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1.

Diffraction of a Trapped Wave by a Semi-Infinite Metallic Sheet

Figure 1.

I. Introduction

It is a well-known fact that dielectric coated infinite metallic 

structures such as planes and wires can propagate "surface modes". We 

are here chiefly concerned with a two-dimensional case· There is no 

theoretical difficulty in extending our solution to three-dimensional

structures.

We are dealing here with a grounded dielectric slab of permittivity 

ε and thickness a. (The case in which the electric wall is replaced 

by a magnetic one involves only slight modifications.) The half-space 

over the slab is a dielectric of permittivity 1.

E modes and H modes can propagate in the slab. They are the so- 

called "trapped waves". The number of modes is connected with £ and

a .
As an example of the treatment of the general case, we shall
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suppose that a is small enough to propagate only one E mode. Exten-

sion to the H case or to the multimode case is obvious.

We then suppose (see Fig. 1) that only one mode is propagating,

coming from z = +∞. This trapped wave will be diffracted by a semi 

infinite metallic sheet of zero thickness, which lies on x = d , 

z < 0. We are mainly interested in reflection and transmission 

coefficients for the trapped modes, the radiated power, and the far- 

field pattern.

II. Formulation of the Problem

The incoming mode is

with

in the slab, and

with

in the upper half space.

Matching at the boundary x = a gives :

Since we have supposed that a is small enough, the last equation has 

only one solution for α.

In the following sections we put Hy = ψ(x, z). We split the 

total field ψ(x, z) into two parts: ψ = ψi + ψs, where ψi is 

the incoming field and ψs the scattered field. We apply now to the 

scattered field the Green's formula procedure in each of the three
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regions in Fig. 1.

Region 1. x ≥ a .

Green function G1(x, x', z, z') with boundary condition

Region 2. d≤x≤a .

Green function G2(x, x', z, z') with boundary condition

Region 3. O≤x≤d .

Green function G3(x, x', z, z') with boundary condition

We suppose that k = kr-iki where ki is a small positive quantity

which we can later let go to zero so the form of the radiation condition 

is ψ(M) = 0(e-ik·0M) (or 0/e-ik√ε·0M) when M goes to ∞.

Hence if we apply Green's formula

to a region with some parts of the surface ∑ at infinity, we get no con

tribution from those parts. We then have the following integral equations:

Region 1.

Region 2.

(I)
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Region 3.

integration along x = 0 does not contribute to for along this

surface . We must of course use the fact that along x = d,

z≤O

We substitute this in the integral equations, and suppress the subscript 

s since we are dealing only with the scattered field. We shall now define 

a function v by:

From the assumption on the behavior of ψ as z → ∞, it follows that 

v(x,s) is analytic for |σ| < ki.

We define also:

where v- is regular for σ < ki and v+ is regular for σ > -ki. And 

we note that
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III. Green's Functions for the Problem

We represent by gi(x, x', s) the two-sided Fourier transform 

of Gi(x, x', z-z'):

with the following shorthand

The application of image method for determination of Green 

functions gives us easily:

with

We take the branch of λ which reduces to ik when s → 0, and the 

branch of μ which reduces to ik√ε (if ε real) when s → 0.

IV. Fourier Transform for the Equations

Our system of integral equations becomes by Fourier transform:
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Matching along x = a gives:

and along x = d , taking into account the continuity of and

v2 + (d)

Eliminating from the two last equations gives us: 

(g2 - g1)aa (v2-(d)-v3 - (d)) =

or:

(A)

The left member is analytic for σ < ki, the second bracket of the right 

member is analytic for σ > -ki. We have now to factorize
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Since

we can write K(s) as

We now have to factorize expressions of the type:

with

V. Factorization of K(s)

It is a well-known fact that the zeros iβhn of 

are connected with the modes which can propagate along a grounded slab of 

permittivity ε and height h. We have supposed (h small enough) that 

only one mode can propagate. We call σo the smaller of the two numbers

The singularities of L(s) are branch points s = ± ik, s = ± ik√ε.

