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Abstract
Species exhibiting sex-role reversal provide an unusual perspective on the evolution of sex

roles and sex differences. However, the proximate effects of sex-role reversal are largely

unknown. Endocrine disruptors provide an experimental mechanism to address hormonal

regulation of sexually dimorphic gene expression in sex-role-reversed taxa. Here, we

investigate gene expression patterns in the liver of the sex-role-reversed Gulf pipefish,

because the liver is known to be sexually dimorphic and estrogen-regulated in species with

conventional sex roles. Using next-generation RNA-sequencing technology (RNA-seq), we

detected sexually dimorphic hepatic gene expression patterns, with a total of 482 differen-

tially expressed genes between the sexes in Gulf pipefish. Two-thirds of these genes were

over-expressed in females, and the sex-specific transcriptomes of this sex-role-reversed

pipefish’s liver were superficially similar to those of fishes with conventional sex-roles. We

exposed females, pregnant males, and non-pregnant males to 17α-ethinylestradiol (EE2) at

ecologically relevant concentrations of 5ng/L and compared gene expression patterns in

the livers of exposed fish to control fish. Several genes that were up-regulated in EE2-

exposed males relative to control males were also found to be female-biased in control ani-

mals. These genes included several of the classic estrogen biomarkers, such as vitello-
genin, choriogenin, and zona pellucida. Thus, estrogen exposure induced feminization of

the male liver transcriptome in a sex-role-reversed pipefish. These results suggest that the

ancestral state of estrogen-regulated female reproductive physiology has been retained in

all sex-role-reversed vertebrates thus far studied, despite substantial evolution of the hor-

monal regulation of ornamentation and mating behavior in these interesting taxa.
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Introduction
Sex-role-reversed species, in which females tend to evolve elaborate secondary sexual traits and
males tend to be choosy, have enjoyed a rich history in the study of the evolution of sex differ-
ences and sex roles. In the sexual selection literature, sex-role reversal is usually defined as the
situation in which sexual selection acts more strongly on females than on males [1], and it is
normally associated with substantial parental investment by males [2], which reduces the male
potential reproductive rate below that of the female [3,4]. Sex-role-reversed species have pro-
vided unique opportunities to study sexual selection, because they have allowed novel tests of
hypotheses related to mating competition and have challenged ideas related to the meaning of
maleness and femaleness. While sex-role-reversed mating systems are quite rare in most taxo-
nomic groups, sex-role reversal has nevertheless been documented in fishes, amphibians, birds,
and insects (reviewed in [5]). Work over the last several decades has elucidated many of the
ultimate mechanisms responsible for the evolution of sex-role reversal, such as effects of paren-
tal investment on the operational sex ratio, the environmental potential for polygamy, and the
Bateman gradient [4,6,7]. However, many of the proximate effects of sex-role reversal are not
well understood, even though we know that the evolution of sex-role reversal is accompanied
by potentially dramatic changes in morphology, behavior, and reproductive physiology.

The phenotypic manifestations of sex-role reversal include traits such as showy ornaments
and increased aggression in females, as well as marked mating preferences in males [8]. In
addition, sex-role-reversed species also often have adaptations associated with male parental
investment [9]. Many of these obvious external features might be expected to be accompanied
by underlying metabolic or physiological changes [5,10]. Because the traits associated with sex-
role reversal tend to be sexually dimorphic, their expression should be encoded by genetic path-
ways that are connected to the sex-determination hierarchy. While little is known about the
mechanisms underlying the genetic basis of sexual dimorphism, previous studies have shown
that genes on the sex chromosomes and genes regulated by the hypothalamic-pituitary-gonadal
axis, such as growth hormone (GH), are often involved in regulating size dimorphisms [11]. In
vertebrates, such connections involve sex hormones, so most of the studies aimed at under-
standing proximate mechanisms regulating sex-role-reversed morphology and behavior have
focused on the endocrinology of sex-role reversal, with a particular emphasis on birds [5,12].

The endocrinology of sex-role-reversed species has perhaps generated more questions than
answers. One general pattern is that female maturation and cycles of gamete production are
controlled by estrogens, whereas male primary sexual traits are controlled by androgens, in
much the same way as reproduction is controlled in species with conventional sex roles [5,10].
However, efforts to pin down the proximate causes of female-specific morphology and behav-
ior in sex-role-reversed taxa have revealed a complex picture that appears to vary among taxa.
For instance, in most species of sex-role-reversed birds, males have higher testosterone levels
than females [13], but there is some indication that testosterone levels nevertheless modulate
female aggression, perhaps because certain regions of the female brain are more sensitive to
androgens compared to the male brain [14]. On the other hand, in some sex-role-reversed
birds, such as barred buttonquails and moorhens, males and females exhibit similar plasma lev-
els of testosterone [15,16], so general patterns regarding testosterone’s role have yet to emerge.
In addition, hormones other than testosterone have been implicated in sex-role reversal in
birds. For example, progesterone modulates female aggression in the black coucal [17], and
males have higher prolactin levels than females in spotted sandpipers [18] andWilson’s phala-
rope [19], a reversal of the levels normally observed in species with conventional sex roles. Few
studies have been conducted on the endocrinology of non-avian sex-role-reversed species, but
what little work has been done indicates a complex picture in these other taxa as well. For
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instance, in sex-role-reversed populations of the peacock blenny (a marine fish), estradiol and
prostaglandin F2α are involved in female courtship displays and mating behavior [20]. In
short, the endocrinology of sex-role reversal appears to be complex and remains poorly
understood.

One noticeable void in the study of proximate mechanisms of sex-role reversal exists in the
realm of transcriptome-level responses of sexually dimorphic tissues to hormonal manipula-
tion. Here we begin to fill this gap by studying the transcriptome of the Gulf pipefish (Syng-
nathus scovelli) liver exposed to the potent endocrine disruptor 17α-ethinylestradiol (EE2). We
chose to study the Gulf pipefish because it has become an excellent model for the study of
many aspects sex-role reversal, and it is an emerging model in the realm of sex-role-reversed
endocrinology [10]. Several important features of the liver motivated us to focus on this organ,
rather than other obvious choices such as the gonads or male brood pouch, for this initial anal-
ysis of transcriptome-level sexual dimorphism and response to an environmental estrogen.
First, unlike testes and ovaries, the liver is present in both males and females, facilitating a
meaningful comparison of transcriptomes between the sexes. Second, livers in general have
been shown to be sexually dimorphic [21,22,23], and in fish the liver in particular plays a major
role in reproduction, as many important egg proteins are produced in the liver and transported
to the eggs in females. Third, several important liver genes, such as vitellogenin and zona pellu-
cida isoforms, are known to be estrogen dependent [24] and thus provide clear expectations
regarding changes in expression levels in response to elevated levels of estrogenic compounds.

