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1.

Introduction

Ever since Einstein-Podolsky-Rosen (EPR)’s argumentnagauantum mechanics was put
forward [1], quantum entanglement has been a topic of gnéettast from a fundamental point
of view. It can play a crucial role in manifesting strikingférences between quantum and clas-
sical (e.g. local hidden-variablel[2-4]) descriptions afure. Furthermore, it has also drawn
much attention of practical interest because quantum letioas can be employed to carry out
information tasks to the extent far beyond their classicainterparts, e.g. quantum comput-
ing [5] and teleportation [6]. In a bipartite setting, thenpitive entangled states for discrete
variables are the so-called Bell states, the maximallyregiéal states of two qubits, e.g. singlet



state. In the regime of continuous variables (CVs), the &ealie can be realized in the form of
two-mode squeezed state (TMSS), which becomes maximatiygled in the limit of infinite
squeezing. The TMSS has been mostly the target entangledroesto produce for various
guantum information task5][7] like CV quantum teleporta{g].

The TMSS belongs to the class of Gaussian states, which leasdxéensively studied both
theoretically and experimentally for CV quantum inforneat[9]. On the other hand, a great
deal of attention has also been directed to the non-Gausgiane (e.g. state engineering[10]
and characterization [11,12]), as the non-Gaussian ele@drsgates can provide some prac-
tical merits [135211] and even become an essential ingref@@4:25] for a number of quan-
tum tasks. Furthermore, when the quantum information @ing is performed under realistic
conditions, the quantum correlation is inevitably degrhdad it thus becomes an important
question whether Gaussian or non-Gaussian entangled statébe more robust against deco-
herence[26,27]. It was recently demonstrated that thastsexbroad parameter space in which
non-Gaussian entanglement can survive longer than Gaussianglement under noisy envi-
ronments[[28=30] or quantum-limited amplifier [31]. With tilese considered, it seems very
desirable to have an experimental toolbox to generate allmlaas of non-Gaussian entangled
states in a controllable way.

In this paper we consider a class of CV entangled states jphtb®n-number entangled form
sN_,Cnln)aln)p, where|n) denotes a Fock state basis. One particular example is theSTits
the coefficient€, = A"(1— A2)%/2 (A: squeezing parameteéd,— ), which is the only Gaus-
sian state among the photon-number entangled states. émetmple is the pair-coherent
state given byC, ~ ¢"/n! [B2,[33] which can be useful for a number of applicationdude
ing quantum teleportation [34], quantum metrologyi [35]d @aBell test[[36]. In fact, a broad
class of photon-number entangled states has been so fadetsfor the nonlocality test us-
ing homodyne detections [37-39]. Here we propose two exyerial schemes to generate a
finite-dimensional PNES with arbitrary coefficienggh_oCn|n)a|n)p (TN_ |Cnl? = 1), where
the coefficientsC,, can be controlled with beam splitting and squeezing pararseBoth of
our proposed schemes make use of coherent superpositicatiops in single-photon interfer-
ometic settings that erase the which-path information erréalized photonic operations. The
first scheme employs the second-order superposition opet@i’ + rata, which has been
recently proposed and experimentally implemented in theteca of proving bosonic commu-
tation relation[a,&"] = 1 [40-43], together with two-mode squeezing operation. ke that
the coherent operatidda’ + ra’a was also discussed in the context of noiseless quantum am-
plifier [44]. On the other hand, the second scheme employgzesee of nonlocal first-order
coherent superpositiond + rof. Its single-mode versiord -+ ra" was recently proposed for a
quantum state engineering[45] and also shown to be usedultance two-mode entanglement
properties[[20, 46].

We also address the usefulness of the finite-dimensionaB8AhIECV quantum teleportation
[8] and nonlocality test[47, 48] compared with the two-madpieezed state. Furthermore,
it was very recently shown that the photon-number entangfietés in finite dimension, e.g.
C5|0)a|0)p + C1]1)al1)p, can survive longer under noisy environments than the TM&sthve
same degree of entanglement or energy[[28, 29]. Therefareproposed schemes can be a
useful tool not only for CV quantum applications but also fiosndamental tests of quantum
physics.

