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1. Introduction

One of the most welcoming avenues leading beyond the Standard Model is that
leading to Grand Unified Theories (GUTs). By unifying the three known particle gauge
interactions within a simple group G, one may understand why baryon number is con-
served to a good approximation, but not perfectly, and why neutrino masses may be very
small, but non-zero. In so doing, GUTs also offer scenaria for cosmological baryogenesis
and the nature of hot dark matter. Interest in GUTs has been further whetted by the
close consistency of the measured values of the SU(3), SU(2) and U(1) gauge couplings
with minimal supersymmetric GUTs [1], which high-precision LEP data have rendered
even more impressive [2].

With all these phenomenological motivations, it was natural that string model-
builders should seek to emulate GUTs. However, it was soon realized that there was a
sizeable roadblock to deriving a GUT from string: gauge symmetry breaking and various
other phenomenological constraints in GUTs generally require adjoint or larger Higgs rep-
resentations, and these are not obtainable using conventional model-building technology
based on k = 1 Kac-Moody currents on the world-sheet [3]. Hence the revived interest
in an SU(5)×U(1) GUT, flipped SU(5) [4, 5], which only required 5- and 10-dimensional
Higgs fields and could be derived from string. Flipped SU(5) is the closest homage string
can pay to the simple GUTs of old.

Naturally, there has been considerable discussion within flipped SU(5) of the “clas-
sic” new phenomena that motivated so much work on GUTs, namely baryon decay [6] and
neutrino masses [5, 7, 8, 9, 10, 11]. However, there has not been a systematic investigation
of all the fermion mass matrices and mixing angles that enter into baryon decay branching
ratios and neutrino oscillations, and their possible relations to the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix and cosmological baryogenesis. In this paper we
seek to remedy this lack in the literature, working in the general framework of minimal
field-theoretical flipped SU(5), supplemented at the end by some (to us) plausible general
hypotheses about mass matrices.

It may serve a useful purpose to recall first some important features of minimal field-
theoretical flipped SU(5) [5]. The first is that baryon decay via dimension-5 operators is
very strongly suppressed, and also dimension-6 Higgs exchanges are presumably negligible
compared to the dimension-6 massive vector boson exchange operators expected to dom-
inate. In minimal SU(5), it was possible to relate the mixing angles in the corresponding
dimension-6 operators for proton decay to the CKM angles, modulo two additional com-
plex phases that would be difficult to measure [12]. The relation is not so direct in flipped
SU(5), because the flipping of the particle assignments within 5̄ and 10 representations,
as well as the assignment of conjugate charged leptons to singlet representations, means
the branching ratios into different lepton species are independent of the quark mixing
angles. It has recently been realized, on the other hand, that the dominant mechanism for
baryogenesis in flipped SU(5) may be the decay of massive conjugate (“right-handed”)
neutrinos [13], producing a lepton asymmetry which is subsequently reprocessed [14] into
a baryon asymmetry by non-perturbative electroweak interactions [15]. This raises the
possibility that the cosmological baryon asymmetry might be related to observable pa-
rameters in the light neutrino mass and mixing matrices, which could also show up in
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baryon decay.

In this paper, we investigate these possibilities systematically, starting from an adap-
tation in Section 2 of the analysis of ref. [12] to diagonalize the fermion mass matrices and
determine the independent unitary flavour rotation matrices. Next, in Section 3 we apply
these results to derive interrelations between observables in conventional weak decays,
proton decay, neutrino oscillations and cosmological baryogenesis. Then, in Section 4 we
postulate plausible Ansätze for the fermion mass matrices which lead to certain additional
quantitative relations between the different flavour rotation matrices and hence observable
quantities. Finally, in Section 5 we summarize our conclusions and mention directions for
future study.