Studies regarding the effects of environmental estrogens in Gulf pipefish and its close rela-
tives provide context for the present study. In particular, we know that external female mor-
phology is estrogen-dependent, because exposure of male Gulf pipefish to 17α-ethinylestradiol
(EE2) results in the development of female-like secondary sexual traits [25,26]. In addition,
expression of vitellogenin has been shown to be induced by estradiol or EE2 in four pipefish
species and a seahorse, Syngnathus acus, S. scovelli, S. abaster, Hippocampus guttulatus (also
known as H. ramulosus) and Nerophis lumbriciformis [25,27,28], indicating that this gene is
estrogen-regulated in syngnathid fishes. Sufficiently high levels of EE2 (above about 5 ng/L)
prevent males from developing a functional brood pouch and consequently cause complete
reproductive failure [26,29]. This observation is consistent with other data from unpublished
dissertation work, which indicates that the male brood pouch is androgen-dependent
(reviewed in [10]). However, thus far no evidence suggests that EE2-exposed males adopt
female-typical courtship behavior [28], so the proximate mechanisms of sex-role reversal in
pipefish seem to mirror those of avian taxa in terms of complexity. As a first step toward
understanding transcriptome-level responses to hormone manipulation in a sex-role-reversed
pipefish, we used RNA-sequencing (RNA-seq) to characterize the liver transcriptomes of
female, pregnant male, and non-pregnant male Gulf pipefish exposed to the potent endocrine
disruptor EE2. Our first goal was to examine patterns of sexual dimorphism in liver gene
expression in non-exposed control animals to identify genes displaying sexual dimorphism or
responsiveness to male pregnancy status. We hypothesized that genes involved directly in egg
production would show much higher levels of expression in females than in males, but we also
recognized the possibility that constraints imposed by male pregnancy could result in the pro-
duction of additional compounds in the livers of either males or females. For example, if
females package additional proteins in their eggs to function during post-copulatory processes,
potentially occurring within the male’s brood pouch, or if males provision their offspring, then
some important proteins involved in these processes could conceivably be produced in the liv-
ers of either sex.

Our second goal was to quantify gene expression changes in the liver in response to estrogen
exposure in females, pregnant males, and non-pregnant males. We hypothesized that the
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general pattern of expression changes would be toward feminization of male livers. However, if
multiple endocrine signaling pathways have been altered to different degrees by the evolution
of sex-role reversal, then we might expect an intermediate pattern, in which some genes are
very strongly affected by EE2 while others are relatively resistant even though they are never-
theless sexually dimorphic in their expression patterns. We further assessed whether our
observed gene expression patterns are sex-role reversed by comparing our results to those from
the zebrafish (Danio rerio), a model organism with conventional sex roles.

Results

Sexually Dimorphic Gene Expression Patterns
The RNA-seq results identified a total of 482 Trinity gene transcripts that were significantly
differentially expressed in the control female livers compared to the livers of control pregnant
and non-pregnant males, with a false-discovery-rate corrected p� 0.05. Of these 482 differen-
tially expressed transcripts, 67% were up-regulated in females (325 contigs) and the remaining
33% showed higher expression levels in males (157 contigs) (S1 Table). The gene ontology
analyses in Blast2GO identified two biological processes, cellular process and metabolic pro-
cess, as being the most common in the control female liver transcripts. These two processes
accounted for 22 and 19 percent, respectively, of the biological processes represented in the
annotated sequences (S1 Table).

Of the 325 up-regulated transcripts in females, a total of 21 genes showed an over-expres-
sion of 20 fold or higher compared to males (Table 1). These over-expressed genes included

Table 1. Hepatic Genes with Female Biased Expression Patterns in Control Fish Livers.

Top Blastx Hit Description Fold Change

vitellogenin c 1588

c44657_g1_i1 1579

extracellular serine threonine protein kinase fam20c-like 1207

vitellogenin b 1031

brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2-like 792

c48786_g1_i1 692

cathepsin e-like 635

choriogenin h 528

extracellular serine threonine protein kinase fam20c-like 458

extracellular serine threonine protein kinase fam20c-like 456

zona pellucida sperm-binding protein 4-like 239

estrogen receptor alpha 47

c55348_g2_i1 40

3-hydroxy-3-methylglutaryl-coenzyme a reductase 39

c38044_g1_i1 34

methylsterol monooxygenase 1 30

sodium- and chloride-dependent creatine transporter 1-like 30

c43284_g1_i1 29

sodium- and chloride-dependent creatine transporter 1-like isoform x1 23

lanosterol 14-alpha demethylase-like 21

monocarboxylate transporter 13-like 20

List of blastx annotation and fold change information for all genes showing female-biased expression

patterns with fold changes of 20 or higher in control females relative to control males.

doi:10.1371/journal.pone.0139401.t001
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several known female-specific genes, such as vitellogenin b and c, choriogenin h, and zona pellu-
cida sperm-binding protein 4-like, which have all been shown to be involved in egg develop-
ment and maturation [30,31,32]. In addition to the female-specific genes, estrogen receptor
alpha (esr1) was also highly up-regulated in control females. Several of the genes with the larg-
est differences in expression levels, such as extracellular serine threonine kinase fam 20c-like
(Fam20c), were labeled as “cellular response to estrogen stimulus” genes in the Blast2GO analy-
sis. Many of these strongly sexually dimorphic genes have also been shown to have female-
biased hepatic expression profiles, particularly in response to estrogen exposure [33]. Examples
include 3-hydroxy-3-methylglutaryl-coenzyme a reductase (hmgcra),methylsterol monooxygen-
ase 1(msmo1), and lanosterol 14-alpha demethylase-like (CYP51A1), in addition to the afore-
mentioned female-specific genes. Of the 157 genes that were up-regulated in males, only one
transcript, histidine triad nucleotide-binding protein 3-like (hint3, S1 Table), exhibited a greater
than 20-fold difference in expression levels between males and females.