This paper is organized as follows. In Sec. 2, we first comfperentanglement properties of
finite-dimensional PNES (non-Gaussian) and a two-modeestpakbstate (Gaussian) in view of
the degree of entanglement and the EPR correlation. In See &urther investigate the use-
fulness of the PNES for CV quantum teleportation and notitydast. Then, we propose two
experimental schemes to generate an arbitrary PNES Cy|n)a|n)p, in Sec. 4. We illustrate



(2) | | 7 | (b)

Fig. 1. (a) Degree of entanglement and (b) EPR correlatiorihi® states|TMSS (blue
solid) as a function of the squeezing paramatandzﬁ;ocn\ma\n)b atN =1 (red dotted),
N = 2 (red dashed)\ = 10 (red dot-dashed).

the feasibility of our schemes in Sec. 5 by investigatinggbeeration of a PNES up to two-
photon correlation, i.625|0)a|0)p + C1|1)a|1)n + C2|2)a|2)p, cOnsidering realistic experimental
conditions. In Sec. 6, our results are summarized.

2. Entanglement and EPR correlation

First, we briefly compare the TMSS and the PNES in terms ofrgdanent properties in or-
der to identify the practical relevance of the PNES for CV muan informatics. For a pure
two-mode statgW)ap, the degree of entanglement can be quantified by the von Neuma
entropyE(pa) = —Tra[palog, pa] for the reduced density operatps = Trg[|¥)as(¥|as]-
For the class of photon-number entangled statfs,Cn|n)a|n)p, the von Neumann entropy
becomes maximal when all the coefficie@s are identical. Thus, for the case of TMSS
with C, = A"(1— A?)Y/2, the state can have an infinite degree of entanglement whthiten
squeezing, i.eA = 1, which is practically impossible to achieve. On the othamdh the finite-
dimensional PNES can match or even surpass a finitely-sqdeB¥ISS as an entangled re-
source. In Fig. 1(a), we plot the degree of entanglemenh®TMSS (blue solid) as a function
of the squeezing parameter= tanh *A. This is compared with the maximal possible en-
tanglement for the PNES with equal coefficients € C, = --- = Cy) of dimensiondN = 1
(red dotted), 2 (red dashed), and 10 (red dot-dashed). Tgeeke of entanglement for the
PNESs are given by,11.585 and 3459, respectively. To achieve such degrees of entangle-
ment, the squeezing of the TMSS shouldsse 0.5185(4.506 dB), s= 0.7335(6.374dB)
ands=1.391(12.09dB), respectively. In the pulsed-regime generation of squesiztes, the
level of squeezing currently available from an optical paetric amplifier iss= 0.403(3.5 dB)
[49/50] so that the PNES with = 1 can already surpass the entanglement of the TMSS.
We also look into another entanglement property, the EPRetadion, which is the total

variance of a pair of EPR-like operators, ERR2 (% — Rg) +A%(Pa+ Pg). Herex| = % &+

é}) andpgj = %(éj - é}r) (j = A,/B) are the quadrature amplitudes of the field that can be
measured in homodyne detection. The value of EPR below 2septs the quantum correlation
between the quadrature amplitudes of two modes. In Fig, ifiie) EPR correlations of the
PNESs for the dimensiodé = 1, 2, and 10 are 1172 0.8315 and 02516, respectively. The
corresponding levels of squeezing for the TMSS are givers by0.2674 (2.324dB), s=
0.4388(3.813dB) ands = 1.037 (9.008 dB). Thus the PNES withN > 2 can surpass the
currently available TMSSs(= 0.403) in view of the EPR correlation.



3. Applications: CV teleportation and nonlocality test

In this section, we further investigate the usefulness afigefidimensional PNES particularly
for continuous variable (CV) teleportation and nonlogalést. For this purpose, we evaluate
the quality of CV teleportation by the average fidelity bedwan unknown input state and the
teleported staté [8], and investigate the nonlocalitylbysBanaszek and Wodkiewicz based on
the phase-space distribution functions| [47, 48].

