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ABSTRACT

In providing an independent measure of the expansion history of the Uni-

verse, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia

supernovae (SNe Ia) in the near-infrared bands Y and J . These can be used to

construct rest-frame i-band light curves which, when compared to a low-z sam-

ple, yield distance moduli that are less sensitive to extinction and/or decline-rate

corrections than in the optical. However, working with NIR observed and i-band

rest frame photometry presents unique challenges and has necessitated the de-

velopment of a new set of observational tools in order to reduce and analyze

both the low-z and high-z CSP sample. We present in this paper the methods

used to generate uBV griY JH light-curve templates based on a sample of 24

high-quality low-z CSP SNe. We also present two methods for determining the

distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the

Hubble Flow are used to calibrate these methods. We then apply the method
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and derive distances to seven galaxies that are so nearby that their motions are

not dominated by the Hubble flow.

Subject headings: cosmology: observations - cosmology: distance-scale - super-

novae: general - techniques: miscellaneous

1. Introduction

Type Ia supernovae (SNe Ia) are now well established as precise standard candles.

After accounting for the well-known correlation between peak-magnitude and decline rate

∆m15(B), the rms variation from supernova to supernova typically amounts to less than 0.15

magnitudes (Folatelli et al. 2010, hereafter F10) (Hamuy et al. 1996a; Prieto et al. 2006;

Frieman et al. 2008; Hicken et al. 2009). With a typical peak bolometric luminosity of

LSN ≃ 1043erg · s−1, SN Ia can be observed from the ground and space out to cosmologi-

cal distances, thereby constraining the expansion history of the Universe (Freedman et al.

2009; Kessler et al. 2009; Wood-Vasey et al. 2007; Astier et al. 2006; Perlmutter et al. 1999;

Riess et al. 1998). They can also be used in the local Universe to determine distances to

galaxies that are beyond the reach of more accurate distance indicators such as Cepheid

variables, yet are close enough that large scale structures could significantly perturb the

Hubble distance.

It is well known that the decline-rate corrections for SNe Ia are largest in the ultra-

violet bands (where the correction can be as high as 0.5 mag), decrease steadily through

the optical bands, and are almost non-existent in the NIR bands (Krisciunas et al. 2004;

Wood-Vasey et al. 2008). Furthermore, SNe Ia, like all standard candles, are affected by

interstellar extinction both from the Milky Way and their host galaxies, to say nothing of

any possible extinction in the intergalactic medium (IGM). Extinction by dust is known to

decrease with wavelength (Cardelli et al. 1989; O’Donnell 1994, hereafter CCM+O). For a

typical line of sight in the Milky Way (where RV ∼ 3.1) with 1 magnitude of extinction in

U band, we would expect extinctions of 0.85 mag in B band, 0.66 mag in V band, 0.54 mag

in R band, 0.39 mag in I band, 0.19 mag in J band, 0.12 mag in H band, and 0.08 mag

in K band. For these reasons, the CSP measured the expansion history of the Universe by

constructing a rest-frame i-band Hubble diagram, thereby reducing its exposure to decline-

rate calibration uncertainties and interstellar extinction corrections. In so doing, the CSP

was designed to provide an independent constraint on the cosmology which is less sensitive

to a variety of different systematic errors (Freedman et al. 2009; Folatelli et al. 2010).

In addition to using an independent high-z data set, the CSP also has the advantage
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of an independent, high-quality sample of low-z SNe Ia that have been observed in several

wavelengths: uBV griY JHKs, all using the same telescope and set of filters at the Las

Campanas Observatory (LCO). This sample of approximately 100 SNe Ia will provide a

uniform sample in a photometric system that is well understood and will be invaluable for

future supernova studies (Contreras et al. 2010).

SNe Ia are transient objects whose light curves rise very rapidly. As a consequence,

it is often the case that dedicated observations begin only after the peak has occurred.

Furthermore, using SNe Ia for cosmological experiments requires working with light curves

whose signal-to-noise ratio (S/N) is significantly lower than the low-z sample to which they

are compared. For these reasons, there is a need to fit the observed light curves with

interpolating functions, often termed light-curve templates, constructed from well-sampled,

high S/N light curves of nearby SNe Ia. It is well known that there is a significant evolution of

the light-curve shape with decline rate, especially at longer wavelengths, and the light-curve

templates should capture this behavior. The resulting light-curve templates can then be fit

to the observations, resulting in an estimate of the time of maximum, peak magnitudes, and

decline rate. By combining multi-band photometry, one can also learn about the amount of

reddening, the reddening law, and discriminate amongst SN Ia sub-types.

There are several well-established light-curve fitting methods in the literature. At the

time the CSP began to analyze the data from its first campaign, the two leading meth-

ods were SALT (Guy et al. 2005) and MLCS2k2 (Riess et al. 1996; Jha et al. 2007). SALT,

which generates light-curve templates by modeling the underlying SN Ia spectral energy

distribution (SED), could not be readily used as its SED wavelength range did not include

rest-frame Sloan i band. MLCS2k2 was capable of fitting rest-frame Johnson I band, how-

ever that would have required the use of non-trivial transformations – termed S-corrections

(Stritzinger et al. 2002) – from our low-z Sloan i-band observations to Johnson I band.

The transmission functions of i band and I band are significantly different (see Figure 1)

and computing S-corrections would have introduced a significant source of error. Presently,

SALT2 (Guy et al. 2007) and SifTO (Conley et al. 2008) have joined the ranks of light-curve

fitters and are capable of working in rest-frame i. However, these software packages are all

optimized to work at optical wavelengths and in some cases are “trained” using significantly

different passbands than the CSP. It was therefore decided that the CSP would generate its

own light-curve templates based on its uBV griY JHKs natural system, with emphasis on

generating accurate light curves in the NIR wavelengths. We also wanted software that would

be easy to use, and also easy to extend by adding new SNe Ia and new filters to the sample.



– 4 –

Python1 was chosen as the software development environment because of its portability to

most operating systems, the availability of powerful numerical and astronomical modules,

and its open-source license. The simple light-curve generating code soon evolved into a more

general package for the analysis of SN Ia light curves and spectra, called SNooPy2.

This paper outlines the numerical methods used by SNooPy to generate template light

curves in the CSP natural system passbands and the models used to derive distances to

SNe Ia. Section 2 briefly describes the CSP photometric system. We describe the methods

for generating light-curve templates and estimating the statistical and systematic errors

therein in section 3. Section 4 discusses the use of templates in determining distances in

both the local Universe and for cosmology. Section 5 presents a summary and forecasts

future work.

2. The CSP Photometric system

The low-z CSP is strictly a follow-up program, relying on other projects to provide us

with SN events. Our primary source was the Lick Observatory Supernova Search (Filippenko et al.

2001, LOSS). We also observed events from other surveys including the SDSS-II Supernova

Survey (Frieman et al. 2008), the Catalina Sky Survey (Drake et al. 2009), the CHilean

Automatic Supernova sEarch (Pignata et al. 2009, CHASE), as well as from many amateur

observers3. Table 1 lists the names and properties of the 36 SNe Ia observed by the CSP

that will be used in this paper to generate light-curve templates and calibrate the distance

methods. This sample comprises the 34 SNe Ia from F10 as well as 2 other SNe Ia that

were added in order to improve our NIR light-curve templates. The photometry of these 2

additional SNe Ia (SN 2006et and SN 2007af) will be presented in the next CSP data release

paper (Stritzinger et al. in preparation). Included in Table 1 are the host galaxy names,

recessional velocities (heliocentric and CMB-frame), time of earliest photometric observation

of the SN, and Milky Way reddening.

1http://www.python.org

2Following the well-established convention of ending (or beginning) Python-based packages with “py”,

SNPy was a logical acronym. Adding the “oo” removed any ambiguity in pronunciation (and can stand for

“object-oriented”). We have since discovered the existence of a photometry package called SNOoPY. It is

our hope the difference in case will avoid confusion. The SNooPy software package is available from the CSP

website: http://www.obs.carnegiescience.edu/CSP

3A complete list of SNe, including discovery credits, can be found on the CSP website:

http://www.obs.carnegiescience.edu/CSP

http://www.obs.carnegiescience.edu/CSP
http://www.obs.carnegiescience.edu/CSP
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As well as photometric observations, the CSP has observed most of its candidates spec-

troscopically. Aside from determining the type of SN, spectral coverage allows us to compute

more accurate K- and S-corrections, as well as contribute to the growing library used to create

composite spectra of SNe Ia (Hsiao et al. 2007; Nugent et al. 2002).

The CSP began observations in 2003, using the Swope 1-m telescope and du Pont 2.5-

m telescope at LCO. The Swope’s direct CCD was used to obtain the optical photometry

(uBV gri) of SN events and its NIR camera (RetroCam) was used to obtain NIR photometry

in Y JH for the brightest events. The du Pont was used to obtain host galaxy observations

after the SNe had faded using both the direct CCD and the NIR camera (WIRC). WIRC was

also used to obtain NIR observations in the Y JHKs bands. The details of the observations,

data reduction, and photometric systems are described in detail in Hamuy et al. (2006),

Contreras et al. (2010), and Folatelli et al. (2010). For this paper, we wish to point out that

all CSP photometric data are presented on the natural system of the Swope. That is to say,

the photometric data points have been calibrated to zero-points defined by the CSP band-

pass responses on a standard SED (in our case, Vega). The band-passes are constructed

from the filter transmission functions, telescope and CCD efficiencies, and estimates of the

atmospheric absorption. They have not been transformed to some idealized standard filter

system (e.g., Johnson BV , Cousins RI, etc). This greatly simplifies the use of our data by

other groups, as S-corrections are much more straightforward (see appendix A).

The definition of the CSP photometric system relies entirely on the transmission func-

tions and the standard SED. The latter has been measured to a high degree of precision

by Bohlin (2007) using the Hubble Space Telescope. The CSP passbands (see Figure 1),

on the other hand, are constructed from manufacturer’s specifications, models of reflectiv-

ity/transmissivity of the optical components, and measurements of the atmospheric absorp-

tion. These proved inaccurate, as they did not correctly predict the observed color terms

measured at the telescope. We therefore modified the theoretical response curves by shifting

them in wavelength until they predicted the correct color terms. For u band, we also had to

cut the blue-end of the filter. The details of these corrections can be found in Appendix A

of Contreras et al. (2010). To improve this situation, a group from Texas A&M have used a

monochromator and photo-diode setup to measure the transmission functions directly. Pre-

liminary results indicate that, except for the u band, our theoretical curves are very close to

the actual curves. The updated transmission functions and zero-points will be presented in

the next CSP SN Ia data release.
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3. Template Generation

At present, SNe Ia are most often analyzed in terms of their light curves. In the blue

bands, a typical SN Ia rises rapidly after the initial explosion, reaching a peak approximately

19 days later and then decaying on a time-scale of a few months. This morphology naturally

introduces several general characteristics: a peak brightness, the time of the peak, and

the “width” of the light curve. Observing in N different wavelength bands also allows a

determination of N − 1 independent colors. If SNe Ia are truly standardizable candles, then

any point on the light curve is as good as any other, though the peak is a natural point on

which to focus, since the S/N is highest there and its temporal location is unambiguous. As

such, many of the light-curve parameters are defined in terms of the peak. However, models

are usually fit to the entire light curve, and so all the data points contribute (in a weighted

fashion) to the estimation of the parameters. So even though a SN may not be observed at

maximum, its peak brightness can still be inferred from the rest of the light curve. In this

section, we detail how we parameterize the SN Ia light curves, how we classify each SN in

our sample, apply K-corrections, and finally construct the light-curve templates.