A comparison of the transcripts between the sexes by absolute number of reads showed that
46 of the top 50 expressed genes were shared between the two sexes (Table 2). Females had
four genes within their 50 highest expressed transcripts that were not included within the
males’ top 50, including transcripts for a translationally controlled tumor protein and three egg
proteins: vitellogenin b, zona pellucida sperm-binding protein 4-like, and chorion protein. The
males also had four genes that were found solely in the list of 50 top expressed genes for males
but not females. These genes included pancreatic elastase, coagulation factor VIIb precursor,
fibrinogen alpha chain-like, and a hypothetical unknown protein gene.

Restricting attention to sexually dimorphic genes, we found that control pregnant males
and non-pregnant males had very similar patterns of gene expression to one another that were
quite distinct from those of females (Fig 1). This observation supports the hypothesis that both
pregnant and non-pregnant males have a male-like gene expression pattern that differs drasti-
cally from that of females. A comparison of gene expression between control pregnant and
control non-pregnant males showed that 41 genes were differentially expressed between these
categories of males. Of these 41 transcripts, two genes (contig c58371_g3_i3 and cornifelin
homolog b-like) were upregulated by greater than 20 fold in pregnant males, and one gene (car-
tilage acidic acid 2) was upregulated greater than 20-fold in non-pregnant males (S2 Table).

Effects of Synthetic Estrogen Exposure
After one week of exposure to 5ng/L EE2, both the pregnant and non-pregnant males’ gene
expression patterns demonstrated a clear response to estrogen and showed signs of feminiza-
tion (Fig 1). Non-pregnant males exhibited a greater response to EE2 exposure than did preg-
nant males, with a total of 182 genes differentially expressed (112 up-regulated and 70 down-
regulated) in EE2-exposed non-pregnant males relative to control non-pregnant males (Fig 2,
S3 Table). We detected only 37 differentially expressed gene transcripts in exposed pregnant
males relative to control pregnant males (24 up-regulated and 13 down-regulated; Fig 2, S4
Table). Two of the genes up-regulated in exposed non-pregnant males, but not in exposed
pregnant males, were contig c58371_g3_i3 and cornifelin homolog b-like, which also were up-
regulated in control pregnant males (S3 Table, S4 Table). A subset of nine genes was up-regu-
lated in control females (relative to control males), EE2-exposed pregnant males (compared to
control pregnant males) and EE2-exposed non-pregnant males (relative to control non-preg-
nant males). These loci included cathepsin e-like (a liver-specific aspartic proteinase), extracel-
lular serine threonine protein kinase fam20c-like, and choriogenin h, among others (Table 3; Fig
2). Among the subset of nine genes showing both female biased expression and EE2 respon-
siveness in exposed males, nearly half of these genes were known egg-associated loci, such as
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Table 2. Top 50 Expressed Genes in the Male and Female Livers for Control Fish.

Top 50 Expressed Genes in Males Contig ID Mean # reads

1 warm temperature acclimation-related 65 kDa protein c16137_g1_i1 313030

2 ApoA-I c41331_g1_i1 161667

3 TPA: hypothetical protein BOS_23215 c20770_g1_i1 232799

4 PREDICTED: histidine-rich glycoprotein-like c33611_g1_i1 294179

5 complement component C3 c56882_g1_i1 281272

6 hypothetical protein OXYTRI_13058 c27857_g1_i1 260783

7 14 kDa apolipoprotein, partial c28061_g4_i1 171653

8 transferrin c48809_g2_i1 112617

9 PREDICTED: betaine—homocysteine S-methyltransferase 1 c54924_g2_i1 129460

10 cytochrome c oxidase subunit I c59228_g4_i1 144836

11 astacin like metalloprotease c11350_g1_i1 99607

12 alpha-1-antitrypsin c45579_g1_i1 103302

13 PREDICTED: myeloid protein 1-like c48382_g1_i1 98270

14 alpha-1-antitrypsin c51148_g1_i1 76306

15 chymotrypsinogen 1 c78479_g1_i1 58669

16 PREDICTED: beta-microseminoprotein-like c52972_g5_i1 71077

17 complement C1q tumor necrosis factor-related protein 3-like c43914_g2_i1 73256

18 hyaluronan binding protein 2 precursor c52158_g2_i1 59368

19 PREDICTED: fibrinogen gamma chain c47758_g1_i1 63278

20 Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase c47414_g1_i1 68241

21 PREDICTED: collagenase 3-like c58007_g5_i1 65271

22 PREDICTED: type-4 ice-structuring protein-like isoform X2 c33291_g1_i1 52243

23 PREDICTED: bile acid receptor-like isoform X2 c50783_g1_i2 49235

24 PREDICTED: inter-alpha-trypsin inhibitor heavy chain H3-like c56014_g1_i2 58790

25 trypsin-2 precursor c6350_g1_i1 49044

26 fatty acid-binding protein c27863_g1_i1 39381

27 aldolase A c56993_g6_i1 46269

28 hypothetical protein, partial c42909_g1_i1 44988

29 PREDICTED: chymotrypsin-like protease CTRL-1 c51234_g1_i1 44034

30 PREDICTED: ceruloplasmin-like c48515_g2_i6 40423

31 PREDICTED: LOW QUALITY PROTEIN: selenoprotein P c55131_g1_i1 40219

32 PREDICTED: alpha-2-macroglobulin-like isoform X1 c58355_g3_i1 45394

33 PREDICTED: protein AMBP-like c52079_g1_i1 46994

34 complement regulatory plasma protein c51045_g2_i1 40653

35 Pancreatic elastase c24626_g1_i1 32525

36 elongation factor 1 alpha c43004_g1_i1 36091

37 PREDICTED: prothrombin c47589_g1_i1 35742

38 PREDICTED: complement C5-like c46369_g3_i1 34227

39 PREDICTED: complement factor B-like c57046_g1_i1 35738

40 coagulation factor VIIb precursor c53536_g1_i1 37228

41 PREDICTED: fibrinogen beta chain c50315_g1_i1 20373

42 vitellogenin c c52176_g1_i1 19005

43 PREDICTED: alpha-2-HS-glycoprotein-like c41324_g1_i1 29738

44 hypothetical protein, partial c55432_g7_i1 36658

45 PREDICTED: alpha-2-HS-glycoprotein-like c41324_g1_i1 41955

46 plasminogen c40786_g1_i1 31122

47 hypothetical protein, partial c12437_g1_i1 24375

(Continued)
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Table 2. (Continued)

