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SUMMARY

1. Corpora cardiaca (CC) from immature and adult Blaberus discoidalis
Serville of both sexes contained approximately equal amounts of activity for
the cytochromogenic hormone (CGH), a neurohormone which stimulates
cytohaem synthesis in fat body mitochondria on day 4 of adult life.

2. CGH activity remained at a constant level in the CC of males during
days 0 and 1 of adult life, decreased during days 2 and 3, and then returned
to the original level by day 4. Female CC followed a similar pattern except
that the period of low CGH activity occurred 1 day later.

3. Variations in early adult feeding patterns or in daily photoperiod did
not change the secretory pattern of CGH. However, injections of juvenile
hormone III stimulated a precocious release of CGH on days (0—1. Thus,
CGH and juvenile hormone may function in this insect as a coordinated
endocrine sequence directing metabolic maturation of the fat body during
early adult life.

INTRODUCTION

Hormones influence aspects of mitochondrial development in animal tissues. For
example, treatment of euthyroid rats with thyroid hormone increases the synthesis of
liver cytochrome ¢ by 5-5 times (Booth & Holloszy, 1975). The synthesis of protein
subunits for the apoenzyme of mitochondrial cytochrome oxidase, especially the
45000 and 28500Da subunits, is selectively enhanced in hepatocytes from
triiodothyronine-treated rats (Nelson et al. 1980). Growth hormone administration
to hypophysectomized rats restores to control levels both the low cytochrome content
and the low protein turnover rate in mitochondria of hepatocytes (Maddaiah, Weston,
Chen & Collipp, 1976; Maddaiah, Collipp, Lin & Duffy, 1976). In insects, Keeley
(1972) finds a neuroendocrine-dependent increase in mitochondrial respiratory capac-
ity in the fat body of the cockroach, Blaberus discoidalis Serville. Development of the
respiratory capacity in adult fat body mitochondria is inhibited by removal of the
corpora cardiaca (CC), an insect neurosecretory structure. Conversely, injections of
CC extracts stimulate full respiratory development in the fat body mitochondria. A
general increase in the cytochrome content of the fat body mitochondria occurs during
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the first 6 days of adult life (Keeley, 1977) and correlates with the increase in
mitochondrial respiratory capacity (Keeley, 1972). Presumably, the neuroendocring
effect is related to the cytochrome synthesis.

Our laboratory has been using the B. discoidalis system as a simple model to
investigate the regulatory role of hormones on aspects of mitochondriogenesis, especi-
ally cytochrome synthesis. An essential aspect of cytochrome biosynthesis is the
production of the appropriate haem group for incorporation into the cytochrome
apoprotein to produce the functional holocytochrome. To determine the role of
neurchormones on cytochrome synthesis during mitochondriogenesis in the insect fat
body, studies were undertaken on haem synthesis. A neuroendocrine-dependent,
three- to five-fold increase in the synthetic rate for fat body cytohaems a + b occurs
at 4-6 days of adult age in B. discotdalis (Keeley, 1978). Recently, we demonstrated
that a small, hydrophobic peptide occurs in the CC of B. discotdalis and stimulates
the increase in fat body cytohaem a + & synthesis (Hayes & Keeley, 1981). This
peptide 18 associated with a neurosecretory granule fraction isolated from the CC
(Smith, Hayes & Keeley, 1983), and we have designated this factor as the
cytochromogenic hormone (CGH). In the present study, we determined the levels of
CGH activity in the CC with respect to sex and age of adult B. discoidalis.

In addition to CGH content in the CC, the present studies examined the factors that
may influence the timing of CGH secretion. A number of environmental and intrinsic
factors influence the secretion of insect neurohormones. Long photoperiods (15-18 h)
activate prothoracicotropic hormone secretion for diapause termination in pupae of
Antheraea pernyi (Williams & Adkisson, 1964). A blood meal stimulates release of the
egg development hormone to initiate ovarian development in anautogenous Aedes
taentorhynchus mosquitoes (Lea, 1970). In Calliphora erythrocephala, the tanning
hormone, bursicon, is not released until the newly-emerged adults have burrowed free
from the substrate in which they were buried during pupation (Fraenkel, 1936).
Finally, both juvenile hormone (JH) and 20-hydroxyecdysone influence neurosecret-
ory activity (Agui & Hiruma, 1977a,b; Hiruma, Yagi & Agui, 1978; Marks,
Ittycheriah & Leloup, 1972; McCaffery & Highnam, 1975; Thomsen & Lea, 1969).

