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1. Introduction

Recently, Gaiotto [1] proposed a remarkable method to describe four dimensional scale

invariant N = 2 quiver gauge theories with bi-fundamental and fundamental fields. Four

dimensional N = 2 quiver gauge theories are defined as the compactification of six dimen-

sional AN (0, 2) theories on Riemann surfaces with punctures. The marginal couplings of

the quiver gauge theory are determined as the moduli of punctured Riemann surfaces. The

punctures are labeled by Young Tableaux and there is a correspondence between puncture

type with the flavor symmetry of the four dimensional quiver gauge theory. The various

S-dual frames were shown to correspond to different degeneration limits of this punctured

Riemann surface. This generalized the previous observation of Argyres-Seiberg dualtiy [2]

on the infinite strongly-coupled region of SU(3) gauge theory with six fundamental hyper-

multiplet matters: they found a S-dual theory in which a weakly coupled SU(2) theory

coupled with a isolated interacting E6 superconformal field theory in which a SU(2) sub-

group is gauged. Gaiotto’s construction generalized their result and is used to find a new

family of isolated superconformal field theories with SU(N)3 flavor symmetry [1].

D = 6 is the maximal dimension in which we can formulate a superconformal field

theory. The six dimensional (0, 2) superconformal field theory has the famous ADE clas-

sification. The compactification of six dimensional theory on a Riemann surface provides

a lot of insights on four dimensional conformal field theory [3]. For instance, if we com-

pactify AN−1 theory on a smooth torus, the SL(2, Z) invariance of the four dimensional

N = 4 SU(N) gauge theory is directly related to the SL(2, Z) modular group of the

torus. Gaiotto’s construction provides another six dimensional framework to understand

S-dualities of four dimensional N = 2 scale invariant theory. Here we allow codimension

two defects [4] of this AN−1 theory. These defects have singularities at the punctures from

which we can also read the flavor symmetries of four dimensional theory.

– 1 –



It is definitely interesting to extend this analysis to other four dimensional N = 2

scale invariant theories. It is the main aim of this note to extend this analysis to the

N = 2 SU linear quiver gauge theories with USp(2n) group on the end or with SU(2n)

group on the end with antisymmetric matter representation. These theories have a Type

IIA brane construction involving two O6 orientifold planes. In type IIA theory, we have

a NS5 − D4 system in the background of O6 planes and D6 branes. The NS5 − D4

system lifts to a single M5 brane wrapped on a smooth Riemann surface in an M theory

background describing the M theory lift of O6 planes and D6 branes. The Riemann surface

is identified with the Seiberg-Witten curve. We can rewrite the Seiberg-Witten curve in

a way along with Gaiotto’s construction on an ordinary SU quiver. It can be shown

that these theories can be realized as the compactification of Ak−1 theory on spheres with

punctures. In particular, we confirm that SU quiver gauge theory with USp ends falls in

the same duality web as the quiver gauge theory with pure SU nodes [1]. We also identify

the dual quiver to the theory with SU ends with antisymmetric representations. We will

study the infinite strongly coupled region of some theories and we can see the emergent

weakly coupled node coupled to an isolated E6 or E7 superconformal theory [5, 6]. We also

find an family of isolated superconformal field theories with only odd dimensional operators

D(φ) ≥ 3 and superconformal field theories with even dimensional operators D(φ) ≥ 4.

This note is organized as follows: in section 2, we review Gaiotto’s construction on

Ak theory; In section 3, we describe the brane construction of our model and rewrite the

Seiberg-Witten curve in a form which makes the description of compactification of the six

dimensional (0, 2) theory manifest; In section 4, we describe explicitly the six dimensional

description of some specific examples. In section 5, we study the various degeneration

limits of our theories. Finally, we give our conclusion.

2. Review of (0, 2) Ak−1 Theory on Punctured Riemann Surfaces

We consider a four dimensional N = 2 linear quiver gauge theory with a chain of SU groups

SU(n1)× SU(n2)× ...× SU(nn−1)× SU(nn), (2.1)

and bifundamental hypermultiplets between the adjacent gauge groups and ka extra funda-

mental hypermultiplets for SU(na) to make the gauge couplings marginal. The marginality

of gauge couplings imposes the constraints on the number of fundamentals:

ka = (na − na−1)− (na+1 − na), (2.2)

we define n0 = 0, nn+1 = 0. Since ka is nonnegative, we have

n1 < n2 < ...nr = ..nl > nl+1...nn. (2.3)

Let’s first consider the left tail. Let us denote N = nr = ... = nl, so that the non-increasing

number (na−na−1), a ≤ r satisfies the relation
∑a=r

a=1(na−na−1) = N . For the right tail, the

non-decreasing number na−na+1 starting from a = n also satisfies the relation
∑a=n

a=l (na−

na+1) = N . So we associate a Young Tableaux with total boxes N for each tail (see Figure

– 2 –
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Figure 1: a) A N = 2 linear quiver with N = 4; b) The Young Tableaux associated with left and

right tail.

n1

n2 − n1

a)
b)

1 2 3

4

Figure 2: a) Young Tableaux associated with the tail in a linear quiver gauge theory with N = 4,

p1 = 1 − 1 = 0, p2 = 2 − 1 = 1, p3 = 3 − 1 = 2, p4 = 4 − 2 = 2, the flavor symmetry is

SU(2); b) The punctured sphere for (0, 2) A3 theory compactification, each puncture is labeled by

a Young-tableaux

1a). The flavor symmetry of this linear quiver is U(1)n+1 ×
∑r

a=1 SU(ka)×
∑n

a=l SU(ka),

which can be read explicitly from the quiver diagram.