48 glyceraldehyde-3-phosphate dehydrogenase c44637_g1_i1 25244

49 PREDICTED: fibrinogen alpha chain-like c55500_g1_i1 33769

50 PREDICTED: kininogen-1-like c54367_g1_i1 25964

Top 50 Expressed Gene in Females Contig ID Mean # reads

1 Ribosomal 40s 18s c27857_g1_i1 602577

2 vitellogenin b c58295_g2_i1 583908

3 vitellogenin c c52176_g1_i1 197651

4 TPA: hypothetical protein BOS_23215 c20770_g1_i1 179421

5 PREDICTED: histidine-rich glycoprotein-like c33611_g1_i1 172732

6 complement component C3 c56882_g1_i1 104763

7 cytochrome c oxidase subunit I c59228_g4_i1 104364

8 PREDICTED: betaine—homocysteine S-methyltransferase 1 c54924_g2_i1 86711

9 ApoA-I c41331_g1_i1 80579

10 14 kDa apolipoprotein, partial c28061_g4_i1 60526

11 alpha-1-antitrypsin c45579_g1_i1 59001

12 astacin like metalloprotease c11350_g1_i1 55898

13 warm temperature acclimation-related 65 kDa protein c16137_g1_i1 53062

14 PREDICTED: beta-microseminoprotein-like c52972_g5_i1 46663

15 transferrin c48809_g2_i1 46224

16 PREDICTED: myeloid protein 1-like c48382_g1_i1 42133

17 aldolase A c56993_g6_i1 39493

18 Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase c47414_g1_i1 36096

19 elongation factor 1 alpha c43004_g1_i1 34786

20 PREDICTED: inter-alpha-trypsin inhibitor heavy chain H3-like c56014_g1_i2 30860

21 trypsin-2 precursor c6350_g1_i1 29855

22 fatty acid-binding protein c27863_g1_i1 29508

23 chymotrypsinogen 1 c78479_g1_i1 29312

24 alpha-1-antitrypsin c51148_g1_i1 28159

25 PREDICTED: inter-alpha-trypsin inhibitor heavy chain H3-like c58914_g1_i1 27712

26 hyaluronan binding protein 2 precursor c52158_g2_i1 27393

27 complement C1q tumor necrosis factor-related protein 3-like c43914_g2_i1 27226

28 PREDICTED: fibrinogen gamma chain c47758_g1_i1 26773

29 PREDICTED: alpha-2-HS-glycoprotein-like c41324_g1_i1 25675

30 zona pellucida protein sperm-binding protein 4-like c47764_g1_i1 23924

31 PREDICTED: bile acid receptor-like isoform X2 c50783_g1_i2 23763

32 PREDICTED: collagenase 3-like c58007_g5_i1 21668

33 PREDICTED: type-4 ice-structuring protein-like isoform X2] c33291_g1_i1 21626

34 PREDICTED: LOW QUALITY PROTEIN: selenoprotein P c55131_g1_i1 21530

35 complement regulatory plasma protein c51045_g2_i1 20297

36 chorion protein c41859_g1_i1 18712

37 PREDICTED: chymotrypsin-like protease CTRL-1 c51234_g1_i1 18248

38 PREDICTED: ceruloplasmin-like c48515_g2_i6 18197

39 PREDICTED: fibrinogen beta chain c50315_g1_i1 17399

40 glyceraldehyde-3-phosphate dehydrogenase c44637_g1_i1 17202

41 PREDICTED: protein AMBP-like c52079_g1_i1 17066

42 PREDICTED: complement factor B-like c57046_g1_i1 16969

43 PREDICTED: kininogen-1-like c54367_g1_i1 16600

44 translationally-controlled tumor protein c38295_g1_i1 15892

(Continued)
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vitellogenin b and c, choriogenin h and l, and zona pellucida sperm-binding protein 4-like
(Table 3), which are normally expressed at high levels in females only. A comparison of
exposed pregnant males to exposed non-pregnant males revealed one gene that was upregu-
lated greater than 20-fold in pregnant males (contig c59977_g1_i1) and two genes that were
upregulated greater than 20-fold in non-pregnant males (enolase-phosphatase E1-like and
fibrous sheath CABYR-binding protein-like; S5 Table).

The livers of EE2-exposed females did not show a pattern of increased feminization relative
to livers of control females. Rather, we saw expression patterns respond in the opposite direc-
tion. A total of 20 genes were found to be sexually dimorphic in control fish and also differen-
tially expressed between EE2-exposed and control females (Table 4). Eighteen of these 20
transcripts showed a pattern in which the effects of EE2 exposure in female livers were of
opposite sign compared to the pattern of sexual dimorphism. For instance, genes that were
upregulated in female control fish relative to male controls were usually downregulated in
EE2-exposed females relative to control females. However, these effects were relatively small
(Table 4), and no transcripts showed a greater than 20-fold expression difference in females as
a result of EE2 exposure (S6 Table).

A principal components analysis (S1 Fig) shows a clear separation of control males and
females, regardless of female exposure status. The top loadings for PC1, which explains 49-per-
cent of the variation, include vitellogenin b, warm temperature acclimation-related 65 kDa pro-
tein, and ribosomal protein 40s 18s, indicating that PC1 captures variation in some of the genes
with the largest sex biases in expression. Exposed pregnant males fall between the females and
the rest of the males (S1 Fig). Overall, the first three principal components account for 85 per-
cent of the variation, with three of the top genes that represent the highest loadings in PC1 also
listing in the top loadings for PC2 and PC3. Restricting attention to the sexually dimorphic
genes, we see a general trend for males to become feminized in their gene expression patterns
as a result of EE2 exposure (Fig 1). The grouping of EE2-exposed pregnant males with females
in Fig 1 and S1 Fig indicates that exposure to synthetic estrogen makes pregnant male livers
more female-like than it does to non-pregnant male livers. However, this observation should
be interpreted in light of our previous result that EE2 affects the expression patterns of more
genes in non-pregnant male livers relative to pregnant male livers.

