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ABSTRACT 

 

In this dissertation, we develop a compositional multiphase wellbore-reservoir 

simulator, GURU-MSW. The compositional reservoir simulator GURU serves as the 

starting point of this work. GURU-MSW fully implicit couples a multi-segment wellbore 

(MSW) model with the reservoir simulator GURU. Although taking the most developing 

effort, the fully implicit coupling mechanism is considered to be unconditionally stable 

and fast.  

After developing the general framework of the simulator, the coupled MSW-

reservoir simulator is tested in two application scenarios, both being the first attempt in 

the literature. The first application is to analyze the well interference phenomenon. Well 

interference, introduced by the inter-well fracture hits, is a major production issue in shale 

reservoir development. When fracture hits occur, GURU-MSW can capture the sudden 

production rate jump caused by the wellbore crossflow. We also apply GURU-MSW to 

model a case with three wells under well group control.  

The second application of GURU-MSW is the simulation of liquid loading 

phenomenon. Liquid loading is an inevitable production issue in mature gas fields, which 

occurs when the producing gas rate is not high enough to carry all the liquids to wellbore 

surface. This is a phenomenon that can neither be comprehensively simulated by a single 

wellbore simulator nor a single reservoir simulator because of the dynamic interaction 

between wellbore and reservoir. GURU-MSW successfully characterizes the dynamic 

interaction between wellbore multiphase flow and reservoir multiphase flow. We 
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systematically analyze a cyclical production phenomenon, which was only reported as 

field observations previously.  

Two new gas-liquid drift-flux models are proposed in this dissertation. The first 

model incorporates the flow regime transition criteria from annular flow to churn or slug 

flow for vertical, slanted and horizontal pipes. The model is specially designed for the 

application of liquid loading modeling in horizontal gas wells.  

The second model is a unified model for all pipe inclinations. The new model is 

tested against 5805 experimental measured data points from 22 sources as well as 13440 

data points from the OLGA-S library. The numerical stability of the model is tested with 

GURU-MSW. The drift-flux model commonly applied in MSW simulation only covers a 

pipe inclination range from 2 (nearly horizontal) to 90 (vertical upward).  The proposed 

model has a potential in filling in the gap left by the existing drift-flux model.  
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1 

 

1. INTRODUCTION  

 

1.1 Background 

Reservoir and wellbore are two crucial components in modern petroleum 

exploration. Understanding the dynamic interaction between reservoir and wellbore is 

important for improving the asset productivity.  Integrated reservoir, wellbore and surface 

facility simulation has always been a need in offshore exploration. For offshore 

development, multilateral wells are commonly applied and multiple reservoirs may 

connect to a single Floating Production Storage and Offloading unit (FPSO). Recently, as 

long lateral horizontal wells become a common practice in onshore unconventional 

reservoir exploration, there are also increasing desires to couple the dynamic flow 

behaviors between reservoir and wellbore.  

Unlike flow in porous media, where flow velocities are calculated through Darcy’s 

law, flow velocities in wellbore need to be solved through momentum balance at different 

complexity. The solutions are even more complicated when it comes to multiphase 

wellbore flow.  There are several stand-alone wellbore simulators at different sophisticated 

levels specially dealing with the multiphase flow in wellbore. In these simulators, reservoir 

is commonly represented through an inflow performance relation (IPR) curve. Contrary 

to a standalone wellbore simulator, the wellbore model coupled to a reservoir simulator 

has more numerical restrictions. The multiphase flow inside the wellbore can only be 

accounted through homogeneous or drift-flux models rather than more complex 

mechanistic models.   



 

2 

Although there are several existing simulators that perform coupled wellbore 

reservoir simulations, there are still a lot of research challenges that need to be solved. The 

dissertation is aimed to develop a general and flexible research platform for integrated 

simulation of reservoir and wellbore. The platform can be served for new model 

realizations and as an analyzing tool for industrial applications. The General Unstructured 

Reservoir Utility (GURU) developed by Yan (2017) in his Ph.D. work is the starting point 

of the work in this dissertation. 

 

1.1.1 General Unstructured Reservoir Utility (GURU) 

GURU is a compositional simulator for general reservoir simulation purpose. The 

reservoir simulator is based on finite volume spatial discretization. To handle unstructured 

reservoir cells, a connection list is served as input to document the relation between 

reservoir grid blocks (Cao, 2002). For example, GURU can simulate unstructured fracture 

network generated by Enhanced Discrete Fracture Network (EDFN) approach (Yan et al., 

2018). These fracture grids have irregular shape and complex geometry based on different 

fracture orientations. The time discretization in GURU is fully implicit, which guarantees 

stable numerical solutions with large time steps.  In addition, GURU incorporates several 

other features for fluid flow modeling in shale reservoirs. For example, GURU considers 

multi-component adsorption, Knudsen diffusion and gas slippage for the transport of shale 

gas. Moreover, to characterize a more realistic picture of shale reservoir, GURU 

incorporates a triple-porosity model considering inter-porosity and intra-porosity transport 

among fractures, inorganic matrix and organic matrix.  



 

3 

Figure 1.1 summarizes the six modules inside GURU. The rock fluid module is to 

calculate rock-fluid interaction properties such as relative permeability, capillary pressure 

and compaction. The fluid module includes the vapor liquid equilibrium (VLE) calculation 

for hydrocarbon properties. It also includes water property calculation and gas 

adsorption/desorption calculation in shale reservoir. Well control module computes the 

relevant Jacobian terms and residuals based on different well control modes. Mobility 

module computes mobility and flux-related terms. Flow equation module constructs the 

Jacobian matrix and residuals for Newton-Raphson methods. The linear solver module 

solves linear system for primary variables.  

 

 

 

Figure 1.1–Major modules in GURU (reprinted from Yan, 2017). 

 

 

Although GURU can handle different well control strategies, it is not capable in 

modeling advanced wellbore structures and the fluid flow inside wellbore. These 

capabilities are commonly achieved through a multi-segment wellbore (MSW) model. 
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Therefore, the focus of this dissertation is to couple the reservoir model (GURU) with an 

advanced wellbore model considering multiphase wellbore flows. 

 

1.1.2 Coupled Wellbore-Reservoir Simulation 

Conventionally, wellbore and reservoir are simulated separately because of the 

time scale difference (da Silva and Jansen, 2015). A dynamic wellbore simulator either 

assumes a constant reservoir inflow rate or applies a simple inflow performance 

relationship (IPR). A dynamic reservoir simulator either applies historical bottom-hole 

pressure (BHP) or a BHP value estimated from a tubing performance curve.  The time 

scale of a multi-phase wellbore simulator is typically from seconds to hours, and the time 

scale of a reservoir simulator is typically from hours to decades. However, there exist 

several situations where the time scale of wellbore and reservoir overlap with each other, 

and the dynamic interaction between the two systems cannot be ignored. Figure 1.2 shows 

the time and spatial scales of natural production phenomena shown by Nennie et al. 

(2007), the situations include but are not limited to wellbore storage, liquid loading and 

clean-up process. Bahonar et al. (2011) developed a transient non-isothermal wellbore-

reservoir model for gas-well testing, which is a single phase model. Yoshida (2016) 

developed a coupled two-phase wellbore-reservoir model for interpretation of data from 

distributed temperature sensors (DTS). Tang et al. (2018) developed a fully implicitly 

coupled wellbore-reservoir model, which implemented a novel drift-flux model specially 

designed for the liquid loading process.  
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Figure 1.2–Time and spatial scales for different production scenarios (reprinted from 

Nennie et al., 2007). 

 

 

The coupling of the wellbore model and the reservoir model can be at different 

levels. The industry commonly applies loosely-coupling approaches either at time step or 

newton iteration levels. If the final time step convergence criteria are based on the 

reservoir equations, then the approach coupled at the time step level is categorized as 

explicit, and the approach coupled at the newton iteration level is categorized as partially 

implicit (Coats et al., 2004). The advantages of loosely-coupling approaches include the 

convenience and flexibility. However, the numerical convergence of this coupling 

mechanism is not always guaranteed. Several research efforts have been made to improve 

the stability of the loosely-coupled approaches (Guyaguler et al., 2011; Redick, 2017; 

Yanbin Zhang et al., 2017). The most rigorous coupling approach is to merge the wellbore 
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equations and reservoir equations into a single set and solve them simultaneously, which 

is also known as the fully implicit approach (da Silva and Jansen, 2015). Although the 

fully implicit approach requires a lot of developing effort, it improves the stability and 

speed significantly (Cao et al., 2015). The fully implicitly coupled wellbore-reservoir 

simulator was first introduced by Stone et al. (1989). This tightly-coupled simulation 

approach has been widely adopted in a lot of black-oil and compositional systems (Coats 

et al., 2004; Livescu et al., 2010; Valbuena Olivares, 2015).   

The tightly-coupled wellbore-reservoir model is also known as the multi-segment 

wellbore (MSW) model in several commercial reservoir simulators (ECLIPSE, NEXUS 

and etc.). Contrary to a standalone advanced wellbore simulator, the wellbore model 

coupled to a reservoir simulator is simpler in form. The wellbore multiphase flow is 

accounted for through the drift-flux model rather than the segregated flow model or the 

mechanistic model to ensure convergence and avoid numerical instability. 

 

1.1.3 Two-phase Flow Modeling in Wellbores 

The mechanical simulation of transient two-phase flow in pipelines includes two 

kinds of models: one is the Two-Fluid Model (TFM) and the other is the Drift-Flux Model 

(DFM). The TFM is governed by mass and momentum conservations of each phase. The 

representative commercial code for TFM is OLGA, which was developed in Norway 

(Bendiksen et al., 1991). The general two-fluid model can be expressed as follows: 
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The drift-flux model is governed by mass conservation equations of each phase 

and a single momentum conservation equation for phase mixture. The representative 

commercial code is TACITE, which was developed in France (Pauchon et al., 1993).  The 

mass balances of DFM are the same as TFM (Equations (1.1) and (1.2)). The mixture 

momentum balance can be derived by summing up the momentum balances in TFM 

(Equations (1.3) and (1.4)), as shown in Equation (1.5). 

2 2( ) ( )
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+ = + + +

 
  (1.5) 

To close the equation system, Zuber and Findlay slip relation (Zuber and Findlay, 1965) 

is commonly applied in the TFM. 

 
g o m dC vv v= +   (1.6) 

There are two parameters that correlate the mixture velocity (vm) with gas in situ velocity 

(vg) in the model, one is the distribution parameter (Co) and the other is drift velocity (vd). 

The distribution parameter accounts for the non-uniform distribution of gas phase over the 

pipe cross section. The drift velocity describes the relative velocity of the gas phase 
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comparing to the two phase mixture velocity. The Co and vd are generally a function of 

mixture velocity, gas void fraction and fluid properties.  

Both TFM and DFM are generally hyperbolic systems. However, the TFM can 

easily lose the hyperbolicity and well-posedness when the Kelvin-Helmholtz condition is 

met (Shirdel, 2013). The condition indicates the transition between stratified to non-

stratified flow regimes. Regulation is required to avoid the related numerical instability. 

The DFM model is not unconditionally hyperbolic and well-posedness as some 

researchers claimed. Santim and Rosa (2016) analyzed the characteristic roots of the 

quasi-linear form of the drift-flux model. They found that the hyperbolicity of the system 

is guaranteed when 1o gC    . Their analysis was based on constant Co and vd. For more 

complex slip relations, analytical expression of the characteristic roots are not available. 

Faille and Heintzé (1999) presented a compositional drift-flux model that was 

implemented in TACITE. The model honored mass conservation equations for n 

hydrocarbon components and a mixture conservation equation as shown in Equation (1.5). 

They applied a complex hydrodynamic closure law based on different flow regimes 

(Pauchon and Dhulesia, 1994), which is a function based on the center of mass velocity, 

gas mass fracture, pressure and fluid component.  

Aarsnes (2016) dived the two-phase flow pressure behavior into three time scales: 

the first time scale is about 10 seconds, which is dominated by distributed pressure 

dynamics; the second time scale is about 1-10 minutes, which is governed by slow 

compression pressure introduced by using flow rates as boundary conditions; and the third 

time scale is from 10min to hours, which is dominated by void wave advection. For most 
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production problems, it is sufficient to apply a dynamic model only with void wave 

advection.  Therefore, the pressure wave is negligible because it does not have strong 

effect on the initiation and transport of void waves (Masella et al., 1998).  The 

simplification leads to the no-pressure-wave (NPW) model, which solves the momentum 

equations as a local force balance, given in Equation (1.7). 