3.1. Parameterization

Early on, it was determined that the B, and to some extent V band light curves could

be described by a single light-curve template that one would “stretch” in the time domain to

fit the observed data (Perlmutter et al. 1999). Yet, as one moves to the longer wavelengths,

an inflection develops around day 20 in r band and evolves into a secondary maximum when

observed in the i band. This second peak increases in prominence to the point where it can

be the brighter of the two peaks in the NIR bands. It also becomes evident that a simple

“stretch” correction cannot account for the more complicated morphology, given that as the

stretch decreases, the NIR secondary peaks become progressively weaker.

Instead of using a stretch-like correction, we can assume that a light-curve template

for any particular filter is a 1-parameter family of curves. The different light-curve fitting

packages in the literature all use different parameters to describe the shape: MLCS2k2 uses

a luminosity parameter ∆ (Riess et al. 1996; Jha et al. 2007), while SALT2 uses a stretch-

like parameter x1 to describe a sequence of SEDs of SN Ia further modified by a color-like

parameter c (Guy et al. 2007). SNooPy is a natural extension to the method of Prieto et al.

(2006), which built on earlier work by Hamuy et al. (1996b) and so we choose to use the

decline-rate parameter first introduced by Phillips (1993), ∆m15(B), defined as the change

in magnitudes between the peak and day 15 of the rest-frame B-band light curve. The

advantage of this parameter lies in its simplicity: it is a characteristic of the observed light
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curve and is easily measured. Its disadvantage is that it is tied to a particular filter and

photometric system (in our case, the CSP natural B filter) and is therefore not universal.

It is also based on two specific epochs that may not be observed and so some degree of

interpolation is required to measure it.

Our first task, then, is to measure ∆m15 (B) for all the SNe Ia we can in our sample.

By necessity, these will be SNe for which a clear and unambiguous peak is observed in the B

light curve. Column 5 of Table 1 shows the epoch of the first observation of each of our SNe,

relative to B-maximum. Those SNe for which t0 < 0 can be used for creating B templates.

The light curves for other filters peak at different times relative to B, so not all filters will

necessarily have a well-defined peak, particularly the NIR bands, where the peak is typically

4 days prior to B maximum. Column 7 of Table 1 indicates the filters whose light curves

have well-defined peaks and are suitable for creating templates. However, before we can go

about measuring ∆m15 (B), and determining peak magnitudes, we need to correct for the

red-shifting of each SN Ia’s SED.

3.2. K-Corrections

The first step in the process is to correct for the fact that the observed supernova SED

has been redshifted by an amount (1 + zhel) and so we are effectively observing with filters

that have been blue-shifted in the rest-frame of the SN. We must therefore K-correct the

observed photometry. The procedure we adopt for doing this is effectively the same as that

used by Hsiao et al. (2007), which we shall briefly outline here.

In order to compute a K-correction in filter x for a SN Ia with heliocentric redshift zhel,

we use the following equation:

Kx (t− tmax (B) , zhel) = 2.5 log (1 + zhel)+2.5 log

[

∫

Fx (λ) Φ (λ; t− tmax (B))λdλ
∫

Fx (λ) Φ (λ/ (1 + zhel) ; t− tmax (B))λdλ

]

(1)

where Fx (λ) is the response for filter x, and Φ is the intrinsic SED of the SN Ia. Unfor-

tunately, due to limited telescope resources, the SED of the SN Ia is not observed at every

epoch, nor with sufficient wavelength coverage to compute K-corrections for all filters. We

therefore use the SED sequence developed by Hsiao et al. (2007) as a proxy. In order to

account for any possible reddening or intrinsic difference in the color of the SN Ia, we color-

correct the SED by multiplying the original Hsiao SED by a smooth function such that the

observed colors match synthetic colors derived from the corrected SED. Figure 2 shows sam-

ple K-corrections derived from both the original Hsiao SED, as well as one modified to match

the observed colors, plotted as a function of time for SN 2005ag. For the smooth function, we
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chose a tension spline (Renka 1987) with sufficient tension to produce the observed colors to

within approximately ±1%. The tension spline gives us sufficient freedom to reproduce the

observed colors, while remaining more well-behaved than conventional splines. Also shown

in Figure 2 are the K-corrections derived from observed spectra of SN 2005ag obtained by

the CSP. In general, the agreement is excellent except for two epochs in V and g band,

near 30 days after B maximum. This is due to a difference between the spectral features

of the actual SED and the Hsiao SED. Figure 3 shows the 4 spectra of SN 2005ag and the

corresponding Hsiao templates. The observed spectrum shows a more prominent feature

near λ = 6000 Å, which leads to the discrepancy in the K-correction. This illustrates the

limitations of using a single spectral template for all SNe Ia and the need for more spectra

in order to construct a more generalized SED sequence.

To compute the K-corrections, we therefore need to measure the time of B-maximum,

tmin (B) and the observed colors u − B, B − V , V − r, r − i, i − Y , Y − J , and J − H

as a function of time. To determine tmin (B), we fit the B-band light curve with a cubic

spline and solve for the time at which the derivative is zero. We also fit splines to the other

light curves in order to interpolate any missing photometry when computing all the required

colors. This spline fitting procedure is further described in the following section.

3.3. Spline Fits

Once the light curves have been K-corrected, we proceed to measure ∆m15 (B) and the

peak magnitudes in each filter. For this, we fit cubic splines to the light curves, compute

where the derivative is zero, then use the spline to interpolate the brightness of the light

curve at that point. This allows us to measure tmax (B), which we use as the reference

time for all the light curves. We can then correct the light curves for time dilation by the

factor (1 + zhel). Finally, we can interpolate the value of the B light curve at 15 days after

maximum in the frame of the SN Ia, from which we compute ∆m15 (B).

The business of fitting splines is a tricky one. Most spline algorithms (e.g. Renka

1987; Dierckx 1993) define some kind of smoothing parameter (or tension) that allows the

user to trade off between closeness of fit and smoothness of the function. To remove the

subjectiveness of this, one can vary the smoothing parameter until the residuals are consistent

with the errors (e.g., χν ∼ 1), but that requires properly estimated errors (and covariances).

Alternatively, one can examine the statistical properties of the residuals. If the spline is too

smooth, then one expects that the residuals will be correlated on some length-scale (i.e.,

several adjacent points will be systematically under(over)-estimated by the spline, followed

by several that are systematically over(under)-estimated by the spline). Making the spline
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less and less smooth will decrease the auto-correlation in the residuals. Thijsse et al. (1998)

use the Durbin-Watson statistic (Durbin & Watson 1951), which measures the degree of

auto-correlation in the residuals, to decide where to stop smoothing the spline and we use

their algorithm for interpolating the light curves.

Fitting splines is a non-linear process and in order to compute uncertainties for the

values of tmax (B), ∆m15 (B), and the peak magnitudes of the other filters, we perform

Monte-Carlo simulations. The covariance matrix of the photometry (see Contreras et al.

2010) is used to make realizations of the original light curves and each realization is re-fit

with splines and the light-curve parameters are re-computed. The second and fourth columns

of Table 2 list the decline rate parameter ∆m15(B) and tmin (B) derived from the spline fits.

The errors are the standard deviations of the Monte-Carlo-generated parameters.

3.4. Light-Curve Templates and Errors

We have a subset of 24 local SNe Ia whose B-band light curve has a well-defined peak

observed in a set of filters {Fj}. For each SN, we can measure ∆m15(B) for each SN directly

from the B light curve, giving us a set {∆m15(B)i}. Each photometric data point then defines

a coordinate (λj, t− tmax,i (B) ,∆m15 (B)i , fj/fj,max), where λj is the effective wavelength

of filter j, t is the epoch of observation, tmax,i (B) is the observed time of maximum in the B

band4, fj is the observed flux through filter j, and fj,max is the observed flux at maximum.

Together, these points define a sparsely-sampled 4-dimensional surface. Generating a light-

curve template can therefore be thought of as interpolation on this surface. In fact, because

filter band-passes are more complicated than simple delta-functions, interpolation in the λ

dimension is too simplistic a procedure and we must resort to using S- and K-corrections

when fitting obvserved data at significant redshifts or in different passbands. Therefore, the

problem reduces to interpolation on a finite set of 3-dimensional surfaces, one for each filter.

Figure 4 shows the distribution of data for B band and i band for those SNe Ia that have

well-defined peak magnitudes.

Interpolation on a surface defined by sparsely-sampled data (commonly referred to as

Kriging) is a common problem in science and there exist many numerical solutions to the

problem. By inspection of the most densely sampled light curves and the seemingly gradual

evolution of the light-curve morphologies with ∆m15(B), the underlying surface we wish

to interpolate is very smooth and locally can be approximated by a low-order polynomial.

4For simplicity, we have chosen tmin (B) as reference time for all filters. One could also measure indepen-

dent reference times for each filter and this will be investigated in the future.
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The GLOESS algorithm (Persson et al. 2004), a variant of the more well-known LOESS

(Cleveland et al. 1991) interpolator, is therefore appropriate in this case and we use a 2-

dimensional extension which we call GLOESS2D.

3.4.1. GLOESS2D

GLOESS2D works by fitting a bi-variate polynomial function of order n to an observed

set of (xi, yi, zi) points and using this polynomial to interpolate z0 at the point (x0, y0).

However, to make sure the interpolant reflects the underlying local trends of the data, the

observed points are given the following weights:

wi =
exp

[

− (xi − x0)
2 /2σ2

x − (yi − y0)
2 /2σ2

y

]

σ2
i

, (2)

where σi are the uncertainties in zi, and σx and σy are the widths of the Gaussian window

function. In this way, σx and σy set the smoothing scales in the x- and y-directions such

that observed points for which (x− x0) ≫ σX or (y − y0) ≫ σy have very little effect on the

interpolation.