In the studies reported here, we determined that CGH was present in the CC of
both sexes of adults and in nymphs. Adult males had a distinct secretory pattern for
CGH early in adult life that appeared related to JH exposure.

METHODS AND MATERIALS
Expernimental animals

Experimental animals were Blaberus discoidalis cockroaches reared in wood shav-
ingsat 27 °Cina 12 hlight: 12 h dark circadian cycle with dog food and water provided
ad lib. Animals were segregated by sex and aged from the day of adult emergence
(= day 0). Animals used to determine the time of day for CGH release were selected
within 8 h of emergence on day 0.

Preparation of gland and tissue extracts

We decapitated appropriately-aged animals without anaesthesia and removed the
CC from the head as described by Hayes & Keeley (1981). It should be pointed out
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that hormone extracts are prepared only from CC of unanaesthetized animals since
EC from COz-anaesthetized animals frequently have little or no CGH activity. We
believe that the stress of COz anaesthesia causes erratic neurosecretion. Isolated CC
were washed and homogenized in Ephrussi-Beadle Ringer (EBR) (Ephrussi &
Beadle, 1936), and the homogenate was frozen and thawed three times to disrupt
neurosecretory granules. After centrifugation at 10000 g for 5 min, the supernatant
was removed and stored at —20°C. We prepared coxal muscle extracts in a similar
manner for use as control injections. The protein concentration of the muscle extract
was adjusted by dilution with EBR so that it was similar to that of a typical CC extract.

CGH bioassay

CGH activity was assayed in decapitated animals by intrahaemocoelic injections of
the appropriate CC extract on days 2, 3 and 4 of adult life (Hayes & Keeley, 1981).
Bioassay animals are anaesthetized with COz to stop the heart beat prior to decapita-
tion and thus minimize bleeding which interferes with proper sealing of the neck
wound with a beeswax/petrolatum (50:50) mixture. Decapitation must be done
immediately after the animal is anaesthetized and before the heart resumes pumping.
The timing of the decapitation is critical to prevent endogenous CGH from escaping
from the head and into the rest of the bioassay animal. CGH stimulation of cytohaem
synthesis was measured on day 4 based on the rate of in vivo incorporation of
*C-aminolaevulinic acid (**C-ALA) into mitochondrial cytohaems a and b. Fat body
mitochondria were isolated by our high-speed procedure (Keeley, 1973), and
cytohaems a and b were extracted from isolated mitochondria with acidic acetone
according to the method of Basford, Tisdale, Glenn & Green (1957).

Relative CGH activity titres
Relative activity titres for CGH were determined in CC from nymphs and adults
by comparing dilutions of test CC with the dose-response curve derived from CC of
1-day-old adult males (Hayes & Keeley, 1981). From the dose-response curve, 0-05
CC (total dose) causes a half maximal response and >0-08 CC causes a full response.

Reagents

JH-IIT was obtained from Sigma Chemical Co., St Louis, MO. C-ALA was
purchased from Research Products International, Mt Prospect, IL.. All other chemi-
cals were either commercial reagent grade or analytical grade.

RESULTS
CGH activity 1n the corpora cardiaca relative to sex and growth stage

We determined the relative amount of CGH activity at 1 day after ecdysis in the CC
of nymphs and both sexes of adult B. discoidalis. The CGH titre in the test CC was
compared at 0:05, 0:5 and 1:0 CC doses to our bioassay curve for the 1-day-old adult
male, reference CC. All the test CC gave the same degree of response regardless of
sex or growth stage (Table 1). Thus, within the limits of our bioassay, we determined
that during the first day after ecdysis, the CGH activity was essentially identical in the
CC from adults of both sexes and from last instar nymphs.
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Table 1. CGH activity in corpora cardiaca (CC) from nymphs and adult males and

females of Blaberus discoidalis at ! day after ecdysis

Injection group tested Total CC dose CGH activity*
Muscle injection None 212£21 (8)
Nymph CC 1 CC 511295 (4)
0-05 CC 30313 (7)
Male CC 1 CC 560 £72 (8)
0-05 CC 3721+ 49 (8)
Female CC 0-5 CC 500 £ 53 (8)
0-05 CC 3821 56 (8)

* CGH activity is expressed as d.p.m. mg~' mitochondrial proteinh™'.
Values are mean = s.e. with the number of replicate animals tested shown in parenthesis.