(i) The teleportation fidelity in the Braunstein-Kimble (BK)h&me [8] can be evaluated in
terms of the characteristic functions of an input state &étkleported state as

Fer | PACou(A G (). (1)

whereCout(A ) = Cin(A)Ce(A*,A) [63]. HereCe (A*,A) is the characteristic function of a two-
mode entangled state. We consider the finite-dimensionBPN_,Cy|n)a|n)y, for the dimen-
sionsN = 1,2 and 3 as an entangled resource. For instance, the aristctfunction of the
PNES forN = 2 is given by

Ce (Mg, Ag) =e (M2 +1A)/2 1o 12 410y | 2(1— A2 (1— |A3D)

C 2
LG o 4ot ol (2= 4Agf2 + A

4
CiC 5
PO +CoCitads + D 2APN2 + B2 AN

1
+ E(Cicz)\z*/\s* +C1C5A2A3)(|1A2)* — 2) (|1As)* — 2)], 2)

where|Co|2 4 |C1|? + |C2|? = 1. For the case of teleporting an arbitrary coherent-sigtetj we
find, by optimizing the fidelity (1) using Eq. (2), that the eage fidelity can be achieved up to
F = 0.7334 at the choice &y ~ 0.765,C; ~ 0.535 andC, ~ 0.359.

In Fig. 2(a), we compare the teleportation fidelity achieviedthe PNES and the fidelity via
the TMSS. The optimal fidelity via each PNESNit= 1, 2 and 3 corresponds to the fidelity
via the TMSS with the squeezing paramete£s0.320 (2776dB), s= 0.506 (4397dB), and
s= 0.638 (5548dB), respectively. Thus, the PNES ldt= 2 can surpass the fidelity via the
TMSS with the currently available squeezing in the pulsedne, i.e. s~ 0.403(3.5dB) [53].
As we show in Section 4, our proposed schemes do not requiighddvel of squeezing to
produce the optimal PNES (caseMf= 2) for CV teleportation.

(ii) We next consider the nonlocality test by Banaszek and W&vdkE that is addressed in
phase space using the two-mode Wigner funcfioi[47, 48k Bkil inequality is given by

Bow = - W(@.B)-+W(a.g)+W(a'.) ~W(a'.8)| <2 @

whereW(a, B) is the two-mode Wigner function. We find that for the PNES, ,Cn|n)a|n)p at

N =2, the Bell inequality can be violated upBgy = 2.32088 with the coefficientsy =~ 0.589,

C1 ~ 0.700 andC, = 0.404. In Fig. 2(b), we see that this degree of nonlocality &imeaches
the level for the TMSS with infinite squeezing [54]. Furthem®, we also see that the Bell
violation by the PNES all = 3 surpasses the vallBgy of the TMSS in the entire region of
squeezing. We can again achieve such degree of Bell violaimg the weak squeezing regime
in our schemes (Sec. 4).

4. Experimental schemes

We now propose two optical schemes to generate an arbittdBSPy N _Cy|n)a|n)p. One
scheme is based on a second-order coherent superposiématiop with two-mode squeezing



Fig. 2. (a) Average fidelity in teleporting a coherent statel ) Bell parameteBgyw
as a function of the squeezing parametdor the |TMSS (blue solid) and the PNES
zﬁ‘:ocn\n>a\n>b at N = 1 (red dotted)N = 2 (red dashed) an = 3 (red dot-dashed).
The coefficients of the PNESs are optimized for elsich

operations, and the other on a sequence of first-order catrgrperposition operations.

(i) We first consider the operatioda’ + ra'a acting on a single-mod& which is the coher-
ent superposition of two product operations—photon aoldifollowed by subtractiorida’)
and photon subtraction followed by additi¢a™a). This coherent operation was experimen-
tally implemented to prove the bosonic commutation refatia’] = 1 [40,41]. While such
a commutator is addressed as an equal superposition of theroduct operationsa’ — 474,
we adopt an arbitrarily weighted superposition of the tweragions, i.e.taa’ +rafa. In par-
ticular, we show that the single-mode operatiéd’ + ra'a together with two-mode squeezing
operationéab(f) = exp(—EéTBT—i— E*Bé) can constitute an essential building block to generate
an arbitrary PNES.