The Seiberg-Witten curve for this theory has been solved in [7]. The curve is rewritten

in the following form [1]:

tN +

N
∑

i=2

φi(x)t
N−i = 0, (2.4)

where x is the coordinate on a sphere; and the Seiberg-Witten differential is simply λ = tdx.

φi(x)dx
i are degree i differentials on the sphere with poles at n + 3 punctures, say

with x = 0,∞ and x1...xn+1. The poles at x1...xn+1 are of order pi = 1, and are called

basic punctures; the pole at t = 0 has order pi = i− s, where s is the height of the Young

Tableaux we have just constructed. The pole at t = ∞ can be similarly determined from

the Young Tableaux associated to the other tail.
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This motivates the following six dimensional description of these four dimensional

N = 2 superconformal field theories: the linear theory is realized as a six dimensional

AN−1 theory compactified on a sphere with n+3 punctures, and the punctures are labeled

by the Young Tableaux (see Figure 1b). There are also defects at the punctures. Recall

that six dimensional AN−1 theory has operators of dimension 2, 3, ..., N . Compactification

on Riemann surface involves the ordinary twisting to preserve supersymmetry, this twisting

turns the dimension i operators into a degree i meromorphic differential φidx
i on Riemann

surface.

The orders of the poles are determined from the Young Tableaux by using the formula

pi = i − s, where i is the label of the ith box and s is the height of ith box in the Young

tableaux (see Figure 2a). The dimension of the space of these meromorphic differentials is

given by

dimension of φi =

n+3
∑

punctures d=1

p
(i)
d + 1− 2i (2.5)

The parameters of these differential are identified with dimension i operators of the four

dimensional theory, i.e. the parameters for the Coulomb branch. The Seiberg-Witten

curves describing the low energy effective theory of these models are also expressed in

terms of these operators:

tN +

N
∑

i=2

φi(x)t
N−i = 0 (2.6)

The gauge coupling constants are identified with the moduli of the punctured sphere

M . The moduli space for a sphere with n+3 punctures is n dimensional which is identified

with the n coupling constants of our linear quiver. The duality group is π1(M).

We can also determine the flavor symmetry from the punctures. This can be deter-

mined by studying the mass-deformed theory. The Seiberg-Witten curve for mass-deformed

theory has the additional term φ1t
N−1; we can do a linear transformation on t to eliminate

this linear term. Additionally, the Seiberg Witten curve is changed to λ = t
′

dx, where t
′

is

the new variable. The change of Seiberg Witten curve only redefines the mass parameters.

The mass parameters are now identified as the residue of this new Seiberg-Witten differ-

ential at the puncture. The pattern of the residue is in one-to-one correspondence with

the Young Tableaux of this puncture. For each column of Young Tableaux with height

lh, there are lh same residue for Seiberg Witten differential. The flavor symmetry of this

puncture is

S(
∏

lh>0

U(lh)). (2.7)

(See Figure 2a for an example). One can check that this characterization of flavor symmetry

matches that read from the linear quiver gauge theory. If the Young Tableaux of a puncture

has only one row and the flavor symmetry is then SU(N), we call the puncture a full

puncture; if the Young Tableaux has two columns, one of them has N − 1 boxes, the other

has one box, and the flavor symmetry is U(1), then we call this a basic puncture. The

punctures associated with the tails are called generic punctures.
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1−1

Figure 3: a) The fundamental domain of H

Γ(2) . Here H is the upper half plane, Γ(2) is the duality

group of a sphere with four punctures; b)The fundamental domain of H/SL(2, z).

a a

c

a b

c

c b

db d d

Figure 4: The various weakly coupled limit of SU(2) theory with four fundamental matter. The

narrow strip denotes the weakly coupled SU(2) gauge group. The punctures are associated with

flavor symmetry SU(2).

This then gives a complete description of four dimensional N = 2 quivers from six

dimensional point of view. One of the great virtues of this description is that we can derive

various weakly coupled descriptions of these superconformal field theories by studying

various degeneration limits of the punctured sphere.

We first study the simplest case of four dimensional scale invariant SU(2) theory with

four fundamental matter hypermultiplets. The full flavor symmetry is SO(8), we can write

it in a form with only manifest SU(2)a×SU(2)b×SU(2)c×SU(2)d flavor symmetry. This

description will make the six dimensional interpretation manifest.

It is shown in [8] that the duality group of this theory is SL(2, z). The duality group

is the combination of Γ(2) (the symmetry group of a sphere with four punctures) and the

triality of SO(8) flavor symmetry. The triality of SO(8) flavor symmetry permutates four

manifest SU(2) flavor groups.

Before we use the triality symmetry, let us consider the moduli space which is shown in

Figure 3a). The six dimensional description is shown in Figure 4. We have three different

weakly coupled descriptions as the different degeneration limit of the punctured sphere.

