
OPTIMAL BOUNDARY CONTROL OF THE STOKES FLUIDS WITHPOINT VELOCITY OBSERVATIONS�PUHONG YOUy, ZHONGHAI DINGz, AND JIANXIN ZHOUyAbstract. This paper studies constrained LQR problems in distributed boundary control sys-tems governed by the Stokes equation with point velocity observations. Although the objective func-tion is not well-de�ned, we are able to use hydrostatic potential theory and a variational inequalityin a Banach space setting to derive a �rst order optimality condition and then a characterizationformula of the optimal control. Since matrix-valued singularities appear in the optimal control, asingularity decomposition formula is also established, with which the nature of the singularities isclearly exhibited. It is found that in general, the optimal control is not de�ned at observation points.A necessary and su�cient condition that the optimal control is de�ned at observation points is thenproved.Key words. LQR, Stokes uid, distributed boundary control, point observation, hydrostaticpotential, BIE, singularity decomposition.AMS subject classi�cations. 49N10,49J20,76D07,76D10,93C20,65N381. Introduction.In this paper, we are concerned with the problems in boundary control of uidows. We consider the following constrained optimal boundary control problems inthe systems governed by the Stokes equation with point velocity observations.Let 
 � R3 be a bounded domain with smooth boundary �, �1 an open subsetof � and �0 = � n �1.
(LQR)

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
min~u2U J(~u) = mXk=1 �kj~w(Pk)� ~Zkj2 +  Z�1 j~u(x)j2d�x;subject to(1:1) 8>>>>>>>><>>>>>>>>:

��~w(x) �rp(x) = 0; in 
;div ~w(x) = 0; in 
;~�(~w)(x) = ~g(x); on �0;~�(~w)(x) = ~u(x); on �1;where~w(x) is the velocity vector of the uid at x 2 
;p(x) is the pressure of the uid at x 2 
;~�(~w)(x) is the surface stress of the uid along � de�ned by~� (~w)(x) = (�1(~w)(x); �2(~w)(x); �3(~w)(x))T ;�i(~w)(x) = 3Xk=1 �@wi(x)@xk + @wk(x)@xi �nk(x) � p(x)ni(x);�Received by the editors XX XX, 19XX; accepted by the editors XXXX XX, 19XX.yDepartment of Mathematics, Texas A&M University, College Station, TX 77843. Supported inpart by NSF Grant DMS-9404380 and by an IRI Award of Texas A&M University.zDepartment of Aerospace Engineering, Texas A&M University, College Station, TX 77843. Cur-rent address: Department of Mathematical Sciences, University of Nevada-Las Vegas, Las Vegas, NV89154-4020. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/232282327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 P.You,Z.Ding and J.Zhou~n(x) is the unit outnormal vector of � at x;~g is a given (surface stress) Neumann boundary data (B.D.) on �0;~u(x) 2 U is the (surface stress) Neumann boundary control on the surface �1;U is the admissible control set to be de�ned later for well-posedness of theproblem and for applications;; �k > 0; 1 � k � m, are given weighting factors;Pk 2 �; 1 � k � m, are prescribed \observation points";Zk 2 R3 ; 1 � k � m, are prescribed \target values" at Pk;�, a positive quantity, is the kinematic viscosity of the uid. For simplicity,throughout this paper we assume that � = 1 and the density of the uid is theconstant one.Let M0 = f~a+~b� ~x j ~a;~b 2 R3g;(1.2)which is the subspace of the rigid body motions in R3 . Multiplying the Stokes equationby ~a +~b � ~x 2 M0 and integration by parts yield the compatibility condition of theStokes system, i.e., Z� ~� (~w)(x) � (~a+~b� ~x)d�x = 0;or ~�(~w) ?M0:For q � 1, let A be a subspace of (Lq(�))3 and denote(Lq(�))3?A = f~f 2 (Lq(�))3j~f ? Ag:The Stokes equation (1.1) describes the steady state of an incompressible viscousuid with low velocity in R3 . It is a frequently used model in uid mechanics. Itis also an interesting model in linear elastostatics due to its similarities. During thepast years, considerable attention has been given to the problem of active control ofuid ows (see [1, 2, 7, 18, 19] and references therein). This interest is motivated bya number of potential applications such as control of separation, combustion, uid-structure interaction, and super maneuverable aircraft. In the study of those controlproblems and Navier-Stokes equations, the Stokes equations, which describe the slowsteady ow of a viscous uid, play an important role because of the needs in stabilityanalysis, iterative computation of numerical solutions, boundary control and etc.. Thetheoretical and numerical discussion of the Stokes equations on smooth or Lipschitzdomains can be found from [14, 16, 17, 22, 25, 26, 27].Our objective of this paper is to �nd the optimal surface stress ~u(x) on �1, whichyields a desired velocity distribution ~w(x), s.t. at observation points Pk ; 1 � k � m,the observation values ~w(Pk) are as close as possible to the target values Zk witha least possible control cost Z�1 j~u(x)j2d�x, which arise from the contemporary uidcontrol problems in the uid mechanics.Notice that point observations are assumed in the problem setting, because theyare much easier to be realized in applications than distributed observations. Theycan be used in modeling contemporary "smart sensors".



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 3Sensors can be used in boundary control systems (BCS) governed by partial dif-ferential equations (PDE) to provide information on the state as a feedback to thesystems. According to the space-measure of the data that sensors can detect, sensorscan be divided into two types, point sensors and distributed sensors. Point sensors aremuch more realistic and easier to design than distributed sensors. In contemporary\smart materials", piezoelectric or �ber-optic sensors (called smart sensors) can beembedded to measure deformation, temperature, strain, pressure,...,etc. Each smartsensor detects only the average of the data in between the sensor and its size canbe less than 10�6m [29],[30],[24]. So in any sense, they should be treated as pointsensors. As a matter of fact, so far distributed sensors have not been used in anyreal applications, to the best of our knowledge. However, once point observations onthe boundary are used in a BCS, singularities will appear and very often the systembecomes ill-posed. Mathematically and numerically, it becomes very tough to handle.On the other hand, when point observations are used in the problem setting, thestate variable has to be continuous, so the regularity of the state variable strongerthan the one in the case of distributed observations is required. The fact is that inthe literature of related optimal control theory, starting from the classic book [23] byJ.L. Lions until recent papers [3],[4] by E. Casas and others, distributed observationsare always assumed and the optimal controls are characterized by an adjoint system.The system is then solved numerically by typically a �nite-element method, whichcannot e�ciently tackle the singularity in the optimal control along the boundary.On the other hand, since it is important in the optimal control theory to obtain astate-feedback characterization of the optimal control, with the bound constraints inthe system, the Lagrange-Kuhn-Tucher approach is not desirable because theoreticallyit cannot provide us with a state-feedback characterization of the optimal controlwhich is important in our regularity/singularity analysis of the optimal control andnumerically it leads to a numerical algorithm to solve an optimization problem with ahuge number of inequality constraints. A re�nement of the boundary will double thenumber of the inequality constraints, so the numerical algorithm will be sensitive tothe partition number of the boundary. Since the BCS is governed by a PDE system inR3 , the partition number of the boundary can be very large, any numerical algorithmsensitive to the partition number of the boundary may fail to carry out numericalcomputation or provide reliable numerical solutions.Recently in the study of a linear quadratic BCS governed by the Laplace equationwith point observations, the potential theory and boundary integral equations (BIE)have been applied in [20],[10],[11], [12] to derive a characterization of the optimalcontrol in terms of the optimal state directly and therefore bypass the adjoint system.This approach shows certain important advantages over others. It provides ratherexplicit information on the control and the state, and it is amenable to direct numericalcomputation through a boundary element method (BEM), which can e�ciently tacklethe singularities in the optimal control along the boundary.In [10],[11],[9] several regularity results are obtained. The optimal control is char-acterized directly in terms of the optimal state. The exact nature of the singularitiesin the optimal control is exhibited through a decomposition formula. Based on thecharacterization formula, numerical algorithms are also developed to approximate theoptimal control. Their insensitivity to the discretization of the boundary and fastuniform convergences are mathematically veri�ed in [12],[31].The case with the Stokes system is much more complicate than the one with theLaplace equation due to the fact that the fundamental solution of the Stokes system