Suppose that a two-mode squeezﬁag(é), the coherent operatidida’ + ra'a and the in-
verse squeezin@lb(f) are sequentially applied to an input state. That is, we apglgquence
of operations defined by

On =Sly(&n) (tn88" + 1n&"8)Sup(&n)
=An+ (th+rn)(&'acosi s, + b'bsint s,)
— (tn—+rn) coshs, sinhs, [exp(—ign)ab -+ exp(ign)a’b', (4)

where
An = thcostf s, + rpsintf sy, (5)

with [to|2 + |ra|?> = 1. In the above Eq. (4), the identitﬁgb(f)ééab(f) = acosls —
bfexp(ig)sinhs and S, (£)a"S,p(&) = afcoshs — bexp(—i¢)sinhs are used, wheré =
sexp(i¢) [65).

When a vacuum stat@),|0),, is injected as an inpu®); yields a superposition of number
states a®1|0)a|0)p = cost sy[(t1 + r1tant? s1)|0)4]|0)p — exp(id1 ) (ty + r1) tanhsy[1)4]1)p). In
principle, a succession @, applied on the vacuum statq‘q,'\,‘:lén|0>a|0>b, can yield an ar-
bitrary superposition statgﬁzocn|n>a|n)b by properly choosing the parametefs ry, t, and
¢n. For instance, the stat@1|0)4|0)p ~ Co|0)a|0)p + C1|1)a|1), can have a larger proportion
of [1)a|1)p, i.e. |Cp| < |Cy|, under the conditiom; tanhs; > t;. For comparison, if one instead
applies the original quantum scissor scheme on the TMSS$th@cts an input onto the sub-
space spanned H9) and|1) [56], the output state becomes|0)4|0)p + A |1)a|1)p. That is,
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Fig. 3. (a) Experimental scheme to implement the operzﬁlg(f)(tééT +rafa)Sp(&) on
an arbitrary state. BS1, BS2, and BS3 are beam splitterstraitismissivitiedy, T, andtp,
respectively. PDO, PD1 and PD2: photo detectors. The dpara successfully achieved
under the detection of a single photon at only one of two detedD1 and PD2, with
PDO clicked. (b) For a vacuum input state, the sequence ofitipasOp can yield a finite
dimensional PNESFN_Cn[n)a|n)p.

the vacuum staté),|0), is always more weighted than the single-photon sthtg1),. On
the other hand, a generalized scissor scheme propose@fooiteless quantum amplifier [57]
can be used to control each coefficient arbitrarily in[@e|1) subspace, which will be briefly
discussed in Sec. 5.

The elementary operatidd, can be experimentally realized as depicted in Fig. 3(a) o
state|)qp is first injected into a nondegenerate parametric amplifiRA) with coupling
parameteg,, and then into the beam splitter BS1 (transmittafiges 1) with the other input
modec in a vacuum. This can be described by

BacSun &) W)apl0)e ~ (1 % AT b €0) | 1)ab/O)c. ©)

Next the modauis further injected into another NDPA with small couplisigc 1 and the output
is kept only under the condition of single-photon detecab®DO. That is,

o(1/Sae(1— % A" S0(8n) | W)ab|0)c|0)e ~ —sAT (1 — ?—11 46N Sb(&n) [ W)ablO)e,  (7)

which is then injected into the BSZ4{~ 1),

(—9)Bacd’ (1— % 6" S0 E0)] W) ablO)e
~ (—9)(1- Padnar(1— Fae)8u(En) W)anlO)ea, ®)

T T



where|0)cq = |0)¢|0)g. The next beam splitter BS3 making the transformations th¢ + rnd
andd — tnd — rp€ gives

1Sy)) = ( ?: a(tnd" —rnch)a T[l—%é(tnéT‘f’rndﬁ)]é@ab(sn)|w>ab|o>cd- 9)

On detecting a single photon at PD1 (PD2) and no photon at PD2Y, the state is projected to
(taa’ +ra’a)Su(&n)| W) ap, Wheret ~ %stn andr ~ f Sty (t~ — strn andr ~ Ristn) Finally,
the NDPA with the coupling parametet&,, yields|()out ~ S b(En)(tééT+ rata)San(&n)| W) an,
with the identityS], (&) = Sin(—&n).