The advantage of this approach over previous weighting schemes (e.g. Prieto et al. 2006)

is that neighboring light curves with similar ∆m15 (B) can serve to fill in temporal gaps in

the observations. Nevertheless, the initial release of the low-z CSP data still has significant

gaps in the light-curve data, particularly at late times and for large values of ∆m15 (B). This

requires an adaptive weighting scheme. We construct a 2D metric distance to each point on

the surface: d2i = a2 (t0 − ti)
2 + b2 (∆m15,0 −∆m15,i)

2 where a and b are arbitrary inverse

scales. Each point on the surface is then assigned a weight

wi =
exp (−d2i )

σ2
i

, (3)

where σ2
i is the variance of the data point. This weight is of course dependent on the scales

a and b, which in effect control the “smoothness” of the interpolating function in either

dimension. Ideally, one would set these to some constant scale, however our data at present

have enough “gaps” that choosing too small a scale leads to unstable fits, whereas choosing

scales that are too large results in templates that fail to capture the complex behavior of

the reddest filters. We have found that the data, at present, are fit best with a constant

1/b = 0.3 and 1/a = 3 + 0.1 (t− tmax). The latter captures the fact that observations are

most densely sampled in time near the peak and that the light curves follow an exponential

decay at late times. As our sample grows and the gaps fill in, this functional form for a will

no longer be necessary.
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Using this interpolating algorithm, we can fit a smooth surface for each filter. Generating

light-curve templates can then be done by sampling along a constant-∆m15(B) slice of these

surfaces at arbitrary resolution. More useful for SNooPy is simply interpolating the epochs

at which the SN Ia was observed for a given value of ∆m15 as part of a least-squares fitting

routine.

Note that there is no “training” involved in this procedure. We are simply interpolating

on a surface defined by a pre-existing set of SNe Ia. Data can be added or subtracted at

will and the effects are immediate (a fact we exploit in the next section). Sample light-

curve fits using SNooPy templates can be found in Contreras et al. (2010). In Figure 5, we

show light-curve fits for the two SNe Ia added to the sample for this paper: SN 2006et and

SN 2007af.

3.4.2. The Meaning of ∆m15

Now that we have the ability to create light-curve templates in any of the CSP filter

bandpasses, the meaning of the decline rate parameter is not so clear. Originally, we defined

∆m15(B) as the change in magnitude of the B-band between maximum and 15 days after

maximum. If we use the above procedure to generate a B light-curve template with a

particular ∆m15(B), there is no guarantee that the measured change in magnitude of the

template from peak to day 15 will exactly match the input ∆m15(B). Furthermore, when

fitting light curves with templates, all the data from all the filters contribute to the solution,

not just B-band data close to maximum and day 15. For this reason, the template-derived

value of the decline rate parameter, which we denote as simply ∆m15, can deviate both

randomly and systematically from the directly measured value, ∆m15(B).

Figure 6 shows a comparison between the value of ∆m15 derived from template fits

to those determined by F10. While there is random scatter as expected, there is also a

systematic trend as shown by the solid line, which has less than unit slope. This systematic

difference between ∆m15(B) and ∆m15 will have an impact on the calibration of our SN Ia

sample for determining distances. More precisely, we can expect that the ∆m15 luminosity

correction will have a smaller coefficient than the ∆m15(B) luminosity correction. This is

what we find in §4.3.1 and 4.3.2.
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3.4.3. Template Errors

Aside from exhibiting a more complicated light-curve morphology, it has been empir-

ically determined that SNe Ia show an marked increase in the variation in the light-curve

behavior at longer wavelengths for a given decline rate. In particular, Folatelli et al. (2010)

displayed the varied behavior of 4 SNe Ia with very similar ∆m15 (B): SN 2004eo, SN 2004ef,

SN 2006D, and SN 2006bh. In their Figure 8, the light curves in B, V , and i were compared

by normalizing to the maximum of each light curve. An important question immediately

arises: is the time of maximum truly the epoch at which the dispersion is minimized? In

order to address this, we reproduce F10’s Figure 8, but instead of normalizing to any par-

ticular epoch, we simply plot absolute magnitudes rather than apparent. To do this, we use

distance moduli based on a Virgo-corrected redshift obtained from the NASA/IPAC Extra-

galactic Database (NED), assuming a Hubble constant Ho = 72 km · s−1 ·Mpc−1, and by

correcting for reddening assuming values of E (B − V ) from F10. These absolute magnitude

light curves are plotted in left left panels of Figures 7 and 8. Due to errors in distance,

peculiar velocities, and/or differences in intrinsic luminosity, the light curves do not match

up exactly, however it can be seen that the differences are correlated between B and i bands.

It is also intriguing that SN 2004eo, whose i band light curve is significantly shallower than

the other 3, is more luminous by about 0.3 mag. If we compute offsets such that the B-band

light curves overlap (i.e., insisting that the 4 SNe are standard candles in B) and apply these

same offsets to the i band, it is readily seen that the i-band light curves do indeed have their

best agreement near the time of maximum. This is shown in the right panels of Figures 7 and

8. We also over-plot the SNooPy template for the average ∆m15 for this sample. The tem-

plate light curve, as expected, traces the average behavior of these 4 SNe Ia. Unfortunately,

the CSP only observed one (SN 2006bh) spectroscopically in the time interval where the 4

SNe Ia are most discrepant, so we cannot determine directly what causes these differences.

However, i-band covers a prominent spectra feature: the Ca II triplet, which is known to

vary greatly from SN to SN, even those with similar ∆m15. These variations are somewhat

related to the velocity structure of the ejecta and will be presented in greater detail in an

upcoming CSP paper (Folatelli, in prep.)

On the face of it, the i and NIR light curves present a problem for template-fitting: a

single parameter family of curves seems inadequate for properly reproducing the observations

away from maximum light. On the other hand, this opens up the possibility that there is

at least one more parameter one could employ to improve the fits, which could potentially

increase our knowledge of these events or even make them better standard candles.

It is beyond the scope of this paper (and this relatively small data set) to solve for

this second light-curve parameter, but this will be investigated further as the CSP sample
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increases. For the time being, however, we need to incorporate these intrinsic variations as

extra error in the template. The reason for this is to both ensure that the final statistical

errors in the light-curve parameters reflect these intrinsic variations and also to weight the

data near maximum more than at later times.

To estimate the extra dispersion, we use a bootstrap technique. From the 24 SNe Ia

that were used to construct the templates, we randomly choose the same number, with re-

placement, generating 100 different sample realizations. The templates are then re-generated

from these realizations and residuals from the master are computed. We then take the rms

scatter about the master as the 1-σ error in the template.

The results of this bootstrap method are shown in Figure 9, where we plot the 1-σ errors

as a function of time and ∆m15. In Figure 10, we show the special case of ∆m15 = 1.1 in

more detail, plotting each realization as a gray line and the rms line in red. We also plot the

template errors as dashed lines in Figure 5. It is immediately apparent that the i and NIR

light curves show greater dispersion than the optical. At least part of the reason for this

is the smaller number of SNe Ia for which we have sufficient NIR coverage, particularly at

the extreme ends of the ∆m15 distribution. For example, of the 24 SNe Ia that are used to

generate templates, only 18 were suitable for constructing the i-band templates and only 14

could be used for the NIR templates. Indeed, this lack of suitable light curves is what lead

us to use SN 2006X for the NIR templates, despite the fact it is known to have a light-echo

in the bluer bands. So although it is clear the NIR suffers from more intrinsic variation in

light-curve morphology than the optical wavelengths, this method currently overestimates

it. The same problem occurs for all filters at the high-∆m15 end, where the small number

of SNe Ia artificially increases the errors relative to other values of ∆m15. The addition of

more SNe from the later CSP campaigns will greatly improve the estimates of these errors.

3.4.4. Extrapolation Errors

Due to the fact that the intrinsic variations in the templates seem to increase at later

times, using them to fit data which begin after the maximum occurred will likely introduce

additional error when extrapolating back to the maximum. The magnitude of these errors

will of course depend on the filter and on how late the observations start. We therefore

estimate the extrapolation errors in the following manner: 1) for each filter, we assemble

those light curves from the sample whose peak magnitudes are well established and whose

light curve is sampled to at least 30 days after B-maximum; 2) we eliminate any data earlier

than tcut days after the time of B-maximum; 3) we fit this new data using templates and

compare the peak magnitudes, tmin (B) and ∆m15 to the originals.
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The results of these tests are shown in Figures 11, 12, and 13. In each figure, we plot the

differences between the fit parameter using the cut light curves and the original parameter

value as a function of cut time tcut. Each individual SN is plotted as a black point. We then

plot the median as a blue point and the median absolute deviation as the blue error-bar.

However, to measure the excess error due to extrapolation, we also compute the median

of the absolute deviation minus the error reported by the least-squares fit. These errors

are plotted as red error-bars. In almost all cases, the median residuals are consistent with

zero, indicating no systematic error in the extrapolated magnitudes at maximum, nor any

systematic error in the determination of ∆m15 or tmax. However, we do find significant excess

error due to the extrapolation as tcut becomes larger. In general, the errors seem to grow

rapidly until 10 days after B-maximum, then level off or even decrease. This is due to the

increased error in the templates near day 10 (see Figure 9). Table 3 lists the excess errors

that are adopted for use in SNooPy.

4. Distance Estimations

With template light curves in hand, we turn to the task of using them to fit a distance

to a SN Ia that is not in the calibrating sample. To do this, we propose the following model

for the observed magnitude of a SN Ia observed in filter x:

mx (t) = Tx (t− tmax; ∆m15) +Mx (∆m15) + f (y − z) + µ, (4)

where Tx is the light-curve template, parameterized by ∆m15, Mx is the absolute magnitude

of a SN Ia in filter x, f (y − z) is some function of the SN Ia’s color defined by filters y

and z, and µ is the desired distance modulus. Using the results of F10, we assume a linear

relationship Mx (∆m15) = ax + bx (∆m15 − 1.1) and a sample of low-z SN Ia are used to

determine ax and bx for each filter x. The choice of f (y − z) usually consists of either an

empirical correction proportional to the color y−z or a correction for an assumed extinction

E (y − z) due to dust. Both have advantages and disadvantages and we examine each in

turn.

4.1. Reddening as a Parameter

The distribution of observed colors of SNe Ia are usually attributed to two causes: an

intrinsic color that is correlated with the width of the light curve (the so-called redder-dimmer

relation) and the extinction by dust in both the Milky Way and the host galaxy (as well as

any possible dust in the IGM or surrounding the supernova itself). Unfortunately, these two
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effects work roughly in parallel and it is difficult to disentangle what is reddening due to dust

and what is an intrinsically red SN Ia. To separate the effects, one must isolate a subsample

of objects that are believed to be “unreddened” by dust, and analyze the intrinsic color

distribution of this subsample. This was done by F10, who derived simple linear formulae

for the intrinsic colors of SNe Ia: (y − z)
0
= ayz + byz (∆m15 − 1.1). Using these intrinsic

colors, they could then compute E (y − z) color excesses and hence extinction corrections

for their entire sample. For each band x, they then solved for the absolute magnitude as a

function of decline rate:

Mx = ax + bx (∆m15 − 1.1) (5)

which encapsulates both the brightness-∆m15 relation as well as the color-∆m15 relation.