 ( ) sin( )l g l l g g

p
g

x
      


= + + +


  (1.7) 

Nemoto et al. (2009) analyzed a three-phase (water, gas, oil) no-pressure-wave model with 

mass transport between oil and gas phases being considered. With 𝛼g, 𝛼o, p and vm being 

the state variables, the characteristic roots of the system are as follows: 

 
1 2 3 4; ; ; ;

g o

g o

v v
   

 


= = =  = 


  (1.8) 

Therefore, the model is classified as mixed hyperbolic/parabolic. The observation is 

consistent with that reported by Masella et al. (1998). The other reported no-pressure-

wave models include Choi et al. (2013) and Aarsnes et al. (2016). The model of Choi et 

al. (2013) implemented a power law correlation for pressure drop calculation. Aarsnes et 

al. (2016) further reduced the model to a single hyperbolic PDE of void fraction and two 

closure relations of gas phase velocity and the static pressure.  

The comparison of all the three models (TFM, DFM and NPW) has been 

conducted by Masella et al. (1998) and Santim et al. (2017). Masella et al. (1998) 

implemented a semi-implicit numerical scheme similar to that introduced by Faille and 

Heintzé (1999) for the DFM and an implicit numerical scheme for NPW. They concluded 
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that the DFM is faster than the NPW for a given accuracy. Santim et al. (2017) compared 

different models for analyzing the gas-liquid slug flow in a horizontal pipe. They applied 

an explicit scheme as introduced by Santim and Rosa (2016) for the DFM and a semi-

implicit numerical scheme for the NPW. In the semi-implicit approach, the velocities and 

pressure were evaluated implicitly and the void fraction was evaluated explicitly. Santim 

et al. (2017) concluded that both DFM and NPW showed good agreement with the 

experimental data, while the DFM exhibited better predictions of pressure wave velocity. 

 

1.2 Research Objectives 

In GURU, wellbore is incorporated through standard wellbore model, where wells 

are considered as sink and source terms in reservoir grids. Therefore, the first objective of 

this dissertation is to develop a general multi-segment well (MSW) model for GURU 

platform. The new platform is named as GURU-MSW. We intend to make GURU-MSW 

a flexible framework for well group and surface network modeling.  

As stated earlier, wellbore multiphase flow modeling is a big challenge in both 

standalone wellbore simulation and coupled wellbore-reservoir simulation. Therefore, 

another major effort of this dissertation is to improve the gas-liquid drift-flux modeling 

for applications in a coupled wellbore-reservoir simulator like GURU-MSW.  

 

1.3 Dissertation Outline 

The dissertation is organized as follows: 
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In Chapter 2, physical formulations in GURU-MSW are reviewed from two 

aspects: flow in porous media and flow in wellbore. Detailed numerical implementation 

such as discretization techniques, boundary conditions and initialization procedure are 

explained. As a fully implicitly coupled wellbore-reservoir simulator, a sample Jacobian 

matrix and the global linear system of GURU-MSW are also presented.  

In Chapter 3, GURU-MSW is applied in the well interference study of shale 

reservoir. The simulator is benchmarked with Eclipse 300 in a case with three-phase 

reservoir fluid containing five hydrocarbon components. This verifies the reliability of 

GURU-MSW as a compositional simulator.  The designed cases also reveal the capability 

of GURU-MSW in simulating wellbore crossflow and multiple well performance under 

different production constraints.  

In Chapter 4, the drift-flux model proposed by Shi et al (2005) is improved to 

include the flow regime transition from annular to churn or slug flow. The modified drift-

flux model is implemented in GURU-MSW. For the first time, we apply a fully coupled 

wellbore-reservoir simulator in gas well liquid loading modeling. This study demonstrates 

the capability of GURU-MSW as a comprehensive tool in characterizing the dynamic 

interaction between wellbore multiphase flow and reservoir multiphase flow.  

In Chapter 5, a new unified drift-flux model for pipe inclinations from upward 

vertical to downward vertical is proposed. This new drift-flux model is validated with data 

from various sources. More importantly, the new model is proved to be numerically stable 

in GURU-MSW, and therefore applicable in fully coupled wellbore-reservoir simulation.  



 

12 

In Chapter 6, we summarize the contributions of this work and give suggestions to 

future research efforts. 
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2. FORMULATION OF GURU-MSW* 

 

In traditional reservoir simulation, standard wells are represented by the sink and 

source terms in the grid blocks. The details of the fluid flow inside the wellbore are 

ignored. However, as wellbore structures become more and more complicated, this 

simplification can no longer fulfill the need of modeling wellbore trajectories, inflow 

control devices and so on. A common solution is to discretize the wellbore into segments 

along the flow direction and solve the wellbore flow as flow in pipe. This is also known 

as multi-segment well (MSW) model in reservoir simulation. We name the newly 

developed fully-implicitly coupled wellbore reservoir simulator as GURU-MSW. In this 

chapter, the mathematical formula and numerical implementation of GURU-MSW is 

introduced. 

 

 

 

 

 

  _____________________________________________ 

*Part of this section is reprinted with permission from “Analyzing the Well Interference Phenomenon in 

Eagle Ford Shale – Austin Chalk Production System with a Comprehensive Compositional Reservoir 

Model” by H. Tang, B. Yan, Z. Chai, et al. SPE Reservoir Evaluation and Engineering, Copyright [2018] 

by Society of Petroleum Engineer; from “What Happens After the Onset of Liquid Loading? --- An Insight 

from Coupled Well-Reservoir Simulation” by H. Tang, Z. Chai, Y. He et al.  SPE Proceedings, Copyright 

[2018] by Society of Petroleum Engineers; and from “Development and Application of a Fully Implicitly 

Coupled Wellbore-Reservoir Simulator to Characterize the Flow Transients in Liquid-Loaded Horizontal 

Gas Wells” by H. Tang, A.R. Hasan, and J. Killough. SPE Journal, Copyright [2018] by Society of 

Petroleum Engineers. 
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2.1 Fluid Flow in Porous Media 

2.1.1 Primary Equations 

 We consider three-phase (oil, gas and water) Darcy flow in the subsurface 

isothermal porous media. For each hydrocarbon component c in oil and gas phases, a mass 

conservation equation is given in Equation (2.1). Similarly, Equation (2.2) expresses the 

mass conservation equation in water phase. We assume that water is inertial and does not 

present in the oil and gas phases.  
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Vb is the bulk rock volume. A is the cross section area. xc and yc are the mole fractions of 

component c in oil and gas phases. k is the absolute permeability. krα (α = o, g, w) is the 

phase relative permeability. Ѱα (α = o, g, w) is the phase potential considering pressure 

and gravitational forces acting on the phase. Sα (α = o, g, w) is the phase saturation. 
  is 

the molar density of phase α. nc,s and nw,s are the net molar rates of component c and water 

from each perforation. Another primary equation is a volume constraint ensuring that total 
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fluid volume of each phase (Vα,i) equals to the pore volume (PVi) of each reservoir grid i. 

The associated primary variable is the oil phase pressure (Po). 

 
,, ,i io g w

PV V=
=   (2.5) 

 

2.1.2 Vapor-Liquid Equilibrium 

 Fluid properties of oil and gas phases are calculated through vapor-liquid flash 

calculations based on the equation of state. We consider the component fugacity 

equilibrium as shown in Equation (2.6) to solve for the equilibrium ratio (Kc). The molar 

vapor fraction (fv) is obtained through Rachford-Rice Equation (Rachford Jr and Rice, 

1952) as given by Equation (2.7). 
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zc is the overall mole fraction of component c. φc,l/v is the liquid and vapor fugacity 

coefficient of component c. pl/c is the liquid and vapor phase pressure. The fugacity 

coefficient for each phase α (α = l, v) is calculated based on Peng-Robinson equation of 

state (Peng and Robinson, 1976). 

,

1

ln( ) (Z 1) ln(Z )

Z (1 2)1
(2 (1 )) ln( )

2 2 Z (1 2)

c

c
c

n

c
j c c cj

c

b
B

b

A b B
a x a

b aB B

   

  

  




=

= − − −

  + +
+ − − 

− − 


  (2.8) 



 

16 

Appendix A lists the definition of each parameter.  

In compositional simulation, VLE calculations are conducted millions of times. 

Therefore, it is important to develop an efficient VLE calculation algorithm. The initial 

guesses of Kc and fv are crucial to the convergence speed of VLE calculation. Wilson’s 

correlation (Wilson, 1969) is commonly applied to estimate the value of Kc. However the 

correlation might give trivial solutions when pressure is high. Yan et al. (2017) introduced 

a compositional space method to provide initial guesses for Kc and fv. We further combine 

the Successive Substitution Iteration method (SSI) and the Newton-Raphson (NR) method 

to solve Equations (10) and (11). The solutions from the SSI iterations are served as initial 

guesses for NR iterations to improve the convergence speed.   

           In traditional compositional reservoir models, liquid phase pressure is assumed to 

be equal to the vapor phase pressure, and Equation (14) can be reduced to Kc =  φc,l/ φc,v. 

It is a valid assumption for conventional reservoirs, which have large pore volumes. 

However, for shale reservoirs, whose pore sizes are in nanoscale (Kou et al., 2017), it is 

no longer a reasonable assumption. The nanopores in shale reservoir result in high 

capillary pressure and significant changes in fluid properties such as bubble-point 

pressure, fluid densities and viscosities (Nojabaei et al., 2013). Some researchers have 

reported that the high capillary pressure affects the well performance and the estimated 

ultimate recovery (EUR) of the reservoir (Siripatrachai et al., 2017). We will further 

discuss the impact of nanopore confinement on well interference phenomenon in Chapter 

3.  
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2.1.3 Embedded Discrete Fracture Model 

 The Embedded Discrete Fracture Model (EDFM) is developed for Cartesian 

reservoir grids to achieve a higher computational efficiency for fracture modeling 

(Moinfar, 2013). The fractures in the model are treated as additional quadrilateral plates, 

which are naturally discretized by the boundary of matrix grids (Jiang and Younis, 2017). 

The model honors fluid flow through non-neighbor connections (NNC) between fracture 

segments and matrix grids, between fracture segments in a single fracture and between 

intersecting fractures. Transmissibility (TNNC) of all three type of NNCs is generally 

expressed as (Chai et al., 2018):  

 ,NNC NNC
NNC

NNC

k A
T

d
=   (2.9) 

where kNNC , ANNC, and dNNC are the harmonic average of permeability, contact area and 

distance between the two cells in the connection. The well geometry index for wellbore-

fracture connection is calculated based on Peaceman Equation (Xu et al., 2017): 
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where kf and wf  are permeability and width of the fracture, l and h are length and height 

of the fracture segment, and rw is the wellbore radius. We apply EDFM to explicitly model 

fractures in the well interference study (Chapter 3). The separate grid system of EDFM 

enables the convenient handling of dynamic changes in fracture networks resulted from 

the completion of infill wells.  
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2.2 Fluid Flow in Wellbore 

 Fluid flow in wellbore can be treated with different complexities as introduced in 

section 1.1.3. For coupling with a reservoir simulator, whose time scale is from hours to 

decades, we implement a compositional NPW model with a pressure drop equation. It is 

also a common implementation among those reported MSW models.  

 

2.2.1 Primary Equations 

 The primary equations for wellbore flow include mass conservations for each 

hydrocarbon component (c) and water (w) as shown in Equations (2.11) and (2.12), a 

pressure drop equation as shown in Equation (2.13) and a multiphase holdup constraint 

equation as shown in Equation (2.14). The relevant primary variables are moles of 

hydrocarbon component per unit volume (Nc), water holdup (yw), mixture velocity (um) 

and average pressure of each wellbore segment (Pseg). 
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𝛼o , 𝛼g, and 𝛼w are oil , gas and water volumetric holdups. uso, usg, and usw are superficial 

velocities of each phase. Vseg is segment volume. 
o ,

g and 
w are molar densities of 

each phase. The pressure drop equation is given by Equation (2.13).  
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𝜌m is the mixture density given by 𝜌m = 𝛼o 𝜌o+ 𝛼g 𝜌g+ 𝛼w 𝜌w. vm is the average mixture 

velocity which is the sum of gas and liquid superficial velocities. ff is the friction factor 

and din is the pipe inside diameter. The second term in Equation (2.13), which represents 

the pressure loss due to acceleration is usually small compared to frictional (the third term) 

and gravitational (the fourth term) pressure losses. The constraint equation for holdup of 

each phase is as follows: 

 1.w o g  + + =   (2.14) 

The correlation between individual phase velocity and mixture velocity will be discussed 

in next section. 

 

2.2.2 Homogeneous and Drift-Flux Models 

 GURU-MSW implements homogeneous and drift-flux models for multi-phase 

flow characterization in wellbore. The homogeneous model assumes all the phases move 

in the same speed. The in-situ flow velocity for each phase is correlated as: 

 ( , , )p mv v p o g w= =   (2.15) 

The superficial phase velocity of each phase is then expressed as: 

 ( , , )sp p mv v p o g w= =   (2.16) 

The homogeneous model is unconditionally stable within a Newton-Raphson solver. 