(ii) Second, we show that the sequence of two first-order cohsugetposition operations,
(tond@+ r2an)(t2n,1b+ an,léT), can also yield an operation similar@, in Eq. (4). A similar
type of coherent operation was previously investigatedforia acting on a single-mod&a +
ra’, which is the superposition of photon subtraction and #ofulif45]. Here we consider a
nonlocalcoherent superposition acting on two modési rbf (t6+ ra").

We define an operator

. A . . i
n =(tond+ anbT) (ton—1b+ r2n—l<’7\4l-)
=ton_1ton8D + ran_1r2n8"0" 4 ron_1t2n84" + ton_1r2nb'b, (10)

where|tan_1/2+ |r2n_1/? = 1 and|tzn|2+ |r2n|? = 1. Given a vacuum state as an ingd},yields a
superposition of number states@g0)a|0)p = r1(t2|0)a|0)p + r2|1)a|1)p). Furthermore, a suc-
cession o0, i.e., ﬂﬁzlé'n|0>a|0>b, can yield any desired superposition stfg ,Cn|n)a|n)p

by properly choosing the parametess i, ton_1, I2n and bn. Here the coefficients can be read-
ily controlled only by the beam-splitter parameters as shbelow.

The operatioré; can be implemented as depicted in Fig. 4. First, an arbitvemymode state
|W)ap is injected into an NDPA with small coupling & 1 and a BS1 with high transmissivity
T1 =~ 1, with modea (b) into NDPA (BS1). The other input modes to the NDPAs and the BS
are all in vacuum states. Then, the BS3 (transmissivity:1) yielding the transformations
&' = ton_16T + ron_1d" andd’ — to,_1d" —ron 16" gives the output

*

R ~ R R R
1- T—ib(th,ldAT —r2n16N)][1 — 18" (t2n 16T + r2n_1d")]| ) ab| O)ca- (11)

With the detection of single photon at PD1 (PD2) and no phatoAD2 (PD1), we see from
Eq. (11) that the state is projected ®)ap = (1, 1D+ 187)|W)an, Whered, ; ~ -t Ttana

(T1 ron-1)and r2n 1~ —Sir2n-1 (—S1tan-1). Next, the output state is further injected into another
NDPA with small coupling s« 1 and a BS2 with high transmissivity, & 1, with mode a (b)
into BS2 (NDPA). Finally, a beam splitter BS4 (transmistsivipy,) yielding the transformations
8" — ton8 + ronf T and fT — tonf T — 206" gives

*

|§Lp R (t2ne +r2nfT)][1 SQbT(thfT— ron€ )]|q)>ab|0> (12)

Once again, with the detection of single photon at PD3 (PIMI)rax) photon at PD4 (PD3),
we see from Eq (12) that the state is projectettfg + r,b") (to, 16+ o 187) W) an, Where

t2n —T—zfzn (—T—2t2n) and "2n ~ —Ston (Sron).

(i) In Sec. 3, we have seen that the optimal PNES,Cn|n)a|n)p with N = 2 for CV
teleportation has the coefficien® =~ 0.765,C; ~ 0.535, andC, ~ 0.359. Under our first
scheme, these coefficients can be obtained using the exgredhparameters, eg.=s, = 0.1,
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Fig. 4. Experimental scheme to implement the operatiggi + rgnBT)(tgn,16+ rgn,léT)
on an input statay) ap. BS1, BS2, BS3 and BS4 are beam splitters with transmigesvig,
To, ton_1, and by, respectively. PD1, PD2, PD3 and PD4: photo detectors. Peeation
is successfully achieved under the detection of a singléophat only one of two detectors
PD1 and PD2 and the detection of a single-photon at only orte@fletectors PD3 and
PD4.

@ =0, @ =1,y ~ 04589, andr, ~ 0.9984, witht; = (1 —r?)¥2 andt, = —(1—r3)¥2.