These three weakly coupled descriptions correspond to the three cusps (1, 0), (−1, 0),∞ in

the moduli space in Figure 3a). After using the permutation symmetry, the four punctures

are identical and the duality group is enhanced to SL(2, z). The moduli space becomes

H/SL(2, z), which is shown in Figure 3b). The three weakly coupled descriptions are

identical and we have only one weakly coupled description, which corresponds to the only

cusp ∞ in the new moduli space.
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Figure 5: a) The weakly coupled SU(3) description, here the cross denotes U(1) puncture and

circle cross denotes SU(3) puncture; b) Description with weakly coupled SU(2) gauge group

Figure 6: The collision of two basic puncture create a new puncture when we turn off the weakly

coupled gauge group, we also draw the Young Tableaux associated with this new created puncture,

in our particular case, the flavor symmetry is SU(3).

Next we study the SU(3) theory with six fundamentals. This is the case considered

by Argyres and Seiberg [2]. The moduli space of this theory is depicted in Figure 3a).

The manifest flavor symmetry is U(1)2 × SU(3)2 in our description. The two different

degeneration limits of six dimensional description are depicted in Figure 5. Figure 5a)

is ordinary description in which the SU(3) gauge coupling can be made arbitrarily weak.

The description shown in Figure 5b) is rather surprising, since this description corresponds

to the infinitely strongly coupled region of the description Figure 5a). However, it is

quite natural from the six dimensional point of view, it is just one degeneration limit of

the punctured Riemann surface. This gives a complete picture of various weakly coupled

corner in the moduli space, since these are the only cusps in the moduli space shown in

Figure 3a)(two of the cusps are identical).

Actually, we can determine which gauge group is becoming weakly coupled and what

kind of puncture is left when we completely turn off this gauge group. When a basic

puncture collides with a generic puncture, then the gauge group becoming arbitrarily weak

is SU(n1), where n1 is the first row of the Young Tableaux associated with the generic

puncture. When we completely turn off this weakly coupled gauge group, we leave a

puncture with a Young Tableaux whose first row has n2 boxes, while the other rows are

not changed. In our particular case, the generic puncture is a simple puncture, with n1 = 2,

n2 = 3, after decoupling, we create a new puncture with only one row n2 = 3. The flavor

symmetry is SU(3) according our rules. This is shown in Figure 6. The theory associated

with three punctures with SU(3) gauge group is an interacting superconformal field theory.

For a sphere with three punctures, there is no moduli so this theory is an isolated fixed
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a)
b)

Figure 7: a) The collision of three groups of N − 1 basic punctures; b) TN theory with three full

punctures with SU(N) flavor symmetry

point. As we described earlier, the Seiberg Witten curve is

t3 +
U

(x− 1)2x2
= 0 (2.8)

U is the dimension 3 operator of this theory. The manifest flavor symmetry is SU(3)3,

which is enhanced to E6. This is the famous N = 2 E6 superconformal field theory. The

S-dual theory of SU(3) theory is recovered easily in this way. It is a SU(2) theory with

one fundamental and coupled with E6 superconformal field theory, and a SU(2) subgroup

of E6 is gauged and identified with the weakly coupled SU(2) gauge group. The number

of fundamentals can be either determined from the three punctured sphere, or from the

counting of the conformal anomaly of the SU(2) theory: the SU(3) puncture provides the

conformal anomaly equal to three fundamental of SU(2), so we need one extra fundamental

to compensate the conformal anomaly.

Similarly, we can also construct isolated superconformal theories with flavor sym-

metry SU(N)3 by considering the degeneration limit of superconformal quiver SU(2) ×

SU(3)...SU(N)N−2 ×SU(N − 1)...SU(2)[1]. We have a total of 3N − 3 basic punctures on

the sphere. It is easy to deduce that when N − 1 basic punctures collide (we can collide

basic punctures step by step), a SU(N −1) gauge group becomes weakly coupled and if we

turn off this gauge coupling we are left a SU(N) puncture. In the core of the degenerated

sphere, we have a theory with three SU(N) punctures. See Figure 7. The supergravity

dual of this TN theory is found in [9].

We have known how a basic puncture collide with a generic puncture. It is interesting

to consider the collision of two generic punctures. It is shown in [1] that when two generic

SU(2) punctures associated with a Young Tableaux with two columns of equal heights

collide, an USp gauge group becomes weakly coupled. We will check in this paper that this

conjecture is correct. We will also consider the collision of a special U(1) puncture and a

SU(2) puncture.

The above construction can be generalized to four dimensional SU quiver with loops

[1]. It can also be generalized to DN theory [10] and there is also brane web construction
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a)
O6− b)

O6−

O6−

4, 5

6

c)

O6−

O6−

Figure 8: The tree families of brane configurations in the background of two negatively charged

O6-planes. The short vertical lines represent the NS branes, the crossed circles are the orientifold

planes. The D6 branes is put in between the NS branes, we omit them in the picture.

in [11]. There is an interesting relation between four dimensional N = 2 gauge theories

and liouville correlation function [12].

3. N = 2 SU Quiver with USp Ends or SU Ends with Antisymmetric

matter

Four dimensional N = 2 superconformal SU field theory with USp ends or SU ends with

antisymmetric representations can be derived by adding orientifold six planes to Type IIA

D4-NS5 brane system [13]. The solution of the model [14] can be found after lifting the

above brane configuration to M theory along the similar line as in [7]

We first consider D4 and NS5 branes system in type IIA theory; We also include two

orientifold six planes and 8 D6 branes so that the net RR charges cancels. The k four

branes lie along the directions x0, x1, x2, x3, x6; we take x6 coordinate compact. The NS5

branes lie along x0, x1, x2, x3, x4, x5 directions. The orientifold six planes extend along

x0, x1, x2, x3, x7, x8x9 directions. It corresponds to the space time transformation

h : (x4, x5, x6) → (−x4,−x5,−x6), (3.1)

together with the world sheet parity Ω and (−1)FL . The D6 branes are parallel to O6

planes.