However, the model ignores the slip among phases, and thus fails to accurately predict the 

in-situ phase volume fractions.  
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On the contrary, drift-flux models are considered to be fairly accurate for gas 

volume fraction prediction in gas-liquid two phase flow (Bhagwat and Ghajar, 2014; 

Woldesemayat and Ghajar, 2007). The drift-flux model has been introduced in section 

1.1.3. We rewrite the general model expression for three-phase application as follows: 
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C0 and ud are can both be a constant or an empirical correlation determined by 

experimental data.  Although, there are a lot of different drift-flux models in the literature, 

few of them can be compatible with a Newton-Raphson non-linear solver and a fully-

implicitly coupled wellbore-reservoir simulator. The following crucial points are 

summarized based on our experiences (Hewei Tang et al., 2017) : (1) the model needs to 

be continuous and differentiable within the whole range of primary variables; and (2) the 

model needs to be based on mixture velocity (vm) rather than gas superficial velocity (vsg). 

The first points comes from the restriction of applying the Newton-Raphson method. The 

third point comes from the intrinsic logic behind the fully implicit method, which is to 

solve the primary variables (i.e. mixture velocity and liquid holdup) first, and then update 
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secondary variables (i.e. individual phase velocities) with auxiliary equations such as the 

drift-flux model. These three restrictions make most flow-pattern based drift-flux models 

inapplicable. 

 

2.2.3 Auxiliary Equations 

 The reservoir model and wellbore model are coupled through the sink and source 

terms nc,s and nw,s in Equations. (2.11) and (2.12). We assume that the reservoir pressure 

at the wellbore-reservoir interface equals to the wellbore segment pressure at the interface. 

The net molar rates nc,s and nw,s are calculated as shown in Equations (2.22) and (2.23). 

 
, , ,[ ( ) ( )]c s w o o res seg g g res segc cn T x P P y P P = − + −   (2.22) 

 
, ,( )w s w w w res segn T P P= −   (2.23) 

Tw is the well geometry index. We evaluated Tw through Peaceman equation, which 

assumes that well penetrates through the center of the reservoir grid block, perpendicular 

to two of its faces (Peaceman, 1978).  For a horizontal well in x direction, Tw is given as: 
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Δx, Δy, and Δz are dimensions of grids, kx, ky, and kz are permeability in each direction, rw 

is wellbore radius, and S is skin factor.  

 In Equations. (2.22) and (2.23), λp (p = o, g, w) is the phase mobility, which is 

evaluated based on the flow direction. For production scenario (Po,res > Pseg), the phase 

mobility is evaluated at perforated cells. 
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For injection scenario (Po,res < Pseg), the phase mobility is evaluated through the total 

mobility at perforated cells and the fluid properties at perforated well segments (Holmes, 

1983). 
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The frictional factor in Equation (2.13) is calculated as (Economides et al., 2012): 
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  (2.28) 

where ε is the relative pipe roughness. NRe is the Reynolds number calculated as: 
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In Equation (2.14), gas and oil holdups (yg and yo) can be correlated as follows: 

 
v c

g

g

f N





=


  (2.30) 



 

23 

 
(1 )v c

o

o

f N




− 
=


  (2.31) 

2.3 Numerical Implementation 

2.3.1 Residual Equations 

The compositional reservoir model is spatially discretized base on control-volume 

finite-difference method proposed by Cao (2002) with a two-point flux approximation. 

This method allows the convenient handling of unstructured reservoir grids. For time 

discretization, a fully implicit scheme is applied. The mass balance residual equations of 

the hydrocarbon component (c) and the water component (w) in cell i are shown in 

Equations. (2.32) and (2.33). The volume balance residual equation of cell i is shown in 

Eq. (2.34).  
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v i o i g i w i
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The wellbore model is also discretized based on finite volume methods along the 

axial direction of the wellbore. A staggered grid arrangement as shown in Figure 2.1 is 

adopted. Scalar variables such as pressure and phase holdup are solved at the center of 

each well segment, while velocities are solved at the face of each well segment to avoid 

spurious pressure oscillations (Prosperetti and Tryggvason, 2009; Yoshida, 2016).   
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Figure 2.1 Schematic for the staggered grid arrangement and corresponding control 

volumes (CV). 

 

 

The residual equations of mass conservation, pressure drop, and volume balance 

are given by Equations (2.35) to. (2.38). 
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, , , , 1v j w j o j g jR   = + + −   (2.38) 

The pressure loss due to acceleration is ignored because it is usually small compared to 

frictional and gravitational pressure losses, especially for uniform pipe diameter. 𝜌m,j+1/2 

in the potential term is evaluated based on the volume averaged method. For other flux 



 

25 

related terms, a donor-cell approach is applied to evaluate the secondary variables (i.e., 𝛼, 

x, y, 𝜌) at well segment faces (Prosperetti and Tryggvason, 2009). The approach is 

presented in Eq. (2.39) with 𝛼w as an example. The production direction is defined as a 

positive velocity direction.  

 
, 1/2 , 1/2 ,, 1, 1/2

1 1
(1 sgn( )) (1 sgn( ))

2 2
w j w j w jw jw j v v  + +++ = + + −   (2.39) 

2.3.2 Boundary Conditions 

The no-flow boundary condition is applied in the reservoir model. For the wellbore 

model, we also apply a no-flow boundary at the bottom of the wellbore. At the wellhead, 

the boundary condition is applied by replacing Rp with constraint residuals defined by 

different control strategies. We honor both pressure constraints and rate constraints of 

different phases in GURU-MSW. For the pressure constraint, we consider the 

gravitational and frictional pressure loss between the segment pressure and the target well 

head pressure (P*) as shown in Equation (2.40).  
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In standard well model, the rate constraint equations are calculated by equaling the sum 

of flow rate from all perforations to the specific rate. Equation (2.41) gives an example of 

constant oil rate control (
*

,v oQ ). 
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Based on the analysis of Jiang (2008), writing rate constraint equation in the above format 

may impose difficulties to ILU preconditioner and ignore transient wellbore effects such 

as wellbore storage. Therefore, we adopt another format of constraint equations that are 

based on the superficial phase velocities of the first wellbore segment. Equations (2.42) to 

(2.45) show the residual equations for constant oil surface volume rate control, constant 

gas surface volume rate control, constant water surface volume rate control and constant 

liquid surface volume rate control.  
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When multiple constraints exist, the active boundary condition is decided by selecting the 

constraint with the largest violation factor (Watts et al., 2012). The violation factors for 

producing rate constraint and pressure constraint are defined in Equations (2.46) and 

(2.47) respectively.  
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2.3.3 Initialization of MSW 

Small time step and good initial values are important to properly begin the 

simulation. Contrary to the standard wellbore model, which only has one variable, the 

multi-segment well model has nh+2 (considering there are nh compositions) primary 

variables in each wellbore segment. All these primary variables need to be assigned proper 

initial values to guarantee the convergence of Newton-Raphson solver. We implement the 

following steps to determine these initial values: 

(1) We assume the initial composition of each wellbore segment is the same as that in 

the reservoir. 

(2) Estimate wellbore pressure. If the well is under constant pressure control, the 

wellbore pressure is set as the constant wellbore pressure. If the well is under a constant 

rate control (given oil rate control as an example), the wellbore pressure is estimated as 

follows: 
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The mixture fluid density inside the wellbore is then estimated by summing up the flow 

influx from each wellbore perforations. The pressure of each wellbore segment is finally 

determined by adding gravitational effect to the reference wellbore pressure.  
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(3) Estimate holdups. The holdups in each wellbore segment are estimated by 

summing up the flow influx ratios from all the upstream perforations.  

(4) Estimate mixture velocity. The mixture velocity of each wellbore segment is 

estimated by summing up the flow influx from all the upstream perforations.  

The individual phase velocity is assumed to be equal to the mixture velocity. In 

other words, homogeneous model is applied for the initialization of MSW to ensure the 

convergence.  

 

2.3.4 Global Linear System and Jacobian Matrix 

Table 2.1 summarizes the primary residual equations and variables in the coupled 

wellbore-reservoir simulation. For nh hydrocarbon components being considered, there 

are (𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠  primary equations for the reservoir system and  (𝑛ℎ + 2) ×

𝑛𝑆𝑒𝑔𝑠 + 𝑛𝑆𝑒𝑔𝐶𝑜𝑛𝑛𝑒𝑠 primary equations for the wellbore system.   

 

 

 
System Residual Equations Variables  Number Total 

Reservoir 

Hydrocarbon component 

mass balance (𝑅𝑐,𝑖) 
𝑁𝑐,𝑖 𝑛ℎ × 𝑛𝐶𝑒𝑙𝑙𝑠 

(𝑛ℎ

+ 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 Water mass balance (𝑅𝑤,𝑖)  𝑁𝑤,𝑖 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 

Volume balance (𝑅𝑣,𝑖) 𝑃𝑜,𝑖 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 

Wellbore 

Hydrocarbon component 

mass balance (𝑅𝑐,𝑗) 
𝑁𝑐,𝑗 𝑛ℎ × 𝑛𝑆𝑒𝑔𝑠 

(𝑛ℎ

+ 2) × 𝑛𝑆𝑒𝑔𝑠
+ 𝑛𝑆𝑒𝑔𝐶𝑜𝑛𝑛𝑒𝑠 

Water mass balance (𝑅𝑤,𝑗) α𝑤,𝑗 1 × 𝑛𝑆𝑒𝑔𝑠 

Volume balance (𝑅𝑣,𝑗) 𝑃𝑠𝑒𝑔 1 × 𝑛𝑆𝑒𝑔𝑠 

Pressure drop (𝑅𝑝,𝑗) 𝑣𝑚 1 × 𝑛𝑆𝑒𝑔𝐶𝑜𝑛𝑛𝑒𝑠 

Table 2.1–Summary of primary equations and variables in GURU-MSW 
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The Newton-Raphson method is applied to solve all the primary variables. For a 

single equation, the method can be expressed as:   

 1 '
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n n

n

f x
x x

f x
+ = −   (2.49) 

For a set of nonlinear equations, the method can be expressed as a global linear system 

including a Jacobian matrix, a vector of primary variables changes, and a vector of residual 

equations, as shown in Eq. (2.50):    
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  (2.50) 

The vectors of independent variables are constructed from primary reservoir variables 

(𝑥⃗𝑟𝑒𝑠 = [𝑁𝑐, 𝑁𝑤, 𝑃𝑜]∀𝑖) and primary wellbore variables (𝑥⃗𝑤𝑒𝑙𝑙 = [𝑁𝑐, α𝑤, 𝑃𝑠𝑒𝑔 , 𝑣𝑚]∀𝑗). The 

vectors of residuals are constructed from the residuals of reservoir governing equations 

( 𝑅⃗⃗𝑟𝑒𝑠 = [𝑅𝑐 , 𝑅𝑤, 𝑅𝑣]∀𝑖 ) and residuals of wellbore governing equations ( 𝑅⃗⃗𝑤𝑒𝑙𝑙 =

[𝑅𝑐, 𝑅𝑤, 𝑅𝑣, 𝑅𝑝]
∀𝑗

). The Jacobian matrix is made of four components: the derivation of 

reservoir residual equations with respect to reservoir variables ( /RR res resJ R x=    ), the 

derivation of reservoir residual equations with respect to wellbore variables (

/RW res wellJ R x=    ), the derivation of wellbore residual equations with respect to reservoir 

variables ( /WR well resJ R x=   ), and the derivation of wellbore residual equations with 

respect to wellbore variables ( /WW well wellJ R x=   ). Because of the staggered grid 

discretization scheme, the wellbore residual equations related with mass balance and 
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volume balance are ordered first based on the segment list, following by the pressure drop 

equation based on the segment connection list. Therefore, the Jww portion can be further 

split as follows: 
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  (2.51) 

𝑅⃗⃗𝑤𝑒𝑙𝑙,𝑠 is the vector of residuals related with well segments, 𝑅⃗⃗𝑤𝑒𝑙𝑙,𝑐 is the vector residuals 

related with well connections, 𝑥⃗𝑤𝑒𝑙𝑙,𝑠 is the vector of variables related with well segments, 

and 𝑥⃗𝑤𝑒𝑙𝑙,𝑐  is the vector of variables related with well connections. This arrangement 

allows the flexible extension of current MSW model to surface network model.  

Similar to the idea of applying a connection list for unstructured reservoir grid 

handling, we also generate a connection list for wellbore segments in GURU-MSW. 

Segments from different wells are constructed into a single wellbore segment array, and 

the connection list documents the connectivity among different wellbore segments. Based 

on this data structure, GURU-MSW can handle complex well geometries like branches 

and loops, multiple wellbores. In GURU-MSW, each well can either be defined as a 

standard well or a multi-segment well, and multiple wells can also be grouped to a junction 

point where production constraints for the entire well group being applied.  