2. Flipped Mixing Matrices

Let us first remind the reader of the various coupling matrices that appear in the
minimal field-theoretical version of the flipped SU(5) model. The superpotential that
characterizes its Yukawa couplings is [5]

W = λij
1 FiFjh+λij

2 Fif̄j h̄+λij
3 f̄il

c
jh+λ4HHh+λ5H̄H̄h̄+λia

6 FiH̄φa+λ7hh̄φ0+µabφaφb (1)

where the Fi, f̄i, l
c
i (i = 1,2,3) are the three generations of 10, 5̄ and singlet representations

of SU(5) that comprise the light matter particles of the Standard Model, H and H̄ are
10 and 1̄0 Higgs representations, h and h̄ are 5 and 5̄ Higgs representations, and the
φ0, φa (a = 1,2,3) are auxiliary singlet fields. The first 3 terms in the superpotential (1)
give masses to the charge 2/3 quarks ui, charge -1/3 quarks di and charged leptons li
respectively, the next two terms split the light Higgs doublets from their heavy colour
triplet partners in a natural way, the sixth term provides a large element in the see-saw
neutrino mass matrix, the product λ7 〈φ0〉 gives the traditional Higgs mixing parameter,
and the last term is the auxiliary singlet mass matrix [7].

Our task in this section is to diagonalize the coupling matrices λ1,2,3,6 and the cor-
responding mass matrices mu,d,l, identifying in the process the needed unitary rotation
matrices whose observability we will explore in Section 3. Our analysis of the diago-
nalizations is modelled on that made for minimal SU(5) in reference [12]. We start by
diagonalizing the λ2 coupling matrix with the unitary transformations

f̄ ′ = f̄U †
uc , F ′ = U †

uF (2)

which yield

f̄λ2F = f̄ ′Uucλ2UuF
′ = f̄ ′λD

2 F
′ : λD

2 = Uucλ2Uu (3)

As a result, the λ1 coupling term becomes

F Tλ1F = F ′Tλ′
1F

′ : λ′
1 = UT

u λ1Uu (4)

We now diagonalize this by a further unitary transformation on the fields F ′:

F̃ = U4F
′ : λ′

1 = UT
4 λ

D
1 U4 (5)
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As in ref. [12], it is convenient to separate phase factors in the matrix U4: denoting elements
of this matrix by eiηijuij where ηij and uij are both real, we decompose

U4 = U5UU6 : U5 = diag(eiηi1) , U6 = diag(eiη1j )e−iη11 (6)

This leads to the representation

λ′
1 = U6U

TU7λ
D
1 UU6 : U7 = U2

5 (7)

and we impose a phase convention: detU7 = 1. We can then absorb the U6 phases into the
fields

f̄ ′′ = f̄ ′U∗
6 , F ′′ = U6F

′ (8)

leaving the diagonalized matrix λ2
D unchanged. In this basis, the first term in equation

(1) becomes
F ′′TUTU7λ

D
1 UF ′′ (9)

The charge -1/3 quark mass matrix may finally be cast in real and diagonal form by the
redefinitions

F ′′′
αβ = UF ′′

αβ for 1 ≤ α, β ≤ 4

F IV
αβ = U7F

′′′
αβ for 1 ≤ α, β ≤ 3 (10)

of relevant components of the 10 representations F .

In contrast to the conventional SU(5) case discussed in ref. [12], the charged lepton
mass matrix is not directly related to the quark mass matrices. Starting from the third
term in the superpotential (1) and making the above transformations of Eqs. (2, 8) of the
5 fields f̄ , we find

f̄λ3l
c = f̄ ′′(U6Uucλ3)l

c (11)

which we now diagonalize by the new transformations

f̄ ′′′
5 = f̄ ′′

5U
†
l : lc′ = U †

lcl
c (12)

leading to
f̄ ′′′
5 λD

3 l
c′ : λD

3 = UlU6Uucλ3Ulc (13)

for the diagonalized mass matrix.