With this calibration, we can construct a model of the observed light curve of any other

SN Ia:

mx (t) = Tx (t− tmax; ∆m15) + ax + bx (∆m15 − 1.1) +RBV
x E (B − V ) + µ (6)

where RBV
x is the ratio of total to selective absorption, defined as

Ryz
x ≡ Ax

Ay − Az

=
Ax

E(y − z)
. (7)

Naturally, at least two different bands must be observed for each SN Ia, otherwise E (B − V )

is degenerate with µ.

Because SNe Ia have SEDs that are significantly non-stellar, the reddening coefficient

will not follow standard extinction curves (e.g., CCM). Instead, the reddening coefficient

Ryz
x can be computed by 1) assuming an appropriately red-shifted SED for the SN Ia, 2)

applying an extinction curve A (λ) to the SED, 3) using the known filter functions to compute

synthetic extinctions in each filter, and 4) using equation (7). We use the extinction curve

derived by CCM+O, which can be parameterized by the reddening coefficient in the Johnson

V band (RV ), and the E (B − V ) color excess. Several recent studies have shown that SNe Ia

seem to “prefer” a low value of RV compared to the Milky Way average (Tripp & Branch

1999; Astier et al. 2006; Hicken et al. 2009). This could indicate that SNe Ia reside in peculiar

environments, or that there remains a luminosity-color relation that is independent of ∆m15.

F10 have tabulated several different values of RV obtained by minimizing residuals in the

Hubble diagram using different sub-samples and different filter combinations. As we wish to

simultaneously fit several filters at once using templates and with a single consistent RV , we

will derive our own calibration parameters in §4.3.1.

To further complicate matters, because the SED of a SN Ia evolves with time, not only

is Ryz
x a function of RV , it is also a function of time and to a smaller extent, E (B − V ) itself.
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As a result, the 4th term on the right-hand-side of equation (6) should, strictly speaking,

be a function of E(B − V ), and t. However, computing these behaviors is computationally

expensive and the magnitude of these effects are much smaller than the intrinsic dispersions

in the light-curve templates (see §3.4.3). We therefore treat RBV
x solely as a function of RV

and compute its value at the time of maximum for a typical E(B − V ) = 0.1.

This method was first used by Phillips et al. (1999) and we will refer to it as the “Color

Excess” model.

4.2. Reddening-Free Magnitudes

There are at least two problems with treating f (y − z) as reddening due to dust: 1)

determining which SNe are unreddened requires prior knowledge of the source of the red-

dening and 2) obtaining a truly unreddened sample is extremely unlikely. As we will show,

when one is interested only in distance, the extra step of isolating a subsample of SNe Ia

believed to be unreddened is an unnecessary one that only serves to introduce a possible

source of systematic error. However, if one is interested in the properties of the SN Ia, such

as intrinsic colors, extinction, or the possibility of a varying reddening law, then the color

excess method is required. The reddening model also has the advantage of easily combining

all filters into one model.

Despite this difficulty in separating what is reddening and what is intrinsic color varia-

tion, for the cosmologist these are simply nuisance variables. This has led several authors to

simply combine the two effects into one generalized color term and marginalize over it when

solving for the cosmological parameters (Astier et al. 2006; Hicken et al. 2009). This is a

sensible way to proceed and is a consequence of using reddening-free magnitudes (Johnson

1963; Freedman et al. 2009). A reddening free magnitude is defined as

wyz
x ≡ mx −Ryz

x (my −mz) (8)

where mx, my and mz are magnitudes observed through filters x, y and z. It is easy to

show that any reddening that obeys equation (7) will leave wyz
x invariant. Therefore, by

calibrating SNe Ia using reddening-free magnitudes, we obtain a standardizable candle that

requires no knowledge of their intrinsic color properties and no need to generate a subsample

of “unreddened” SNe. Using the same parameterization as before, we can define the absolute

reddening-free magnitude of a SN Ia as

W yz
x = ayzx + byzx (∆m15 − 1.1) (9)

where now ayzx and byzx are determined from the low-z sample of SNe Ia without the need

to first determine intrinsic colors and perform a reddening correction. The model for the
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observed light curve for a SN Ia is now

mx (t) = Tx (t− tmax; ∆m15) + ayzx + byzx (∆m15 − 1.1) +Ryz
x (my −mz) + µ (10)

Again, Ryz
x can be left as a free parameter, determined by the low-z calibrating sample.

Furthermore, if the reddening of SNe Ia is truly due to dust alone, then solving for Ryz
x can,

in principle, constrain the properties of the dust grains. This type of standardization was

first used by (Tripp 1998) and so we refer to it as the Tripp method.

Comparing equations (6) and (10) reveals that they are mathematically equivalent, with

the realization that aBV
x = ax − RBV

x aBV and bBV
x = bx − RBV

x bBV . The only difference is

that the method of §4.1 has the extra step of identifying the unreddened sample and using

it to fit for aBV and bBV . These two parameters will have formal errors, which must then

be carried through as systematic errors in the determination of the distance modulus. For

example, if aBV were in error by +0.01 magnitudes, then all color excesses would be in error

by +0.01 and therefore the distance modulus would be in error by −0.01RBV
x .

The use of Ryz
x as the coefficient to the color term should not be taken as an endorsement

of the idea that reddening is the sole cause of the color-luminosity correction in SNe Ia. Unlike

§4.1, we make no assumptions on the relationships of the different Ryz
x , nor impose any priors

on their values. Indeed, negative values are possible which would be considered unphysical

if interpreted as reddening coefficients. We simply hold to this notation to emphasize its

motivation (see equation (8)).

4.3. SN Ia Calibration

We now proceed to use our sample of low-z SN Ia in order to calibrate the parameters

from §4.1 and §4.2. This has been done previously in F10. In this case, however, we take a

somewhat different approach. First, we use all the SNe in the sample with redshift greater

than 0.01, including those whose peak brightnesses were not observed. Second, we use the

maximum brightnesses and ∆m15 values as derived from template fits alone (i.e., we do not

mix template and spline fits as was done in F10). Third, in the case of the Color Excess

model, we fit all the filters simultaneously, deriving a single best-fit value for the reddening

coefficient RV . Finally, we treat the extinction of each SN Ia in the Color Excess model as

a nuisance parameter to be determined as part of the fitting procedure. Because the Tripp

method does not assume any functional relationship between the color coefficients of the

different filters, we solve each filter combination separately as was done in F10.

To calibrate the absolute magnitudes, we must assume a distance modulus for each

SN Ia. We use the values determined by F10, most of which are determined from the
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CMB redshift and standard values of the cosmological parameters: H0 = 72 km s−1 Mpc−1,

ΩM = 0.28, and ΩΛ = 0.72 (Spergel et al. 2007).

In order to derive the best-fit parameters, we have chosen to use a Markov-Chain Monte-

Carlo (MCMC) approach, as it offers several advantages over the more traditional least-

squares method. Most importantly, it is a less biased estimator of the regression parameters

when significant error is present in the control variables (see Kelly 2007). Furthermore,

MCMC allows one to use more sophisticated models of the statistical processes that pro-

duced the data. Lastly, because the output of the MCMC method is a set of realizations

of the parameters drawn from the posterior probability distribution (PPD), one can easily

derive confidence intervals and covariances between the parameters. These covariances are

particularly useful when estimating the errors in distances derived using either method. De-

tails of the MCMC method and the specific models we use to fit the data are presented in

Appendix B.

4.3.1. Tripp Model

With the Tripp model, we are simply doing regression in 3 dimensions, so we describe

this model first. We choose 3 filters xyz from which we can derive reddening-free magnitudes:

mx − Ryz
x (my −mz). We then fit the model

mx = Myz
x + byzx (∆m15 − 1.1) +Ryz

x (my −mz) + µ (z) , (11)

solving for the Myz
x , byzx , and Ryz

x . Each SN Ia is fit with light-curve templates, from which

we can directly determine the maximum light in each filter: mx, my, and mz. The colors

in equation (11) are therefore pseudo-colors ymax − zmax instead of observed colors at a

particular epoch. We also solve for the intrinsic scatter in the relation, σSN as part of the

MCMC simulations (see Appendix B).

The results of the modeling are summarized in Table 4. Two sample solutions are shown

in Figure 14. We find that these values are consistent with F10 though, as mentioned earlier

in §3.4.2, the slopes byzx tend to be smaller. This demonstrates that the use of template fits

rather than spline fits does not introduce large systematic differences in the calibration when

using the Tripp method. As in F10, we calibrate with two subsamples: 1) all SNe Ia in the

Hubble flow, and 2) all SNe Ia in the Hubble flow, but excluding events with B − V > 0.4

(which excludes the two very reddened SNe Ia SN 2006X and SN 2005A, as well as the

fast-declining SNe Ia SN 2005bl, SN 2005ke, and SN 2006mr).
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4.3.2. Color Excess Model

In this case, we proceed somewhat differently. We wish to correct using a color excess,

for example E(B−V ). But any combination of two filters could be used to construct a color

excess (for instance, F10 used several combinations). In fact, given a value of E(B−V ) and

RV , one can use the CCM+O extinction law to predict any other color excess. So instead

of using observed colors, we parameterize the color-dependence as a single color excess for

each SN, E(B − V ), and use CCM+O to fit all wavelengths simultaneously. Under the

assumption that the color-luminosity correlation is due to reddening by dust, this allows us

to solve for one “reddening law”, RV for the entire sample instead of treating each color

coefficient separately, as we did in §4.3.1. For a given value of RV , we can derive the ratio of

total-to-selective absorption for any CSP filter x, Rx, by using its filter function, the SED of

a typical SN Ia (Hsiao et al. 2007), and an extinction law A (λ;RV , E(B − V )) derived from

CCM+O. We do this by using the following formula:

Rx (RV , E(B − V )) =
−2.5

E(B − V )
log10

(

∫

Φ (λ)Rx (λ)A (λ;RV , E(B − V )) dλ
∫

Φ (λ)Rx (λ) dλ

)

. (12)

We also solve for the intrinsic dispersion, σSN , for all filters combined.

In F10, the color excess was computed by isolating an un-reddened sample of SNe in

order to determine both the intrinsic colors as a function of ∆m15 as well as establishing a

Lira Law (Lira 1996) for the CSP filters. In our MCMC model, we choose to instead treat

each E(B−V ) as a parameter to be determined. We cannot assume a uniform prior on these

values due to the degeneracy between the extinction and the absolute magnitudes Mx (0).

We therefore must employ a prior on the extinction in order to penalize arbitrarily large

values of E(B − V ). We do this in two different ways.

First, we can use the “unreddened” subsample from F10 and assign these SNe zero

extinction, with some intrinsic scatter σc and the rest are allowed to have non-zero extinction.

We shall refer to this as the “blue prior”. Second, we can forget the “unreddened” sample

and assume a prior for E(B − V ) peaked at zero, with an intrinsic scatter of σc and with

a tail to higher extinctions with characteristic length τ . This is motivated by the work

of Hatano et al. (1998), who modeled the likely extinction disribution in host disk galaxies,

and the later analysis of Jha et al. (2007) who found that the colors of SNe Ia follow such

a distribution (see Figure 6 of Jha et al. (2007) and Figure 17 of Kessler et al. (2009)). We

shall refer to this as the “Jha prior”. Assigning this prior to each SN Ia, the MCMC method

should converge such that E(B − V ) = 0 for the bluest SNe.