4 P.You,Z.Ding and J.Zhouis matrix-valued and has rougher singular behaviors. In this paper, we assume thatthe control is active on a part of the surface and the control variable is bounded bytwo vector-valued functions. A Banach space setting has been used in our approach,we �rst prove a necessary and su�cient condition for a variational inequality problem(VIP) which leads to a �rst order optimality condition of our original optimizationproblem. A characterization of the optimal control and its singularity decomposi-tion formula are then established. Our approach can be easily adopted to handleother cases and it shows the essence of the characterization of the optimal control,through which gradient related numerical algorithms can be designed to approximatethe optimal control.The organization of this paper is as follows: In the rest of Section 1, we intro-duce some basic de�nitions and known regularity results that are required in the laterdevelopment; In Section 2, we �rst prove an existence theorem for an orthogonalprojection, next we derive a characterization result for a variational inequality whichserves as a �rst order optimality condition to our LQR problem; then a state-feedbackcharacterization of the optimal control is established. Section 3 will be devoted tostudy regularity/singularity of the optimal control. Since the optimal control containsa singular term, we �rst derive a singularity decomposition formula for the optimalcontrol, with which we �nd that in general the optimal control is not de�ned at obser-vation points. A necessary and su�cient condition that the optimal control is de�nedat observation points is then established. Some other regularities of the optimal con-trol will also be studied in this section. Based upon our characterization formulas anumerical algorithm, in a subsequent paper, we design a Conditioned Gradient Pro-jection Method (CGPM)) to approximated the optimal control. Numerical analysisfor its (uniform) convergence and (uniform) convergence rate are presented there. Weshow that CGPM converges uniformly sub-exponentially, i.e., faster than any inte-ger power of 1n . Therefore CGPM is insensitive to discretization of the boundary.The insensitivity of our numerical algorithm to discretization of boundary is a signif-icant advantage over other numerical algorithms. Since the fundamental solution ofthe Stokes system is matrix valued with a very rough singular behavior, numericalanalysis is also much more complicated than the case with scalar-valued fundamentalsolution, e.g., the Laplacian equation.Let us now briey recall some hydrostatic potential theory, BEM and some knownregularity results. Throughout of this paper, for a sequence of elements in Rn , weuse superscript to denote sequential index and subscript to denote components, e.g.,fxkg � Rn and xk = (xk1 ; � � � ; xkn). We may also use ~xk to emphasize that xk isa vector. We may write ~w(x; ~u) to indicate that the velocity ~w depends also on ~u.Unless stated otherwise, we assume p > 2; q > 1 with 1p + 1q = 1, j � j is the Euclideannorm in Rn and k � k is the norm in (Lh(�))n(h � 1).Let fE(x; �); ~e(x; �)g = f[Eij(x; �)]3�3 ; [ei(x; �)]3�1g be the fundamental solutionof the Stokes systems, i.e.� �xE(x; �)�rx~e(x; �) = ��(x� �)I3;divxE(x; �) = 0(1.3)where �(x � �) is the unit Dirac delta function at x = � and I3 is the 3� 3 identitymatrix. It is known [22] thatEij(x; �) = 18� ( �ijjx� �j + (xi � �i)(xj � �j)jx� �j3 ); 1 � i; j � 3;



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 5ei(x; �) = 14� xi � �ijx� �j3 ;where �i;j is the Kronecker symbol.Remark 1. The signi�cant di�erence between the case with point observationsand the case with distributed observations is as follows: for a given vector ~V 2 R3the function x! mXk=1 �kE(Pk ; x)~V(1.4)has a singularity of order O( 1jx�Pkj ) at x = Pk and however it may oscillate between�1 and +1 as x! Pk , so it is very tough to deal with. Whereas the functionx! Z�0 E(�; x)~V d��(1.5)is well-de�ned and continuous.On the other hand, if E(Pk ; x) in (1.4) and (1.5) is replaced by the fundamentalsolution of the Laplace equation, in this case, E(Pk; x) becomes scalar-valued, then(1.4) has the same order O( 1jx�Pkj) of singularity at x = Pk, but the limit as x! Pkexists (including �1 or +1). So the singularity can be easily handled.It is then known that the solution (~w; p) of the Stokes equation (1.1) has a simple-layer representation~w(x) = Z�E(x; �)~�(�)d�� + ~a+~b� ~x 8 x 2 
;(1.6) p(x) = Z� ~e(x; �) � ~�(�)d�� + a 8 x 2 
;(1.7)for some constants ~a;~b 2 R3 and a 2 R. ~� is called the layer density and ~a +~b � ~xrepresents a rigid body motion. By the jump property of the layer potentials, weobtain the boundary integral equation~� (~w)(x) = 12~�(x) + p.v. Z� T (x; �)~�(�)d�� 8 x 2 �;(1.8) = 12~�(x) + lim"!0+ Z�nB(x;") T (x; �)~�(�)d�� 8 x 2 �;where T (x; �) = [~�x(E1)(x; �); ~�x(E2)(x; �); ~�x(E3)(x; �)] = [Tij(x; �)]3�3;Tij(x; �) = � 34� (xi � �i)(xj � �j)jx� �j5 (x� �) � ~nx:With a given Neumann B.D., the layer density ~� can be solved from the above BIE(1.8). Once the layer density is known, the solution (~w(x); p(x)) can be computedfrom (1.6) and (1.7). The velocity solution ~w(x) is unique only up to a rigid bodymotion and the pressure solution p(x) is unique up to a constant.



6 P.You,Z.Ding and J.ZhouIn BEM, the boundary � = �1S�0 is divided into N elements with nodal pointsxi. Assume that the layer density ~�(x) is piecewise smooth, e.g. piecewise constant,piecewise linear,� � �, etc., then the BIE (1.8) becomes a linear algebraic system. Thissystem can be solved for ~�(xi) and then (~w(x); p(x)) can be computed from a dis-cretized version of (1.6) and (1.7) for any x 2 
.For each ~f 2 (L2(�))3 and x 2 R3 , we de�ne the simple layer potential of velocitySv(~f) by Sv(~f)(x) = Z�E(x; �)~f(�)d�� :For each ~f 2 (L2(�))3 and x 2 �, we de�ne the boundary operators K and K� byK(~f)(x) = p.v. Z�Q(x; �)~f(�)d��= lim"!o+ Z�nB(x;")Q(x; �)~f(�)d�� ;K�(~f)(x) = p.v. Z� T (x; �)~f(�)d��= lim"!o+ Z�nB(x;") T (x; �)~f(�)d�� ;where Q(x; �) = [~��(E1)(x; �); ~��(E2)(x; �); ~��(E3)(x; �)] = [Qij(x; �)]3�3;Qij(x; �) = 34� (xi � �i)(xj � �j)jx� �j5 (x� �) � ~n�:Next we collect some regularity results on Sv;K and K� into a lemma. LetN = ker (12I +K�);which represents the set of all layer densities corresponding to the zero NeumannB.D., with which the Stokes system has only a rigid body motion. Hence we haveM0 = Sv(N) = ker (12I +K):(1.9)Lemma 1.1. Let 
 � R3 be a bounded simply connected domain with smoothboundary �.(a) Sv : (Lp(�))3 7! (C0;�(R3 ))3 is a bounded linear operator for p > 2 and 0 < � <p�2p ;(b) For any 1 � p < +1, K (K�) : (Lp(�))3 7! (Lp(�))3 is a bounded linear operatorand K (K�) is the adjoint of K� (K);(c) For p > 2 and 0 < � < p�2p , K : (Lp(�))3 7! (C0;�(�))3 is a bounded linearoperator;(d) For 1 < p <1(1) ( 12I +K�) : (Lp(�))3?M0 7! (Lp(�))3?M0 is invertible,(2) ( 12I +K) : (Lp(�))3?M0 7! (Lp(�))3?N is invertible.