Comparison to Zebrafish
We found that the majority of the sex-biased genes in zebrafish and pipefish did not overlap,
with only nine female-biased genes shared between non-exposed females of the two species
(Fig 3A). In the comparison of the down-regulated genes in females, only four were shared
between non-exposed zebrafish and pipefish (Fig 3B). Most of the genes that were up-regulated

Table 2. (Continued)

45 hypothetical protein, partial c42909_g1_i1 15834

46 plasminogen c40786_g1_i1 15555

47 PREDICTED: prothrombin c47589_g1_i1 15421

48 PREDICTED: alpha-2-macroglobulin-like isoform X1 c58355_g3_i1 15328

49 PREDICTED: complement C5-like c46369_g3_i1 14994

50 hypothetical protein, partial c12437_g1_i1 14889

The top blastx hit descriptions, contig numbers, and mean number of reads for control males and control females are shown. The bold contig IDs

represent the four sex-specific genes for each sex.

doi:10.1371/journal.pone.0139401.t002
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Fig 1. Sexually Dimorphic Gene Expression Patterns. Heat map showing hierarchical clustering of mean expression values for the six treatments
including control females, pregnant males, and non-pregnant males, as well as EE2 exposed females, pregnant males, and non-pregnant males, for all
genes which showed sexually dimorphic expression patterns in control fish. The colors of the bars represent either up-regulated (red) or down-regulated
(blue) genes. The male treatments cluster together with the exception of the EE2 exposed pregnant males which cluster with the both control and EE2
females.

doi:10.1371/journal.pone.0139401.g001
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in males of either species in response to EE2 exposure were also female-biased genes (63 of 84
genes in zebrafish males and 11 of 13 genes with 20-fold or higher expression changes in pipe-
fish). The only genes that were female-biased in both species and up-regulated in EE2-exposed
males of both species were vitellogenin 2/vitellogenin b and vitellogenin3/vitellogenin c. When
only sexually-dimorphic genes were considered, pipefish males had more genes that were

Fig 2. The Overlap of Female Biased and EE2 Responsive Genes. Venn diagram of control females (CF),
EE2 exposed pregnant males (EP), and non-pregnant males (ENP) to show overlap of female biased genes
and EE2 responsive genes. Gene expression levels for control females are either over or under expressed
compared to the levels of expression in control males, and EE2 exposed male genes were differentially
expressed from their control counterparts. A list of genes up-regulated between all three groups can be found
in Table 3.

doi:10.1371/journal.pone.0139401.g002

Table 3. Genes Showing Both Female Biased Expression in Control Fish and EE2 Responsiveness in ExposedMales.

Top Blastx Hit Descriptions Control Female EE2 Preg Male EE2 Non-Preg Male

Upregulated compared to: Control Males Control Preg Males Control Non-Preg Males

vitellogenin c 1587 291 62

choriogenin h 528 67 94

zona pellucida sperm-binding protein 4-like 239 157 83

extracellular serine threonine protein kinase fam20c-like 1207 125 268

brain-specific angiogenesis inhibitor 1-associated protein 2-like 792 66 70

cathepsin e-like 635 141 451

sodium- and chloride-dependent creatine transporter 1-like 30 13 6

protein jagunal homolog 1-b-like 1.2 1.1 1.3

c48786_g1_i1 691 225 139

List of shared, up-regulated genes in control females (when compared with control males) and EE2 exposed pregnant and non-pregnant males (when

compared their control counterparts) and their significant fold inductions.

doi:10.1371/journal.pone.0139401.t003
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down-regulated than up-regulated in response to EE2 exposure, which was the opposite pat-
tern observed in zebrafish males. Although some of the genes that were down-regulated as a
result of EE2 exposure were female-biased (14 of 51 in pipefish and 10 of 57 in zebrafish), the
majority were not. In fact, most EE2 responsive, down-regulated genes in zebrafish were male-
biased (38 of 57). However, in pipefish, only 11 of 51 down-regulated genes were male-biased.

Discussion
This first study of the effects of a potent endocrine disruptor on gene expression patterns in a
sex-role-reversed organism shows that the liver of the Gulf pipefish is markedly sexually
dimorphic and responds very strongly to an estrogenic compound. For instance, several
female-biased genes respond to EE2 exposure in males in a direction indicative of feminization
of the male liver transcriptome. Control fish follow a pattern predicted by the hypothesis that
both pregnant and non-pregnant males should differ from females in terms of expression pat-
terns as a consequence of the major role of the liver in producing egg-related proteins. Our
results also show that fish exposed to synthetic estrogen show expression patterns consistent
with the idea that, even in sex-role-reversed species, female-biased liver genes should be
regulated by estrogen. In particular, we see a shift toward more feminine patterns of gene

Table 4. Expression Patterns for Female EE2 Responsive Genes.

Top Blastx Hit Descriptions Fold Change for Control
Females

Fold Change for EE2
Exposed Females

adenylosuccinate synthetase isozyme 1 c-
like

1.6 -1.9

cytosolic carboxypeptidase-like protein 5-like
isoform x1

1.5 -1.7

40s ribosomal protein s18 2.3 -5.4

myelin protein zero-like protein 3-like 1.2 -1.7

lysosomal acid phosphatase precursor 1.7 -5.0

rna-directed dna polymerase from mobile
element jockey-like

1.4 -3.2

warm temperature acclimation protein 65–2 1.7 -7.7

26s protease regulatory subunit 7 -2.3 1.7

angiotensinogen -3.8 1.7

atpase asna1 -2.9 1.8

camp-regulated phosphoprotein 19 -2.6 1.4

cytochrome c -4.1 1.8

mitochondrial rho gtpase 2-like -3.6 1.6

nadh dehydrogenase -2.4 2.0

peptidyl-prolyl cis-trans isomerase h -3.3 2.2

proteasome subunit alpha type-3 -2.6 1.7

proteasome subunit beta type-4-like -3.3 1.7

threonine—trna cytoplasmic -8.2 2.7

run and fyve domain-containing protein 2-like
isoform x1

-1.1 -1.7

solute carrier family facilitated glucose
transporter

-4.2 -5.8

List of blastx annotation and fold change information for all genes showing female-biased expression

patterns in control females and EE2-responsive patterns in EE2-exposed females when compared with

control females.

doi:10.1371/journal.pone.0139401.t004
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expression in males exposed to EE2. Some aspects of our analysis raise the intriguing possibility
that the liver plays a role in not only female reproduction but also male reproduction, as
sperm-related transcripts occur in the liver, an observation that leads to the hypothesis that
males may also be capable of transporting proteins from the liver to the brood pouch. In addi-
tion, as we will explain below, we believe our results leave the door open for sexual selection to
act on genes expressed in the liver that ultimately play a role in postcopulatory sexual selection
or sexual conflict.