Figure 2.2 shows a sample Jacobian matrix with 5 × 1 reservoir cells and 8 

wellbore segments. There are 2 hydrocarbon components in total. The 8th wellbore 

segment perforates the 5th reservoir cell. The dash lines separate the entries of Jacobian 



 

31 

matrix into different reservoir cells and wellbore segments. There are four primary 

variables/residuals for each reservoir cell and wellbore segment. The red line separate the 

Jacobian matrix into four portions: JRR, JRW, JWR and JWW. The dimension of Jacobian 

matrix is 60 × 60 with the dimension of JRR being 20 × 20 and the dimension of JWW being 

40 × 40. The green lines further separate the JWW into segment based residuals and 

connection based residuals. 

  

 

 

Figure 2.2–A sample Jacobian matrix of GURU-MSW. 

 

A Gaussian Elimination method is applied to solve the global linear system shown 

in Eq. (2.50) (Cao et al., 2015).  
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1 1( )RR RW WW WR res res RW WW wellJ J J J x R J J R− −−    = −     (2.52) 

 WW well well WR resJ x R J x = −    (2.53) 

The linear solvers available in GURU-MSW are direct solver, conjugate gradient solver, 

GMRES solver, and BiCGSTAB solver.  ILU preconditioners are applied for the last three 

solvers. 

 

2.4 Simulation Workflow 

As introduced in Section 1.1.1, GURU-MSW is developed based on the in-house 

compositional reservoir simulator GURU. The newly added wellbore modules include 

input module, initialization module, fluid module, governing equation module, and output 

module as shown in Figure 2.3. Several important subroutines, such as vapor liquid 

equilibrium (VLE) calculation and phase velocity calculation are all included in the fluid 

module. The wellbore equation module includes the subroutines of assembling wellbore 

governing equations and calculating the other three portions of the Jacobian matrix. 

Ultimately, the original linear solver module is modified to handle the global linear system 

constructed by wellbore and reservoir equations.  
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Figure 2.3–Newly added modules in GURU-MSW. 

 

 

 

 Figure 2.4 shows the simulation flowchart of GURU-MSW. After reading the 

reservoir and wellbore input files, the program performs miscellaneous calculation to 

examine the bad inputs and to give notifications. Next, the initialization of both reservoir 

cells and wellbore segments variables are conducted based on the input. The initialization 

data are then passed to the time-step level. For each time step, the program enters newton 

iteration with the initial guess of primary variables. The global linear system is constructed 

based on the assembled residual equations and Jacobian matrix and sent to the linear solver 

module. The updated primary variables are sent to the quality check module. If there are 

any unphysical values, the program breaks out of the newton loop and cuts the time step. 

If the new primary variables pass the quality check, they re-enter the newton loop until 

convergence criteria are met. The converged results of the time step are output into the 

data files. The program enters next time step with the converged results of previous time 

step as initial guess. The simulation is end when the target time is reached.  
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Figure 2.4–Simulation flowchart of GURU-MSW 
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3. WELL INTERFERENCE STUDY IN SHALE RESERVOIR* 

 

 Well interference is a common phenomenon in unconventional reservoir 

development. The completion and production of infill wells can lead to either positive or 

negative well interference impacts on the existing producers. Many researchers have 

investigated the well interference phenomenon; however, few of them attempted to apply 

rigorous simulation methods to analyze both positive and negative well interference 

effects, especially in two different formations. In this chapter, we apply the newly 

developed wellbore-reservoir simulator GURU-MSW to study the well interference 

phenomena in Eagle Ford Shale – Austin Chalk production system. For this application, 

we consider the fluid flow inside the wellbore to be homogeneous.  

 

 

 

 

 

 

 

  _____________________________________________ 

*Part of this section is reprinted with permission from “Analyzing the Well Interference Phenomenon in 

Eagle Ford Shale – Austin Chalk Production System with a Comprehensive Compositional Reservoir 

Model” by H. Tang, B. Yan, Z. Chai, et al. SPE Reservoir Evaluation and Engineering, Copyright [2018] 

by Society of Petroleum Engineer.  
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3.1 Introduction 

3.1.1 Well Interference Phenomenon 

Massive and complex hydraulic fractures created by drilling multiple well pads 

and multi-stage hydraulic fracturing lead to the successful development of unconventional 

reservoirs( Xue et al., 2016; Zhang and Zhu, 2017; Zhang et al., 2018ab). However, as 

well spacing decreases, the extensive fractures from adjacent wells also increase the 

chance of “fracture hits” and result in well interference.  

Previous studies have varying definitions for fracture hits. We subdivide these 

definitions into two categories based on the places where fracture hits happen. The first 

category of fracture hit happens in the near wellbore region of parent wells. It can result 

in the removal of considerable amount of proppants in hydraulic fractures or wellbore 

failures (Fjar et al., 2008). Therefore, this kind of fracture hits often leads to mild or severe 

negative impacts on the production of existing parent wells (Marongiu-Porcu et al., 2016). 

The second category of fracture hits happens in the stimulated reservoir volume (SRV) of 

parent wells. The feature of this kind of fracture hit is the creation of hydraulic connections 

as the fractures of infill wells propagate and hit the fractures of parent wells. This kind of 

fracture hit leads to either a positive or negative impact to the production of existing parent 

wells, while the negative impact is much more common based on field observations (Ajani 

and Kelkar, 2012; Kurtoglu and Salman, 2015). The scope of this study focuses on 

simulating the production impacts of the second category of fracture hits.  

Yu et al. (2017) simulated the production of multiple wells under well interference 

by use of a compositional reservoir model. Their model was able to characterize the 
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complex geometry of hydraulic and natural fractures. However, they only presented the 

cumulative production of several interference wells in a single reservoir and did not 

investigate the impact of well interference on existing producers. We consider this 

investigation as important, especially for parent wells and infill wells completed in 

different formations, such as Eagle Ford Shale and Austin Chalk, since the wells very 

likely belong to different operators.  

 

3.1.2 Eagle Ford Shale and Austin Chalk Formations 

The Eagle Ford Shale formation locates in Western Gulf Basin, South Texas. It 

overlies the Buda limestone and underlies the Austin Chalk. The Eagle Ford Shale is a 

self-sourced reservoir with seals. Hentz and Ruppel (2010) divided the Eagle Ford Shale 

formation into the Lower Eagle Ford and the Upper Eagle Ford. The Lower Eagle Ford, 

which is present throughout the whole area of the play, has higher gamma ray and 

resistivity responses, reflecting its richness in organic matter. On the other hand, the Upper 

Eagle Ford is restricted to the west region of the play, and it has more carbonate. The 

elevation of the Eagle Ford Shale formation decreases from 3,500ft subsea to 14,000ft 

subsea southwestward. As the basin gets deeper and more thermally mature, the Eagle 

Ford fluids exhibit an evolution from oil, gas condensate and to dry gas (Energy 

Information Agency, 2010). The reservoir properties also vary a lot across the play, with 

porosity ranging between 2% and 10% and permeability ranging between 0.1nd and 

1000nd (Siripatrachai et al., 2017; Walls and Sinclair, 2011). Commercial production in 
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the Eagle Ford Shale was first obtained in 2008 with a combination of horizontal drilling 

and hydraulic fracturing (Tunstall, 2015).  

The Austin Chalk formation extends from southern Louisiana to south-central 

Texas. The Austin Chalk is a tight oil reservoir with the Eagle Ford Shale being its source 

rock. Hydrocarbons sourced from the Eagle Ford Shale charge the Austin Chalk reservoirs 

through vertical migration pathways formed by fracture networks (Pearson, 2010). The 

matrix porosity of the Austin Chalk reservoir is between 3% and 10% and the matrix 

permeability is between 0.03 and 1.27mD (Hovorka, 1998). The Austin Chalk has been a 

target of numerous horizontal wells since the late 1980’s (Martin et al., 2011).   

Martin et al. (2011) studied the production system formed by the Austin Chalk and 

the Eagle Ford Shale from the perspectives of geological features and production 

activities. They proved the possibility that the two formations form a single hydrocarbon 

system. Okeahialam et al. (2017) investigated the well production performance of the 

Eagle Ford Shale play in Gonzales and Lavaca counties. In this region, the Upper Eagle 

Ford has pinched out, and the Austin Chalk is directly above the Lower Eagle Ford. They 

observed that the oil production rate of a parent well in the Austin Chalk formation 

increased significantly after an infill well in the Eagle Ford Shale started to produce, as 

shown in Figure 3.1. This field case reveals that although the positive well interference 

effect is not common, it does happen in the Eagle Ford Shale-Austin Chalk production 

system.  
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Figure 3.1–Normalized production rates of a parent well in the Austin Chalk formation 

and an infill well in the Eagle Ford Shale formation (reprinted from Okeahialam et al. 

2017). 

 

 

3.2 Model Verification 

A 3D synthetic reservoir model is set up to represent the Eagle Ford Shale - Austin 

Chalk production system (Figure 3.2). The reservoir has a dimension of 3000ft × 1000ft 

× 300ft and three equal-size layers (100ft) in the vertical direction. The top layer (layer 1) 

represents the Austin Chalk formation and the bottom two layers (layers 2 and 3) represent 

the Eagle Ford Shale formation. A horizontal well (represented by black line) with four 

planar hydraulic fractures (represented by red lines) is completed in the Austin Chalk 

formation. The half-length of the fractures is 250ft. We assume these fractures penetrate 

through layer 1 with a height of 100ft. Table 3.1 lists all reservoir properties and well 

control parameters of the model. We assume the vertical permeability equals to the 

horizontal permeability in the two formations. A separate study indicates that the vertical 
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permeability does not influence the competitive drainage between parent and infill wells 

in the production system. We honor two production constraints simultaneously, one is a 

maximum production rate control of 2000 STB/day and the other is a minimum bottom-

hole pressure (BHP) control of 2000 psia. Because most hydrocarbon in Austin Chalk is 

sourced from Eagle Ford Shale, we assume they share the same fluid compositions. We 

apply the five pseudo-components for Eagle Ford Shale (CO2, N2-C1, C2-C5, C6-C10, C11) 

reported by Yu et al. (2017), whose molar fractions and properties are listed in Table 3.2. 

The binary interaction parameters among components are the same as those in the original 

publication. The relative permeability curves for matrix and fractures in Austin Chalk are 

shown in Fig. 3.3 (Valbuena Olivares, 2015). The Stone II (1973) method is applied to 

calculate the three phase relative permeability. The capillary pressures between oil and 

water phases and between gas and oil phases in the Eagle Ford shale layers are shown in 

Fig. 3.4. For this verification case, we only consider the impacts of capillary pressure on 

flow behavior.  
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Figure 3.2–3D reservoir layout of the synthetic case for verification. 

 

 

 

Figure 3.3–Relative permeability curves for rock matrix and fractures in the Austin 

Chalk (modified after Valbuena Olivares, 2015). 
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Figure 3.4–Relative permeability curves and capillary pressure curves for rock matrix in 

the Eagle Ford Shale (modified after Agboada et al., 2013). 

 

 

Parameter Value Units 

Initial reservoir pressure (layer 1) 8000 psi 

Reservoir pressure gradient 0.45 psi/ft 

Initial water saturation  0.3 - 

Reservoir temperature 270 F 

Rock matrix porosity 0.1 - 

Rock matrix permeability (layer 1) 0.18 mD 

Rock matrix permeability (layers 2 and 3) 450 nD 

Rock compressibility 4×10
-6

 psi
-1

 

Fracture width  0.1 ft 

Fracture porosity 0.3 - 

Fracture permeability 1000 mD 

Fracture half-length 250 ft 

Wellbore diameter 0.5 ft 

Maximum oil producing rate 2000 STB/day 

Minimum bottom hole pressure (BHP) 2000 psia 

Table 3.1–Parameters for the synthetic case. 
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Component Molar 

fraction 

Molar 

weight  

Acentric 

factor 

Critical 

pressure 

(psia) 

Critical 

temperature 

(°F) 

Critical 

volume 

(ft3/mol) 

CO2 0.2506 44.01 0.2250 1069.86 87.89 1.506 

N2-C1 0.2200 16.21 0.0084 664.84 -118.26 1.584 

C2-C5 0.2000 52.02 0.1723 472.77 155.46 3.672 

C6-C10 0.1300 103.01 0.2839 360.20 419.77 6.315 

C11+ 0.1994 304.39 0.6716 222.20 1097.33 14.206 

Table 3.2–Component properties for Eagle Ford Shale fluid (modified after Yu et al. 

2017). 

 

 

We validate the compositional reservoir model applying EDFM against ECLIPSE 

300 applying the local grid refinement (LGR) method for fracture modeling. To resemble 

the actual production process, the well is produced under a maximum oil producing rate 

constraint of 2000 STB/day and a minimum bottom-hole pressure of 2000 psi. Simulation 

results of bottom-hole pressure, oil producing rate and gas producing rate are compared in 

Figure. 3.5(a) through (c). All the results are in excellent agreement, which demonstrates 

the reliability of compositional simulation in GURU-MSW and the EDFM fracture 

modeling technique. 
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Figure 3.5–Results comparison of (a) oil production rate, (b) gas production rate, and (c) 

bottom hole pressure between GURU-MSW and ECLIPSE 300. 