A further novel feature beyond the analysis of ref. [12] is the diagonalization of the
light and heavy neutrino mass matrices. We start by diagonalizing the φ mass matrix:

φTµφ = φ′TµDφ′ : φ′ = U †
φφ , µD = UT

φ µUφ (14)

which leads to the representation

F Tλ6φ = F ′′Tλ′
6φ

′ : λ′
6 = U∗

6U
T
u λ6Uφ (15)

The νc = F45 mass matrix is of the see-saw form in the (F ′′
45, φ

′) basis, and so can be
written in the form

(F ′′
45 + . . .)Tm′

νc(F
′′
45 + . . .) : m′

νc = λ′
6

T
(µD)−1λ′

6 〈V̄ 〉2, (16)
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where 〈V̄ 〉 = 〈10〉. We recall that the transformations (10) applied to the coloured
components of F in order to diagonalize the quark mass matrices have not been applied
to the νc = F45 components. We now define

F ′′′
45 = U †

νcF
′′
45 (17)

in terms of which the νc mass matrix is diagonal:

F ′′′
45

T
mD

νcF
′′′
45 : mD

νc = UT
νcm

′
νcUνc = UT

νcλ
′
6

T
(µD)

−1
λ′
6 〈V̄ 〉2 Uνc =

UT
νc(U

T
φ λ

T
6UuU

∗
6 )(U

†
φµ

−1U∗
φ)(U

∗
6U

T
u λ6Uφ) 〈V̄ 〉2 Uνc (18)

The light neutrino mass matrix is also of the see-saw form, this time in the (ν = f̄4, F45)
basis. We diagonalize it in terms of the diagonalized νc masses mD

νc (18). In terms of the
unitary transformations already made:

f̄4λ2F45 = f̄ ′′
4 λ

D
2 UνcF

′′′
45 (19)

yielding
f̄ ′′
4mν f̄

′′
4
T : mν = λD

2 Uνc(m
D
νc)

−1UT
νcλ

D
2 (20)

which we must diagonalize by the further transformation

f̄ ′′′
4 = f̄ ′′

4U
†
ν : mD

ν = Uν [λ
D
2 Uνc(m

D
νc)

−1UT
νcλ

D
2 ]U

†
ν (21)

for the light neutrino mass eigenstates.

After this profusion (confusion?) of diagonalizations and unitary matrices, we take
mercy on the reader by summarizing the final mass eigenstates (represented by suffices
F ):

uF = (U6U
†
u)F1≤α≤3,5 , uc

F = f̄1≤α≤3(U
†
ucU∗

6 ) (22)

dF = (UU6U
†
u)F1≤α≤3,4 , dcF = (U7UU6U

†
u)F1≤α,β≤3 (23)

lF = f̄5(U
†
ucU∗

6U
†
l ) , lcF = U †

lcl
c (24)

νF = f̄4(U
†
ucU∗

6U
†
ν) , νc

F = (U †
νcU6U

†
u)F45 (25)

3. Specific Processes

As we mentioned earlier, among the motivations for Grand Unified Theories is the
possibility for baryogenesis and small neutrino masses. One of the remarkable features
of the flipped SU(5) model is its ability to provide cosmologically-interesting neutrino
masses (i.e., for ντ ), while at the same time allowing for observable Mikheyev-Smirnov-
Wolfenstein (MSW) [16] neutrino oscillations and baryogenesis via leptogenesis and sub-
sequent sphaleron reprocessing. All three of these highly desirable features are related
to the same neutrino mass matrix [10, 13]. Given the complete decomposition of mass
eigenstates in the flipped SU(5) model above, we are now in a position to examine in
detail the interrelationships between the various mixing matrices and phases of interest.
In particular, we will be interested in identifying the mixing matrix for the MSW mixing
and the origin of the necessary CP violating phase for the production of the cosmic lepton

4



asymmetry. We will also identify the Cabibbo-Kobayashi-Maskawa (CKM) matrix and its
role, as well as those of other matrices of interest in proton decay processes.