The Endocrinology of Sex-Role Reversal
Sex-role-reversed organisms represent an evolutionary challenge from an endocrinology per-
spective [5,10], because the females must evolve nuptial ornaments and competitive mating
behavior, possibly including enhanced aggression, while simultaneously preserving female
reproductive cycles and primary sexual traits. All of these traits related to reproduction and
mating competition are potentially sexually dimorphic and hormonally regulated. All sex-role-
reversed vertebrates evolved from ancestral taxa with conventional sex roles, and in such taxa
androgens (e.g., testosterone or 11-ketotestosterone) are the main hormones involved in
almost every aspect of male reproductive competition from the development of primary sexual
traits to the modulation of secondary sexual traits and mating behavior [34,35]. Consequently,
a male can conceivably become more ornamented or more aggressive during contests for
mates by increasing testosterone levels without impairing the male’s ability to produce gametes,
although testosterone does have other costs [36]. In sex-role-reversed species, in contrast, a
female competing for mates cannot increase her competitive ability simply by increasing testos-
terone levels without suppressing normal female reproduction, so the evolution of sex-role
reversal must have involved mechanisms to circumvent this constraint [5,10]. The diagnosis of
these mechanisms has been difficult and remains a work in progress, so we discuss in turn
three aspects of female reproduction, namely reproductive physiology, female ornamentation,

Fig 3. Pipefish and Zebrafish Comparisons of Expression Patterns. Venn diagrams of sexually dimorphic and EE2 responsive genes for pipefish and
zebrafish showing EE2 up-regulated genes in 3a and EE2 down-regulated genes in 3b. Numbers of female biased genes in control females are presented for
control pipefish females in this study (PF) and for control zebrafish from a study by [23]. (ZF). Male EE2 responsive genes are presented for both pregnant
and non-pregnant, EE2 exposed pipefish males (PM) and for EE2 exposed males from [23](ZM).

doi:10.1371/journal.pone.0139401.g003
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and female mating behavior, in light of our results and the broader literature on the endocri-
nology of sex-role reversal.

Our study is most relevant to female reproductive physiology and indeed represents the first
dataset addressing transcriptome-wide effects of hormone manipulation in any reproduction-
related tissue from a sex-role-reversed species. Our results provide the first evidence that the
pipefish liver shows genome-wide patterns of dimorphism, with hundreds of genes differen-
tially expressed between males and females. Some transcripts, such as vitellogenin b and vitello-
genin c, showed greater than 1000-fold higher levels of expression in females compared to
males. Our EE2 results establish that these expression patterns are largely estrogen-regulated,
because males exposed to EE2 expressed genes that were normally only found at high levels in
females. Estrogen profiles have been studied in other sex-role-reversed taxa, notably birds, and
in general results show that estradiol profiles are similar to non-sex-role-reversed birds
[37,38,39]. The emerging pattern is that estrogens control reproductive physiology in females
of sex-role-reversed species in much the same way as in females of species with conventional
sex roles. Hence, our data are consistent with an emerging pattern that many sexually dimor-
phic traits are regulated by the hypothalamic-gonadal-pituitary axis [11].

The situation becomes more confusing when we turn attention to ornamentation in sex-
role-reversed taxa. In pipefish, female secondary sexual traits occur in males exposed to EE2,
suggesting that female ornamentation is controlled by estrogens [25,26,28]. However, the pat-
tern is markedly different in sex-role-reversed birds. In Wilson’s phalaropes, moorhens and
barred buttonquails, injection of females with testosterone increases the brightness of their
ornamentation [15,16,40]. Thus, secondary sexual characteristics in these species seem to be
affected more by androgens than by estrogens. In other sex-role-reversed marine fishes, such
as the peacock blenny and the two-spotted goby, neither estrogens nor androgens seem to be
responsible for female nuptial coloration, suggesting an altogether different mechanism could
be at work [20,41]). In short, sex-role-reversed females seem to have evolved many disparate
mechanisms to modulate nuptial coloration, and pipefish may provide a particularly tractable
model because EE2 exposure alone is sufficient to produce female-specific secondary sexual
traits in males.

Perhaps the most interesting and demanding area of research in the realm of sex-role-
reversed endocrinology concerns the modulation of female behaviors involved in mating com-
petition, and researchers have thus far only scratched the surface of this difficult topic. Almost
no work has addressed this topic in the family Syngnathidae, but one study [28] and our anec-
dotal observations indicate that EE2 exposure does not cause males to adopt female-specific
courtship behavior, which in Gulf pipefish includes a striking change in coloration, dancing
and twitching [42]. Thus, the proximate factors involved in sex-specific mating behaviors in
syngnathids remain unknown. As noted above (see Introduction), the waters are equally
muddy for other sex-role-reversed taxa. In particular, testosterone, progesterone, estradiol, and
prostaglandins have possible roles in modulating female behavior in various sex-role-reversed
taxa [5,17,20]. The endocrinology of mating behavior in sex-role-reversed taxa should be a
high priority for research, as many interesting surprises no doubt await us, and syngnathid
fishes provide a model uniquely suited to this research endeavor.

The Pipefish Liver Transcriptome
In many ways, the Gulf pipefish liver transcriptome behaves in a similar fashion to those of the
few other fish species studied in this regard. In control fish, pregnant and non-pregnant males
shared more similar gene expression patterns than either group shared with females, and both
groups of males responded in a female-like manner to synthetic estrogen. The most telling
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result is that genes involved in egg production are highly upregulated in females relative to
males, a typical pattern in the livers of fish species with conventional sex roles. In addition,
some of the most highly expressed genes in the livers of females also encode egg-related pro-
teins and EE2 exposure induces expression of these genes in males.