 

 

3.3 Case Studies 

3.3.1 Effect of Different Well Interference Scenarios 

 To evaluate the impact of infill wells in the Eagle Ford Shale formation on the 

production of parent wells in the Austin Chalk formation, we design three different well 

interference cases shown in Figure 3.6. For all three cases, the parent well in the Austin 

Chalk layer is the same as that in the base case, and the infill well in the Eagle Ford Shale 

layer is completed in the third layer of the synthetic model. The two wells in the Austin 



 

45 

Chalk formation and the Eagle Ford Shale formation are placed staggered vertically. All 

existing fractures of the parent well are marked as red lines, and the new fractures of the 

infill well are marked as green lines. The infill well has nine stages of fractures. In case 1, 

nine planar fractures of the infill well penetrate through layers 2 and 3 with a height of 

200ft. Four of these fractures directly hit the four planar fractures of parent well at row 5 

and row 6 in the y direction of the synthetic model. In case 2, the first five planar fractures 

of the infill well penetrate through layers 2 and 3 with a height of 200ft, and the last four 

planar fractures penetrate through layers 1 to 3 with a height of 300ft. All new fractures 

have no hits with pre-existing fractures. The case is designed to simulate the well 

interference effect through rock matrix (Awada et al., 2016). In case 3, the first five planar 

fractures are the same as those in Case 2. The last four stages of fractures are designed to 

have two planar fractures in each stage; one parallels with the pre-existing fractures and 

the other hits the pre-existing fractures with an angle. All new fractures penetrate through 

layers 1 to 3 with a height of 300ft. The upward growth of fractures in the Eagle Ford 

Shale formation toward the Austin Chalk formation is considered to be reasonable because 

the rock is more brittle in the Austin Chalk (Okeahialam et al., 2017).  
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Figure 3.6–Three different well interference cases. 

 

       

 

A 200-day production cycle is simulated for all three well interference cases. The 

infill well starts to produce when the parent well has already produced for 100 days. The 

wells are under the same well control strategies as in the base case. Figure 3.7(a) through 

(c) presents the oil-producing rates of parent and infill wells for the three cases. For case 

1, the oil-producing rate of the parent well first increases sharply, and then it decreases 

below its original decline curve. It is a typical negative well interference performance 

resulted from the production competition with infill wells. The sharp rate increase is 

mainly because of the wellbore crossflow introduced by the fracture hits.  For case 2, the 

producing rate of the parent well directly evolves underneath its original decline curve. 

The sharp rate increase cannot be observed in this case because there are no direct hits 

among fractures. For case 3, the producing rate of the parent well first increases above its 

original decline curve and then evolves underneath it. It is a combing result of the infill 

well’s contribution to the SRV of the parent well and the infill well’s competition with the 
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parent well. Figure 3.7(d) presents cumulative oil production of the parent well in all three 

cases and the case without infill wells. Case 1 and Case 2 have almost the same cumulative 

production, which is 8.2% lower than that of the case without infill wells at the end of 200 

days. Case 3 has a little higher cumulative production compared to the other two cases, 

but it is still 5.7% lower than that of the case without infill wells at the end of the 

production. We can clearly tell from the comparison that all this three infill well scenarios 

bring negative well interference effects to the parent well in the Austin Chalk layer. 

 

 

 

Figure 3.7–(a)-(c) Oil producing rate of parent and infill wells for cases 1 to 3. (d) 

Cumulative oil production of the parent well for cases1 to 3 and the case without infill 

wells. 
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      Figure 3.8 shows the pressure maps at the 155th day of production for the case without 

infill wells and the three well interference cases. The pressure maps of layer one (the 

Austin Chalk layer) and layer three (the Eagle Ford Shale layer) are presented for each 

case. The presence of the infill well in the Eagle Ford Shale layer, and the well interference 

effects accelerate the pressure depletion in the Austin Chalk layer. The fracture hits in the 

Austin Chalk layer also accelerate the pressure depletion in the Eagle Ford Shale layer as 

shown in Figure 3.8(d). 

 

 

 

Figure 3.8–Pressure maps of the case without infill wells and cases 1 to 3 at the 155th 

day of the production. 
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3.3.2 Effect of Reservoir Permeability 

 We apply case 1 to evaluate the impacts of the Eagle Ford Shale permeability on 

the well interference between the parent and the infill wells. A 500-day production cycle 

is simulated, and the infill well is brought into production at the 200th day. Figure 3.9 

shows the simulation results when the Eagle Ford Shale permeability equals to 450nd, 

0.0045mD and 0.045mD. For the case of 450nd permeability, the well interference effect 

is similar as that shown in Figure 3.7(a). The production of the infill well reduces the 

cumulative production of the parent well for 11.2% at the end of 500-day production. For 

the case of 0.0045mD, the producing rate of the parent well first increases above its 

original decline curve after the infill well starts to produce, and then decline faster than it 

originally does. From the cumulative oil production comparison, we can confirm that it is 

a negative well interference scenario since the cumulative production of the parent well 

decreases 12.9% at the end of 500-day production. For the case of 0.045mD, the producing 

rate of the parent well increases to the maximum oil producing rate of 2000 STB/day after 

the infill well starts to produce. The parent well remains to produce at this rate for about 

50 days, and then declines at a rate faster than its original decline rate because of the 

competition with the infill well. The cumulative oil production of the parent well at the 

500th day is almost the same as that in the case without infill wells. Although we can expect 

a negative well interference effect after a longer production period, the positive well 

interference effect lasts for about 300 days in this case, which is comparable with the field 

observations shown in Figure 3.1.  
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Figure 3.9–(a)-(c) Oil producing rate of the parent and the infill wells and cumulative oil 

production of the parent well for Eagle Ford Shale permeability equals to 450nd, 

0.0045mD and 0.045mD. 
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Notice that the oil-producing rate of the parent well follows two decline rates after 

the infill well starts to produce in the cases of 0.0045mD and 0.045mD permeability. It is 

mainly because of the different performance of the infill well under different well controls. 

When the infill well starts to produce, it is first under the constraint oil producing rate 

control, with BHP declining quickly, which in turn accelerates the decline rate of the 

parent well. When the BHP of the infill well declines to 2000psi, the well control switches 

to the constant BHP control, and the producing rate of the infill well starts to decline. It 

also results in a slower decline rate of the oil-producing rate of the parent well.   

Figure 3.10 shows the pressure maps at the 250th day of production for the cases 

with Eagle Ford Shale permeability equaling to 0.0045mD and 0.045mD. The high 

permeability of Eagle Ford Shale leads to a faster depletion rate and a higher recovery for 

the Austin Chalk formation. Therefore, if the infill well is completed in a high permeable 

region of the Eagle Ford Shale formation, the production of infill well can lead to positive 

well interference effect for the parent well in the Austin Chalk formation. 

 

 

 

Figure 3.10–(a)-(b) Pressure maps at the 250th day of production for Eagle Ford Shale 

permeability equals to 0.0045mD and 0.045mD. 
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3.3.3 Effect of Nanopore Confinement 

 In this section, we evaluate the nanopore confinement effect of Eagle Ford Shale 

on the production performance of both the parent and the infill wells, and the well 

interference effects between them. We assume that the fractures and the Austin Chalk 

matrix have negligible capillary pressure, while the Eagle Ford Shale matrix has high 

capillary pressure as shown in Fig.5. We evaluate the nanopore confinement effect by 

considering capillary pressure in the phase behavior of reservoir fluid in Eagle Ford Shale. 

The evaluation is based on case 3, where the new fractures of infill well penetrate to the 

upper Austin Chalk formations and hit the existing fractures of the parent well. Figure 

3.11(a) shows the cumulative oil production of the parent and the infill wells with and 

without capillary pressure effects being considered in VLE calculation. The two scenarios 

give exactly the same cumulative oil production curves. It is because the extremely low 

permeability of the Eagle Ford Shale layer, in this case the 450nd, and thus most of the 

rock matrix grids with no hydraulic fractures embedded do not contribute to the 

production. We then increase the permeability to 0.045mD, which considers the existence 

of nature fractures. Figure 3.11(b) presents the cumulative oil production of the parent and 

the infill wells for this case. The results indicate that the cumulative oil production of the 

infill well increases 4.4% at the end of 500-day production when considering capillary 

pressure effect in VLE calculation. The observation is comparable to those reported by 

other researchers who studied the nanopore confinement effect on reservoir performance 

(Siripatrachai et al., 2017; Yuan Zhang et al., 2017).  At the same time, the cumulative oil 

production of the parent well decreases 3.6%. Figure 3.12(a) and (b) show the oil-
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producing rates of the parent and the infill wells with and without capillary pressure in 

VLE calculation. We can observe an increase of the oil-producing rate in the infill well 

and a drop of the oil-producing rate in the parent well in the late production period. The 

results indicate that the consideration of nanopore confinement effect makes the infill well 

a stronger competitor in the production system. It is mainly because that the additional 

capillary pressure in VLE calculation leads to a lower bubble point pressure of fluid 

mixture. In other words, the fluid properties in Eagle Ford Shale are no longer the same 

as those in Austin Chalk because of the capillary pressure in phase behavior. This situation 

favors the oil production of infill well in the Eagle Ford formation, and also leads to more 

negative well interference effects to the parent well in the Austin Chalk formation.   

 

 

 

Figure 3.11–(a)-(b) Cumulative oil production of the infill and the parent wells with and 

without capillary pressure effects being considered in VLE calculation for Eagle Ford 

layers permeability equals to 450nd and 0.045mD. 
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Figure 3.12–(a)-(b) Oil producing rate of the infill and the parent wells with and without 

capillary pressure effects being considered for permeability equals to 0.045mD. 

 

 

3.3.4 Effect of Natural Fractures 

 Austin Chalk is characterized by its natural fracture system. We analyze the effect 

of natural fractures by randomly generating 20 natural fractures in the Austin Chalk layer 

as shown in Figure 3.13. The properties of these fractures are shown in Table 3.3. 

 

 

 

Figure 3.13–Layout of the Austin Chalk layer with natural fractures embedded. 
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Fracture width 

(ft) 

Fracture length 

(ft) 

Fracture 

permeability (mD) 

Fracture 

porosity 

0.02 282.84 3000 1 

Table 3.3–Properties of natural fractures in the Austin Chalk layer. 

  

 

We apply the production scenarios in case 1 and case 2 for analysis. The 

cumulative production curves of the parent well with and without natural fractures for 

these two cases are shown in Figure 3.14(a). At the 200th day of production, the existence 

of natural fractures increases the cumulative production of parent well by 3% and 4% for 

case 1 and case 2 respectively. Figure 3.14(b) presents the cumulative production curves 

of the infill well. At the 200th day of production, the cumulative production of case 1 

increases by 1%, and that of case 2 increases by 9%. This is mainly because that the 

fractures of infill well penetrate to the Austin layer in case 2. Figure 3.15(a) and (b) depict 

the pressure maps at the 150th day of production for case 1 and case 2 with natural 

fractures. Comparing the figures with Figure 3.8(b) and (c), we can find the pressure 

depletion becomes faster when natural fractures exist. However, the oil producing rate 

profiles are similar to that presented in Figure 3.7(a) and (b), which indicates that the 

production of the infill well still brings negative well interference effects to the parent well 

in these two cases.  
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3.3.5 Effect of Hydraulic Fracturing Process 

 The above simulation results are all based on the assumption that the infill drilling 

and completion process do not significantly change the reservoir properties. In the actual 

hydraulic fracturing process, large volume of fracturing fluid is injected into the formation 

to create fractures and then a fracturing fluid flow back period will be followed before the 

well starts to produce hydrocarbons. This process may change the reservoir pressure and 

water saturation especially at the fractured zones. To account for the effect of hydraulic 

fracturing, we set the water saturation and the pressure of the new-fracture-embedded 

reservoir cells to be 0.5 and 10000psi before the infill well starts to produce. The exact 

value changes need to be tracked by a coupled geomechanics-reservoir model, which is 

beyond the scope of this paper. Figure 3.14(a) through (c) present the parent well oil 

producing rate of the three cases with and without the hydraulic fracturing effect being 

considered. Figure 3.14(d) shows the parent well cumulative oil production of the three 

cases under the hydraulic fracturing effect and the case without infill wells.  For case 1, 

where new fractures stay in the Eagle Ford formation, the oil-producing rate of the parent 

well does not change. For case 2, where new fractures penetrate to the Austin Chalk 

formation, the oil-producing rate of the parent well increases compared to the original 

case. This increasing trend lasts for about 75 days, and then the oil-producing rate goes 

back to its original track. The infill well in this case still brings a negative effect to the 

parent well at the end of 200-day production with a 4.9% decline in cumulative oil 

production. For case 3, the additional pressure brought by the infill well has a significant 

effect in increasing the production of the parent well since the new fractures not only 
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penetrate to the Austin Chalk but also hits the existing fractures. Similar to case 2, the 

parent well oil-producing rate drops back to its original declining track 75 days after the 

infill well starts to produce. In this case, the cumulative oil production of parent well is 

the same as that of the no infill case at the end of 200-day production. Therefore, the 

positive well interference effect lasts for about 100 day in this case, and we can expect a 

negative well interference effect afterwards.  