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 7(e) For 1 < q < 2 and s < 2q2�q , K : (Lq(�))3 7! (Ls(�))3 is a bounded linear operator.Therefore K � K : (Lq(�))3 7! (C0;�(�))3 for every q > 1 and 0 < � < q�1q ;(f) ( 12I +K) : (C(�))3?M0 7! (C(�))3?N is invertible.Proof. (a){(d) can be found from [5],[8], [13], [14] and [22].To prove (e), since � � R3 is a compact set, it su�ces to prove (e) for q < s < 2q2�q .Then we have 1q > 1s > 1q� 12 = 12+ 1q�1. There exists an " 2 (0; 1), s.t. 1s = 12�"+ 1q�1.Let r = 2�"; � = r0s0 ; � = q0s0 , where r0; q0; s0 are the conjugates of r; q; s, respectively.It can be veri�ed that 1 < r < 2 and1� + 1� = 1; (1� qs )s0 = q�; (1� rs )s0 = r� ; 1� � ss0 = s� qq ; 1� � ss0 = s� rr :Note jQij(x; �)j � Cjx� �j ; 1 � i; j � 3(1.10)and �Z� 1jx� �jr d��� < M <1; 8x 2 �where M is a constant independent of x 2 �. Let h(x) = K(~f)(x). Applying H�older'sinequality twice, we getjh(x)js � Cs �Z� 1jx� �j j~f(�)j d���s� Cs �Z�( 1jx� �j ) rs j~f(�)j qs ( 1jx� �j )1� rs j~f(�)j1� qs d���s� Cs �Z� 1jx� �jr j~f(�)jq d����Z�( 1jx� �j ) r� j~f(�)j q� d��� ss0� Cs �Z� 1jx� �jr j~f(�)jq d����Z� 1jx� �jr d��� s�rr �Z� j~f(�)jq d��� s�qq� CsMs�r �Z� 1jx� �jr j~f(�)jq d��� � k~fks�qq :Thus khkLs(�) = �Z� jh(x)js d�x� 1s� CM s�rs �Z� Z� 1jx� �jr j~f(�)jq d��d�x� 1s � k~fk s�qsq� CMk~fkq:This proves the �rst part of (e). The second part follows from (c).To prove (f), by (1.10), Qij(x; �) is weakly singular for 1 � i; j � 3. Thus Kis an integral operator with weakly singular kernel. By Theorem 2.22 in [21], K isa compact operator from (C(�))3 to (C(�))3. The rest follows from the Fredholmalternative (see [21], p.44).



8 P.You,Z.Ding and J.ZhouFor a given Neumann B.D. ~g 2 (Lp(�0))3, we extend our control bound constraintsBl;Bu 2 (Lp(�1))3 to the entire boundary � byBl(x) = � Bl(x) x 2 �1~g(x) x 2 �0 and Bu(x) = � Bu(x) x 2 �1~g(x) x 2 �0 ;with Bl(x) � � ~B < ~B � Bu(x) 8 x 2 �1;where ~B > 0 is a constant vector depending on ~g and will be speci�ed later. De�nethe feasible control setU = �~u 2 (Lp(�))3 j Bl(x) � ~u(x) � Bu(x); 8 x 2 � and ~u ?M0	 ;(1.11)where ~u ? M0 stands for the compatibility condition of the Neumann B.D. in theStokes system (1.1). It is clear that U is a closed bounded convex set in (Lp(�))3.According to Lemma 1.1 (a), for each given Neumann B.D. ~u 2 U , the Stokessystem (1.1) has a solution ~w in (C(
))3 unique up to a vector ~a+~b� ~x 2M0, i.e.,~w(x; ~u) = Sv � (12I +K�)�1(~u)(x) + ~a+~b� ~x; x 2 
;(1.12) = ~w0(x; ~u) + ~a+~b� ~x; x 2 
;(1.13)where ~w0(x; ~u) = Sv � (12I +K�)�1(~u)(x):(1.14)That is, for each given ~u, the velocity state variable ~w is multiple-valued, so theobjective function J(~u) is not well-de�ned. However among all these velocity solutions,there is a unique solution ~w s.t.mXk=1 �kj~w(Pk)� ~Zkj2 = min~h2M0 mXk=1 �kj~w0(Pk) + ~h(Pk)� ~Zkj2:(1.15)A direct calculation yields that ~w(x) = ~w0(x) + ~a+~b� ~x must satisfy( Pmk=1 �k(~w0(Pk) + ~a+~b� ~Pk � ~Zk) = 0;Pmk=1 �k(~w0(Pk) + ~a+~b� ~Pk � ~Zk)� ~Pk = 0:(1.16)Since such a ~w is unique and continuous, the point observations ~w(Pk) in our LQRproblem setting make sense and the LQR problem is well-posed.From (1.14) and Lemma 1.1, we knowj~w(x; ~u)� ~au �~bu � ~xj = j~w0(x; ~u)j � Ck~ukLp(�))3(1.17)where C is a constant depending only on �. Let us observe (1.16). If we notice that~w0(x; ~u) is linear in ~u, then we haveLemma 1.2. Let ~a0;~b0 2 R3 be the unique solution to( ~a0(Pmk=1 �k) +~b0 � (Pnk=1 �k ~Pk) = Pmk=1 �k ~Zk~a0 � (Pmk=1 �k ~Pk) +Pmk=1 �k(~b0 � ~Pk)� ~Pk = Pmk=1 �k ~Zk � ~Pk:



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 9Then for ~u1; ~u2 2 U and t1; t2 2 R,~w(x; t1~u1 + t2~u2) = t1 ~w(x; ~u1) + t2 ~w(x; ~u2) + (1� t1 � t2)(~a0 +~b0 � ~x)(1.18)and j~w(x; ~u1)� ~w(x; ~u2)j � Ck~u1 � ~u2k(Lp(�))3 ;(1.19)where C is a constant depending only on �.2. Characterization of the Optimal Control.We establish an optimality condition of the LQR problem through a variationalinequality problem (VIP). The characterization of the optimal control is then derivedfrom the optimality condition.In optimal control theory it is important to obtain a state-feedback characteriza-tion of the optimal control, i.e., the optimal control is stated as an explicit functionof the optimal state. So the optimal control can be determined by a physical mea-surement of the optimal state. Our e�orts are devoted to derive such a result.For each ~f 2 (L1(�))3, we de�ne the vector-valued truncation functionh~fiBuBl = n[fi(x)]Bui(x)Bli(x) = 8<: Bui(x) if fi(x) � Bui(x)fi(x) if Bli(x) < fi(x) < Bui(x)Bli(x) if fi(x) � Bli(x) o:Let h�; �i be the pairing on ((Lq(�))3; (Lp(�))3). Since our feasible control set Ude�ned in (1.11) is a convex closed bounded set in (Lp(�))3, it is known that ~u� is anoptimal control of the LQR problem ifhrJ(~u�); ~u� ~u�i � 0; 8 ~u 2 U :(2.1)For any � > 0, (2.1) is equivalent toh~u� � (~u� � �rJ(~u�)); ~u� ~u�i � 0; 8 ~u 2 U :(2.2)To derive an optimality condition, we need to �nd a characterization of a solution tothe above variational inequality.Theorem 2.1. For each f 2 (Lq(�))3, uf is a solution to the variational inequal-ity(VIP) huf � f; u� uf i � 0 8 u 2 Uif and only if uf = [f + zf ]BuBl(2.3)where zf 2 M0 such that [f + zf ]BuBl ? M0 (refer Theorem 2.2 for the existence ofsuch a zf ).Moreover, (2.3) is well-de�ned in the sense that if z1 and z2 are two vectors inM0 s.t. [f + z1]BuBl ?M0 and [f + z2]BuBl ?M0;then [f(x) + z1(x)]BuBl = [f(x) + z2(x)]BuBl a.e. x 2 �:(2.4)



10 P.You,Z.Ding and J.ZhouProof. By Theorem 2.2, there exists zf 2 M0 s.t. [f + zf ]BuBl ? M0. Let uf =[f + zf ]BuBl . We have for each u 2 U ,huf � f; u� uf i= huf � (f + zf ); u� uf i= 3Xi=1 Z� n[fi(x) + zfi (x)]BuiBli � (fi(x) + zfi (x))onui(x)� [fi(x) + zfi (x)]BuiBli o d�x� 0;where the last inequality holds since each integrand, the product of two terms, isnonnegative.Next we assume that uf is a solution to the VIP, i.e.,huf � f; u� uf i � 0 8 u 2 U :Take u = [f + zf ]BuBl , which is in U , we obtainhuf � f; [f + zf ]BuBl � uf i � 0:(2.5)By the �rst part, we haveh[f + zf ]BuBl � f; u� [f + zf ]BuBl i � 0 8 u 2 U :(2.6)Taking u = uf in (2.6) yieldsh[f + zf ]BuBl � f; uf � [f + zf ]BuBl i � 0:(2.7)Combining (2.5) with (2.7) gives ushuf � [f + zf ]BuBl ; uf � [f + zf ]BuBl i � 0:(2.8)Thus uf = [f + zf ]BuBl :The proof of the second part of the theorem follows directly from taking zf = z1 anduf = [f + z2]BuBl in (2.8).In a Hilbert space setting, the above theorem is called a characterization of pro-jection. When U is a convex closed subset of a Hilbert space H , for each f 2 H , ufis a solution to the VIP if and only ifuf = PU (f);i.e., uf is the projection of f on U . This characterization is used to derive a �rstorder optimality condition for convex inequality constrained optimal control prob-lems. However, this result is not valid in general Banach spaces. Instead we prove acharacterization of truncation, which is a special case of a projection. Note that in aHilbert space setting, a projection maps a point in the space into a subset of the samespace. However our truncation is a projection that maps a point in (Lq(�))3 into asubset of (Lp(�))3; (p > 2; 1p+ 1q = 1). It crosses spaces. This characterization gives aconnection between the truncation and the solution to VIP, in our case, an optimality



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 11condition in terms of the gradient. That is, by our characterization of truncation,~u� 2 U is a solution to the VIP (2.2) if and only if~u� = [~u� � �rJ(~u�) + ~z�]BuBl ;(2.9)where ~z� 2M0 is de�ned in Theorem 2.2 s.t.[~u� � �rJ(~u�) + ~z�]BuBl ?M0:To prove the existence of a rigid body motion zf in (2.3), we establish the followingexistence theorem for an orthogonal projection, which is given in a very general caseand plays a key role in establishing the optimality condition. It can be used tosolve LQR problems governed by PDE's, e.g., the Laplacian, the Stokes, the linearelastostatics, ...,etc. where the PDE has multiple solutions for a given a Neumanntype boundary data satisfying certain orthogonality condition.Theorem 2.2. Let � be a bounded closed set in Rn and �0 � � be a subset s.t.meas (�1) > 0 where �1 = � n �0. Let ~g 2 (Lp(�0))n and ~Bl; ~Bu 2 (Lp(�))n (p � 2)be given s.t. ~Bl(x) < � ~B < ~B < ~Bu(x) (a.e.) 8 x 2 �1where ~B = (B; � � � ; B) is given by (2.17) and~Bl(x) = ~g(x) = ~Bu(x) 8 x 2 �0:Assume that M0 is an m-dimensional subspace in (Lq(�))n (q � 2; 1p + 1q = 1)and M1 = f~zj�1 j ~z 2 M0g, then a necessary and su�cient condition that for each~f 2 (L1(�))n there exists ~zf 2M0 s.t.h~f(x) + ~zf (x)iBuBl ?M0:(2.10)is that ~g ?M c1 = f~zj�0 j ~z 2M0; ~zj�1 = 0g:(2.11)Moreover the set of all solutions ~zf in (2.10) is locally uniformly bounded in the sensethat for each given ~f 2 (L1(�))n there exist r0 > 0 and b > 0 s.t. for any ~h 2 (L1(�))nwith k~f � ~hk � r0 and for any ~zh 2M0 with.h~h(x) + ~zh(x)iBuBl ?M0we have k~zhk � b:(2.12)Proof. Case 1: dim (M1) = dim (M0), i.e., M c1 = f0g. Let y = (~y1; � � � ; ~ym) be anorthonormal basis in M1 (in M0 as well). To prove the �rst part of the theorem, wehave to show that for each ~f 2 (L1(�))n, there exists Cf = (cf1 ; � � � ; cfm) 2 Rm s.t.hh~f(x) + mXi=1 cfi ~yi(x)iBuBl ; ~yji� = 0; 8 j = 1; � � � ;m:



12 P.You,Z.Ding and J.ZhouFor each ~f 2 (L1(�))n, we de�ne a map Tf : Rm ! Rm , for C = (c1; � � � ; cm) 2 Rm ,by Tf (C) = nhh~f(x) + mXi=1 ci~yi(x)iBuBl ; ~yji�oj=1;���;m:(2.13)Then to prove the �rst part, it su�ces to show that for each ~f 2 (L1(�))n, thereexists Cf 2 Rm s.t. Tf (Cf ) = 0:It is easy to check that for any ~f;~h 2 (L1(�))n and C1; C2 2 Rm , there exist twoconstants 1; 2 depending only on � and the basis y s.t.jTf (C1)� Th(C2)j � 1j~f � ~hjL1 + 2jC1 � C2j:(2.14)So C ! Tf (C) is a bounded (depends on Bl and Bu) Lipschitz continuous map.To show that Tf has a zero, we prove that there exists a constant R > 0 s.t. whenC 2 Rm and jCj > R, we have Tf (C) � C > 0:(2.15)Once (2.15) is veri�ed, we havejC � Tf (C)j2 = jCj2 � 2Tf (C) � C + jTf (C)j2< jCj2 + jTf (C)j2 8 C 2 Rm ; jCj > R:By Altman's �xed point theorem [15], the map C ! C � Tf (C) has a �xed pointCf 2 BR (BR is the ball of radius R at the origin), i.e.,Tf (Cf ) = 0:So it remains to verify (2.15). De�neD = (C = (c1; � � � ; cm) 2 Rm j mXi=1 c2i = 1) :It su�ces to show that there exists R > 0 s.t. for t > R,Tf (tC) � C > 0 8C 2 D:In the following, we prove that for each given ~f 2 (L1(�))n and C 2 D, there existr0 > 0 and R > 0 s.t. when t > R, for any ~h 2 (L1(�))n with k~f � ~hkL1 � r0, wehave Th(tC) � C > 0 8C 2 D:So the second part of the theorem also follows. For each C 2 D, we denote~yC(x) = mXi=1 ci~yi(x):