However, at face value, our patterns of gene expression look quite different from those
observed in zebrafish [23], with only a few genes occurring on both species’ top-50 lists with
regard to expression levels. Similarly, only a handful of genes show similar, statistically signifi-
cant responses to EE2 in both species. Nevertheless, the overall theme that egg-related protein
genes are upregulated in females and that estrogen exposure feminizes male livers appears in
both the Gulf pipefish and zebrafish datasets [23]. In addition, the zebrafish study identified a
marked up-regulation of ribosomal genes in female livers, and while these genes did not appear
on our list of extremely sexually dimorphic loci, many ribosomal genes did appear on our com-
plete list of statistically significant sexually dimorphic genes (S1 Table). Many of the differences
between our study and the zebrafish study could be a consequence of differences in experimen-
tal design. The zebrafish study used E2 rather than EE2, used a much higher concentration of
sex hormones (1000-fold higher), pooled individuals within a treatment before sequencing,
and provided some evidence that their males had already been exposed to endocrine disruptors
before their use in the experiment [23]. Other studies involving zebrafish [43], yellow perch
[44], and turbot [45] show patterns that are broadly consistent with our results, although the
precise genes involved often differ considerably among datasets.

Another intriguing result from our analysis is that the low doses of EE2 used in our study
resulted in masculinization of the female liver. This pattern is evident from our observation
that 90 percent of sexually dimorphic genes showed expression changes in opposition to the
pattern of sexual dimorphism in exposed females (i.e., their expression became more male-
like). At face value, this observation might be interpreted as evidence that the female liver tran-
scriptome is sex-role-reversed with respect to its response to estrogens. However, this sort of
pattern has been observed in other taxa without sex-role reversal [33,46], and the most likely
explanation is simply that too much estrogen causes females to begin to shut down reproduc-
tion. Thus, this observation also seems to indicate that the pipefish liver is very much like that
of other fish without sex-role reversal.

Sexual Selection and the Liver
One interesting possibility, which is hinted at by our data but not definitively supported by any
of our analyses, is that the liver somehow plays a role in sexual selection in sex-role-reversed
pipefish. The female liver produces egg-related proteins, which are transported to the ovaries,
processed and packaged in the eggs. In sex-role-reversed species, females typically have greater
potential reproductive rates than males, which can result in pre- and postcopulatory competi-
tion among females for mating and reproductive success. Hence, female-specific genes in the
liver controlling egg production could be under stronger sexual selection in females of sex-
role-reversed species compared to related species with less mating competition among females,
such as monogamous pipefishes and seahorses. Another plausible hypothesis is that other pro-
teins produced by the liver are also transported to the female’s reproductive tract and eventu-
ally transferred to the male during mating. Even though most studies of reproductive protein
evolution focus on the gonads, the liver may be a neglected organ with an underappreciated
role in postcopulatory processes. Interestingly, our data also show that some sperm-related
proteins in males are produced in the liver, so males also could experience selection on
genes expressed in the liver whose products are ultimately transported to the gonads or brood
pouch. This idea remains speculative at the moment, but we feel that the role of the liver in
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postcopulatory processes, especially in sex-role-reversed organisms, is a topic that deserves fur-
ther exploration.

Environmental Endocrine Disruptors in Pipefish
Syngnathid fishes are potentially useful for the study of endocrine disruptors in marine envi-
ronments, because many pipefishes and seahorses occur in shallow coastal waters throughout
the world [47]. Furthermore, many syngnathids, including the Gulf pipefish, lack a pelagic dis-
persal phase, so most individuals probably complete their lifecycle near their birthplace. Thus,
pipefish have the potential to serve as sentinel species for endocrine disruptors in the marine
realm. Other work has shown that vitellogenin is upregulated in EE2-exposed pipefish males
[25,28]. Our results provide a number of other potential genes that could serve as biomarkers
of environmental estrogens in male or female pipefish, although males seem to be the best
choice for unambiguous evidence of endocrine disruption. One key feature of our study is that
we used environmentally relevant concentrations of EE2 (5 ng/L). Studies of EE2 in contami-
nated bodies of water have revealed levels of EE2 in the range of 30–50 ng/L and even as high
as 820 ng/L in some places [48,49,50]. Hence, gene expression changes in pipefish livers could
provide a sensitive method for the preliminary screening of sites with a high risk of deleterious
impacts from endocrine-disrupting contaminants.

Conclusions
Our results provide an important advance in the endocrinology of sex-role-reversed verte-
brates. In particular we found that the pipefish liver is sexually dimorphic and estrogen regu-
lated, suggesting that female reproductive physiology is regulated by estrogens in pipefish in
much the same way as in fish without sex-role reversal. In light of other work on sex-role-
reversed taxa, primarily birds, this result suggests that the ancestral mechanism of hormonal
control of female reproductive physiology has been retained across sex-role-reversed verte-
brates. However, a survey of the literature shows that secondary sexual traits are controlled by
a variety of mechanisms, and pipefish are somewhat unusual in that estrogens induce female
ornaments in males. Finally, sex-role-reversed mating behaviors remain a mystery, as their
proximate modulation has not yet been resolved in any sex-role-reversed taxon. Our results
also provide novel pipefish transcripts that respond to endocrine disruptors, which could be
extremely useful for screening coastal marine habitats for environmental estrogens. In short,
this study provides novel insights into sexual dimorphism and hormonal regulation of gene
expression patterns in the pipefish liver, setting the stage for future studies regarding the endo-
crinology of sex-role-reversed mating behavior in this interesting marine fish.