Using these two MCMC models, we fit the calibration parameters once with all normal

SNe Ia (∆m15 < 1.7) in the sample then again with the two very red SNe (SN 2005A and
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SN 2006X) removed. This gives us 4 sets of calibration parameters that allow us determine

the systematic effects of the red SNe and of the assumed extinction prior.

Figure 15 compares the values of E(B − V ) derived through the MCMC model using

the blue prior to those of F10. There is a good deal of scatter somewhat above what would

be expected from the errors alone. However, there is a clear trend that the most reddened

objects in F10 are the most reddened objects in the MCMC analysis. The excess scatter is

due to a systematic trend with ∆m15 which we describe below.

The left panel of Figure 16 shows the difference between the values of E(B−V ) derived

using the two different extinction priors. As one can clearly see, there is no large systematic

difference between the two sets. However, whether we include the two red SNe does have

a systematic effect, as can be seen in the right panel of Figure 16, where we use the same

extinction prior. This is in agreement with the results of F10, who found that the two red

SNe Ia seem to follow a different reddening law than the bluer SNe Ia. Due to their very

red colors, SN 2005A and SN 2006X have a large pull on the values of RBV
X in equation (6),

favoring smaller values. The MCMC simulation then responds by modifying the values of

E(B − V ) in such a way that the average color correction is preserved: the redder objects

have more color excess to compensate the smaller RBV
X . This can also be seen in Table 5

where we list the wavelength-independent calibration parameters. The red SNe Ia drive RV

to lower values, however the bluer SNe Ia prefer a larger RV . As a consequence, including

the red SNe also increases the derived intrinsic dispersion in the SNe Ia.

The extinction prior and inclusion of the red SNe Ia has a smaller effect on the filter-

specific calibration parameters, which all agree to within the statistical errors. A marked

difference between these results and those of F10 is the difference in the slopes, bx. In F10,

the slopes were systematically higher and became smaller with redder filter. The reason for

the smaller slopes is due to two systematic effects. First, as shown earlier in Figure 6, there

is a systematic difference between ∆m15(B) and ∆m15 such that ∆m15(B) ∼ 0.9∆m15, and

so the ∆m15 correction factor, bx, will tend to be smaller. Second, there is also a systematic

difference between our estimates of E(B − V ) and those from F10 as a function of ∆m15.

These are shown in Figure 17 and clearly indicate a systematic difference correlated with

∆m15 in the sense that larger ∆m15 produces larger E(B − V ) than estimated in F10. In

this way, the ∆m15 dependence is partly absorbed into the E(B − V ) term of equation (6),

resulting again in smaller bx. The reason for this systematic difference in E(B − V ) is that

we have excluded SN 2006gt from our sample of “unreddened” SNe Ia. This one object had

a relatively large ∆m15 ∼ 1.7 and very red colors (B − V ∼ 0.2) and therefore tended to

make the SNe Ia intrinsically redder for larger ∆m15.

The calibration parameters for the Color Excess model are given in Table 6. For each
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parameter we show values derived with and without the red SNe, and also with the two

different E(B − V ) priors. Due to the fact that there does seem to be something different

about including these extremely red events, we recommend using the calibration which was

derived without them. This subsample most closely resembles calibration 6 in Table 9 of

F10. The fits to the absolute magnitude- ∆m15 relation for this subsample are shown in

Figure 18.

4.4. Systematic Error Budget

While fitting light curves with any least-squares method5 supplies us with reliable sta-

tistical errors on the light-curve parameters, care must be taken when computing the er-

ror in the absolute distance to a single galaxy hosting an individual (or group of) SN Ia

(Schweizer et al. 2008; Stritzinger et al. 2010). There are 4 kinds of systematics that need to

be taken into account in order to report accurate error estimates on SN Ia-derived distances:

1. The Hubble law was used to determine the absolute magnitudes of the SN Ia sample,

and so the assumed Hubble constant (H0 = 72 km · s−1 ·Mpc−1) sets the scale of all

derived distances. Currently, there has been a marked improvement in the error budget

for H0, having been reduced from ±10% (Freedman et al. 2001) to ±5% (Riess et al.

2009; Freedman & Madore 2010). Any further improvement of this error in H0 will

directly benefit SN Ia-derived distances.

2. The uncertainties the calibration parameters MX , bX , and RV introduce systematic

errors in the distance. The magnitude of these errors will depend on which filters are

used and their relative weights. There are also significant covariances between the

calibration parameters, particularly between the MX and RV . For this reason, com-

puting the systematic error is best done using Monte-Carlo techniques, drawing from

the posterior probability distribution output by the MCMC run. We have included

routines to do this in SNooPy.

3. After the ∆m15 and color-dependent corrections have been performed, there remains

an intrinsic dispersion in the SN Ia distances that is not explained by measurement

error. This extra dispersion σSN should be added in quadrature to the other systematic

errors for a single event. However, if multiple events are used to determine the distance

to a galaxy (see e.g., Stritzinger et al. (2010)), then these errors should reduce by
√
N6.

5We use the Lavenberg-Marquardt least squares algorithm, as implemented in the python package scipy.

6There is some evidence that the remaining residuals correlate with host galaxy properties
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4. If the SN Ia was observed in a photometric system different than the CSP, or if the

redshift of the object is sufficiently large to require cross-band K-corrections, then the

errors in the zero-points of each filter must be included. For the CSP filters, this

amounts to approximately 0.02 mag in the distance modulus (1% in distance). These

must be added in quadrature with the errors of any other photometric system used to

observe the SN Ia.

Which of these systematics should be included depends greatly on the application. For

instance, when using SNe Ia for cosmology, the error in the Hubble constant drops out, since

we are only interested in the relative distances between the SN Ia. However, if the absolute

distance to a galaxy is the quantity of interest, then all these errors must be taken into

account.

4.5. Hubble Diagram and Host Distances

Now that we have a calibration from the low-z sample, we can fit the full uBV griY JH

light curves of all 34 SNe in our sample (we do not use the two SN Ia that have ∆m15 >

1.7). To illustrate this, we construct a Hubble diagram using the measured CMB velocities

from NED, and the distance moduli yielded by the E(B − V ) model with the calibration

parameters derived in §4.3.2. Table 2 lists the parameters derived from the SNooPy fits, the

last column showing the distance modulii. We choose the calibration for which we excluded

the two red SNe Ia and used the blue subsample to anchor the colors, as this contains

the fewest nuisance parameters. The resulting Hubble diagram is shown in the top panel

of Figure 19. The points are the individual SNe Ia. The solid line shows the standard

cosmology (Ho = 72km · s−1 ·Mpc−1, Ωm = 0.28, ΩΛ = 0.72) used in F10 while the dashed

line shows the simple Hubble law v = HoD for comparison. The solid line is not a fit to

the data, as this would be completely circular, since the cosmology was assumed to derive

the calibration parameters in the first place. The residuals between the SNooPy-derived

distances and standard cosmology are shown in the bottom panel of Figure 19. As expected,

the dispersion increases at lower redshifts, where peculiar velocities exceed the Hubble flow

velocity. SN 2006X, in particular, stands out at the low-z end of the Hubble diagram. Its

residual is larger due to peculiar velocities, but also because we chose the calibration that

excluded it and SN 2005A.

(Gallagher et al. 2008; Sullivan et al. 2010; Lampeitl et al. 2010). In this case, one could argue the σSN

errors for a single galaxy would not reduce as
√
N . However, it is just as likely that the residuals are a

function of the progenitor’s environment, which could vary greatly throughout a galaxy.
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While the lowest-redshift SNe Ia (z < 0.01) cannot be used to calibrate the Tripp or

Color Excess relations, nor can they be used to constrain cosmological models, they are still

of interest, as they serve as distance indicators to their host galaxies. As such, SNe Ia can

serve as useful standard candles to those galaxies that lie in the “gap” between the furthest

measured Cepheids and the distance at which the Hubble flow can be considered to be in

excess of any expected peculiar velocities. The SNe Ia (and hosts) that have z < 0.01 are:

SN 2005W (NGC 691), SN 2005am (NGC 2811), SN 2005ke (NGC 1371), SN 2006D (MRK

1337), SN 2006mr (Fornax A), and SN 2007af (NGC 5584).

Of these low-z objects, we can determine distances to those for which ∆m15 < 1.7.

According to NED, NGC 691 has a Tully-Fisher distance of µ = 32.71±0.40 mag (Tully et al.

2008). This compares very well with the SNooPy distances of µ = 32.73 ± 0.13 mag using

SN 2005W. We could not find a velocity-independent distance for NGC 2811 with which

to compare our distance of µ = 32.33 ± 0.18 mag, however it is reasonably close to the

Virgo-corrected µ = 32.52 ± 0.15 mag reported by NED. The distance to MRK 1337 has

been measured by other authors (Mandel et al. 2009; Wood-Vasey et al. 2008) who derive

a distance of µ = 32.72 ± 0.06 mag using NIR observations of SN 2006D. We therefore

contribute an independent distance of µ = 32.71 ± 0.14 to SN 2006D, which agrees very

well. The treatment of the distance of Fornax A using SNooPy is discussed in a separate,

dedicated paper (Stritzinger et al. 2010). Finally, the distance to NGC 5584 has a Tully-

Fisher distance of µ = 31.48 ± 0.52 mag (Tully et al. 2008). While quite different from the

SNooPy distance of µ = 31.90 ± 0.11, it is well within the error and agrees well with the

Virgo-corrected µ = 32.10± 0.15 mag distance.

5. Conclusions

In this paper, we have presented SNooPy, a SN Ia light-curve template generator and

method appropriate for determining distances to nearby galaxies. These templates have

also been used to interpolate the peak rest-frame i-band fluxes of a sample of high-z SNe,

allowing the first i-band Hubble diagram out to redshifts of 0.7. To our knowledge, SNooPy

is the only fitter that can simultaneously fit SN Ia light curves from u band all the way to

the NIR H band. It therefore has the advantage of a very large wavelength coverage.

This purpose of this paper was mainly to present the methodology used by the CSP

to fit light-curves and provide a calibration that is more consistent with the way SNooPy

determines distances. The details of the light-curve templates and the calibration parameters

will no doubt change as more SNe Ia are added to the low-z sample. In particular, we caution

the reader that the small number (2) of significantly reddened objects leads to significantly
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different results when they are included in the calibration. We therefore recommend that

these calibrations not be used and present them only to illustrate the effects of including

these highly reddened SNe Ia. Indeed, objects such as these would be selected against in

high-redshift surveys. The mere fact that the CSP SNe were selected in a very different way

(targeted search) than the blind high-z surveys will lead to some systematic biases. These

systematics will be further investigated when larger numbers of CSP SNe Ia are available.