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 13It is obvious that Z�1 j~yC(x)jd�xis continuous in C and positive on the compact set D, hencemy = minC2DfZ�1 j ~yC(x)jd�xg > 0(2.16)and we set B = maxC2D R�0 j~g(x) � ~yC(x)jd�xmy :(2.17)For any given " > 0, we assumeBli(x) � �B � "; Bui(x) � B + " 8 x 2 �1; i = 1; � � � ; n:For each C 2 D; t > 0,Tf (tC) � C = mXj=1 �Z� h~f(x) + mXi=1 tci~yi(x)iBuBl � ~yj(x)d�x�cj= Z� h~f(x) + t~yC(x)iBuBl � ~yC(x)d�x= Z�1 h~f(x) + t~yC(x)iBuBl � (~yC(x))d�x + Z�0 ~g(x) � ~yC(x)d�x= nXi=1 ICi (t) + Z�0 ~g(x) � ~yC(x)d�xwhere for i = 1; � � � ; n,ICi (t) = Z�[fi(x) + tyCi (x)]Bui(x)Bli(x) yCi (x)d�x:Let �C+i = fx 2 �1 j yCi (x) > 0g and �C�i = fx 2 �1 j yCi (x) < 0g:We have limt!+1 ICi = Z�C+i Bui(x) � yCi (x)d�x + Z�C�i Bli(x) � yCi (x)d�x� (B + ") Z�1 jyCi (x)jd�x:Thus limt!+1Tf (tC) � C � (B + ") nXi=1 Z�1 jyCi (x)jd�x + Z�0 ~g(x) � ~yC(x)d�x� (B + ") Z�1 jyC(x)jd�x + Z�0 ~g(x) � ~yC(x)d�x� "my;



14 P.You,Z.Ding and J.Zhouwhere my given by (2.16) is independent of C. From (2.14), we see that Tf (C) � C iscontinuous in both ~f and C, therefore there exist RC > 0, rC and �C > 0, as t > RC ,k~h� ~fkL1 � rC and jC 0 � Cj < �C , we haveTh(tC 0) � C 0 � 12"my > 0:Since D is compact, there exist C1; � � � ; Cs 2 D and �1; � � � ; �s s.t.D � [sk=1B�k(Ck):Let R0 = maxfRC1 ; � � � ; RCsg and r0 = minfrC1 ; � � � ; rCsg:When t > R0, for all ~h 2 (L1(�))n with k~h� ~fkL1 � r0, we haveTh(tC) � C � 12"my > 0 8 C 2 D:So we only need to take ~B = (B; � � � ; B)and ~Bl < � ~B < ~B < ~Bu; a.e. on �1:Case 2: m1 = dim (M1) < dim (M0) = m. Let y = (~y1; � � � ; ~ym) be an orthonormalbasis in M0, where (~y1; � � � ; ~ym1) is a basis in M1 with~yij�0 = 0; (i = 1; � � � ;m1) and ~yj j�1 = 0; (j = m1 + 1; � � � ;m):(2.18)By the proof in Case 1, for each ~f 2 (L1(�))n, there exists Cf = (cf1 ; � � � ; cfm1) 2 Rm1s.t. hh~f(x) + m1Xi=1 cfi ~yi(x)iBuBl ; ~yji�1 = 0; 8 j = 1; � � � ;m1:Then for any cfm1+1; � � � ; cfm 2 R, by (2.18), we havehh~f(x) + mXi=1 cfi ~yi(x)iBuBl ; ~yji� = h~g(x); ~yji�0 + hh~f(x) + m1Xi=1 cfi ~yi(x)iBuBl ; ~yji�1= 0; 8j = 1; � � � ;m1:On the other hand, when j > m1, for any c1; � � � ; cm 2 R, by (2.18), we havehh~f(x) + mXi=1 ci~yi(x)iBuBl ; ~yji� = h~g(x); ~yji�0 :Therefore hh~f(x) + mXi=1 ci~yi(x)iBuBl ; ~yji� = 0; j > m1;



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 15if and only if h~g(x); ~yji�0 = 0; j > m1;i.e., (2.11) is satis�ed. The proof is complete.Remark 2. In the above theorem,(1) when rigid body motion is considered,M0 = f~a+~b� ~x j ~a;~b 2 R3g;we have dim(M0) = dim(M1) = 6, so all the conditions in the theorem are satis-�ed. So for each ~f 2 (L1(�))3 there is ~af +~bf � ~x 2M0 such thath~f + ~af +~bf � ~xiBuBl ?M0;(2) if Bl(x) � �1 or Bu(x) � +1 on �1the conclusion still holds for each ~f 2 (Ll(�))n (l � 1) and M0 an m-dimensionalsubspace of (Lq(�))n where q � 1, 1h + 1q = 1 and h = minfl; pg. When h = 1,q = +1;(3) the vector C in (2.13) represents the rigid body motion in our case. From theabove theorem, we can see that the solution Cf such that Tf (Cf ) = 0 is notunique.The following error estimate contains an uniqueness result, which will also beused in proving the uniform convergence rate in a subsequent paper.Theorem 2.3. Let us maintain all the assumptions in Theorem 2.2. Let ~f;~h begiven in (L1(�))n, Cf ; Ch be respectively two zeros of Tf and Th de�ned by (2.13). Ifmeas (�Cf ) +meas (�Ch) > 0where meas (�Cf ) = nXi=1meas fx 2 � j Bli(x) < fi(x) + yCfi (x) < Bui(x)g;meas (�Ch) = nXi=1 meas fx 2 � j Bli(x) < hi(x) + yChi (x) < Bui(x)g;yCf (x) = mXi=1 cfi yi(x) and yCh = mXi=1 chi yi(x);then jCf � Chj � k~f � ~hk(L1(�))n(2.19)where the constant  is independent of Cf and Ch.



16 P.You,Z.Ding and J.ZhouProof. We may assume that meas (�Cf ) > 0:For Tf (C), we denote�kC = fx 2 � j Blk(x) < fk(x) + yCk (x) < Buk(x)g;where yCk (x) = mXi=1 ciyik(x):Write meas (�C) = nXk=1meas (�kC):Since Tf (C) is Lipschitz continuous in C, a direct calculation leads to the Frechetderivative T 0f (C) = " nXk=1hyki ; ykj i�kC#m�m a.e. C 2 Rm ;a Gram-matrix, which is symmetric positive semi-de�nite, i.e., for any nonzero vectorb = (b1; � � � ; bm) 2 Rm ,(b1; � � � ; bm)T 0f (C)(b1; � � � ; bm)T = nXk=1h mXi=1 biyki ; mXi=1 biyki i�kC � 0;where \>" holds strictly if meas (�C) > 0;because f~y1; � � � ; ~ymg is linearly independent.On the other hand, we have" nXk=1hyki ; ykj i�kC#m�m + " nXk=1hyki ; ykj i�n�kC#m�m = " nXk=1hyki ; ykj i�#m�m = Im�m;where the Gram-matrix " nXk=1hyki ; ykj i�n�kC#m�mis also symmetric positive semi-de�nite. Therefore0 � jT 0f (C)j � 1 a.e. C 2 Rm ;where \<" holds strictly in the �rst inequality if meas (�C) > 0 and \<" holds strictlyin the second inequality if meas (�n�C) > 0. Next for given f; h in (L1(�))n and twozeros Cf ; Ch of Tf and Th, respectively, we letCt = tCh + (1� t)Cf ; t 2 (0; 1):