On the other hand, under the second scheme, the same coédficéan be obtained using the
parametersyr~ 0.3, r3 ~ 0.3863 and  ~ 0.6193, with p = — (1 —r3)¥2, t3 = (1-r3)%2, and

ts = (1—r3)%2. Note that in our first scheme, we generate such a PNES usiniyEPAs in
the weak squeezing regime= 0.1 (0.869dB). Furthermore, in the second scheme, we can
obtain the same PNES only by adjusting the beam-splittearpaters, therefore, a high-level
of squeezing is not necessary in our schemes. This is alsofdruthe case of nonlocality
test shown in Sec. 3. Under the first scheme, the optimizeflicdeats of the PNES for the
nonlocality test are obtained using the paramesgrs s, = 0.1, ¢ =0, @ = 11, r; =~ 0.38
andr &~ 0.999, witht; = (1—r2)Y/2 andt, = (1—r3)Y/2. Under the second scheme, they
are obtained using the parameters=10.3, r3 ~ 0.391 and § ~ 0.221, with b = (1—r3)/?,
t3=(1-r3)¥2 and f = (132

5. Experimental feasibility

In order to further illustrate the feasibility of our progakschemes, we address realistic exper-
imental conditions in producing a PNES up to one-photonatation,Cp|0)4|0)p + C1|1)a|1)p,
or two-photon correlationCo|0)4|0)p + C1|1)a|1)p + C2|2)a|2)h, as examples. In the two
schemes of Figs. 3 and 4, we particularly consider each pettotor as an on-off detector
that only distingushes two events, detection and non-tleteevith efficiencyn. The photode-
tection can then be characterized by a positive operataedaneasure (POVM) [58=60] with
two component§lo = ¥ ,(1— n)"|n)(n| (no click) andr1y = I — g (click).

In the first scheme, an arbitrary input state goes througlyaesee of operations—a two-
mode squeezing, a second-order superposttiéh+ ra'a heralded by nonideal on-off de-
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Fig. 5. Fidelity between the ideal staBg|0)a|0), +C1/1)a|1l)p and the output statggyt
obtained by applyings, (&)(taa’ + rafa)Su () (blue circle) or(tpa + rob) (tyb + ;14"
(red square), using on-off detectors with efficiemcyo the input stat@;, = |0)a|0)p as a
function of|Cy|? for n = 0.66. Black triangle represents the output fidelity using thissor
scheme of{[57], with the input two-mode squeezed stte@.1) and the on-off detectors
(n = 0.66).

tectors, and the inverse two-mode squeezing. This seqy@ids an output state

Traqd S350 0,0
pou = —reoelTGMEMEV1n0, 13)
Trabcddl§ ng (MUY, |

wherepin = |¢)(W]ab ® [0)(0]cge andU; = bBchadSaeBacSab We can evaluate the perfor-
mance of our scheme by investigating the fideffify= (LpN|p0U|t |Yn) between the ideal target
state,|n) = TN_oCnln)aln)p (N = 1,2) and the corresponding output stalé}? (N=1,2).In
Fig. 5, we first show the case of PNES up to one-photon coiwelathere the fidelityr; (blue
dot) is plotted as a function d€|? with the detector efficiency = 0.66. With the parameters
s1 = 0.1 andT? = T2 = 0.99 in Fig. 3, we see that a high fidelity above®96 is achieved in
the whole range ofCy|?, with the detector efficiency = 0.66 currently availablé [6 1=63]. For
comparison, we plot the fidelity of the output state usinggbeeralied scissor scheme [of[57]
with the input two-mode squeezed stase=(0.1) and the on-off detectorg (= 0.66). We see
that our schemes yield a slightly better fidelity than thesmi scheme.

In Fig. 6, we further investigate the fidelifyp for the case of PNES up to two-photon cor-
relation as a function ofC;|? and|C,|. With the same parameterg & 0.66,s; = 0.1 and
le = T22 =0.99) used in Fig. 5, the fidelity is achieved at least aba®d D in the whole range
of |C1|? and|C,|2. For both of the cases, the fidelity slightly increases wliil vacuum-state
probability |Co|?, as the weak couplings{ = 0.1) of the NDPA makes a low photon-number
state better controlled.