 

 

 

Figure 3.14–(a)-(c) Oil producing rate of the parent and infill wells for cases 1 to 3 with 

and without hydraulic fracturing effect. (d) Cumulative oil production of the parent well 

for cases 1 to 3 with hydraulic fracturing effect and the case without infill wells. 
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Figure 3.15 shows the pressure maps at the 101th day of production for case 2 and 

case 3. In both cases, the new fractures of infill wells penetrate to the Austin Chalk layer. 

The hydraulic fracturing process can increase the pressure of nearby formation, providing 

an additional pressure support for the existing producer. This additional pressure support 

can lead to a period of positive well interference effect for the parent well in Austin Chalk.  

 

 

 

Figure 3.15–(a)-(b) Pressure maps at the 101st  day of production for case 2 and case 3 

with the additional pressure support from the hydraulic fracturing process. 

 

 

 

3.4 Infill Well Pad and Well Group Control 

 A new homogeneous 3D reservoir case is set up in Figure 3.16. The reservoir 

dimension is 1000ft×800ft×400ft, discretizing into 20×16×4 grid blocks. A parent well 

(Parent) is completed in the top layer of the reservoir with three transverse fractures. Two 

infill child wells (Well1 and Well2) are completed in the bottom layer of the reservoir, 

each having four transverse fractures. There exists one transverse fracture fully penetrating 
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the whole reservoir thickness, connecting the Parent Well and Well 2. All other transvers 

fractures only penetrate a single reservoir layer. Reservoir and fracture properties are 

shown in Table 3.4. All three wells are treated as multi-segment wells with the topmost 

segment located at the tubing head. We assume that all three wells are grouped into a same 

surface manifold or stock tank with a minimum tubing head pressure (THP) constraint of 

100 psi applied. In this case, the parent well produces with two transverse fractures in the 

top layer and one transverse fracture in the whole reservoir thickness from the beginning. 

Two infill child wells are brought into production at the same time with Well 2 sharing a 

same transverse fracture with the Parent Well. 

 

 

 

Figure 3.16–Reservoir and wellbore layout for the case with well group control 
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Parameter Value Units 

Initial reservoir pressure 8000 psi 

Initial water saturation  0.3 - 

Reservoir temperature 200 F 

Rock matrix porosity 0.06 - 

Rock matrix permeability 450 nD 

Rock compressibility 4×10-6 psi-1 

Fracture width  0.02 ft 

Transverse fracture porosity 0.3 - 

Transverse fracture permeability 5000 mD 

Connecting fracture porosity 0.1 - 

Connecting fracture permeability 1000 mD 

Gas fluid composition 10.0 CO2  

90.0 CH4 

mol% 

Table 3.4–Simulation parameters of the case with well group control 

 

 

Figure 3.17(a) indicates a peak of the parent well’s producing rate at the time infill 

child wells being brought into production. Shortly after that, the parent well’s producing 

rate decreases to a value below that before the child wells start to produce. Figure 3.17(b) 

shows that the cumulative production of the parent well decreases for about 22% at the 

end of the simulation. The production peak for the parent well is the result of wellbore 

cross flow of Well 2. The extremely low permeability of shale reservoir makes the pressure 

of fractured area of the parent well significantly lower than the pressure of un-fractured 

area. When Well 2 is brought into production, its third perforation which shares the same 

transverse fracture with the parent well experiences severe crossflow.  
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Figure 3.17–(a) Gas production rate and (b) cumulative gas production for the parent 

well with and without the infill well pad. 

 

 

Figure 3.18(a) presents the gas inflow rate of this perforation for a short period of 

time after Well 2 starts to produce. We can observe that the crossflow period only lasts for 

a short period of time as wellbore pressure quickly drops below the pressure of fractured 

area. The average productivity index of two infill wells presented in Figure 3.19(b) 

indicates that the productivity of Well2 is at first lower than Well1 because of the wellbore 

cross flow. When the crossflow ceases, the productivity of Well2 ends up being slightly 

larger than Well1 due to a larger SRV. In this case, infill Well2 acts as a “contributor” to 

the parent well because of the unbalanced pressure at the beginning of production, but it 

ends up being a “competitor” because of the SRV overlap with the parent well. 
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Figure 3.18–(a) Gas inflow rate of the third perforation of Well 2 shortly after it starts to 

produce and (b) average productivity index of Well1 and 2 for the same evaluating 

period. 

 

 

Furthermore, we introduce a connecting fracture between infill Well 1 and Well 2 

based on the above 3D case. Figure 3.19 compares the reservoir pressure map with and 

without a connecting fracture between two infill wells. We can observe that parent well 

depletes quicker at the second perforation when there is a connecting fracture between 

infill wells. The fracture hit between parent well and infill Well 2 also occurs at this second 

perforation. 
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Figure 3.19–Reservoir pressure map at the 60th day of simulation (a) with and (b) 

without connecting fracture between infill wells.  

 

 

Figure 3.20 presents the cumulative production of the parent well and infill well 

pair (Well1+Well2) for the 3D case with and without connecting fracture between the 

infill wells. We can observe that the infill well pair becomes a stronger competitor when 

there is a hydraulic connection between them. The cumulative production rate of the parent 

well decreases for about 2% compared to the no connection case. The cumulative 

production rate of infill well pair increases for about 5% compared to the no connection 

case. This also indicates that a considerable percentage of the infill well pair cumulative 

production rate increase comes from the increasing SRV introduced by the connecting 

fracture between Well1 and Well2. 
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Figure 3.20–Cumulative gas production of (a) the parent well and (b) the infill well pair 

(Well1 and Well2) with time for the 3D case with and without connection between 

Well1 and Well2. 

 

 

3.5 Discussion 

 Among all the cases being studied, only two of them show positive well 

interference effect. In one case, the Eagle Ford Shale permeability is four times smaller 

than that of the Austin Chalk. In the other case, the new hydraulic fractures penetrate to 

the Austin Chalk formation and hit the existing fractures with an additional pressure 

support resulting from the hydraulic fracturing process. The positive well interference 

period lasts for about 300 days for the first case and about 100 days for the second case. 

In the field observations presented by Figure 3.1, the positive well interference period lasts 

for about 200 days, but a longer time can be expected based on the rate profile. To history 

match these field data, a combined effect of high permeable Eagle Ford Shale region and 

hydraulic fracturing process can be considered.  
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The simulation results indicate that the negative well interference effect is much 

more common for a parent well completed in the Austin Chalk formation and an infill well 

completed in the Eagle Ford Shale formation. This conclusion makes physical sense and 

coincides with field observations. However, it is not a trivial conclusion from the 

perspective of reservoir simulation. Based on our previous simulation results for 2D and 

3D homogeneous reservoirs, positive well interference results are much more commonly 

obtained (Tang et al., 2017). If parent wells and infill wells are modeled in a reservoir with 

universal permeability, a positive well interference result is inevitable because new 

fractures introduced by the infill well contribute to the SRV of the parent well. To history 

match the field data with negative well interference effects, a reservoir engineer can 

consider setting the formation permeability around the parent wells to a significant higher 

value (more than 5 times) than the surrounding formations. It is a reasonable setting when 

we consider the complex fracture network around the wells.  

 

3.6 Conclusions 

 In this chapter, we investigated the well interference phenomenon in two different 

formations with GURU-MSW. We considered the nanopore confinement effect in phase 

behavior and applied an embedded discrete fracture model (EDFM) to simulate the new 

fractures introduced by infill wells. The multi-segment wellbore model can characterize 

the wellbore crossflow introduced by fracture hits. The model was validated against 

ECLIPSE 300 with an excellent agreement.  
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      We specifically focused on studying the effect of an infill well in the Eagle Ford Shale 

formation on the production performance of a parent well in the Austin Chalk formation.  

Different reservoir properties and hydraulic fracturing impacts were evaluated through the 

reservoir model. The following conclusions are obtained from the simulation results:   

(1) The multi-segment well model allows the program to characterize the wellbore 

crossflow introduced by fracture hits. The simulation results also prove that the sharp 

producing rate increase of parent wells can be an indicator of direct fracture hits between 

parent and infill wells. 

(2) Infill wells in Eagle Ford Shale most likely result in negative impacts on existing 

producers in Austin Chalk. From the perspective of reservoir simulation, the main 

parameter that contributes to the phenomenon is the reservoir permeability difference 

between the two formations. 

(3) A smaller permeability difference between the two formations and the additional 

pressure support due to hydraulic fracturing can lead to positive well interference effects 

for the parent well after the infill well starts to produce. This positive well interference 

period can last for several hundred days. 

(4) The nanopore confinement effect can lead to more negative well interference 

impacts on the parent well in Austin Chalk if the permeability of the Eagle Ford Shale 

region is sufficiently large.  
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4. LIQUID LOADING STUDY OF HORIZONTAL GAS WELL* 

 

Liquid loading is a challenging production issue in most mature gas fields. The 

dynamic interaction between wellbore and reservoir when liquid loading happens cannot 

be comprehensively simulated by a single wellbore simulator or a single reservoir 

simulator. Therefore, applying a fully coupled wellbore-reservoir simulator like GURU-

MSW to analyze liquid loading phenomena is almost idealized. In this chapter, we will 

introduce a new drift-flux model for liquid loading characterization. By combing this new 

drift-flux model within GURU-MSW, we are able to model some interesting phenomena 

that have never been systematically studied in the literature. 

 

 

 

 

 

 

 

 

_____________________________________________ 

*Part of this section is reprinted with permission from “Development and Application of a Fully Implicitly 

Coupled Wellbore-Reservoir Simulator to Characterize the Flow Transients in Liquid-Loaded Horizontal 

Gas Wells” by H. Tang, A.R. Hasan, and J. Killough. SPE Journal, Copyright [2018] by Society of 

Petroleum Engineers, and “What Happens After the Onset of Liquid Loading? --- An Insight from Coupled 

Well-Reservoir Simulation” by H. Tang, Z. Chai, Y. He et al. SPE Proceedings, Copyright [2018] by Society 

of Petroleum Engineers. 
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4.1 Introduction 

 The liquid loading phenomenon occurs when the gas rate is not high enough to 

carry all the liquids (water or condensate) to the surface. The unproduced liquids can 

accumulate in the wellbore, resulting in sharp drops in gas producing rates, sharp changes 

in wellbore pressure and liquid slug production (Lea and Nickens, 2004).  

There are a few research efforts in predicting the onset of liquid loading in 

horizontal wellbores. El Fadili and Shah (2017) clarified that the conventional model for 

critical gas rate prediction in vertical wells cannot be applied to horizontal wells. They 

proposed a new model for horizontal and deviated wells and tested the model with data 

from 62 wells. Shi et al. (2016) presented an analytical model based on the size and shape 

of liquid droplet to predict critical gas rates for liquid loading in vertical, slanted and 

horizontal wellbores. Wang et al. (2018) pointed out that the liquid droplet model cannot 

explained the liquid-loading mechanism revealed by the experimental work well (Alamu, 

2012; Magrini et al., 2012).  They proposed an analytical model based on the force balance 

of the bottom film and an empirical model that was tested by data from 60 horizontal wells 

from north China. Ansari et al. (2018) collected data from the Marcellus Shale reservoir 

to build a neural network model for real-time liquid loading prediction. 

However, predicting the critical gas rate is only the first step in understanding the 

liquid loading phenomenon. The difficulties in fully modeling the phenomenon come from 

the dynamic interaction between the multiphase flow in wellbore and reservoir. Especially 

for unconventional reservoirs that apply stimulation techniques, a comprehensive 
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modeling approach should account for both heterogeneity in reservoir and hydrodynamics 

in wellbore. 

 Jackson et al. (2011) investigated liquid loading in an open-hole tight gas 

horizontal well with a commercial transient multiphase flow simulator coupled with an 

inflow-performance-relationship (IPR) curve to describe the reservoir. They assumed the 

pressure near the wellbore followed a linear relationship between the manually assigned 

pressure limits. Tan et al. (2017) introduced a design method for de-liquification with 

coiled tubing in shale gas reservoirs based on nodal analysis. Their method combines the 

IPR curve of multi-stage hydraulic fractures in shale reservoir and the tubing performance 

curve calculated from the Beggs & Brill model (Beggs and Brill, 1973).  Both models 

mentioned above chose to simplify the reservoir system using IPR curves, which ignores 

transient behaviors such as wellbore fluid reinjection into the reservoir. Therefore, 

Limpasurat et al. (2015) proposed to apply a reservoir simulation method with special 

treatment of sink/source terms to characterize the liquid phase reinjection into the 

reservoir. Their wellbore model adopted the empirical treatment proposed by Dousi et al. 