There are three main families of N = 2 quiver gauge theory with these brane configu-

rations, depending on the positions of the NS branes:

i) The number of NS branes is odd, N = 2r + 1. Only one NS5 brane intersect with

the orientifold plane. One typical brane configuration is depicted in Figure 8a. The quiver

gauge theory is

USp(k)× SU(k)r−1
× SU(k), (3.2)
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k must be even since for USp group the rank must be even. We have the bifundamental

matter fields between the adjacent group. Two fundamentals are attached at the USp node

and we have two fundamentals and one antisymmetric hypermultiplet at the last SU(k)

node. The flavor symmetry is SO(4)×U(1)r ×SU(2)×U(1). The SO(4) flavor symmetry

is from the two fundamentals of USp node, and the last SU(2) × U(1) is from the two

fundamentals of the SU ends.

Note that the antisymmetric representation of SU(k) is real, so the flavor symmetry

of this representation is Usp(2) = SU(2). In this paper, however, we do not consider

the mass deformation of antisymmetric matter, so we do not include the flavor symmetry

associated with it. Use the isomorphism SO(4) = SU(2)×SU(2), the total flavor symmetry

is SU(2)× SU(2)× U(1)r × SU(2)× U(1).

ii)The number of NS branes is even. N = 2r, and there are no NS branes intersecting

the O6-planes. One example is shown in Figure 8b. The quiver gauge theory is

USp(k)× SU(k)r−1
× USp(k). (3.3)

We have the bifundamentals between the adjacent group and two fundamentals at the first

and last USp gauge factor. The flavor symmetry is SU(2)×SU(2)×U(1)r×SU(2)×SU(2).

iii)The number of NS branes is even N = 2r. There are two NS branes intersecting

with the O6-planes. One configuration is shown in Figure 1c. The quiver gauge theory is

SU(k)× SU(k)r−1
× SU(k) (3.4)

Besides the bifundamental matters, we have two fundamentals and one antisymmetric at

the first and the last SU factor. The flavor symmetry is U(1)×SU(2)×U(1)r×SU(2)×U(1).

When r = 0, the above theories are degenerate as

i) USp(k) with a traceless-antisymmetric and 4 fundamentals.

ii) Also a USp(k) with traceless-antisymmetric and 4 fundamentals, this is only for

the massless antisymmetric matter, the mass deformation for this matter is not allowed.

iii) SU(k) with 2 antisymmetric hypermultiplets and 4 fundamentals.

The Seiberg-Witten curves for those theories are derived by lifting the Type IIA con-

figuration to M theory [14]. Here we briefly review the derivation. The NS5-D4 brane

configuration is lifted to a single M5 brane wrapped on a Riemann surface in O6 − D6

background. In lifting to M theory, we grow a circular dimension x10 with radius R.

Define the variables

v = x4 + ix5, s = (x10 + ix6)/(2πR) (3.5)

Before orbifolding, the background space is Q̃ = C × T 2. The Z2 identification of the

orientifold is (v, s) ≃ (−v,−s). The M theory background is therefore the orbifold space

Q = Q̃/Z2.

We only need the complex structure of this orbifold background. To do this, we first

write an algebraic equation of torus. The torus can be written as an complex curve in

the weighted projective space CP 2
(1,1,2). CP 2

(1,1,2) is defined as the space (w, x, y)/(0, 0, 0)

modulo the identification

(λω, λx, λ2η) ≃ (ω, x, y), λ ∈ C∗. (3.6)
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The torus is represented as

η2 =
4
∏

i=1

(x− eiω), (3.7)

where the numbers ei encode the complex structure τ of the torus in usual way.

The Z2 automorphism of the torus is η → −η with ω and x fixed. The Z2 identification

of the orientifold background becomes (v, ω, x, η) ≃ (−v, ω, x− η). The fixed points are

(0, 1, ei, 0) i = 1, 2, 3, 4, (3.8)

we write it in ω = 1 patch.

Let us define Z2 invariant variables

y ≡ ηv, z = v2, (3.9)

the orbifolded background Q (without mass deformation for the fundamental matter) is

y2 = z

4
∏

i=1

(x− eiω). (3.10)

In the following, we write all the formulas in the patch ω = 1, so the orbifold equation is

y2 = z

4
∏

i=1

(x− ei). (3.11)

The mass deformed (which corresponds to mass deformation to four fundamental matters

induced by D6 branes) background is

y2 = z
4
∏

i=1

(x− ei) +Q(x) (3.12)

and

Q(x) =

4
∑

j=1

µ2
j

∏

k 6=j

[(x− ek)(ej − ek)] (3.13)

The Seiberg Witten curve for those field theories is a Riemann surface embedded into

above background. We can first write the Seiberg Witten curve for the brane configuration

before orbifolding, which is just the elliptic model in [7], and then require the curve invariant

under the Z2 transformation. For the elliptic model, the bifundamental masses satisfy the

relation
∑

α mα = 0, so to get the most generic mass-deformed theory, the background

is not simply C × T2 but an affine model. There is no such problem for our model;

before orbifolding, the relation
∑

αmα still applies, however, after orbifolding, the bi-

fundamental masses are all independent(the orbifold images of D4 branes have opposite v

coordinates, so the bi-fundamental mass for two images are opposite). We do not need to

change the background to an affine bundle to allow most generic mass deformation for the

bifundamental matters. The situation is different if we want to turn on mass deformation

– 10 –



for anti-symmetric matter, the background is an affine bundle. We will not discuss this

complication in this paper.