We have then:
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Figure 2.

and we know there exist only two zeros ± iβh1 of Lh(s). Putting

we got:

When |s| → ∞ the first bracket is . We have to study the
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asymptotic behavior of the second bracket. We shall write it as:

so when ℑ(r2) < 0 its asymptotic value is:

and when ℑ(r2) > 0 its asymptotic value is:

For the first bracket we see similarly that if ℑ(r2) < 0,

and if

ℑ(r2) > 0,

(We are only interested in terms like so we can drop the

first term in the bracket. )

Let us now apply the standard Cauchy integral factorization method:

where path C1 is shown in Fig. 2.
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The first integral is zero by Cauchy theorem. For the second integral,

the contribution from the dotted linos is zero. So we have:

We know that the first bracket Ihp is regular in the half plane R(s) < p, 

the second bracket in the right half plane R(s) > q, so that:

We are now interested in the asymptotic values of

Writing

we have to evaluate integrals like:

where the last equality results from the assumption that the order of 

integration may be interchanged.

For large values of t, when ℑ(r2) < 0
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and when ℑ(r2) > 0

The terms in the bracket can be dropped because we are only interested 

in expressions like Iap - Ia-dp. So from well-known theorems in

asymptotic expansion of Laplace transform,

and

the last term going to zero as s → -∞. We can, in addition to this, 

study directly the integral:

Changing the path of integration from the solid to the dotted line we 

remain with (Fig. 3)
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Figure 3.

and also

which is equivalent to

For practical computation we shall write the expression in the

following forms
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We have to modify the path of integration from the dotted to the solid line; 

the only branch cut corresponds to t = -ik. So we have (contribution of the 

large circle is zero)

Figure 4.
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The remaining part of our factorization is

where the exponential terms are added to ensure convergence. The inverse 

of the first product ∏- is regular in the left half plane. The inverse 

of the second product ∏+ is regular in the right half plane. We will 

now study the asymptotic values of

Let us study the asymptotic value of

We have:

We can write:

We suppose so that Let us

consider first the finite sum:



15.

Let us suppose s in the positive half-plane (Fig. 5) so that

Figure 5.

We have then

Let us now consider the second sum, RN
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If s in the positive half-plane,

N1 being fixed in that way,

So if |s| is greater than

So for |s| great enough, |log P(s)| < ε, and |P(s)| < 1 + η.

The asymptotic value of ∏+(s) for |s| great enough in the right 

half plane is independent of (kd) .

VI. Solution of the Equation A in the x, s Space

We write then:

C+ and C- may be determined from the asymptotic expansions. 
Our equation (A) may then be written as:

The first member is analytic in the left half plane, the second one in
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the right half plane. So both represent the same integral function. 

Let us study now the asymptotic behavior of K+(s). For large value 

of |s| in the right half plane,

γ = Euler constant,

so the growth of the exponential term is

Then we have to multiply both members of the equation by exp (-χs) 

to get an algebraic growth.

From the Meixner edge condition for z →+O ,

for |s∣ → ∞ in the right half plane. So that the asymptotic

value of

By an extension of Liouville theorem, the said integral function is 

a first degree polynomial, a + b (s +iβ) , and we have:

We have now to evaluate a and b .
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VII. Solution of the Equations I in the x, z Space

First, cannot have a pole at s = -iβa so

So we have:

To determine b let us write that has no mode corresponding

to s = iβa-d = iβ', i.e.,

so that finally:

(II)
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where c real is in the strip of analyticity. We are now able to de

termine the reflection and transmission coefficients, and the radiation 

pattern.

It is obvious to show that the term containing produces a

term that cancels the incoming mode for z < 0. The transmitted mode 

in the upper open waveguide corresponds for x = a to a residue for 

the pole s = -iβ'. The corresponding amplitude is:

The incoming wave has an amplitude 2 cos α ∙ eiβz, so that
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In the same way the reflection coefficient is

It is quite easy to compute the transmission coefficient in the parallel 

plate waveguide: (residue for s = -ik) from formulas (II)

We now must find the radiation pattern. Consider:

with

We have to find the value of the integral for large.

We shall write:

s = k sh τ

x - a = R cos θ

z = R sin θ

λ = -i k ch τ
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so

A straightforward application of the saddle point method gives us the 

radiation pattern. (Saddle point θ = iτ). The first term is (for

VIII. Conclusion

Through Green functions and Wiener-Hopf techniques we have been able 

to determine the characteristic parameters of a simple obstacle embedded in 

a dielectric slab. Transmission and reflection coefficients are in general 

complex, showing the characteristic mode phase shift we described in our 

thesis. Application of such radiating obstacles can be made to dielectric 

line antennas, acting in this case like arrays.

Another application of the preceding study would be the launching 

efficiency of surface modes by a parallel plate waveguide. (The only modi

fication necessary is to put d >a , and to have the primary wave coming 

from z = +∞.)
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