Secretory patterns for CGH from adult corpora cardiaca

We measured the relative CGH-activity titre at various ages in the glands of male
and female adult B. discoidalis. Day-0 CC from adult males had a level of CGH
activity equal to day-1 CC (Fig. 1A). CGH activity decreased in the CC on days 2 to
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Fig. 1. Age-related patterns for CGH activity 1n corpora cardiaca of adult Blaberus discoidals. All
data points represent the time of CC removal relative to adult eclosion (= day 0). CC extracts were
prepared and injected into the standard bioassay system at a total dese of 0:05 CC. Each data point
is the mean of eight rephcate animals. Vertical lines indicate £3.E. (A) Male donor animals : statistical
analysis of bioassay results by Duncan’s multiple range test shows that glands from days with the same
letter do not result in significantly different cytochromogenic responses at P < 0-05 (day 0, ab; 1, a;
2,bc; 3,¢;4,a; 5, ab; 15, a; 30, ab). (B) Female donor animals : statistical analysis of bioassay results
by Friedman’s analysis of vanance and Duncan’s multiple range test show that glands from days with
the same letter do not result in significantly different cytochromogenic responses (day 0, ab; 1, ab;
2,a;3,ab; 4,b;5, a; 10, a; 25, ab). The Duncan’s multiple range indicates a significant difference
to P < 0-05. *C-ALA, "“C-aminolaevulinic acid.
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3 and returned to the 1-day level by the afternoon of day 4. As much as 0-25 CC from
E- to 3-day-old animals still did not cause a response. The decline in CGH activity in
the CC suggested that CGH was secreted in adult males between 2 to 4 days of age.

Adult females showed a similar age-related pattern for the levels of CGH activity
in their CC (Fig. 1B). However, the time of CGH depletion in females occurred 24 h
later, with minimum CGH activity in the CC around the afternoon of day 4. CGH
activity levels fluctuated more during adult life in females than in males as indicated
by the differences observed on days 15 and 30.

The reduction in the levels of CGH activity for male CC on days 2 and 3 could result
from reasons other than neurosecretion (e.g. conversion of CGH to inactive forms in
the CC, transport of CGH to another site, or inhibition of the bioassay by other
chemical factors present in CC extracts on days 2 and 3). To eliminate these potential
artifacts, decapitation experiments were performed to determine the timing of CGH
secretion as based on the presence or absence of the normal 4-day increase in fat body
cytohaem synthetic capacity. Once an animal i3 decapitated, the CGH source is
eliminated, and the normal CGH-dependent increase in fat body cytohaem synthesis
does not occur. Therefore, CGH must be released prior to the time of decapitation
in order for the normal three- to five-fold increase in fat body cytohaem synthesis to
occur on day 4.

We decapitated young adult males at various ages and measured their capacity for
cytohaem a + b synthesis at 4 days of adult age to determine the timing for the
neurosecretion of CGH. If animals were decapitated prior to 33 h of adult age, no
increase in cytohaem synthesis was observed (Fig. 2A). Cytohaem synthetic capacity
reached only intermediate levels when animals were decapitated between 49 and 62 h
of adult age. Decapitation of animals after 73h of adult age resulted in a fully
stimulated cytohaem synthetic capacity on day 4. These results confirmed that CGH
secretion from the CC occurred in males during the middle of day 2 of adult age.

Environmental effects on CGH secretion

Since CGH secretion was timed to start precisely during the middle of day 2 in
males, it was logical to assume that the animal received some type of uniform stimulus
that initiated neurosecretory activity. Photoperiod ‘counting’ or the initiation of feed-
ing activity were the most obvious candidates as regulatory stimuli for CGH
neurosecretion.

Photoperiod effects were determined by keeping male animals in either constant
light or constant dark during the first 4 days of adult life. We decapitated the animals
at various ages during their constant photoperiodic regimen to determine the timing
of CGH release based on the premise of the previous experiment. The occurrence of
the natural, 4-day peak of fat body cytohaem synthesis was used to determine if CGH
was released on schedule.

No photopertod-related effect was found on the timing of CGH release in adult
males (Fig. 2B). All test animals decapitated on or after the afternoon of day 2
exhibited the normal, day-4 peak of fat body cytohaem synthesis regardless of their
photoperiodic regimen. Manipulation of the photoperiod neither advanced nor
delayed the timing of CGH secretion.