We begin with the MSW mixing matrix. MSW solar neutrino mixing will result
if there is a mismatch between the neutrino states produced in the charged current in-
teractions and the neutrino mass eigenstates. Therefore, we can define the MSW mixing
matrix by

lν̄ = lFUMSW ν̄F (26)

Given the previous results for the mass eigenstates lF (24) and νF (25) we find quite
simply

UMSW = UlU
†
ν (27)

Similarly, the CKM matrix is the charged current mismatch in the quark sector,

ūd = ūFUCKMdF (28)

Using now the expressions (22) and (23) for the mass eigenstates uF and dF we can write

UCKM = U † (29)

A priori, we see no relationship between the quark and neutrino mixing matrices.

Next we study the effective Lagrangian for baryon decay in the flipped SU(5) model,
which has been discussed previously in ref. [17]. As has already been recalled, the dominant
mechanism for baryon decay is expected to be dimension-6 vector boson exchange. Using
the analysis of the previous section, as was done for conventional SU(5) in ref. [12], we
find the following massive vector boson couplings:

LX =
g√
2
X−

i µ[ǫ
ijkd̄ckFU7γ

µPLdjF + ūiF γ
µPRν

c] + h.c.

LY =
g√
2
Y −
i µ[ǫ

ijkd̄ckFU7UγµPLujF + ūiF γ
µPRl

c] + h.c. (30)

where we have worked in the mass eigenstate basis for the quarks, denoted by subscripts
F , the lepton fields are in the f̄ ′′ basis of the previous section, the colour indices (i, j, k)
are noted explicitly, and we have indicated the handednesses of all fermion fields by using
the projection operators PL and PR. The exchanges of X and Y bosons (assumed as usual
to have indistinguishable masses) therefore give rise to the following effective Lagrangian
for baryon decay:

L∆B 6=0 =
g2

2M2
X

[
(ǫijkd̄ckFU7γ

µPLdjF )(uiF γµPLν) + h.c.

+ (ǫijkd̄ckFU7UγµPLujF )(uiF γµPLl) + h.c.
]

(31)

As in the case of conventional SU(5), we see from this expression that two additional CP -
violating phases appear in the quark parts of the ∆B 6= 0 operators [i.e., from U7 = U2

5 in
Eq. (6) and detU7 = 1], beyond the single phase in the CKM matrix: these are in principle
measurable via loop diagrams. Since the only quarks of relevance for baryon decay at the
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tree level are u, d and s, and not more than one of the latter, we can write the relevant
parts of the ∆B 6= 0 Lagrangian (above) as:

L̄∆B 6=0 =
g2

2M2
X

[
(ǫijkd̄cke

2iη11γµPLdj)(uiγµPLν1) + h.c.

+ (ǫijk(d̄cke
2iη11 cos θc + s̄cke

2iη21 sin θc)γ
µPLuj)(uiγµPLl1) + h.c.

]
(32)

where we recall that νL and lL are not in the mass eigenstate basis, so that

νL = νFUν , lL = lFUl (33)

The phase factors in (32) are not measurable, nor can one distinguish between the different
neutrino flavours, so the following are the predictions that can be made on the basis of
(32):

Γ(B → (Σν) +X|strange)
Γ(B → (Σν) +X|non−strange)

= 0 ,
Γ(B → l+ +X|strange)

Γ(B → l+ +X|non−strange)
= tan2 θc ≈

1

20
(34)

Comparing decays to neutrinos and charged leptons requires knowledge of specific hadronic
matrix elements. Following ref. [17], we find

Γ(p → e+πo) =
cos2 θc

2
|Ul11 |2Γ(p → ν̄π+) = cos2 θc|Ul11 |2Γ(n → ν̄πo)

Γ(n → e+π−) = 2Γ(p → e+πo) , Γ(n → µ+π−) = 2Γ(p → µ+πo)

Γ(p → µ+πo) =
cos2 θc

2
|Ul12 |2Γ(p → ν̄π+) = cos2 θc|Ul12 |2Γ(n → ν̄πo) (35)

Thus it is possible in principle to correlate baryon decay branching ratios with the CKM
angles, and to measure elements of the charged-lepton mixing matrix Ul, though not of the
neutrino mixing matrix Uν . Moreover, we note that the decay branching ratios above are
characteristically different from those in conventional SU(5) [17]. However, it lies beyond
the scope of this paper to calculate the total baryon decay rate in flipped SU(5).