(2006) which assumed no liquid production after gas rates drop below the critical gas rates. 

However, this assumption contradicts the field observations of Marino et al. (2017) which 

stated that coproduction of liquid and gas after the onset of liquid loading is feasible. 

It appears that no-one in the literature has attempted to simulate the liquid loading 

phenomenon through a fully implicitly coupled wellbore-reservoir simulator (either a 

commercial one or a self-developed one). Therefore, we intend to apply GURU-MSW to 

characterize the flow transients in liquid-loaded gas wells. 
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4.2 Drift-Flux Model for Liquid Loading Characterization 

 We would like to repeat here the basic gas-liquid drift-flux model proposed by 

Zuber and Findlay (1965): 

 0g m dv C v v= +   (4.1) 

There are two parameters that correlate the mixture velocity (vm) with gas in situ velocity 

(vg) in the model, one is the distribution parameter (Co) and the other is drift velocity (vd). 

The distribution parameter accounts for the non-uniform distribution of gas phase over the 

pipe cross section. The drift velocity describes the relative velocity of the gas phase 

comparing to the two-phase mixture velocity Wallis (1969).  

Although there are a lot of high-performance drift-flux models in the literature, 

few of them can be applied in a fully implicitly coupled wellbore-reservoir system as 

stated in Section 2.2.2. The drift-flux model originally developed by Holmes in 1977 

(covered in more details by Shi et al. 2005) fulfills the aforementioned requirements and 

has been applied in several fully coupled wellbore-reservoir simulators (Livescu et al., 

2010; Pan and Oldenburg, 2014; Schlumberger, 2017a). Equations (4.2) to (4.6) present 

the drift-flux model introduced by Shi et al. (2005).  
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In Equation (4.3), gas flooding velocity (Vsgf) is defined as: 
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In Equation (4.5) and (4.6), Ku is the Kutazeladze number. We applied a formulation 

reported by Pan (2011) as shown in Eq. (19). The ramping parameters, a1 and a2, are set 

to 0.06 and 0.21.  
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In Equation (4.7), NB is the Bond number, which is calculated as the square of the 

dimensionless pipe diameter. To match the measurement given by Richter (1981), Cw is 

set to 0.008 and Cku is set to 142. The characteristic velocity (Vc) is defined as: 
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The model is independent of flow patterns and only requires the pre-knowledge of 

mixture velocity (vm), gas void fraction (𝛼g), and other fluid properties that can be 

calculated from primary variables. The original model parameters were determined 

through experiments of gas void fractions from 0 to 0.6 and pipe inclinations from 0° to 

88°, which indicates that the model may not have good performance in annular or mist 

flow regime (Pan et al., 2011; Pan and Oldenburg, 2014). In order to characterize the liquid 

loading phenomenon, we incorporate into the model several criteria to predict the 

transition from annular or stratified flow regimes to churn or slug flow regimes. The 

parameters for the modified model are determined with the same optimization algorithm 

as introduced by Shi et al. (2005). We apply a larger range of experimental data with gas 

void fractions from 0 to 1 and modify the model for horizontal pipe. 

 For vertical and nearly vertical pipe (inclinations from 0° to 45°), the transition 

from churn to annular flow is based on two criteria (Hasan et al., 2010):  the first is that 

vsg exceeds a critical velocity value (vgc), and the second is that gas void fraction should 

be larger than 0.7. We apply a critical velocity criterion introduced by Taitel et al. (1980) 

as shown in Equation (4.9). The criterion was determined from the balance between the 

gravity and drag forces acting on a liquid droplet. 
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An empirical value m is incorporated into the expression of vd as follows to make the drift 

velocity sensitive to the flow regime transition. 
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In Equation (4.10), vdm represents the modified vd. Notice that vm instead of vsg is applied 

in the equations. Equation (4.11) is made continuous and differentiable to fulfill the strict 

requirements mentioned above. This assumes that in a high gas void fraction region where 

annular flow occurs, vm is approximately equal to vsg. The impact of pipe inclination is 

accounted through f(𝜃), which follows the same expression as in the original model as 

shown in Equation (4.12): 

 ( ) ( )( ) ( )( )1 2

  cos 1 sin   
n n

f   =  +   (4.12) 

Low liquid holdup data reported by Guner et al. (2015) and high liquid holdup data 

reported by Shi et al. (2005) are combined to determine the optimized parameters for 

nearly vertical pipe. The final parameters that achieves the predicting results shown in 

Figure 4.1 are [A, B, m1, m2, b, n1, n2] = [1.27, 0.5, 1.29, 0.99, 0.1, 0.9, 1.2]. Most of the 

data in Figure 4.1 fall within the ±20% error range. The squared 2-norm of the difference 

between measured and predicted values of liquid holdup is 0.179.  
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Figure 4.1–Comparison of calculated liquid holdup and experimental liquid holdup for 

nearly vertical pipes (experimental data adapted after Shi et al. 2005; Guner et al. 2015).   

 

 

For nearly horizontal pipe (inclinations from 45° to 88°), the same modifications 

as shown in Equations (4.9) to (4.11) are applied. The only difference is that a new 

correction function for pipe inclination f(𝜃) is applied. The new function shown in 

Equation (4.13) is adapted from the angle-corrected Turner criterion proposed by Belfroid 

et al. (2008). 

 ( ) ( )( ) 2

1 sin 1.7
n

f n =    (4.13) 

Low liquid holdup data reported by Alsaadi et al. (2015) and high liquid holdup data 

reported by Shi et al. (2005) are applied for parameter optimization. Experimental data for 

45° inclination pipe from Figure 4.1 is also included in order to cover the whole inclination 
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range of nearly horizontal pipe. Figure 4.2 shows the comparison result of predicted and 

measured values of liquid holdup, and the calculated squared 2-norm difference between 

them is 0.157. The final optimized parameters are [A, B, m1, m2, b, n1, n2] = [1.27, 0.5, 

1.71, 1.18, 0.96, 1.17, 0.42]. 

 

 

Figure 4.2–Comparison of calculated liquid holdup with experimental liquid holdup for 

nearly horizontal pipes (experimental data adapted after Shi et al. 2005; Alsaadi et al. 

2015; Guner et al. 2015). 

 

 

    The flow patterns in horizontal pipes are substantially different from those 

observed in vertical and inclined pipes Oddie et al. (2003). In the original expression of 

drift velocity (Equation (4.4)), K(𝛼g)Vc acts as a transition curve between bubble rise 

velocity 1.53Vc and flooding velocity KuVc (Holmes, 1977) based on the gas volume 
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fraction ramping parameters a1 and a2. Both velocities were obtained from vertical flow 

experiments and no longer applicable to horizontal flow. A relative velocity (Vr) obtained 

from the original flooding curve expression described by Wallis (1969) is applied as a 

substitute for K(𝛼g)Vc in the modified drift velocity expression. Equations. (4.14) to (4.16) 

present the modified model for horizontal flow: 
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Brito (2015) applied a liquid wave-growth criterion proposed by Taitel and Dukler 

(1976) to predict the transition from stratified flow to stratified wavy with liquid film 

reversal flow. The criterion, which is expressed in dimensionless liquid height cannot be 

applied directly in the drift-flux model framework. A simplified criterion of gas void 

fraction is applied in the modified model, which is A = A1, m = m1 for 𝛼g < a1, and A = 

A2, m=m2, for 𝛼g > a2, and a linear interpolation between these values when a1<𝛼g< a2.  

Experimental data of horizontal pipe flow (𝜃 = 90°) reported by Fan (2005) (mainly in 

stratified wavy flow regime) and Brito (2012) (mainly in slug flow regime) are applied to 

obtain the model parameters. Figure 4.3 shows the comparison result of predicted and 

measured values of liquid holdup, which has a squared 2-norm difference of 0.114. The 
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final optimized parameters are [A1, A2, m1, m2, a1, a2] = [0.72, 1.86, 4.51, 0.21, 0.54, 0.89]. 

The relevant liquid holdup values for flow pattern transition are 0.46 (1- a1) and 0.11 (1- 

a2) based on the optimized values of a1 and a2. We would like to point out that the proposed 

horizontal model is highly empirical and data-oriented. 

 

 

Figure 4.3–Comparison of calculated liquid holdup and experimental liquid holdup for 

horizontal pipes (experimental data adapted after Fan 2005; Brito 2012). 

 

 

In the original Shi’s model, the limit of 𝜃 in Eq. (4.10) is from 0° to 88°. When 𝜃 

equals 90° (or within 2° of horizontal), f(𝜃)=0, a zero drift velocity, vdm=0, is applied 

(Schlumberger 2014). We apply the proposed horizontal model for 𝜃 between 88° and 90°. 

A homogeneous flow model (Co=1, vdm= 0) will also be investigated for comparison 

purpose. 
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4.3 Model Verification 

 A synthetic case is established for model verification. The case is set up as shown 

in Figure 4.4(a). A small reservoir with a dimension of 500ft × 300ft × 100ft is 

incorporated as the boundary condition for the wellbore model. The reservoir is located at 

a depth of 6050ft and is discretized into 5×3×1 grids. The reservoir is assumed to be a gas 

reservoir with a relative permeability performance shown in Figure 4.4(b). A horizontal 

well is assumed to have only one perforation inside the reservoir. The vertical and slanted 

part of the well is uniformly discretized into 31 segments with a length of 202.57ft. 

Segments 30 and 31 have an inclination angle of 30° and 60° respectively. The horizontal 

part of the well is uniformly discretized into 3 segments with a length of 200ft. The end 

segment 34 is connected with the reservoir grid. Other reservoir, wellbore and fluid 

properties applied in the model are presented in Table 4.1.  
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Figure 4.4–(a) Reservoir and wellbore layout of the synthetic verification case, and (b) 

relative permeability curves applied in the reservoir model. 

 

 

Parameter Value Units 

Reservoir properties 

Initial reservoir pressure 5600 psia 

Initial water saturation  0.3 - 

Reservoir temperature 200 F 

Reservoir porosity 0.3 - 

Reservoir permeability 10 mD 

Rock compressibility 4×10
-6

 psi
-1

 

Wellbore properties 

Wellbore diameter 0.5 ft 

Wellbore relative roughness 0.0005 - 

Well index (geometry) 9.1 rcf·cp/day/psi 

Maximum gas produce rate 15 MMscf 

Minimum tubing head pressure 100 psia 

Fluid properties 

Water viscosity 0.31 cp 

Water compressibility 3×10-6 
psi

-1
 

Gas fluid composition 10.0 CO2  

90.0 CH4 

mol% 

Table 4.1–Wellbore and reservoir parameters for the verification case. 
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The model is compared with the Multi-segment Well model in ECLIPSE 300 

(E300) for verification purposes. First, a basic multi-segment well model with a 

homogeneous wellbore fluid flow assumption (Co=1, vdm= 0) is applied. Figures. 4.5(a) 

and 4.5(b) show that the two models match well in both comparisons of gas producing 

rate and the pressure of perforated well segment. The simulation results represent an ideal 

situation that all produced water is lifted out of the wellbore, which is also the result that 

a common reservoir simulator will present. Figure. 4.6(a) compares the pressure along the 

wellbore at the 10th day of the production. Figure 4.6(b) compares the frictional pressure 

drop along the horizontal wellbore for the whole production period. The comparison 

results further validate the reliability of the wellbore model.  

 

 

 

Figure 4.5–Comparisons of (a) gas producing rate and (b) the pressure of the perforated 

well segment between the proposed model and E300. 
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Figure 4.6–Comparisons of (a) wellbore pressure at the 10th day of production and (b) 

frictional pressure drop of the horizontal lateral between the proposed model and E300. 

 

 

Furthermore, we apply the modified wellbore drift-flux model and compare the 

simulation results with E300, which implements the original drift-flux model proposed by 

Shi et al. (2005) for vertical and deviated pipes, and the homogeneous flow model for 

horizontal pipes. The relevant drift-flux parameters applied in the E300 model are [A, B, 

Fv, a1, a2] = [1.2, 0.6, 1.0, 0.05, 0.13]. The comparison results of gas producing rate and 

the pressure of perforated well segment are shown in Figure 4.7(a) and (b). Both results 

show a sharp drop on gas rate decline curve, accompanied by a sharp increase on the 

pressure of the perforated segment around the 60th day of production. These two 

observations are consistent with the liquid loading symptoms reported by Lea and Nickens 

(2004). The modified model predicts the onset of liquid loading about 1 day earlier than 

the original model. After the onset of liquid loading, the original model predicts a 

smoother decline of gas producing rate than the modified model. 
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Figure 4.7–Comparisons of (a) gas producing rate and (b) the pressure of perforated well 

segment simulated from the modified drift-flux model and the original model of Shi et 

al. (2005). 

