 4 (8.0 µm)

37 galex1500 Galex 150 nm

38 galex2500 Galex 250nm

39 morphology See http://irsa.ipac.caltech.edu/data/COSMOS/tables/morphology/

40 zspec spectroscopic redshift

41 radio integrated flux VLA integrated 20cm radio flux

42 xmm soft XMM soft

43 xmm hard XMM hard

44 ch soft Chandra soft

45 ch hard Chandra hard

Table 5. Features (observational parameters) used in the tests. Column 2: feature name, column 3: explanation. Details of all
these filters are given on http://cosmos.astro.caltech.edu/page/filterset. Uncertainties for all measurements were also available
in the KB.
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Figure 2. Summary of the results obtained from Le Phare in four experiments. In this and all subsequent figures, blue crosses
indicate AGN and red dots indicate non-AGN, as described in the text. The dashed blue lines mark the position of the outlier
region defined by |∆z| ≥ 0.15 ∗ (1 + zspec). The dashed red line marks the locus of zspec = zphot. Panel a) Experiment
A2/RDNY, using all available data. Panel b) Experiment C2/RDNN, using all data but excluding X-ray sources. Panel c):
Experiment E2/RSNY, as (a) but using optical/IR data with reduced sensitivity. Paned d) Experiment G2/RSNN as (b) but
using optical/IR data with reduced sensitivity and eliminating the narrow and intermediated band photometry, as it will not
be available for the entire EMU survey. As expected, the limited availability in photometry, produce systematic errors, when
key features like the 4000Åbreak are falling between the bands..



18 Norris et al.

0

1

2

3

4

z p
h
ot

N = 366

σ = 0.52

η = 80.33%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

a)

0

1

2

3

4

z p
h
ot

N = 366

σ = 0.18

η = 32.79%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1
b)

0

1

2

3

4

z p
h
ot

N = 366

σ = 0.17

η = 27.87%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

c)

0

1

2

3

4

z p
h
ot

N = 366

σ = 0.15

η = 56.83%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

d)

Figure 3. A representative sample of results obtained when the training set is selected from a brighter distribution of galaxies
than the test set, in experiment A1/BDNY. Panel a): MLPQNA. Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 4. Summary of the results obtained in the experiment A2/RDNY with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 5. Summary of the results obtained in the experiment B2/RDYY with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.



Photoz for radio surveys 21

0

1

2

3

4

z p
h
ot

N = 322

σ = 0.5

η = 13.66%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

a)

0

1

2

3

4

z p
h
ot

N = 322

σ = 0.11

η = 8.07%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1
b)

0

1

2

3

4

z p
h
ot

N = 467

σ = 0.13

η = 15.85%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

c)

0

1

2

3

4

z p
h
ot

N = 322

σ = 0.11

η = 10.56%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zspec

−0.4

−0.2

0.0

0.2

0.4

z s
p
e
c
−
z p
h
o
t

z s
p
e
c
+

1

d)

Figure 6. Summary of the results obtained in the experiment C2/RDNN with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 7. Summary of the results obtained in the experiment D2/RDYN with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 8. Summary of the results obtained in the experiment E2/RSNY with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 9. Summary of the results obtained in the experiment F2/RSYY with the various methods. Panel a): MLPQNA. Panel
b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 10. Summary of the results obtained in the experiment G2/RSNN with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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Figure 11. Summary of the results obtained in the experiment H2/RSYN with the various methods. Panel a): MLPQNA.
Panel b): RF-NA. Panel c): RF-JHU. Panel d): kNN.
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