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 17Since Tf (C) is Lipschitz continuous in C, once meas (�Cf ) > 0, there exists " > 0 s.t.meas (�Ct) > 0 8 0 < t < ":It follows that T 0f (Ct) is a symmetric positive de�nite matrix with0 < jT 0f (Ct)j � 1; a.e. 0 < t < ":Therefore R 10 T 0f (Ct)dt de�nes a symmetric positive de�nite matrix with0 < ����Z 10 T 0f (Ct)dt���� � 1:For any 0 < � < 1, we have0 < ����I � � Z 10 T 0f (Ct)dt���� = (1� �f ) < 1:for some 0 < �f < 1. TakeCf � �Tf (Cf ) = Cf and Ch � �Th(Ch) = Chinto account, we arrive atjCf � Chj = jCf � Ch � �(Tf (Cf )� Th(Ch))j= jCf � Ch � �(Tf (Cf )� Tf (Ch) + Tf (Ch)� Th(Ch))j (use (2.14))� ����I � � Z 10 T 0f (Ct)dt���� jCf � Chj+ �1kf � hk1= (1� �f )jCf � Chj+ �1kf � hk1:Consequently, we have jCf � Chj � 1��f kf � hk(L1(�))n ;and the proof is complete.As a direct consequence of Theorem 2.3, we obtain the following uniqueness result.Corollary 2.4. Let us maintain all the assumptions in Theorem 2.2. For given~f 2 (L1(�))n, if Cf is a zero of Tf withmeas (�Cf ) > 0;then Cf is the unique zero of Tf .Now we present a state-feedback characterization of the optimal control.Theorem 2.5. Let 
 � R3 be a bounded domain with smooth boundary �. TheLQR problem has a unique optimal control ~u� 2 U and a unique optimal velocitystate ~w� 2 (C(�))3 s.t.( PMk=1 �k(~w�(Pk)� ~Zk) = 0;PMk=1 �k(~w�(Pk)� ~Zk)� ~Pk = 0:(2.20)



18 P.You,Z.Ding and J.Zhouand~u�(x) = "� 1 (12I +K)�1� mXk=1 �kE(Pk; �)(~w�(Pk)� ~Zk)�(x) + ~a+~b� ~x#BuBl ;8x 2 �;(2.21)where ~a+~b� ~x is de�ned in Theorem 2.2 s.t. ~u� ?M0 and M0 is given in (1.2).Proof. Let X = (Lp(�))3?M0 . Since our objective function J(~u) is strictly convexand di�erentiable, and the feasible control set U is a closed bounded convex subsetin the reexive Banach space X , the existence and uniqueness of the optimal controlare well-established. Equation (2.20) is just a copy of (1.16). By our characterizationof truncation, Theorem 2.1 with � = 12 ,~u�(x) = �~u�(x)� 12rJ(~u)(x) + ~a+~b� ~x�BuBl ; 8 x 2 �where ~a+~b� ~x 2M0 is de�ned in Theorem 2.2 s.t.�~u� � 12rJ(~u) + ~a+~b� ~x�BuBl ?M0:To prove (2.21), we only need to showrJ(~u) = 2n(12I +K)�1 mXk=1�kE(Pk ; �)(~w(Pk; ~u)� ~Zk) + ~uo(2.22)Applying (1.9), i.e., M0 = Sv(N) and (2.20), we getmXk=1 �kE(Pk; �)(~w(Pk; ~u)� ~Zk) 2 (Lq(�))3?N ;(2.23)and then (12I +K)�1n mXk=1 �kE(Pk ; �)(~w(Pk ; ~u)� ~Zk)o 2 (Lq(�))3?M0 :(2.24)Since rJ(~u) de�nes a bounded linear functional on X , for any ~h 2 X , take (1.12)into account, we havehrJ(~u);~hi= 2 mXk=1�k(~w(Pk; ~u)� ~Zk)Sv((12I +K�)�1~h)(Pk) + 2h~u;~hi= 2 mXk=1�k(~w(Pk; ~u)� ~Zk) Z�E(Pk ; �)[(12I +K�)�1~h](�)d�� + 2h~u;~hi= 2 Z�(12I +K)�1h mXk=1 �kE(Pk ; �)(~w(Pk ; ~u)� ~Zk)i(�) � ~h(�)d�� + 2h~u;~hi= 2hh(12I +K)�1 mXk=1 �kE(Pk; �)(~w(Pk ; ~u)� ~Zk)i+ ~u(�);~h(�)i:So (2.22) is veri�ed and the proof is complete.



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 193. Regularities of the Optimal Control.It is clear that (2.21) is a feedback characterization of the optimal control. Toobtain such a characterization, � = 12 in (2.9) is crucial. Later on we will see that� = 12 is also crucial in proving the uniform convergence of our numerical algorithmsin a subsequent paper. Observe that when Bl = �1 and Bu = +1, it correspondsto the LQR problem without constraints on the control variable, the optimal solution,if it exists, becomes~u�(x) = � 1 (12I +K)�1� mXk=1 �kE(Pk; �)(~w�(Pk)� ~Zk)�(x) + ~a+~b� ~x; 8 x 2 �;where ~a+~b�~x is de�ned in Theorem 2.2 s.t. ~u� ?M0 (see Remark 2). But accordingto Lemma 1.1(d) such a solution ~u� is only in (Lq(�))3 (q < 2), since E(Pk ; �) is onlyin (Lq(�))3. So it is reasonable to apply bound constraints Bl and Bu on the controlvariable ~u. However we notice that the optimal control still contains a singular term(12I +K)�1 mXk=1 �kE(Pk; �)(~w(Pk; ~u)� ~Zk)(x);which is not computable at x = Pk. In order to carry out the truncation by Bl andBu, we have to know the sign of this singular term. Hence we derive a singularitydecomposition formula of (2.21), in which the singular term is expressed as continuousbounded terms plus a simple dominant singular term and a lower order singularterm. With the simple dominant singular term, the nature of the singularity is clearlyexposed.Theorem 3.1. For the optimal control ~u� given in (2.21), let~f�(x) = mXk=1�kE(Pk ; x)(~w�(Pk)� ~Zk):Then (12I+K)�1 ~f�(x) = 2~f�(x)�4K ~f�(x)+4(12I+K)�1 �K�K ~f�(x)+~a�+~b��~x;(3.1)where in the singular part, the second term 4K ~f�(x) is dominated by the �rst term2~f�(x) whose nature of singularity can be determined at each Pk and the regular term4( 12I +K)�1 � K � K ~f�(x) is continuous on �.Proof. For given ~g 2 (Lq(�))3?N with q > 2� "(�), we have(12I +K)�1~g = 2~g � 4K~g + 4(12I +K)�1 � K � K~g + ~ag +~bg � ~x:(3.2)Let ~f�(x) = mXk=1�kE(Pk ; x)(~w�(Pk)� ~Zk):By (2.23), ~f� 2 (Lq(�))3?N for every q < 2, thus (3.1) follows. The �rst part ofLemma 1.1 (e) states that the singularity in 2~f� dominates the one in 4K ~f�. While