A similar decapitation experiment was done on adult male animals that could not
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Fig. 2. The effects of age of decapitation on cytohaem synthesis in the fat body of 4-day-old adult
male Blaberus discoidalis. Each point represents the mean for eight replicate test animals. Vertical
lines indicate ts.E. (A) Males untreated until time of decapitation. (B) The influence of (O) constant
light conditions, (@) constant dark conditions and (M) oral blockage on the release of CGH from the
head.

consume food and water and were unable to move their mandibles. The oral blockage
was obtained by gluing the mandibles shut with cyano-acrylate glue. As with
photoperiod, inability to feed or chew had no effect upon the natural secretory pattern
for CGH (Fig. 2B).

JFH-III effects on CGH secretion

Since the environmental factors tested had no effect upon CGH secretion in adult
male animals, we explored the possibility that CGH secretion responded to an internal
signal. CGH release may occur as part of a preprogrammed sequence of endocrine
events associated with moulting. Such a preprogrammed series of events is reported
in Manduca sexta between ecdysteriods, eclosion hormone and bursicon (Truman,
1981).

We considered the possibility that JH may be related to CGH secretion in adult B.
discoidalis. JH-I11 is present in adult female B. discotdalis, and its secretion begins
around day 2 (I. M. Seligman & G. Bhaskaran, personal communication). JH-III
serves as a gonadotropic hormone in female B. discoidalis and must be secreted
independently of feeding since starved female B. discotdalis initiate oocyte maturation
(McKercher, 1981). In male B. discoidalis, the corpora allata (CA) enlarge during the
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first 3 days of adult life (L. L. Keeley, unpublished observations), and enlargement
pf the CA is an indicator for JH secretion (Szibbo & Tobe, 1981). Therefore, we
speculated that increasing JH titres may stimulate CGH release during the early life
of adult males. We tested the effect of administering exogenous JH-IIT on CGH
secretion to explore the possibility of a JH-CGH endocrine interaction (Fig. 3).

If JH regulates CGH secretion, then injections of JH-III prior to the time for
natural JH secretion should stimulate a precocious release of CGH from the CC. Early
CGH release would be detected if test animals were decapitated late on day 1 prior
to the time for natural CGH secretion and increased rates for cytohaem synthesis were
still found in the day-4 assay. Several preliminary experiments were necessary to
confirm the response of the bioassay animals to the various hormone regimens needed
for this experiment.

First, JH-ITI was administered to test insects to see if it was stimulatory to fat body
cytohaem a + b synthesis in the same manner as CGH. We injected a total dose of
3:0 ug of JH-III (1 ug daily in 5 ul of mineral oil) into decapitated bioassay animals
using the normal, CGH-injection regimen. JH-III failed to stimulate day-4 fat body
cytohaem synthesis (Fig. 3). This confirmed that JH-III per se had no direct
cytochromogenic effects on the fat body by our usual injection regimen and bioassay.

Next, it was necessary to confirm that decapitated bioassay animals were capable
of responding to precocious CGH exposure on days 0 and 1 of adult life with an
increase in fat body cytohaem synthesis on day 4. Test animals that were decapitated
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Fig. 3. The effects of juvenile hormone IIT on CGH secretion in adult male Blaberus discoidalis.
Test animals were treated as indicated then decapitated at the age shown. Fat body cytohaem
synthesis was assessed at 4 days of adult age. (DC), decapitation only; (UNTR), untreated animals
provided with food and water ad lib.; (MUS), injected with coxal muscle extract; (1 CC), injected
with male CC extract (1 CC total dose); (MO), injected with mineral oil; (JH) injected with JH-II1
(1 g total dose). Histograms denote the mean of six to nine replicate test animals, and centred vertical
lines indicate +s.E.
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within 2 h of adult eclosion and injected with CC extracts on days 0 and 1 showed the
normal increase in levels of cytohaem synthesis in the day 4 bioassay (Fig. 3). Thig
confirmed that the premature presence of CGH on days 0 and 1 was stimulatory to
cytohaem synthesis on day 4. Therefore, if JH-III initiated precocious CGH
secretion from the CC on days 0 or 1, the effect of the secreted CGH would be
detected by the bioassay. Conversely, animals decapitated within 2 h of adult eclosion
and injected with 0-5 ug of JH-III on days 0 and 1 showed no elevation in cytohaem
synthesis on day 4. Hence, JH-III did not have a direct effect upon fat body cytohaem
synthesis when injected in this manner.