The Seiberg-Witten curve of the above quiver gauge theories without mass deformation

is

zn +A(z) +
r

∑

s=1

Bs(z) + yCs(z)

x− xs
+

q
∑

p=1

yDp(z)

x− ep
= 0, k = 2n, (3.14)

here xs are positions of NS5 branes which don’t intersect with the orientifold; q is the

number of NS branes which intersect with the orientifold planes and ep are positions of

NS5 branes stuck at orientifold. This is natural since ep are fixed points under the orbifold

action. A(z) and Bs(z) are polynomials in z

A(z) =

n
∑

l=1

Alz
n−l, Bs(z) =

n
∑

l=1

Bslz
n−l, (3.15)

and Cs and Dp are polynomials in z

Cs(z) =

n
∑

l=2

Cslz
n−l Dp(z) =

n
∑

l=2

Dplz
n−l. (3.16)

We also have the constraint:

r
∑

s=1

Cs(z) +

q
∑

p=1

Dp(z) = 0. (3.17)

This curve can be derived by first write the Seiberg-Witten curve of elliptic model, and

then impose the orbifold invariance and finally express it in terms of orbifold invariant

variable. The mass-deformed Seiberg-Witten curve is

zn +A(z) +

r
∑

s=1

Bs(z) + yCs(z)

x− xs
+

q
∑

p=1

(y − yp)Dp(z)

x− ep
= 0 (3.18)

where yp =
√

Q(ep). A(z), B(z), C(z),D(z) are polynomials in z of order n− 1.

The Seiberg-Witten differential is given by

λ =
ydx

∏4
i=1(x− ei)

. (3.19)

We will rewrite the above curve in a form along the way in [1]. Let’s first consider

case ii) with two USp ends, which corresponds to q = 0. We rewrite the Seiberg-Witten

curve in a form which makes the interpretation with the A2n−1 theory compactification on

a punctured sphere manifest. Expanding the Seiberg-Witten curve in terms of polynomial

of z, we have

zn +
n
∑

l=1

plr(x)

∆′
zn−l +

n
∑

l=2

ypl(r−2)(x)

∆′
zn−l = 0, (3.20)
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here ∆
′

= (x−x1)....(x−xr) and plr(x) are polynomials with order r; pl(r−2) are r−2 order

polynomials. Define z =
∏4

i=1(x− ei)t
2, then

y = t

4
∏

i=1

(x− ei) (3.21)

The Seiberg-Witten differential becomes

λ = tdx (3.22)

and the Seiberg-Witten curve is

t2n +

n
∑

l=1

plr(x)

∆′
∏4

i=1(x− ei)l
t2n−2l +

n
∑

l=2

plr−2(x)

∆′
∏4

i=1(x− ei)l−1
t2n−2l+1 = 0 (3.23)

With this form, we conclude that this theory can be realized as the six dimensional A2n−1

theory compactified on a sphere with r basic punctures x1, ...xr (see Figure 9a) for the

Young Tableaux and 4 generic punctures ei, i = 1, ..4 with Young Tableaux in Figure 9b).

The defects at the punctures are:

φ2l =
plr(x)

∆′
∏4

i=1(x− ei)l
dx2l, φ2l−1 =

plr−2(x)

∆′
∏4

i=1(x− ei)l−1
dx(2l−1). (3.24)

To clarify one point, x is a coordinate on C, and since we do not put any singularity

at ∞, we can add a point at ∞ to C and compactify it to a sphere. This does not change

the Seiberg-Witten differential and other properties of our model.

Several checks can be made about this conclusion:

a)The moduli space of the sphere with r+4 punctures has dimension r+1 which can

be identified with the coupling constant of gauge groups in the quiver.

b)The various differentials have pole pi = 1 at punctures at xs , which can be associated

with the flavor symmetry U(1), where the Young Tableaux is shown in Figure 9a). The

punctures ei has order pl =
l
2 when l is even, pl =

l−1
2 when l is odd. This puncture can be

represented as a Young Tableaux with two columns of height n in Figure 9b). These poles

correspond to SU(2) flavor symmetry. The total flavor symmetry is then SU(2)4 ×U(1)r,

which matches the flavor symmetries read from the quiver diagram.

c)For the differential φ2l, the dimension is 4l + r − 2(2l) + 1 = r + 1, which matches

the dimension of the polynomials plr. For differential φ2l−1, the dimension is r − 1, which

also matches the parameters needed for the polynomial plr−2.

d)When the mass deformation is turned on, we have the t2n−1 term. Do a linear

transformation on t = t
′

+α to eliminate this term. And keep the Seiberg-Witten differential

as λ = t
′

dx. One can check the residue of the punctures xs and ep have the same patter

as determined by the Young Tableaux.

Next, we consider case i) for which only one NS5 brane intersects with the O6 plane.