20 P.You,Z.Ding and J.Zhouthe second part of Lemma 1.1 (e) and (f) imply that ( 12 I+K)�1�K�K ~f� is continuous.The above singularity decomposition formula plays an important role in our sin-gularity analysis and also in our numerical computation. It is used to prove theuniform convergence and to estimate the uniform convergence rate of our numericalalgorithms in a subsequent paper.Note that the fundamental velocity solutionE(�; x) = n 18� ( �ijjx� �j + (xi � �i)(xj � �j)jx� �j3 )o; 1 � i; j � 3;is not de�ned when � = Pk and x ! Pk, in the sense that when x ! Pk , some ofthe entries may oscillate between �1 and +1. So if we look at the simple dominantsingular term in the singularity decomposition formula of the optimal control, wecan see that in general, the optimal control ~u�(x) is not de�ned at Pk even withthe truncation by Bl and Bu. This is a signi�cant di�erence between systems withscalar valued fundamental solution and with matrix-valued fundamental solution. Forthe formal case, e.g., the Laplacian, the optimal control is continuous at every pointwhere Bl and Bu are continuous. Of course, if Bl(Pk) = Bu(Pk) = ~g(Pk), i.e.,Pk 2 �0, which means the control is not active at Pk, then trivially ~u�(Pk) = ~g(Pk), aprescribed value. This is the case when a sensor is placed at Pk, then a control devicecan not be put at the same point Pk. However, in general point observation case, thecontrol may still be active at Pk. The above analysis then states that the optimalcontrol is not de�ned at Pk unless some other conditions are posed. This is the natureof point observations. Notice that a distributed parameter control is assumed in ourproblem setting, theoretically the values of the control variable at �nite points will nota�ect the system. But, in numerical computation we can only evaluate the optimalcontrol ~u� at �nite number of points. The observation points Pk's usually are of themost interest. On the other hand, the optimal velocity state ~w� is well-de�ned andcontinuous at Pk, no matter ~u�(Pk) is de�ned or not. So if one does want the optimalcontrol ~u� to be de�ned at Pk, when Bl(Pk) = Bu(Pk); k = 1; :::;m, it is clear that~u�(Pk) is de�ned at each Pk. When Bl(Pk) > Bu(Pk) for some k = 1; :::;m, then wehave the following necessary and su�cient condition.Theorem 3.2. Let Bl(Pk) > Bu(Pk) for some k = 1; :::;m, then the optimalcontrol ~u� is well-de�ned at the observation points Pk if and only ifj(~w(Pk; ~u�)� ~Zk)ij � 2j(~w(Pk ; ~u�)� ~Zk)j j; 1 � i 6= j � 3;(3.3)where for each �xed k and i, the equality holds for at most one j 6= i unless~w(Pk; ~u�) = ~Zk:When ~u� is well-de�ned at Pk, we have(~u�(Pk))i = � Bli(Pk) if (~w(Pk ; ~u�)� ~Zk)i < 0;Bui(Pk) if (~w(Pk ; ~u�)� ~Zk)i > 0:(3.4)Proof. If we observe the fundamental velocity solution, we can see that the prooffollows from the following argument. For x = (x1; x2; x3) and 1 � i; j; k � 3,limx!0 �ei(x) = limx!0�ci� 1jxj + x2ijxj3�+ cj xixjjxj3 + ck xixkjxj3 �= limx!0 1jxj3 �(cix2i + cjxixj + cix2j ) + (cix2i + ckxixk + cix2k)�



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 21exists (including �1) if and only ifc2j � 4c2i � 0 and c2k � 4c2i � 0(3.5)where at most one equality can hold unless ci = cj = ck = 0. Notice that when (3.5)holds, ci = 0 leads to cj = ck = 0. So if ci 6= 0 and two equalities hold in (3.5), then�ei(x) = cijxj3 �(xi � xj)2 + (xi � xk)2�:We can make the limit either equal to zero by taking xi = �xj = �xk ! 0 or equalto sign (ci)1 by taking xi 6= �xj or xi 6= �xk and x! 0. So the limit will not exist.When limx!0 �ei(x) exists and c = (c1; c2; c3) 6= 0, we havelimx!0 �ei(x) = sign (ci)1:With the above result and the singularity decomposition formula for the optimalcontrol, the following continuous result can be easily veri�ed.Theorem 3.3. Let Bu and Bl be continuous on �1. If for each k = 1; � � � ;meither Bl(Pk) = Bu(Pk) or the condition (3.3) holds strictly with (~w(Pk; ~u0p)� ~Zk)i 6=0, then the optimal control ~u� is continuous on �1. So the equality in (2.4) holds forevery point on �.From the state-feedback characterization (2.20), the control can be determinedby a physical measurement of the state at �nite number of observation points Pk ; k =1; ::;m. The question is then asked, will a small error in the measurement of the statecause a large deviation in the control? Due to the appearance of the singular termin (2.20), in general the answer is yes, i.e., the state-feedback system is not stable.However under certain conditions, we can prove that the state-feedback system isuniformly stable.Theorem 3.4. Let ~w(Pk) be the exact velocity state at observation points and~up be the control determined from (2.20) in terms of ~w(Pk). If for each k = 1; � � � ;m,either Bl and Bu are continuous and equal at Pk or Bu and Bl are locally boundedat Pk, the condition (3.3) holds strictly with (~w(Pk; ~u0p) � ~Zk)i 6= 0, then the state-feedback system (2.20) is uniformly stable in the sense that for any " > 0, there is� > 0 such that for any measurement ~w0(Pk) of ~w(Pk),j~u0(x)� ~u(x)j < "; 8x 2 � whenever j~w0(Pk)� ~w(Pk)j < �;where ~u0 is the control determined from (2.20) in terms of ~w0(Pk).Proof. For each " > 0. For each �xed k = 1; � � � ;m, if Bl and Bu are continuousand equal at Pk, there is d0k > 0 such thatBu(x)�Bl(x) < "; 8x 2 �1; jx� Pk j � d0k:Since the control variable is bounded by Bl and Bu,j~u0(x) � ~u(x)j < "; 8x 2 �1; jx� Pkj � d0k :If instead the condition (3.3) holds strictly with (~w(Pk; ~u0p)� ~Zk)i 6= 0, let �1 > 0 bechosen so that when j~w0(Pk) � ~w(Pk)j < �1, condition (3.3) still holds strictly with(~w0(Pk ; ~u0p) � ~Zk)i 6= 0. Due to the singular term in (2.20) and since Bu and Bl are