In the second scheme, two first-order superposition opevstt,a+ rob") (t1b+ r1a") her-
alded by nonideal on-off detectors are sequentially agpieean arbitrary input state. This
yields an output state

/ Trcdef“:I ] ﬁgﬁ‘l’ AZP{nUAg]
Pout = ~erdfAcadii ~ 17T (14)
Trapcde A 1§, M§NTU20;,,U, |
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Fig. 6. Fidelity between the ideal staig|0)a|0)p +C1|1)a|1)p +C2|2)a|2)p and the output
statepout obtained by applying twice (asgb(fz)(t%éé’f + 18" 8)Sn(&2) 8l (&) (8" +
r14'8)Sap(&1) or (b) (t4a+r4b") (tsb+r3a") (td+rob") (t1b+r14"), using on-off detectors
with efficiency nj to the input statgo, = |0)a|0)p as a function ofiCy|2 and |Cy|? for
n = 0.66.

wherep:, = ) (]ap @ |0)(0|cdet andUsz = BeBacSh BedBoaSac. We investigate the fidelity

F,ij = (w,'\,|p;(u'\t'>|w,/\j> between the ideal target statgl,) = TN ,Cq|n)a/n)p (N = 1,2), and the
corresponding output statp;,(u'\tI> (N =1,2). In Fig. 5, we plot the fidelity:l/ (red square) as
a function of|Co|2 with the detector efficiency = 0.66. With the parametergs=s, = 0.1
and T = T3 = 0.99 in Fig. 4, we find that a high fidelity aboved®3 is achieved in the whole
range of|Co|2. In Fig. 6, we investigate the fidelitlf, as a function ofC;|? and|Cy|2. With
the same parameterg & 0.66,s; =, = 0.1 and B = T3 = 0.99) used in Fig. 5, the fidelity
is achieved at least abovedd9 in the whole range d€;|?> and|C,|2. Therefore, both of our
schemes seem to make an output state at a very high fidelityétlenonideal on-off detectors
used for heralding the conditional generation of the PNES.

We have also calculated the success probability numeyifalthe output states under each
scheme. For the sta@®)|0)4|0), + C1|1)a|1)p, the first scheme, with the condition &f = 0.1,
s= 0.1 andT? = T? = 0.99, yields the success rate in the range @f210 ¢ (/Co|? = 1/2)
to 10~4, which increases with the coefficiejdy|. On the other hand, the second scheme, with
the condition of s=s, = 0.1 and & = T2 = 0.99, yields the success rate10~*. The success
probability can of course be made larger by using higheesging NDPAs in each scheme at
the expense of output fidelity to some extent.

Other than nonideal detector efficiency, dark counts migiemtially degrade the output fi-
delity. However, a recent experiment reported that a cdenie detection scheme recording
only the synchronized events of laser pulse and a detegtdrinlthe pulsed regime can sig-
nificantly eliminate dark count evenfs [64]. Another expegntal imperfection may also arise
from the error in the transmissivity of beam splitter under proposed schemes. In Fig. 7, we
plot the output fidelity from each scheme by including theeft of beam-splitter transmis-
sivity. Compared with Fig. 6, it turns out that a high outpdefity is still achievable and that
the second scheme is particularly insensitive to the beaittes error.
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Fig. 7. Fidelity between the ideal stafg|0)a|0)p +C1|1)a|1l)p and the output state with
the errorAt; = +0.01 of the beam-splitter transmissivity=£ 1,2). Other parameters are
the same as those in Fig. 6.

6. Summary

We have proposed two experimental schemes to generateeadinmensional photon number
entangled state (PNES) with arbitrary coefficients, §é\.,,Cn|n)a|n)p. One scheme is based
on the second-order coherent superposition operationwithmode squeezing operations, and
the other on two first-order coherent superposition opanati\We have shown that the coeffi-
cients of the PNES can be adjusted by the parameters of bdatarspand NDPAs in each
scheme. In particular, our schemes do not require a highl-tdvsqueezing for the nonlinear
materials (NDPAs) and we further demonstrated that oumaelsecan generate the PNESs with
high fidelity using realistic on-off photodetectors withmideal efficiency. The class of PNES
is useful for CV quantum informatics as we have consideredpplication to quantum telepor-
tation and nonlocality test. We have shown that the PNES aéfa@imension can surpass the
performance of the TMSS with the level of squeezing curyesthilable in the pulsed regime.
Furthermore, the PNES includes a broad class of non-Gawsstangled states together with
the TMSS (a representative Gaussian entangled stategfaherour schemes can also be used
for fundamental tests of quantum physics, e.g. the robestoeGaussian versus non-Gaussian
entanglement under noisy environmehts [26, 2B, 29].
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