We now examine the mixing matrix and the necessary CP-violating phase which
can provide for a net lepton asymmetry, and subsequently a net baryon asymmetry via
sphaleron reprocessing [14]. As described in Ref. [13], the lepton asymmetry is produced by
the out-of-equilibrium decay of the mass eigenstate νc

F = F ′′′
45 via the mass term f̄4,5λ2F45.

In terms of mass eigenstates the neutrino mass term becomes

f̄ ′′′
4,5Uν,l λ

D
2 UνcF

′′′
45 (36)

It is then natural to introduce the lepton-number-violating coupling

λL ≡ Uν,l λ
D
2 Uνc (37)

We expect the dominant contribution to the lepton (baryon) asymmetry to be that due to
decays of the lightest νc mass eigenstates, which we expect to be that associated with νe,µ
and call ν1,2. The CP asymmetry in the decay of νc

1 into 2nd and 3rd generation particles
is given by

ǫ1 =
1

2π(λ†
LλL)11

∑

j

(
Im[(λ†

LλL)1j ]
2
)
g(M2

j /M
2
1 ) (38)
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where

g(x) = 4
√
x ln

1 + x

x
(≃ 4√

x
; x ≫ 1) (39)

where (38) is the supersymmetric expression for the CP asymmetry [18]. Analogous ex-
pressions can be written for the corresponding asymmetries ǫ2,3 in the decays of νc

2,3. Using
the definition (31) of λL we find

λ†
LλL = U †

νc(λ
D
2 )

2Uνc (40)

This depends only on Uνc and, what is more, the CP-violating phase we are interested
in is a priori unrelated to the CKM phase or MSW mixing. In general, we could expect
(λ†

LλL)11 ∼ (λD
2 33

)2 (the largest entry in λD
2 ), and if it were the case that M1 ∼ M2 ≪ M3

we would estimate

ǫ ≃ 2 ln 2

π
|λD

2 33
|2δ (41)

where δ is the phase associated with the imaginary part of (λ†
LλL)12 in (40). (This is

slightly larger than our previous estimate [13].) A satisfactory baryon asymmetry would
result for δ>∼10−2. In the next section we will revise this generic estimate in the light of a
specific Ansatz for neutrino masses.

4. Phenomenological Ansätze

In this section we propose some plausible forms for the various matrices appearing
above, and obtain correlations among the various observables of interest. Clearly, the uni-
tary matrices U are not expected to be equal to the identity matrix. However, experience
with the CKM and MSW mixing matrices indicates that they probably should not differ
too much from unity either. We therefore write

Ui = 1+Ri, (42)

for all matrices Ui defined above, with

Ri =




0 θi12 0
−θ∗i12 0 θi23
0 −θ∗i23 0


 , (43)

such that UiU
†
i = 1 through order θ, since R†

i = −Ri. By analogy with the CKM matrix,
we have neglected the far off-diagonal entries in the matrices Ri.

For the MSW matrix UMSW = UlU
†
ν we have RMSW = Rl +R†

ν = Rl −Rν and

θeµ = θl12 − θν12, θµτ = θl23 − θν23, (44)

where θeµ,µτ are the usual MSW mixing angles. It is interesting to note that the baryon
decay branching fractions in Eq. (35) depend in this approximation on

Ul11 = 1, Ul12 = θl12, (45)
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giving

Γ(p → e+π0) =
1

2
cos2 θcΓ(p → ν̄π+) = cos2 θcΓ(n → ν̄π0). (46)

Note that our general Ansätze about mixing angles indicate that the baryon decay branch-
ing fractions into muons should be suppressed relative to those into electrons. Also, Rν

remains undetermined this way since only the sum over all branching fractions into neu-
trino final states can be observed. On the other hand, Eqs. (20,21) allow us to obtain Uν

once Uνc and mD
νc are given. Since the latter two appear in the baryogenesis parameter ǫ

(Eqs. 38,40), it is interesting to correlate all these parameters.