The Seiberg-Witten curve is

zn +A(z) +

r
∑

s=1

Bs(z) + yCs(z)

x− xs
+

yD1(z)

x− e1
= 0, k = 2n (3.25)
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a)
b) c)

Figure 9: Young-Tableaux for a): Puncture with pi = 1 b): Puncture with pl = l

2 for even l,

pl =
(l−1)

2 for odd l; c): Puncture with pl =
l

2 for even l, pl =
(l+1)

2 for odd l.

Expand the curve in the polynomial of z and define z =
∏4

i=1(x− ei)t
2, the curve becomes

t2n +

n
∑

l=1

plr(x)

∆
′
∏4

i=1(x− ei)l
t2n−2l +

n
∑

l=2

plr−1(x)

∆
′
∏4

i=2(x− ei)l−1(x− e1)l
t2n−2l+1 = 0 (3.26)

Similarly, we conclude that this theory can be realized as the six dimensional A2n−1 com-

pactified on a sphere with r punctures at xs and 3 punctures at ei, i = 2, 3, 4, we also have

a different puncture at e1 with Young Tableaux in Figure 9c). The defects at the punctures

are:

φ2l =
plr(x)

∆′
∏4

i=1(x− ei)l
dx2l, φ2l−1 =

plr−1(x)

∆′
∏4

i=2(x− ei)l−1(x− e1)l
dx(2l−1) (3.27)

Similar checks can be made:

a)The dimension of moduli space of the punctured sphere is r + 1 which is identified

with the r + 1 coupling constants of gauge groups.

b)The flavor symmetries correspond to xs are U(1), while ei, i = 2, 3, 4 represent flavor

symmetry SU(2). The e1 puncture has pole pl = l
2 for l even, and pl = (l+1)

2 for odd

l. This can be represented by the Young Tableaux in Figure 9c). The flavor symmetry

of this puncture is U(1). Therefore, the total flavor symmetry is U(1)r × SU(2)3 × U(1),

Which matches our counting from the quiver diagram. Note that the Young Tableaux for

the U(1) from the two fundamentals on the SU ends is different from the U(1) punctures

for the bi-fundamental matter.

c)The dimension of φ2l is r+1, and φ2l−1 has dimension r, which matches the param-

eters needed for the polynomial plr(x) and plr−1(x).

d)The flavor symmetry can be checked from the mass deformed theory.

Finally, let’s consider the quiver in case iii); the Seiberg-Witten curve can be written

as

t2n +

n
∑

l=1

plr(x)

∆′
∏4

i=1(x− ei)l
t2n−2l +

n
∑

l=2

plr−1(x)

∆′
∏4

i=3(x− ei)l−1(x− e1)l(x− e2)l
t2n−2l+1 = 0

(3.28)
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Similarly, this theory can be written as the six dimensional A2n−1 theory compactified

on Riemann surface with punctures ei and xs. The defects at the punctures are:

φ2l =
plr(x)

∆′
∏4

i=1(x− ei)l
dx2l, φ2l−1 =

plr−1(x)

∆′
∏4

i=3(x− ei)l−1(x− e1)l(x− e2)l
dx(2l−1) (3.29)

One can check along the similar line that this is the correct interpretation.

4. Some Special Examples

We want to mention some special examples which are of later interest for us. We first

analyze SU(2n) with two-antisymmetric matter and four fundamentals, this corresponds

to r = 0, q = 2. The Seiberg-Witten curve is

0 = t2n +

n
∑

l=1

Al
∑4

i=1(x− ei)l
t2n−2l +

n
∑

l=2

Dl
∑4

i=3(x− ei)l−1(x− e1)l(x− e2)l
t2n−2l+1 (4.1)

So this theory can be represented as the A2n−1 theory compactified on a sphere with four

punctures, two of which have the form as Figure 9a, and two of which have the form as

Figure 9b.

We then study the quiver gauge theory corresponding to r = 1, q = 0, the quiver gauge

theory is USp(2n)× USp(2n). The flavor symmetry in this case is SU(2)4 × SU(2). The

last SU(2) comes from the bifundamental matter which now furnish a real representation

of quiver theory. Naively, we identify this theory as A2n−1 compactified on a sphere with

four punctures ei and one basic puncture x1. The manifest flavor symmetry from this

representation is SU(2)4 × U(1).

Finally, we consider the quiver corresponding to r = 0, q = 1, this is a USp(2n) theory

with four fundamental and one-antisymmetric hypermultiplet. The Seiberg-Witten curve

is

t2n +
∑

l

pl
∏4

i=1(x− ei)l
t2n−2l = 0 (4.2)

This theory is represented as A2n−1 theory compactified on sphere with four identical

puncture with SU(2) flavor symmetry. Combined with the permutation symmetry of this

four identical punctures, we expect that this theory has the SL(2, Z) duality. Notice that

the above curve can be written as

(t2 +
q

∏4
i=1(x− ei)

)n = 0. (4.3)

It is amusing to note that for SU(2) theory with four foundamentals, the Seiberg Witten

curve is

t2 +
q

∏4
i=1(x− xi)

= 0. (4.4)

So the Seiberg-Witten curve for USp(2n) theory with four fundamentals and one trace-

less anti-symmetric representation is tensor product of that of SU(2) theory with four

fundamentals [15].
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Figure 10: The degeneration limit corresponds to two weakly coupled USp group, two SU(2)

punctures are colliding.