The construction of the light-curve templates, which represent some average behavior of

a sample of SNe Ia, has also revealed that at longer wavelengths, there is a marked increase

in the SN-to-SN variation in light-curve behavior, even at a given decline rate. Tentatively,

it also seems that the peak of the light curves show the least dispersion as standardizable

candles. This poses a challenge for the observer, as SN events are typically “triggered” in

the optical bands and the light curves peak earlier in the NIR. It is therefore often necessary

to use template light curves to extrapolate the peak magnitude. On one hand, the increased

dispersion in light-curve behavior will make this extrapolation more uncertain in the NIR.

At the same time, these variations hint that another light-curve parameter might be at work

and that this parameter may be correlated with residuals in the Hubble diagram. If this

turns out to be the case, the inclusion of NIR light curves will deliver a significant advantage

to SN Ia cosmology.

We have also presented a least-squares method to determine distances to SN Ia by

simultaneously fitting any combination of uBV griY JH photometry. This method gives

distance moduli with an rms scatter of about 0.06 magnitudes (3% in distance). However,

added to this small dispersion are the various systematic errors. These include the use

of the Hubble constant to determine the distances to the calibrating sample, the formal

uncertainties in the calibration parameters, the intrinsic dispersion in the luminosities of

SNe Ia, and errors in the photometric zero-points.

Reduction of these systematic errors will improve the use of SNe Ia as standard candles.

There is work being done to reduce the error in the Hubble constant to±2% (Freedman & Madore

2010), which will, by extension, greatly improve SN Ia distances. In this paper, we used ap-

proximately one third of the CSP low-z sample. Including the entire sample will reduce

the errors in the calibrating constants, thereby reducing the systematic errors. The intrinsic

dispersion in the SN Ia luminosities, σSN , will not improve with a larger calibrating sam-

ple. Lastly, the CSP is currently working on directly scanning the filter, CCD and telescope

throughputs in order to reduce the uncertainty in the photometric zero-points as well as

improving S- and K-corrections.

Using SNooPy, we have fit the distances of several SNe Ia that are not in the Hubble

flow. Comparison of these distances with other methods gives good agreement in general,
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particularly when comparing the same SN Ia distance to SN 2006D (MRK 1337).
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A. CSP Photometry

The CSP photometry has been published in natural magnitudes in order to simplify their

incorporation in other photometric systems. Here, we briefly explain the natural system for

the benefit of those who would wish to combine our data with theirs.

Because the filters used on a particular instrument and telescope are not perfect matches

to the filters used to establish a photometric system of standards, such as those presented in

Landolt (1992) and Smith et al. (2002), color terms are needed to convert observed instru-

mental magnitudes to standard magnitudes. This is typically done by observing a sequence

of standard stars with a spread in colors and comparing the instrumental magnitudes to the

published standard magnitudes, fitting a formula of the type A′ = A + ctA (B − C) where

A′ is the magnitude in filter A of a standard star in the standard system, A, B, and C are

instrumental magnitudes through filters A, B, and C, and ctA is the color term for filter

A. The CSP has determined their color terms and published them in Hamuy et al (2006),

which we reproduce here for convenience:

B′ = B + 0.060(0.013) (B − V )

V ′ = V − 0.057(0.013) (V − i)

u′ = u+ 0.051(0.017) (u− g)

g′ = g − 0.017(0.009) (g − r)

r′ = r − 0.019(0.017) (r − i)

i′ = i− 0.007(0.017) (r − i)

The problem is that these color terms are determined using stellar SEDs. SN Ia, in contrast,

have broad absorption features that vary with time, and so applying these equations to the

instrumental SN Ia to obtain standard magnitudes is not valid. This is the reason that

different telescopes observing the same SN Ia end up with significantly different magnitudes,

even though both data sets have been converted to a “standard system”. The solution to
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this problem is to publish natural photometry along with the filter functions used to make

the observations. This is done in the following manner.

First, the equations above are used in reverse to convert the standard magnitudes of

Smith et al. (2002) and Landolt (1992) into the CSP natural system. Then these new mag-

nitudes along with observations of the standard stars are used to determine the zero-points

for the observations of the SN Ia. In this way, the natural system magnitude through filter

A are equivalent to

mA = −2.5 log10

(
∫

FA (λ) ΦSN (λ)λdλ
∫

FA (λ)Φstd (λ)λdλ

)

(A1)

where FA is the filter function (including filter transmission, CCD and telescope response

functions, and atmospheric extinction) that corresponds to the telescope that actually made

the observations, ΦSN is the SED of the SN Ia that was observed, and Φstd is an average SED

of the spectral standards used to determine the zero-point. If another telescope observes the

same event through a different filter B and the magnitudes are published in its standard

system, then an S-correction is simple to determine:

SBA (t) = −2.5 log10

(
∫

FA (λ)ΦSN (λ)λdλ×
∫

FB (λ)Φstd (λ)λdλ
∫

FB (λ) ΦSN (λ)λdλ×
∫

FA (λ)Φstd (λ)λdλ

)

(A2)

where SBA (t) is an S-correction that converts a magnitude from system B into system A:

mA (t) = mB (t) + SBA (t).

SNooPy can perform this transformation automatically by using the Hsiao et al. (2007)

SED templates if 1) the input photometry is in a natural system like that described above,

and 2) the filter functions of the observed photometric system are supplied. In effect, when

both systems are natural, then the S-correction can be considered to be a cross-band K-

correction at low redshift.

B. MCMC Modeling

The use of Markov-Chain Monte-Carlo (MCMC) simulations to model data is rapidly

growing in popularity in the astronomical community. It has many advantages over the more

commonly used χ2 analysis. Most importantly, it allows one to use more realistic statistical

models for the data and priors, rather than assuming all errors are normally distributed.

Second, the result of the MCMC simulation is a set of parameters drawn from the posterior

probability distribution, from which one can easily determine expectation values, modes,

variances and co-variances of the parameters of interest.
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Readers who are unfamiliar with MCMC may wish to read the pymc documentation7.

While not mathematically rigorous, it provides an excellent overview of the more technical

aspects of the method and its terminology. Pymc is a Python module that greatly simplifies

the task of setting up and running MCMC simulations and was used to run the simulations

in this paper. The code defining the statistical model is available at the CSP website.

MCMC is a method based on Bayesian statistics. Bayes’ theorem states that the prob-

ability distribution of the parameters θ of a model, given the observed data D, is given

by

p (θ|D) =
p (D|θ) p (θ)

p (D)
(B1)

where p (D|θ) is the probability that we observe D, given θ, p (θ) is the prior distribution of

the parameters, and p (D) =
∫

p (D|θ) p (θ) dθ. The functional form of p (D|θ) is straightfor-
ward, as is p (θ). However, the set of parameters θ will likely contain nuisance parameters

over which we wish to marginalize. Performing integrals of the right-hand side of equation

(B1) analytically can only be done for the simplest PDFs and priors. Assuming normal dis-

tributions, for instance, leads to the well-known χ2 statistic and the method of least squares.

For anything more complex, one must numerically integrate equation (B1) to marginalize,

compute expectation values, etc.

Markov chain Monte-Carlo is a method for dealing with the situation where equation

(B1) cannot be integrated analytically. The method works by creating a Markov Chain of

parameter states θi. Markov Chains have the property that the state θi+1 depends only on

the previous state θi. The transition from state θi → θi+1 is done in a probabilistic way using

equation (B1), hence the use of Monte-Carlo in the method’s name. The Markov chain can

therefore be thought of as a quasi-random walk through parameter space. The exact details

of how the transition is done depends on the MCMC method used. Two popular algorithms

are Gibbs sampling and the Metropolis-Hastings algorithm. Regardless of the method, it

can be shown that after a certain number of transitions, called burn-in, the Markov chain

will become stationary. From that point on, the distribution of states in the Markov chain is

equal to p (θ|D). In other words, the states in the Markov chain can be considered as random

draws from p (θ|D). One can therefore use the Markov chain to infer the posterior probability

distribution of all the parameters of interest. For this paper, we use the Metropolis-Hastings

algorithm.

In order to use the MCMC method, one must construct a probabilistic process that

relates the data to the model and specifies any priors p (θ). From this, pymc can compute

7Available at the following URL: http://code.google.com/p/pymc/

http://code.google.com/p/pymc/


– 28 –

the likelihood. We consider two models, one for the Tripp method and one for the Color

Excess method. The Tripp method, being simply linear regression, is the simplest and we

describe it first. We then describe the Color Excess model, which has more complicated

priors.

B.1. Tripp Model

Given three filters XY Z, the data consist of the 3 magnitudes at maximum mx, my and

mz, the decline-rate ∆m15, and the redshift z. We wish to fit the following model

m′

x = Myz
x + byzx (∆′m15 − 1.1) +Ryz

x

(

m′

y −m′

z

)

+ µ (z′) (B2)

solving for the calibration parameters Myz
x , byzx , and Ryz

x . The primes in this equation

denote “true” values, in order to distinguish them from observed values. The “true” values

are nuisance parameters and will be marginalized. We assume that the observables are

statistically related to their “true” values through a normal distribution:

[mx, my,mz ,∆m15, z] ∼ N5

([

m′

x, m
′

y,m
′

z,∆m′

15, z
′
]

, C
)

(B3)

where N5 is a 5-dimensional multivariate normal distribution and C is the covariance matrix.

The covariances between the light-curve parameters are provided by the least-squares fitting.

The value of m′

x in equation (B3) is given by equation (B2). We also add an extra term

σ2
SN to the (mx, mx) term of the covariance matrix C that represents any intrinsic scatter

in the luminosity of SNe Ia. We leave this as a free parameter and so its value will be

determined along with the calibration parameters. Finally, we assign the following priors to

the calibration parameters:

Myz
x ∼ U(−∞,∞) (B4)

bY X
x ∼ U(−∞,∞)

Ryz
x ∼ U(−∞,∞)

σSN ∼ U(0,∞)

where U(x, y) is a uniform prior between x and y. This completes the statistical model.

The parameters consist of the set θ =
{

Myz
x , byzx , Ryz

x , σSN , m
′

x,i, m
′

y,i, m
′

z,i,∆m′

15, z
′
}

and the

probability of any state θi can be computed through equations (B2) to (B4). The Metropolis-

Hastings algorithm can then construct a Markov Chain from which we can infer the PPD of

all variables of interest.
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B.2. Color Excess Model

This model is similar to the Tripp model. In this case, however, we fit all the filters

simultaneously. Our data therefore consists of all 9 magnitudes at maximum, mxj
, the

decline-rates, ∆m15, and the redshifts, z. We assume the errors in the observables are once

again normally distributed:
[

mxj
,∆m15, z

]

∼ N11

([

m′

xj
,∆m′

15, z
′

]

, C
)

, (B5)

where now the m′

xj
are given by

m′

xj
= Mxj

+ bxj
(∆′m15 − 1.1) +RBV

xj
(RV )E(B − V ) + µ (z′) . (B6)

As discussed in §4.1, we treat the color excesses E(B − V ) as free parameters. We use two

different priors on the values of E(B − V ). First, we use the “unreddened” subsample from

F10 and assign these SNe a Gaussian prior with zero mean extinction and some unknown

scatter σc. The other SNe are then assigned a composite prior:

E(B − V ) ∼
{

N(0, σc), E(B − V ) < 0

U(0,∞), E(B − V ) > 0
(B7)

where N (0, σc) is a normal distribution with zero mean and standard deviation σc. In this

way, the “unreddened” SNe anchor the values of E(B − V ) and any SN with colors redder

than this sample will have E(B − V ) > 0. Any SNe with significantly bluer colors will have

E(B − V ) < 0 and cause σc to be larger.