Starting from Eq. (21) and writing Uν = 1+Rν and Uνc = 1 +Rνc we obtain

mνi = (λD
2 )i(m

D
νc)

−1
i (λD

2 )i, (47)

which leads to the previously advocated phenomenologically interesting neutrino mass
ratios [10]. Moreover, from (mD

ν )ij = 0 for i 6= j we find Rν in terms of Rνc ,

(Rν)ij =
−1

mνj −mνi

(λD
2 )i(λ

D
2 )j

[
(Rνc)ij

1

Mj
− (R∗

νc)ij
1

Mi

]
, (48)

where Mi ≡ (mD
νc)ii. In particular

θν12 =
−λuλc

mνµ −mνe

[
θν

c

12

1

M2

− θ∗ν
c

12

1

M1

]
→ λu

λc

θ∗ν
c

12

M2

M1

. (49)

The last expression holds in the limit M2 ≫ M1. Also,

θν23 =
−λcλt

mντ −mνµ

[
θν

c

23

1

M3

− θ∗ν
c

23

1

M2

]
→ λc

λt
θ∗ν

c

23

M3

M2

, (50)

with the final expression valid in the limit M3 ≫ M2.

As is plausible for any matrix with a hierarchy of eigenvalues, such as a see-saw
mass matrix, we make the Ansatz

θν
c

12 ≃
√
M1

M2

, θν
c

23 ≃
√
M2

M3

, (51)

which gives

θν12 ≃
λu

λc

√
M2

M1

, θν23 ≃
λc

λt

√
M3

M2

. (52)

If for the moment we neglect the θl12,23 contributions to the neutrino mixing angles [see
Eq. (44)], the prediction for θµτ in Eq. (52) is exactly what was proposed in Ref. [10]
on purely phenomenological grounds. This relation (with M3/M2 ∼ 10) and the ratios
of neutrino masses in Eq. (47) have been shown [10] to lead to interestingly observable
νµ − ντ oscillations and a τ neutrino mass large enough to provide an interesting amount
of astrophysical hot dark matter. The other relation in Eq. (52) should reproduce the
present fits to the solar neutrino data based on the MSW mechanism. These require
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θeµ = (3.2−6.1)×10−2 [19] and thereforeM2/M1 = 64−225. (Note: the present expression
for θeµ differs from that in Ref. [10].)

Turning now to the baryogenesis parameter ǫ, from Eq. (40) we have (to order θ)

(λ†
LλL)ij = (λD

2 )
2
ijδij + (Rνc)ij

[
(λD

2 )
2
i − (λD

2 )
2
j

]
. (53)

Thus Im (λ†
LλL)

2
ii = Im (λ†

LλL)
2
13 = 0, and

Im (λ†
LλL)

2
12 ≃ λ4

c |θν
c

12|2 cos 2φ12

Im (λ†
LλL)

2
23 ≃ λ4

t |θν
c

23|2 cos 2φ23 (54)

where φij = arg(θν
c

ij ). Analogously, the denominator factors are given by

(λ†
LλL)11 ≃ λ2

u + λ2
c |θν

c

12|2

(λ†
LλL)22 ≃ λ2

c + λ2
t |θν

c

23|2

(λ†
LλL)33 ≃ λ2

t (55)

We finally get

ǫ1 =
2

π
λ2
c

M1

M2

δ12

ǫ2 =
2

π
λ2
t

M2

M3

δ23

ǫ3 =
4

π
λ2
t

M2

M3

ln
M3

M2

|θνc23|2δ23 (56)

where

δ12 = cos 2φ12, δ23 = cos 2φ23 (57)

For the decay of the first and lightest generation νc
1, this result is a factor of (λc/λt)

2( M1

ln 2M2

) ∼
10−6 smaller than that obtained in the generic case in Eq. (41) above. However, we see
that for the decay of the second generation νc

2 the result is only suppressed by ( M2

ln 2M3

) ∼ 7,
and is therefore large enough a priori to produce a satisfactory lepton, and hence baryon,
asymmetry.