5. Degeneration Limit

In reference [1], it is conjectured that the SU quiver gauge theory SU(2)×SU(4)×SU(6)...×

SU(2n)m−2n+4 × ...SU(4) × SU(2) is S dual to quiver gauge theory SU(2) × SU(3) ×

SU(4) × ...SU(2n)m−2n+3 × USp(2M). The SU quiver gauge theory is realized as the

compactification of A2n−1 theory compactified on a sphere with m+1 basic punctures and

two special puncture with SU(2) flavor symmetry. When two special punctures collide, a

USp gauge group is decoupled. More generally, when both ends are associated with USp

group, it is related to a sphere with four SU(2) punctures and several basic punctures.

This conjecture is proved in this paper by rewriting the Seiberg-Witten curve of USp×

SU r−1×USp quiver in a form which makes the above interpretation manifest. We show that

the quiver with two USp ends are associated with the sphere with several basic punctures

and four SU(2) punctures. When two SU(2) punctures collide with each other, the gauge

coupling of the USp group becomes weakly coupled. The linear quiver with two USp ends

associated with the degeneration limit is shown in Figure 10. When we turn off one of

weakly coupled gauge coupling, we are left with a puncture associated with the flavor

symmetry SU(2n), which can be seen from the linear quiver.

The theory with only one USp node can be derived by colliding several basic punctures.

It is associated with a sphere with two SU(2) punctures and several basic punctures, see

Figure 11a). The Young tableaux associated with SU(2) flavor symmetry implies the tail

n1 = 2, n2 = 4, ..nk = 2k, nn = 2n, if we collide a basic puncture with a SU(2) puncture,

a SU(2) gauge group becomes weakly coupled, we are in another corner of moduli space

around which we have the weakly coupled description. In this description, the quiver

becomes SU(2)×SU(4)×SU(6)...×SU(2n)m−2n+4× ...SU(4)×SU(2). The degeneration

limit of the punctured sphere corresponding to two quiver are shown in figure 11b).

The TN theory can be derived by using a sphere with four SU(2) punctures and N −1

basic punctures. Figure 12 shows how we can get the TN (N must be even) theory by

colliding the punctures.

We can also study the degeneration limit of quiver theory which has SU ends with

antisymmetric matter. The linear quiver with two such SU ends is depicted as the six
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a)
b)

Figure 11: a) Weakly coupled description with USp ends; b) Weakly coupled description with all

SU chain groups with bifundamental and fundamental matters.

a)
b)

Figure 12: a) One degeneration limit of quiver gauge theory with USp ends and N − 2 SU gauge

groups, here N = 4; b)TN theory when we turn off the weak gauge couplings completely.

Figure 13: The degeneration limit corresponds to two weakly coupled SU group with antisym-

metric representation, one SU(2) puncture and a special U(1) puncture are colliding.

dimensional theory compactified on a sphere with several punctures in Figure 13. We can

similarly conclude that the linear quiver with one SU ends with antisymmetric matter is

associated with a sphere with several basic puncture, one special puncture and a SU(2)

puncture. This can be shown by colliding several basic punctures of above theory with two

special SU ends. When special U(1) puncture collides with SU(2) puncture, a SU(2n)

gauge theory becomes weakly coupled. When we turn off this coupling completely, we are

left with a SU(2n) puncture, which can be seen from our linear quiver.

Motivated by the discussion of USp theory, We can conclude from the form of two
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a)
b)

Figure 14: a) Linear quiver with weakly coupled SU ends with antisymmetric representation, b)

S dual quiver to theory a with SU chain of gauge groups with bi-fundamental and fundamental

matters.

SU(2) SU(3) SU(4) SU(5) SU(6) SU(6) SU(6) 21

1 anti

SU(2)SU(4)SU(6)SU(6)SU(3) SU(5) SU(6)
1

21

Figure 15: a)Linear quiver with weakly coupled SU ends with antisymmetric representation, b)S

dual to a with SU chain of gauge groups

a)
b)

Figure 16: T2n theory from SU(2n)× SUn−2 × SU(2n) quiver.

special punctures that this quiver is S dual to linear quiver with two tails, one tail associ-

ated with the Young Tableaux of special U(1), the other associated with SU(2). For the

special U(1), the Young-Tableaux implies that the tail has the form n1 = 3, n2 = 5, ..nk =

2k + 1, ..nn−1 = 2n − 1, nn = 2n, while the other tail has the form n1 = 2, n2 = 4, ..nk =

2k, nn = 2n. Two different degeneration limits are depicted in figure 14. We also write

the two different linear quivers associated with these punctured spheres in Figure 15 with

2n = 6. Similarly, we can find T2n theory from SU(2n)× SUn−2 × SU(2n), see figure 16.

We can also find T2n from theory with form SU(2n) × SU (n − 2) × USp(2n) by colliding

appropriate punctures.
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Figure 17: a) Theory with weakly coupled SU group; b) Theory with weakly coupled USp group;

c)E6 theory.

Next, let’s have some fun with other isolated superconformal field theory, as in the

examples outlined in [16]. First, let’s consider SU(4) theory with four fundamentals and

two antisymmetric hypermultiplets. The weakly coupled SU(4) description is depicted in

Figure 17a). It is associated with A3 theory compactified on a sphere with two SU(2)

punctures and two special U(1) punctures. There is another degeneration limit, which is

depicted in Figure 13b). As we discussed earlier, when two SU(2) punctures collide, a

USp(4) group becomes weakly coupled, if we turn off this gauge coupling, we are left with

a SU(4) puncture. The resulting three punctured sphere is shown in Figure 13c).