Second, we can avoid using an unreddened sample and instead use a prior for all the

SN Ia that penalizes high values of E(B − V ). In this case, we use the prior from Jha et al.

(2007), which corresponds to the convolution of a normal distribution N(0, σc) with an

exponential tail exp(−E(B−V )/τ). We leave the variables σc and τ as nuisance variables to

be determined during the MCMC run. In this way, the model will search for a “blue edge”

in the color distribution of the SNe Ia. The bluest SNe will determine the intrinsic colors

and scatter. The redder SNe will set the scale length of the exponential tail, τ .

Our parameter set now contains 19 calibration parameters: 9 absolute magnitudes, Mxj
,

9 slopes bxj
, and the reddening law RV . Added to this are the intrinsic scatter, σSN , the

intrinsic color scatter σc, the exponential tail scale length τ (for the Jha prior), the N values

of E(B − V )i, and all the “true” values of the observables.
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Fig. 1.— The CSP filter band-passes. Left: the optical filter set uBV gri are plotted as

solid lines while the Johnson BV and Cousins RI are plotted as dashed lines for comparison

(Stritzinger et al. 2005). Right: the NIR filter set Y JHKs are plotted as solid lines and the

atmospheric absorption at LCO is plotted as the gray region.
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Fig. 2.— Example K-corrections for SN 2005ag, one of the highest redshift SN Ia in our

sample. The K-corrections are computed in 3 ways: (1) using the unmodified Hsiao et al.

(2007) SED (lines), (2) warping the Hsiao et al. (2007) SED to match the observed colors

(round points), and (3) using the observed spectrum of SN 2005ag (red squares).
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Fig. 3.— Four spectra of SN 2005ag taking by the CSP (black lines) with the corresponding

SEDs from Hsiao et al. (2007) (red lines). The date of observation is labeled in the panels.

The colored lines in the 3rd panel are the CSP filter functions: g (blue), r (yellow), i (orange),

and V (green).
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Fig. 4.— The sparsely sampled 2D surface defined by the training set of SN Ia. The three

axes consist of (1) tmin (B), (2) the decline rate, ∆m15, and (3) the flux normalized to the

peak flux. Two filters are shown: B band (left) and i band (right).
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Fig. 5.— Sample light curve fits using SNooPy for two SN Ia: SN 2006et (left) and SN 2007af

(right). The data points are offset by the amount indicated in the legends for clarity. The

solid lines are fits to the photometry, the dashed lines are the 1-σ template errors.
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data.
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Fig. 7.— Absolute magnitude B-band light curves for four SNe Ia with similar ∆m15:

SN 2004ef (∆m15 = 1.36), SN 2004eo (∆m15 = 1.38), SN 2006D (∆m15 = 1.38), and

SN 2006bh (∆m15 = 1.43). Left: the distances are computed using a Virgo-corrected velocity

and Hubble constant of 72 km · s−1 ·Mpc−1. Right: the light curves are shifted such that the

B-maxima agree. The solid lines are SNooPy B-band templates for ∆m15 = 1.4.
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Fig. 8.— Absolute magnitude i-band light curves for the same SNe as in Figure 7. The

distances in the left panel and offsets in right panel are the same as those used in Figure 7.

The solid lines are SNooPy i-band templates for ∆m15 = 1.4.
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Fig. 9.— Results of a bootstrap simulation on the dispersion in the light-curve templates

due to intrinsic variations from supernova to supernova. Each panel represents a separate

CSP filter and the different lines represent different values of ∆m15. Each line shows the

rms dispersion of the templates as a function of time since B-maximum.
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Fig. 10.— Same as Figure 9, but for a specific value of ∆m15 = 1.1. The grey lines represent

the individual bootstrap realizations. The red line represents the rms of all the realizations.
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Fig. 11.— Errors in the value of tmax as a function of the time of earliest observation (tcut).

Each SN Ia is plotted as a black dot. The blue circles and error bars to the right of each

set of dots correspond to the median and median absolute deviation, respectively. The red

circles and error bars to the left of each set shows the weighed mean deviation after the

least-squares error in tmax has been removed.
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Fig. 12.— Same as Figure 11, but for errors in ∆m15.
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Fig. 13.— Same as Figure 11, but for errors in apparent maximum magnitude. Each panel

represents a different filter.
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Fig. 14.— Tripp relation derived from MCMC simulation for two filter combinations. The
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corrected for color, while the right-hand panels show the absolute magnitudes corrected for

∆m15. All SNe with redshifts greater than 0.01 are included in the fit. The fit results are

labeled.
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Fig. 16.— Comparison of values of E(B − V ) derived by MCMC. Left: two different priors

(the blue prior and Jha prior) are used. Right: two different sub-samples of SN Ia (including

and excluding the two red SNe Ia) are used with the blue prior. In both figures, the solid

line shows one-to-one correspondence.
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Fig. 17.— Difference between the E(B − V ) values derived by F10 and those determined

through MCMC modeling excluding the red sample as a function of ∆m15. The solid line is

a fit to the trend: E(B − V )MCMC −E(B − V )F10 = −0.15 + 0.13∆m15.
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Fig. 18.— Luminosity-∆m15 relation for the Color Excess model derived from MCMC fitting,

excluding the two red SNe and three fast-declining SNe. Each panel corresponds one of the

CSP filters. The distance moduli from F10 are used to compute the absolute magnitudes of

each SN. SNooPy fits are used to compute ∆m15. The SNe are reddening-corrected using

the values of E(B − V ) and RV from the MCMC run. The solid lines show the fit to Mx

and bx, which are labeled with uncertainties in each panel.
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Fig. 19.— Hubble Diagram constructed from the observed CMB velocities and SNooPy-

derived distance moduli, using the full uBV griY JH filter set. The points are individual

SN Ia with error-bars from the fit. The solid line shows the standard cosmology redshift-

distance relation, while the dashed line shows the simple Hubble Law for Ho = 72 km · s−1 ·
Mpc−1.
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Table 1. SN Ia used for Calibration and Template Generation

Name vhel vcmb Host t0 E(B − V )MW Template Notes

SN km · s−1 km · s−1 days mag

(1) (2) (3) (4) (5) (6) (7) (8)

2004ef 9289 8931 UGC 12158 -8.8 0.06 uBV gri

2004eo 4706 4421 NGC 6928 -12.2 0.11 uBV griY JH

2004ey 4733 4388 UGC 11816 -9.0 0.14 uBV gri Blue

2004gc 9203 9214 PGC 017176 5.8 0.21

2004gs 7988 8249 MCG +03-22-020 -3.2 0.03 uBV gri

2004gu 13748 14069 FGC 175A -0.3 0.03

2005A 5738 5502 NGC 0958 -3.9 0.03 uBV gr Red

2005M 6599 6891 NGC 2930 -8.0 0.03 uBV griY JH Blue

2005W 2665 2385 NGC 0691 -8.0 0.07 uBV gri

2005ag 23811 24024 MAPS-NGP O 502 0366176 -1.6 0.04 Blue

2005al 3718 3986 NGC 5304 -0.7 0.05 uBV gr Blue

2005am 2368 2690 NGC 2811 -4.1 0.05 uBV gri Blue

2005be 10500 10673 NPM1G +16.0412 7.5 0.03

2005bg 6921 7247 MCG +03-31-093 1.3 0.03

2005bl 7213 7534 NGC 4070 -5.6 0.03 Fast

2005bo 4166 4504 NGC 4708 -0.3 0.05

2005el 4470 4465 NGC 1819 -7.3 0.11 uBV griY JH Blue

2005eq 8687 8505 MCG -01-09-006 -3.4 0.07 BV grY JH

2005hc 13772 13503 MCG +00-06-003 -4.7 0.03 uBV gr Blue

2005iq 10206 9879 ESO 538- G 013 -5.4 0.02 uBV gri Blue

2005ir 22892 22570 SDSS J011643.87+004736.9 -2.2 0.03
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Table 1—Continued

Name vhel vcmb Host t0 E(B − V )MW Template Notes

SN km · s−1 km · s−1 days mag

(1) (2) (3) (4) (5) (6) (7) (8)

2005kc 4533 4167 NGC 7311 -10.7 0.13 uBV griY JH

2005ke 1463 1345 NGC 1371 -9.0 0.03 uBV griY JH Blue,Fast

2005ki 5758 6111 NGC 3332 -9.7 0.03 uBV griY JH Blue

2005lu 9596 9388 ESO 545- G 038 9.6 0.03

2005na 7891 8044 UGC 03634 -1.9 0.08 BV gr

2006D 2556 2892 MRK 1337 -5.9 0.05 BV griY JH Blue

2006X 1571 1896 NGC 4321 -10.0 0.03 Y JH Red

2006ax 5018 5387 NGC 3663 -11.7 0.05 uBV griY JH Blue

2006bh 3252 3148 NGC 7329 -4.8 0.03 uBV griY JH Blue

2006eq 14840 14510 2MASX J21283758+0113490 5.3 0.05

2006et 6652 6494 NGC 232 -7.4 0.02 uBV griY JH

2006gt 13422 13093 2MASX J00561810-0137327 -1.3 0.04 Fast

2006mr 1760 1653 NGC 1316 -4.2 0.02 uBV griY JH Fast

2006py 17357 16993 SDSS J224142.04-000812.9 -1.5 0.06

2007af 1639 1887 NGC 5584 -9.0 0.04 uBV griY JH

Note. — Columns: (1) SN name; (2) heliocentric radial velocity from the NASA/IPAC Extragalactic Database

(NED); (3) radial velocity in the frame of the Cosmic Microwave Background (CMB) from NED; (4) host galaxy
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name from NED; (5) time of earliest photometric observation relative to B-band maximum; (6) Milky Way

reddening (Schlegel et al. 1998); (7) list of filters for which this object was used to generate light-curve templates;

(8) Notes: “Blue” denotes an unreddened SN Ia from F10, “Red” denotes a highly-reddened SN Ia from F10,

and “Fast” denotes a fast-declining (e.g., SN 1991bg-like) SN Ia.
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Table 2. SN Ia Light Curve Parameters