Normally, it is the lightest generation which produces a net asymmetry [20]. This
is because the lightest generation will typically wipe out any prior asymmetries (e.g., via
inverse decays) before producing its own. If we considered a standard out-of-equilibrium
decay mechanism, we would have to require that both first- and second- generation νc’s
be far out-of-equilibrium at the time of their decay. This would impose the restrictions
(λ†

LλL)11,22<∼103M1,2/MP , conditions which would be difficult to satisfy given our Ansätze.

However, invoking a mechanism first proposed in Ref. [21] we assume here that
the νc’s are produced in the decay of the inflaton, η, subsequent to inflation. Then νc

decays occur immediately and out-of-equilibrium at T ≪ Mνc , and no destruction of an
asymmetry can occur. Thus our only requirement is that M1,2 < mη. This is satisfied
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for mη ∼ few × 1011GeV as inferred from the COBE result [22] on density fluctuations
[18, 13]. Our final lepton and hence baryon asymmetry now becomes

nB

nγ
∼ nL

nγ
≃ 1

∆

(
mη

MP

)1/2

(ǫ1 + ǫ2) ∼ 10−7M2

M3

δ23 ∼ 10−8δ23 (58)

where ∆ ∼ 10−3 is an entropy dilution factor which accounts for the entropy produced
during breaking of SU(5)×U(1) [23, 13]. This is encouragingly large: recall the phase δ23
is not related to the standard (CKM) source of CP violation, and is not expected to be
particularly suppressed. Note that there could be extra sources of entropy which would
further suppress the estimate (58), so δ23 may not need to be very small.

5. Summary and Outlook

We have made in this paper a systematic study of the mass matrices and mix-
ing angles in the minimal field-theoretical version of flipped SU(5). We have identified
the mixing angles that appear in observable processes such as neutrino oscillations and
proton decay, as well as the CKM angles in the charged electroweak interactions, and
related them as far as possible in a independent way. We have also discussed a scenario
for producing the baryon asymmetry via the out-of-equilibrium decays of heavy singlet
conjugate neutrinos, which produce a lepton asymmetry that is subsequently reprocessed
into a baryon asymmetry by sphaleron transitions. Additional plausible Ansätze for the
mixing angles lead to a number of further relations, and a satisfactory baryon asymmetry.

We were motivated to study flipped SU(5) because it is the only GUT that can be
derived from string theory, and it was precisely the baryon- and lepton-number-violating
processes discussed above that motivated the derivation of a GUT from string. However,
the minimal field-theoretical flipped SU(5) model analyzed above is not what one obtains
from string theory. On the one hand, flipped SU(5) models derived from string contain
more states, thus complicating the analysis, but on the other hand they can cast light on
plausible forms for the mass matrices and mixing angles. Therefore it would be desirable
to complement this general analysis with some more model-dependent studies.

We believe that flipped SU(5) can give us many insights into the exciting new era
of massive neutrino physics that solar neutrino experiments and models of the formation
of large-scale astrophysical structures suggest may be opening up before us.

Acknowledgements

The work of JLL has been supported by an SSC Fellowship. The work of DVN was
supported in part by DOE grant DE-FG05-91-ER-40633 and by a grant from Conoco
Inc. The work of KAO was supported in part by DOE grant DE-AC02-83ER-40105, and
by a Presidential Young Investigator Award. JLL would like to thank the CERN Theory
Division for its kind hospitality while part of this work was carried out.

10



REFERENCES

[1] U. Amaldi et al., Phys.Rev. D36 (1987) 85;
G. Costa et al., Nucl.Phys. B297 (1988) 244.

[2] J. Ellis, S. Kelley and D.V. Nanopoulos, Phys.Lett. B249 (1991) 441.
[3] See, e.g.: J. Ellis, J.L. Lopez and D.V. Nanopoulos, Phys.Lett. B245 (1990) 375;
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