For the three punctured spheres, the order of poles at each puncture are

SU(4) puncture : p2 = 1, p3 = 2, p4 = 3; (5.1)

Special U(1) puncture : p2 = 1, p3 = 2, p4 = 2. (5.2)

The Seiberg-Witten curve for the tree punctured sphere can be read from our rules

(we put three punctures at x = 1, 0,∞:

t4 +
U

(x− 1)2x2
t = 0 (5.3)

One can check that the other differentials are vanishing by using formula (2.5). This theory

has a dimension 3 operator. The curve reduces to

t3 +
U

(x− 1)2t2
= 0 (5.4)

which is exactly same as the E6 superconformal field theory. The manifest flavor symmetry

is SU(4) × U(1) × U(1), which is a subgroup of E6. We expect the flavor symmetry is

enhanced to E6 and we identify this theory as E6 superconformal field theory.

More generally, if we consider SU(2n) theory, then the theory associated with three

punctured sphere has the manifest flavor symmetry SU(2n)×U(1)×U(1). The original the-

ory has operators D(φ) = 2, 3...2n. In the dual description, a USp(2n) group is becoming

weakly coupled, and it has even dimensional operators. Therefore, this isolated supercon-

formal field theory only has odd dimensional operators with D(φ) ≥ 3, its Seiberg-Witten

curve can be written from the puncture types according to our general rule.

Then let’s consider the quiver USp(4)×USp(4) which has been described in section 4.

This theory is associated with A3 theory compactified on a sphere with four SU(2) puncture

and a U(1) puncture. These two weakly coupled USp group description correspond to the

degeneration limit shown in Figure 18a). There is another degeneration limit shown in
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a) b)

Figure 18: a)Theory with weakly coupled SU group b) Theory with weakly coupled USp group,

c)E6 theory.

Figure 18b). Here two SU(2) punctures collide and one SU(2) puncture collide with

other U(1) punctures. When two SU(2) puncture collide, a USp(4) gauge group becomes

weakly coupled. When it is completely turned off, a SU(4) puncture is left. On the other

hand, when a SU(2) puncture collides with a basic puncture, a SU(2) gauge group becomes

weakly coupled. When we turn off this weakly coupled gauge group, a puncture with Young

Tableaux of only one row n1 = 4 is created, this is associated with a SU(4) puncture.

The resulting three punctured sphere has two SU(4) punctures and one SU(2) punc-

ture. This theory has only one dimension 4 operator. The original quiver has two dimension

2 and two dimension 4 operators; in the dual description, we have a dimension 2 operator

for SU(2) group and a two dimensional and four dimensional operators for USp(4) group,

so we are left a dimension 4 operator for this isolated superconformal field theory.

The A3 theory compactified on such punctured sphere is identified as E7 superconfor-

mal field theory [1][2]. Note that the manifest flavor symmetry is SU(4)×SU(4)×SU(2),

which is a maximal subgroup of E7.

More generally, when we consider USp(2n) × USp(2n) theory, the three punctured

spheres have flavor symmetry SU(2) × SU(2) × SU(2n) × SU(2). For generic n, the

collision of basic puncture and SU(2) puncture creates a puncture with flavor symmetry

SU(2) × SU(2). This theory has only even dimension operators D(φ) ≥ 4.

6. Conclusion

In this paper, we have studied N = 2 linear SU quiver gauge theory with USp ends or SU

ends with antisymmetric representations. We rewrite the Seiberg-Witten curve in a form

which makes manifest the interpretation of six dimensional AN theory compactification on

punctured sphere. We identified the flavor symmetry of the theory with the punctures. We

then study the degeneration limit of those theories and identify the weakly coupled descrip-

tion in various cusps of moduli space. For the USp ends, we check the previous conjecture;

For SU ends, we conjecture a dual quiver with ordinary SU chain with bi-fundamental and

fundamental matters. Finally, we have seen how E6 and E7 superconformal field theories

come from the degeneration limit of certain special field theories. We also found a class

of isolated superconformal field theories with odd dimension operators starting from di-

mension 3 and superconformal field theory with even dimension operators starting from

dimension 4.
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We only considered massless antisymmetric matter in this paper. It would be inter-

esting to study the mass deformed theory and identify the six dimensional description.

The mass deformed antisymmetric matter theory changes the background from a product

manifold C × T 2 to an affine bundle , which is similar to the most generic mass deformed

elliptic model. The addition of mass deformation of antisymmetric matter may change the

picture dramatically. We can see this from the elliptic model with only one gauge group.

Without mass deformation, the four dimensional theory is defined as the six dimensional

(0, 2) theory compactified on a smooth torus, and we have N = 4 supersymmetry. Now if

we turn on the mass deformation for the adjoint hypermultiplet, this theory is described

by a torus with one puncture, and we only have N = 2 supersymmetry.

It is also interesting to study the quiver with SO node and SU node with symmetric

representation. The Type IIA brane construction [13] involves a orientifold six plane with

positive charge and a negative charged orientifold six plane. It would be interesting to find

a six dimensional description.
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