Name ∆m15 (B) ∆m15 tmax (B) tmax E(B − V ) µ

SN mag mag days days mag mag

(1) (2) (3) (4) (5) (6) (7)

2004ef 1.36(0.01) 1.41(0.01) 264.41(0.04) 264.02(0.10) 0.226(0.005) 35.37(0.01)

2004eo 1.38(0.05) 1.33(0.01) 278.84(0.35) 278.25(0.12) 0.131(0.006) 33.81(0.01)

2004ey 0.93(0.01) 1.00(0.01) 304.40(0.10) 304.07(0.10) -0.035(0.003) 33.92(0.01)

2004gc . . . 1.08(0.02) . . . 323.55(0.41) 0.188(0.010) 35.26(0.02)

2004gs 1.61(0.04) 1.53(0.01) 356.49(0.08) 355.58(0.12) 0.299(0.005) 35.47(0.01)

2004gu . . . 0.74(0.01) . . . 361.66(0.22) 0.125(0.008) 36.32(0.01)

2005A 1.12(0.04) 1.11(0.01) 380.33(0.16) 380.00(0.20) 1.083(0.011) 34.46(0.02)

2005M 0.83(0.02) 0.79(0.01) 405.86(0.26) 405.25(0.10) 0.044(0.004) 35.00(0.01)

2005W 1.22(0.06) 1.15(0.02) 412.34(0.04) 412.05(0.12) 0.221(0.004) 32.73(0.01)

2005ag . . . 0.92(0.01) . . . 413.89(0.17) 0.021(0.005) 37.54(0.01)

2005al 1.16(0.02) 1.24(0.01) 430.28(0.13) 429.95(0.14) 0.014(0.004) 33.95(0.01)

2005am 1.47(0.06) 1.48(0.01) 436.93(0.24) 436.16(0.13) 0.156(0.004) 32.33(0.01)

2005be . . . 1.49(0.03) . . . 459.91(0.49) 0.029(0.019) 35.82(0.02)

2005bg . . . 0.99(0.02) . . . 469.80(0.34) -0.028(0.017) 35.06(0.03)

2005bo . . . 1.30(0.02) . . . 478.55(0.20) 0.347(0.005) 33.87(0.01)

2005el 1.34(0.01) 1.39(0.01) 647.56(0.03) 646.65(0.11) -0.005(0.004) 33.88(0.01)

2005eq 0.72(0.04) 0.74(0.01) 654.24(0.36) 653.73(0.15) 0.033(0.004) 35.33(0.01)

2005hc 0.90(0.01) 0.85(0.01) 667.39(0.08) 666.91(0.12) 0.019(0.004) 36.43(0.01)

2005iq 1.25(0.02) 1.30(0.01) 688.14(0.08) 687.48(0.11) 0.022(0.004) 35.81(0.01)

2005ir . . . 0.86(0.02) . . . 684.35(0.27) 0.050(0.014) 37.50(0.03)

2005kc 1.19(0.02) 1.23(0.01) 698.06(0.19) 697.68(0.11) 0.316(0.005) 33.82(0.01)

2005ke 1.73(0.01) 1.81(0.01) 698.78(0.05) 698.19(0.10) . . . . . .

2005ki 1.37(0.01) 1.37(0.01) 706.07(0.06) 705.08(0.11) 0.020(0.003) 34.58(0.01)

2005lu . . . 0.74(0.04) . . . 710.53(0.57) 0.215(0.011) 35.85(0.02)

2005na 0.95(0.04) 1.07(0.01) 740.20(0.34) 740.16(0.15) -0.018(0.007) 35.12(0.02)

2006D 1.38(0.01) 1.47(0.01) 757.75(0.03) 757.26(0.10) 0.204(0.004) 32.71(0.01)

2006X 1.09(0.02) 0.84(0.01) 786.08(0.27) 785.23(0.15) 1.345(0.012) 30.99(0.02)

2006ax 1.00(0.01) 0.97(0.01) 827.53(0.12) 826.85(0.11) -0.036(0.004) 34.20(0.01)

2006bh 1.37(0.02) 1.44(0.01) 833.55(0.11) 833.17(0.10) 0.065(0.003) 33.27(0.01)
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Table 2—Continued

Name ∆m15 (B) ∆m15 tmax (B) tmax E(B − V ) µ

SN mag mag days days mag mag

(1) (2) (3) (4) (5) (6) (7)

2006eq . . . 1.62(0.01) . . . 975.82(0.47) 0.311(0.011) 36.57(0.02)

2006et 0.85(0.03) 0.84(0.01) 993.55(0.36) -52005.86(0.13) 0.183(0.006) 34.68(0.01)

2006gt . . . 1.66(0.01) . . . 1002.45(0.17) 0.288(0.011) 36.47(0.02)

2006mr 1.94(0.03) 2.05(0.01) 1050.62(0.10) 1050.35(0.11) . . . . . .

2006py . . . 1.06(0.05) . . . 1070.51(0.36) 0.094(0.011) 36.79(0.03)

2007af 1.20(0.03) 1.11(0.01) 1174.78(0.14) -51825.20(0.10) 0.183(0.003) 31.90(0.00)

aDenotes unreddened SN Ia from F10.

bDenotes highly-reddened SN Ia from F10.

aClassified as a fast-decliner.

Note. — Columns: (1) SN name; (2) decline-rate parameter measured directly from B-band

light curve (see §3.3); (3) decline-rate parameter derived from SNooPy fits; (4) date of B-band

maximum measured from B-band light curve (JD − 2453000); (5) date of B-band maximum

derived from SNooPy fits; (6) color excess derived from SNooPy fits; (7) distance modulus

derived from SNooPy fits for SNe Ia with ∆m15 < 1.7 and two red SNe Ia excluded.
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Table 3. Extrapolation Errors in Light-Curve Parameters

Time of Earliest Observation

Parameter 0 days 5 days 10 days 15 days 20 days

tmax 0.07 0.16 0.21 0.21 0.46

∆m15 0.00 0.00 0.03 0.03 0.03

umax 0.00 0.03 0.05 0.06 0.06

Bmax 0.00 0.02 0.02 0.03 0.04

Vmax 0.00 0.00 0.01 0.03 0.03

gmax 0.00 0.01 0.01 0.01 0.02

rmax 0.00 0.01 0.02 0.02 0.02

imax 0.01 0.03 0.05 0.05 0.05

Ymax 0.01 0.03 0.03 0.03 0.04

Jmax 0.02 0.04 0.05 0.05 0.05

Hmax 0.01 0.02 0.02 0.02 0.02
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Table 4. Tripp Calibration Parameters

Red SNe incl. Red SNe excl.

Filter Color MY Z
X bY Z

X RY Z
X σSN MY Z

X bY Z
X RY Z

X σSN

u g − r -18.19 (0.05) 0.63 (0.15) 4.1 (0.2) 0.24 -18.22 (0.06) 0.52 (0.18) 3.8 (0.5) 0.23

u B − V -18.72 (0.05) 0.48 (0.12) 4.1 (0.1) 0.19 -18.72 (0.05) 0.62 (0.16) 4.0 (0.4) 0.19

B B − V -19.12 (0.04) 0.62 (0.11) 2.8 (0.1) 0.15 -19.08 (0.04) 0.42 (0.12) 3.0 (0.3) 0.15

V B − V -19.07 (0.04) 0.38 (0.09) 1.8 (0.1) 0.14 -19.08 (0.04) 0.41 (0.12) 2.0 (0.3) 0.15

g g − r -18.80 (0.04) 0.43 (0.11) 2.4 (0.1) 0.18 -18.81 (0.04) 0.35 (0.14) 2.4 (0.4) 0.18

r g − r -18.80 (0.04) 0.43 (0.11) 1.4 (0.1) 0.17 -18.81 (0.04) 0.36 (0.14) 1.4 (0.4) 0.18

i g − r -18.29 (0.04) 0.27 (0.11) 1.1 (0.1) 0.18 -18.28 (0.05) 0.20 (0.15) 1.1 (0.4) 0.19

Y V − J -18.22 (0.03) 0.23 (0.08) 0.3 (0.1) 0.08 -18.26 (0.06) 0.21 (0.09) 0.2 (0.1) 0.04

J V − J -18.35 (0.04) 0.33 (0.11) 0.2 (0.1) 0.13 -18.48 (0.09) 0.38 (0.13) -0.1 (0.2) 0.09

H V − J -18.19 (0.03) 0.24 (0.08) 0.2 (0.1) 0.07 -18.18 (0.08) 0.20 (0.11) 0.3 (0.2) 0.06
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Table 5. Calibration Parameters for the Reddening Model

Case RV σSN σc τ

Red SNe incl. 1.40 (0.06) 0.08 0.08 . . .

Red SNe excl. 1.95 (0.16) 0.05 0.07 . . .

Jha Prior + Red SNe incl. 1.51 (0.07) 0.09 0.10 0.26

Jha Prior + Red SNe excl. 2.64 (0.25) 0.07 0.10 0.08
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Table 6. Filter-Specific Calibration Parameters for the Reddening Model

Red SNe incl. Red SNe excl. Jha Prior Jha Prior + Red SNe excl.

Filter M0 b M0 b M0 b M0 b

u -18.62 (0.08) 0.46 (0.31) -18.64 (0.08) 0.58 (0.32) -18.62 (0.16) 0.25 (0.49) -18.52 (0.11) 0.55 (0.34)

B -19.02 (0.06) 0.32 (0.24) -19.02 (0.06) 0.32 (0.26) -19.03 (0.12) 0.15 (0.39) -18.92 (0.10) 0.29 (0.29)

V -19.00 (0.04) 0.32 (0.15) -19.01 (0.04) 0.33 (0.18) -19.01 (0.08) 0.21 (0.25) -18.96 (0.07) 0.30 (0.22)

g -19.07 (0.05) 0.33 (0.22) -19.07 (0.06) 0.31 (0.24) -19.08 (0.11) 0.18 (0.35) -18.98 (0.09) 0.28 (0.27)

r -18.92 (0.03) 0.26 (0.12) -18.93 (0.04) 0.26 (0.15) -18.94 (0.06) 0.17 (0.20) -18.89 (0.06) 0.22 (0.19)

i -18.32 (0.02) 0.11 (0.09) -18.35 (0.03) 0.14 (0.11) -18.34 (0.04) 0.03 (0.13) -18.34 (0.05) 0.09 (0.14)

Y -18.33 (0.02) 0.10 (0.07) -18.35 (0.02) 0.10 (0.07) -18.35 (0.03) 0.07 (0.09) -18.34 (0.03) 0.06 (0.09)

J -18.43 (0.02) 0.11 (0.07) -18.44 (0.02) 0.10 (0.07) -18.44 (0.03) 0.09 (0.09) -18.44 (0.03) 0.07 (0.08)

H -18.25 (0.02) 0.11 (0.07) -18.26 (0.02) 0.12 (0.06) -18.26 (0.02) 0.08 (0.08) -18.26 (0.02) 0.10 (0.07)
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