Methods

Experimental Design and Sequencing
Gulf pipefish were collected from Redfish Bay near Aransas Pass, Texas (N 27 53 39.07, W 97 7
51.69) on July 8th, 2013 under the Texas Parks and Wildlife permit number SPR-0808-307.
This study was approved by the Institutional Animal Care and Use Committee at Texas A&M
University (Animal Use Protocol # 2013–0020, Reference #001898) and fish were killed using
an overdose of MS-222. We collected only pregnant males and females with well-developed iri-
descent bands, ensuring that all individuals were sexually mature. Males were allowed to give
birth before being used in the experiment. Fish were dipped in freshwater for ten minutes to
remove any external parasites and then acclimated to 26-ppt salinity tanks at Texas A&M
University. The 17α-ethinylestradiol powder, of 98% purity, was acquired from Sigma
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(#SLBF2546V) and dissolved in 200-proof ethanol from Sigma (#SHBD6226V). All tanks held
7 liters of water and were initially dosed with 50 μl of either a 7ng/10μl stock EE2 ethanol solu-
tion to have tank concentrations of 5ng/L EE2 or 50 μl of ethanol without EE2 for the controls.
The chosen concentration of 5 ng/L EE2 was selected because it is within the range of EE2
found in contaminated bodies of water in nature and also because long-term exposure to this
concentration has been shown to cause entire breeding populations of some fish species to col-
lapse [49,51,52]. Ten percent water changes were completed daily to ensure that EE2 concen-
trations remained at a constant 5ng/L as established by [26].

To generate each pregnant male, we placed one non-pregnant male and one female together
in a clean, EE2-free saltwater tank until the male became pregnant. Each pair was also assigned
a non-pregnant male, size matched with the pregnant male but not paired with a female. On
the second day of the male’s pregnancy, all three fish were photographed, measured, and ran-
domly assigned to treatments of either experimental tanks of 5ng/L EE2 concentrations or the
EE2-free control tanks on the second day of pregnancy. The three fish were held in 7L tanks
with glass dividers between the fish that allowed for water exchange but otherwise kept the fish
isolated from one another. After seven days of exposure, that is, on the ninth day of the male’s
pregnancy, fish were sacrificed using MS-222 and the liver was dissected. Dissections were
done with the fish soaked in RNAlater under a microscope with tissue immediately frozen on
dry ice and stored in the -80°C freezer. The control and 5ng/L EE2 treatments were replicated
5 times resulting in a total of 30 fish, including 5 females, 5 pregnant males, and 5 non-preg-
nant males from each treatment (i.e., EE2 and control).

RNA was isolated from the dissected livers using a TRIzol1 Reagent (Life Technologies,
Carlsbad, CA) extraction method modified from [53]. Total RNA was sent to the Michigan
State University RTSF Genomics Core where libraries were prepared using the TruSeq mRNA
Library Prep Kit v2. Libraries were tested for quality control using Caliper GX and qPCR meth-
ods. All 30 individuals were barcoded, allowing for each individual’s sequence data to be recov-
ered. The 30 libraries were sequenced using two lanes of an Illumina HiSeq 2500 Rapid Run
flow cell v1. Base calling was done by Illumina Real Time Analysis (RTA) v1.17.21.3 and output
of RTA was demultiplexed and converted to FastQ with Illumina Bcl2fastq v1.8.4.

Transcriptome Assembly
A total of 805 million 150 bp paired end reads were obtained from the MSU Genomics core
and were then trimmed with Trimmomatic [54] using the following settings: HEADCROP:12,
LEADING:10, TRAILING:10, SLIDINGWINDOW: 4:15, MINLEN: 50. All of the paired,
trimmed files were next run through the program FLASH to identify and collapse overlapping
reads before starting the assembly [55]. All of these prepared reads from the 30 individuals
were assembled into a single transcriptome with Trinity using version trinityrnaseq_r20140717
and the default parameters [56]. The Trinity assembly consisted of a total of 174,578 Trinity
transcripts and 130,728 Trinity ‘genes’, referred to as contigs throughout the paper. The Trinity
assembly had an N50 of 1866, an average contig size of 973 nucleotides, and a total of
169,973,948 assembled bases. From the Trinity assembly, the contig with the longest open
reading frame (ORF) per ‘gene’ was retained in the final transcriptome. Rsem was used to map
the paired, trimmed reads from all of the individuals to the retained contigs, hereafter referred
to as the “liver transcriptome” [57]. The contig counts (FPKM) from Rsem were then analyzed
using EBSeq to identify differentially expressed contigs across the treatments and categories
within the treatments [58]. Finally, the contigs reported by EBSeq to be differentially
expressed were blasted against the non-redundant protein database at NCBI. We also used
Blast2Go to ascertain Gene Ontology (GO) functions [59]. To assess the completeness of our
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transcriptome, we used the program CEGMAv2.5, Core Eukaryotic Gene Mapping Approach,
and recovered 244 complete sequences and 247 partial gene sequences from the CEGMA data-
base containing 248 core eukaryotic genes, using a default e-value of 10 [60]. From these
CEGMA results, we can conclude that our liver transcriptome has a very high level of com-
pleteness, because the majority of the conserved core eukaryotic genes are represented. This
CEGMA analysis was employed only to assess the completeness of our transcriptome assembly;
all other analyses used the full set of 130,728 Trinity ‘genes’.

Analysis
After assessing differential expression in all pairwise treatment comparisons, we identified
genes that had at least a 2-fold expression difference between control females and control
males. These genes were considered to be sexually dimorphic, and their expression patterns
were analyzed in all groups, including EE2-exposed fish, using heat maps. Heat maps were gen-
erated in R [61] using the package gplots [62]. We also utilized a principal components analysis
(PCA) using prcomp in R (R Core Team) to compare gene expression patterns across the treat-
ments. For this analysis, we removed all contigs that had less than the mean number of reads
mapped to them (3,090 reads) across the 30 fish from the two treatments.

To address whether the expression patterns we found showed signs of sex-role reversal, we
compared our results to those from a similar study in zebrafish [23], a species with conven-
tional sex roles. The zebrafish study exposed males and females to water containing 5 μg/L
17β-estradiol (i.e., a 1000-fold higher concentration than we used in our study) for 48 hours
and investigated transcriptome expression in the liver. We were interested in whether female
pipefish have similar gene expression patterns to zebrafish females, and whether males exposed
to estrogens respond similarly in species with conventional sex roles (zebrafish) and reversed
sex roles (pipefish). Venn diagrams were created to compare the number of genes with female-
biased expression patterns in control females and the number of up-regulated or down-regu-
lated genes in estrogen-exposed males. To carry out the comparisons between species, gene
names were generalized by removing subunit isoform types and by grouping some gene
families.
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S1 Fig. A PCA for all six treatments using all genes with a mean number of transcripts
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exposed pregnant males cluster closer to the female treatments than other male groups.
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S1 Table. Full list of differentially expressed genes between control females and control
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S2 Table. Full list of differentially expressed genes between control pregnant males and
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