JH-III injections appeared to stimulate the early neurosecretion of CGH in adult
males. JH-III (0-5 ug in 5 pl of mineral o1l) was injected into normal animals at less
than 4h of adult age and again 24h later. These early injections of JH-III were
followed by decapitation at 34-36h of adult age before the start of natural CGH
release, which we estimated occurred at approximately 49 h of adult age. The result
was that fat body cytohaem synthesis was at its normal, maximal level of activity on
day 4, despite the fact that the head was removed before the time when CGH was
secreted normally (Fig. 3). Animals injected with 5 ul of mineral oil at 4 and 24 h, then
decapitated at 34-36h, showed only the low cytohaem synthetic activity that is
characteristic for decapitated animals. Therefore, the data demonstrate that, after JH-
IIT injection, CGH was secreted 12-24h prior to the time for its natural
neurosecretion. This suggests that an increasing JH-III titre may be the stimulus that
elicits the release of CGH during early adult life in B. discotdalis cockroaches.

DISCUSSION

The present results indicate that the timing of CGH secretion from the CC of B.
discoidalis correlates with earlier studies on the time for the onset of active cytohaem
synthesis in the fat body. The decapitation and relative titre studies demonstrated that
CGH release from the CC started at about 49 h of adult life in the male and around
24 h later in the female. Maximum fat body cytohaem synthesis occurs at 4 days of
adult life in males (Keeley, 1978), and it takes 36—48 h of CGH exposure for the fat
body to attain its optimal capacity for cytohaem synthesis (Hayes & Keeley, 1981).
Thus, the present findings confirm our two, earlier independent reports and indicate
that CGH secretion starts during day 2 and results in the peak capacity for fat body
cytohaem synthesis that is reached 48 h later, on day 4. Since the cytochrome content
1s increasing in the fat body mitochondria between days 2 and 6 (Keeley, 1977), it
appears that CGH stimulates cytohaem synthesis for the purpose of increasing
mitochondrial cytochrome formation.

The exactness of the time for CGH release suggests that CGH neurosecretion is a
regulated process. However, our studies indicate that neither photoperiod nor feeding
affect the time for CGH secretion in males. Photoperiod cycles and feeding are two
extrinsic stimuli that frequently influence neuroendocrine activity (Williams & Ad-
kisson, 1964; Mordue, 1967; Highnam & Mordue, 1974; Friedel & Loughton, 1980).
Instead of extrinsic factors, our data suggest that a rising JH titre may stimulate the
release of CGH in males.

The relationship between JH and the secretion of CGH appears to be similar to the
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preprogrammed endocrine sequence (ecdysone, eclosion hormone, bursicon)
Lssociated with moulting in M. sexta (Truman, 1981). Each of these latter three

ormones is responsible for specific physiological and behavioural events which are
precisely timed to coordinate the successful completion of the moult. Moulting events
occur in an obligatory sequence, and each event is regulated by a hormone that may
also affect the release of the next hormone in the sequence. Similarly, after the adult
moult in B. discordalis, JH and CGH may both regulate aspects of adult fat body
maturation in a sequence of coordinated endocrine events.

The precise timing for CGH secretion argues that the action of CGH is essential
to the functioning and well-being of the organism. However, the particular
physiological significance of a neuroendocrine regulation of mitochondriogenesis
remains obscure. Although CGH is present in the CC of nymphs, we do not know at
this time whether the CGH is secreted or whether it plays a role in the physiology of
the immature instars. In adult male B. discoidalis, CGH appears related to an increase
in biosynthetic activity of the fat body. There is a fluctuation in the content of stored
metabolites in the fat body during the first 4 days of adult life (Mannix & Keeley,
1980), and new mitochondrial structures appear during this time (Keeley, 1981). It
is midway through this 4-day maturation period that CGH is secreted so that
cytohaem production reaches a maximum at the end of cytoplasmic reorganization
when mitochondrial structures are abundant. Two-fold increases in RNA and in fat
body respiration during the first 10 days of adult life suggest that the male fat body
increases its general biosynthetic activity after the cellular reorganization (Mannix &
Keeley, 1980; Keeley, 1981). We speculate that mitochondriogenesis and CGH-
directed cytohaem synthesis enable the exergonic capacity within the adipocytes to
meet elevated biosynthetic responsibilities of the fat body in adult male B. discoidalis.

The authors wish to thank Mr Dave Lee Williams for his competent technical
assistance in the bioassay procedures, and Dr Karl Dahm, of the Institute of Develop-
mental Biology, Texas A&M University, for confirming the purity of the JH-IIT used
in these experiments. This research was supported in part by NIH Grant No.
TMP ATI15190 and NSF Grant No. PCM 81-03277 to LLK and by the Texas
Agricultural Experiment Station.
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