22 P.You,Z.Ding and J.Zhoulocally bounded at Pk , there is dk > 0 such that when x 2 � and jx � Pkj < dk forsome k = 1; :::;m, we have � 1 (12I +K)�1 " mXk=1 �kE(Pk; �)(~w0(Pk)� ~Zk))# (x) + ~a0 +~b0 � x!ieither > Bu(x)ior < Bl(x)i:After the truncation by Bu and Bl, it follows that~u0(x)i = ~u(x)i = either Bu(x)i or Bl(x)i; 8x 2 �1; jx� Pkj < dk:So if we de�ne�+ = fx 2 �j jx� Pkj < minfd0k; dk; k = 1; � � � ;mg for some k = 1; :::;mg;then in either case we have j~u0(x) � ~u(x)j < "; 8x 2 �+:Denote ~F (x) = � 1 (12I +K)�1� mXk=1 �kE(Pk; �)(~w(Pk)� ~Zk))�(x);~F 0(x) = � 1 (12I +K)�1� mXk=1 �kE(Pk; �)(~w0(Pk)� ~Zk))�(x)and meas (�CF ) = 3Xi=1 meas fx 2 � j Bli(x) < (~F (x) + ~a+~b� x)i < Bui(x)g;meas (�CF 0 ) = 3Xi=1 meas fx 2 � j Bli(x) < (~F 0(x) + ~a0 +~b0 � x)i < Bui(x)g:Since meas (�CF ) + meas (�CF 0 ) = 0 implies that~u0(x)i = ~u(x)i = either Bu(x)i or Bl(x)i; 8x 2 �;there is nothing to prove. So we assume that meas (�CF ) + meas (�CF 0 ) > 0, thenTheorem 2.3 can be applied. For x 2 �� = � n �+, a compact set, by using (2.20)and triangle inequality, we obtainj~u0(x)� ~u(x)j = ����h ~F (x) + ~a+~b� xiBuBl � h~F 0(x) + ~a0 +~b0 � xiBuBl ����� ������ 1 (12I +K)�1 " mXk=1�kE(Pk ; �)(~w0(Pk)� ~w(Pk))# (x)�����+j~a0 +~b0 � x� (~a+~b� x)j� jI1(x)j+ jI2(x)j:



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 23Since the operator ( 12I + K)�1 is linear and bounded, and the function E(Pk ; �) iscontinuous and bounded on the compact set ��, there is �2 > 0 such thatjI1(x)j < 12" 8x 2 ��; when j~w0(Pk)� ~w(Pk)j < �2:As for I2(x), Theorem 2.3 yieldsj(~a0;~b0)� (~a;~b)j � k~F 0 � ~FkL1(�))3 ;where the constant  depends only on �. Since there is constant C0 independent of~w0(Pk) such thatk~F 0 � ~FkL1(�))3 � C0j~w0(Pk)� ~w(Pk)j; k = 1; :::;mthere is �3 > 0 such thatjI2(x)j = j~a0+~b0�x�(~a+~b�x)j < 12"; 8x 2 ��; whenever j~w0(Pk)� ~w(Pk)j < �3:Finally for � = minf�1; �2; �3g, we havej~u0(x)� ~u(x)j < "; 8x 2 �; whenever j~w0(Pk)� ~w(Pk)j < � for k = 1; :::;m:The proof is complete.As a �nal comment, it is worth while indicating that though in the problemsetting, the governing di�erential equation, the Stokes, is linear, the bound constrainton the control variable introduces a nontrivial nonlinearity into the system. This canbe clearly seen in Theorem 2.2. Also our approach can be adopted to deal with certainnonlinear boundary control problems.REFERENCES[1] H. T. Banks and K. Ito, Structural actuator control of uid/structure interactions, in theProceedings of the 33rd Conference on Decision and Control, Florida, 1994, pp. 283-288.[2] J. A. Burns and Y. Ou, Feedback control of the driven cavity problem using LQR designs,in the Proceedings of the 33rd Conference on Decision and Control, Florida, 1994, pp.289-294.[3] E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. ControlOptim., 24(1986), pp. 1309-1318.[4] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints,SIAM J. Control Optim., 31(1993), pp. 993-1006.[5] M. Christ, Lectures on Singular Integral Operators, AMS Regional Conference Series on Math.,No 77, 1990.[6] R. Coifman, A. McIntoch and I. Mayer, L'int�egral de Cauchy de�nit un operateur born�esur L2 pour les curbs Lipschitziennes, Ann. of Math., 116(1982), pp. 361-387.[7] C. Cuvelier, Optimal control of a system governed by the Navier-Stokes equations coupledwith heat equation, in "New Developments in Di�erential Equations", ed. by W. Eckhaus,North-Holland, 1976.[8] E. J. Dahlberg, C. E. Hening and G. C. Verchota, Boundary value problems for the systemsof elastostatics in Lipschitz domains, Duke Math. J., 57(1988), pp. 795-818.[9] Z. Ding, Topics on Potential Theory on Lipschitz Domains and Boundary Control Problems,Ph.D. Dissertation, Department of Mathematics, Texas A& M University, August, 1994.[10] Z.Ding, L. Ji and J.Zhou, Constrained LQR problems in elliptic distributed control systemswith point observations, SIAM J. Control Optim., 34(1996), pp.264-294.[11] Z.Ding and J.Zhou, Constrained LQR problems governed by the potential equation on Lips-chitz domain with point observations, J. de Mathematiques Pures et Appliqu�ees, 74(1995),pp. 317-344.



24 P.You,Z.Ding and J.Zhou[12] Z. Ding and J. Zhou, Constrained LQR problems in elliptic distributed control systems withpoint observations { convergence results, Appl. Math. Optim., to appear.[13] E.B. Fabes, M. Jodeid, Jr., and N. M. Riviere, Potential techniques for boundary valueproblems on C1 domains, Acta Math., 141(1978), pp. 165-186.[14] E.B. Fabes, C. E. Henig and G. C. Verchota, The Dirichlet problems for the Stokes systemon Lipschitz domains, Duke Math. J., 57(1988), pp. 769-793.[15] J. Dugundji and A. Granas, Fixed Point Theory, PWN-Polish Scienti�c Publishers,Warszawa, 1982.[16] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theoryand Algorithms, Springer, New York, 1986.[17] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide toTheory, Practice, and Algorithms, Academic Press, New York, 1989.[18] M. Gunzburger, L. Hou and T. Svobodny, Boundary velocity control of incompressible owwith an application to viscous drag reduction, SIAM J. Con. Opt., 30(1992), pp. 167-181.[19] K. Ito and S. Kang, A dissipative feedback control synthesis for systems arising in uiddynamics, SIAM J. Contr. Optim., Vol. 32(1994), pp. 831-854.[20] L.Ji and G.Chen, Point observation in linear quadratic elliptic distributed control systems, inProceedings of AMS Summer Conference on Control and Identi�cation of Partial Di�eren-tial Equations, SIAM, Philadelphia, (1993), pp. 155-170.[21] R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989.[22] O.A. Ladyzhenskaia, The Mathematical Theory of Viscous Incompressible Flow, Gordon andBreach Science Publishers, New Yor, 1963.[23] J.L.Lions, Contrôle optimal des syst�ems gouvern�es par des�equations aux d�eriv�ees partielles,Dunod, Gauthier-Villars, Paris, 1968.[24] C.E. Lee and H.E. Taylor, Fiber-optic Fabry-Perot temperature sensor using a low-coherencelight source, J. Lightwave technol., Vol. 9, no. 1, (1994), pp.129-134.[25] V. G. Maz'ya and S. M. Nikol'skij, Analysis IV: Linear and Boundary Integral Equations,Encyclopaedia of Math. Science., Vol. 27, Springer, New York, 1991.[26] R. Temam, Navier-Stokes Equations, North-Holland, New York, 1977.[27] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM,Philadelphia, 1983.[28] G.Verchota, Layer potentials and boundary value problems for Laplace's equation on Lipschitzdomains, Ph.D thesis, University of Minnesota, 1982.[29] M.C. Wang, Fiber-optic Fabry-Perot temperature and dynamic sensor system using a low-coherence LED light source, Ph.D. dissertation, Texas A&M University, College Station,Texas, May, 1995.[30] M.T. Wlodarczyk and G. He, A �ber-optic combustion pressure sensor system for automotiveengine control, Sensors, Vol. 11, no. 6, (1994), pp. 35-42.[31] P. You and J. Zhou, \Constrained LQR problems in elliptic distributed control systems withpoint observations| on convergence rates", SIAM J. Contr. Optim., to appear.