 

 

 

4.4 Flow Regime Transition Analysis 

 Figure 4.8(a) shows an expanded view of gas producing rate predicted by the 

modified model from 59 to 62 days. Figure 4.8(b) shows the water producing rate 

predicted by the modified model during the same time period. We divide this production 

period into two: the first time period from t1 =59.6 days to t2 =60.6 days, the second period 

begins at t2 through to t3 = 61.3 days. The first interval, Δt12, is mainly influenced by flow 

pattern transition in the vertical and slanted region of the wellbore. The second interval, 

Δt23, is mainly influenced by flow pattern transition in the horizontal region of the 

wellbore. Two points in time are specified, namely: tA = 60.1 days and tB = 61.1 days, and 

are selected for further analysis. 
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Figure 4.8–Zoom-in view of (a) gas producing rate and (b) water producing rate 

predicted by the modified model in the time period of 59 day to 62 day. 

  

 

In the first time section (t1 to t2), we compare the superficial gas velocity (vsg) with 

the critical transition velocity from annular to churn flow (vgc in Equation (4.9)) for all 

vertical and slanted wellbore segments. The comparison results in Figure 4.9 indicates that 

the flow pattern transition from annular to churn flow starts at time t1, located at the bottom 

of the slanted wellbore region. The time also coincides with the liquid loading onset time 

shown in Figure 4.7. We can observe that the gas producing rate decline profile remains 

stable for this flow pattern transition period. We would like to point out that shifting 

between flow regimes (annular and churn) occurs in the first two well segments (well 

head) from time t2 to t3. It is mainly because of the unstable velocity profile resulting from 

the flow regime transition in the horizontal section. If we replace the drift-flux model in 

the horizontal section with the homogenous flow model, the whole wellbore will finish 
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the flow regime transition at around time t2 without shifting. The water production also 

ceases at the same time. 

 

 

Figure 4.9–Superficial gas velocity and critical gas velocity of vertical and slanted 

wellbore segments (1 to 31) at different times, (a) t1, (b) t12, and (c) t2. 

     

 

Figure 4.10 presents the calculated liquid holdup for all wellbore segments from 

time t1 to t3. The flow pattern transition criteria (liquid holdups equal to 0.11 and 0.46) for 

horizontal flow in the modified model are plotted as the black dash lines in the figure. We 

can observe that the flow pattern transition in horizontal wellbore region starts at time t2 

and completes before t23. However, the impact of the flow pattern transition on wellbore 

liquid holdup distribution lasts to time t3, when water completely ceases producing. We 

define the time period from the onset of liquid loading to the cease of water production 

(from t1 to t3) as the flow regime transition time. For this base case, the total flow regime 

transition time is approximately 1.7 days. 
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Figure 4.10–Liquid holdup profile along the wellbore at different times from t1 to t3. 

 

 

4.5 Natural Cyclical Production 

 We design a 3D synthetic reservoir model with a dimension of 1150ft × 1150ft × 

200ft. The layout of the reservoir and wellbore is shown in Figure 4.11. The horizontal 

well is designed to have a 3900ft vertical wellbore section, a 200ft slanted wellbore section 

and a 560ft horizontal wellbore section. The horizontal lateral of the wellbore is completed 

in the middle of the reservoir with an open-hole completion of 460ft, which is represented 

by the red dash line. The reservoir is assumed to produce gas and water simultaneously, 

and the relative permeability curve of the two phases are the same as that given in Figure 

4.4(b). The production is under a maximum gas producing rate constraint of 



 

86 

10000Mscf/day and a minimum tubing head pressure of 100psia. Other reservoir, wellbore 

and fluid properties are presented in Table 4.2.  

 

 

Figure 4.11–Reservoir and wellbore layout of the 3D synthetic case. 

 

 

Parameter Value Units 

Reservoir properties 

Initial reservoir pressure 2000 psi 

Initial water saturation  0.25 - 

Reservoir temperature 100 F 

Reservoir porosity 0.1 - 

Reservoir depth 4000 ft 

Rock compressibility 4×10
-6

 psi
-1

 

Wellbore properties 

Wellbore diameter 0.5 ft 

Wellbore relative roughness 0.0005 - 

Maximum gas producing rate 10000 Mscf/day 

Minimum tubing head pressure 100 psia 

Fluid properties 

Water viscosity 0.31 cp 

Water compressibility 3×10
-6

 psi
-1

 

Gas fluid composition 10.0 CO
2
  

90.0 CH
4
 

mol% 

Table 4.2–Reservoir and wellbore properties of the 3D synthetic case 
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We assume the reservoir has homogeneous and isotropic permeability. Figure 4.12 

shows the gas and water producing rates when reservoir permeability equals to 1mD. 

Based on the analysis of the previous section, the liquid loading occurs at time a (202 day), 

when the flow regime transition from annular to slug flow at the bottom of the slanted 

wellbore region. The flow regime transition in the whole wellbore is accompanied by the 

unstable water production (time period a - b). Later, the water production ceases and the 

gas producing rate drops sharply until reaches economic producing rate (time period b - 

c).  We name time period a – b as gas liquid coproduction period, and time period b - c as 

zero liquid production period.  

 

 

Figure 4.12–(a) Gas producing rate and (b) water producing rate for reservoir 

permeability equals to 1mD in the synthetic case. 

 

 

Figure 4.13 shows the lengths of these two production periods under different 

reservoir permeabilities with 2Mscf/day as economic producing rate. As reservoir 
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permeability decreases from 5mD to 0.3mD, the gas-liquid coproduction period increases 

from 8 to 111 days, and the zero liquid production period increases from 23 to 145 days. 

 

 

Figure 4.13–Lengths of gas liquid coproduction period and zero liquid production period 

under different reservoir permeability. 

 

 

Figure 4.14 presents the gas and water producing rates when reservoir permeability 

equals to 0.1mD. After the onset of liquid loading (at about 0.7 day), the gas and water 

coproduce for about 230 days and enter several intermittent production cycles. The 

maximum water producing rates for the last four producing cycles are 494, 1075, 1648 

and 2430STB/day respectively. We analyze a single production cycle from a (265.7 day) 

to b (302.6 day), and to c (303.1 day), as marked in Fig. 4.14(a).  
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Figure 4.14–(a) Gas producing rate and (b) water producing rate for reservoir 

permeability equals to 0.1mD. 

 

 

The dynamic wellbore pressure and reservoir pressure profiles at the last well 

segment (well toe) are presented in Figure 4.15. For the whole production period, the 

reservoir pressure remains higher than the wellbore pressure, with the difference gradually 

decreasing to zero. The reservoir behavior is a little slower than the wellbore behavior. 

For the production cycle being evaluated, the corresponding characteristic times for 

reservoir are a’ (268 day), b’ (302.8 day) and c’ (305.4 day).  
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Figure 4.15–Dynamic wellbore pressure and reservoir pressure profiles at the last 

wellbore segment. 

 

 

We analyze the static reservoir pressure along the cross section perpendicular to 

the horizontal wellbore as shown in Fig. 4.16. Fig. 4.16(a) shows the reservoir pressure 

buildup from time a’ to b’. During this 35-day period, the near-wellbore pressure increases 

from 1274psia to 1568psia, and the far field pressure decreases from 1847psia to 1827psia. 

Fig. 4.16(b) shows the reservoir pressure drawdown from time b’ to c’. During this 3-day 

period, the far field pressure remains unchanged, and the near-wellbore pressure decreases 

quickly from 1568psia to 1246psia. We propose the following explanation for this natural 

cyclical production phenomenon: the low gas producing rate after the onset of liquid 

loading allows the buildup of reservoir pressure in the near-wellbore region. The 

accumulated pressure puts the wellbore into another cycle of high gas producing rate 

accompanied by the removal of accumulated water through production. 
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Figure 4.16–Reservoir pressure profiles (a) from time a’ to b’ and (b) from time b’ to c’. 

 

 

The natural cyclical production phenomenon coincides with several reported field 

observations. Wang et al. (2015) reported field data of two adjacent gas wells (a horizontal 

well and a vertical well) in a low-permeable sandstone gas reservoir. The production 

history indicated that the horizontal well went through several months of intermittent 

production, while the vertical well produced at a stable low gas flow rate. Marino et al. 

(2017) also presented field data of a “natural” intermittent production case as shown in 

Figure 4.17, but they did not provide detailed well information. The natural cyclical 

production is different from the intermittent production strategy proposed by Whitson et 

al. (2012). The latter is also known as cyclic shut-in control, which is commonly applied 

in mature gas fields (Jackson et al., 2011; Limpasurat et al., 2015). The shut-in operation 

after the onset of liquid loading allows the buildup of reservoir pressure in the near-

wellbore region and thus achieves a higher gas flow rate when the well is re-opened. 
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However, in the natural cyclical production case, the gas producing rate enters the next 

cycle of high production without shutting in the well. The low gas flow rate after the onset 

of liquid loading allows the pressure to build up naturally in the near-wellbore region. 

 

 

Figure 4.17–Field data of natural cyclical production (reprinted from Marino et al. 

2017). 

 

 

4.6 The Impact of Different Stimulation Techniques 

Stimulation techniques are commonly applied to remove near wellbore damage 

and enhance wellbore productivity in tight gas reservoirs. In this section, we investigate 

two kinds of stimulation. One is the uniform stimulation in the near-wellbore region, and 

the other is the multi-stage hydraulic fracturing. The reservoir being investigated is the 

same size as in the previous case shown in Figure 4.11.  
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4.6.1 Uniform Near-Wellbore Stimulation 

The uniform stimulation cases are simulated by increasing the reservoir 

permeability around the open-hole wellbore portion. All the other properties are kept the 

same as in Table 4.2. The stimulated area is 50 ft × 50 ft. We define the stimulation extent 

(SE) as the ratio of stimulated permeability to matrix permeability. Figure 4.18 shows the 

gas producing rate and the cumulative gas production when SE is 5 and 10 respectively. 

Uniform stimulation around wellbore significantly reduces the cycles of intermittent 

production. When the gas producing rate reaches the lowest economic rate, the cumulative 

gas production of the two cases are 333 MMscf and 417 MMscf respectively. 

 

 
Figure 4.18–Gas producing rate and cumulative gas production for cases with (a) SE = 5 

and (b) SE = 10. 

 

 

 Figure 4.19 presents the dynamic wellbore pressure and reservoir pressure profiles 

at the last well segment. In both cases, the wellbore is first under the maximum producing 

rate control of 10 MMscf/day and then switches to the minimum tubing head pressure 
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control of 100 psi. The onset of liquid loading can be recognized through wellbore pressure 

changes. For the cases with SE is 5 and 10, liquid loading occurs at 23.1 day and 34.9 day 

respectively.  

 

 
Figure 4.19–Dynamic wellbore pressure and reservoir pressure profiles at the last 

wellbore segment for cases with (a) SE = 5 and (b) SE = 10. 

 

 

Figure 4.20 gives the water producing rate profiles of the two cases. After the onset 

of liquid loading, gas coproduces with water for tens of days and then water production 

completely ceases, which is also characterized by the sharp increase of wellbore pressure 

profile. By comparing wellbore pressure and reservoir pressure profiles shown in Figure 

4.15 and Figure 4.20, we can find that natural cyclical production occurs when the 

difference between the wellbore pressure and the reservoir pressure is significant. A high 

extent stimulation around the wellbore decreases the initial pressure difference between 

the wellbore and the reservoir, and thus avoids the natural cyclical production.  



 

95 

We further investigate the impact of anisotropic reservoir permeability. In this 

case, the vertical permeability (kz) is set to be 0.1 time of the horizontal permeability (kxy) 

in both reservoir matrix and stimulated volume. The horizontal permeability of reservoir 

matrix is 0.1 mD. Figure 4.20 shows the gas producing rate and the cumulative gas 

production for SE equals to 5 and 10. The intermittent production cycle increases 

significantly. The cumulative gas production rate reaches 329 MMscf after 650 days of 

production for SE equals to 5. The cumulative gas production reaches 350 MMscf after 

607 days of production for SE equals to 10. The same recovery is reached at day 107 for 

the case with isotropic reservoir permeability (no cyclical production).  

 

 

Figure 4.20–Gas production rate and cumulative gas production for anisotropic 

permeability case with (a) SE = 5 and (b) SE = 10. 

 

 

Figure 4.21 shows the dynamic wellbore pressure and reservoir pressure profiles 

for the two stimulation extent. The time for onset of liquid loading is marked on the figure. 



 

96 

The larger initial pressure difference between wellbore and reservoir caused by the lower 

reservoir permeability enhances the natural cyclical production for both cases.  

 

 

Figure 4.21–Wellbore pressure and reservoir pressure profiles for anisotropic 

permeability case with (a) SE = 5 and (b) SE = 10. 

 

 

4.6.2 Multi-Stage Hydraulic Fracturing 

To investigate the impact of multi-stage hydraulic fractures, we design a new case 

in Figure 4.22. The reservoir size and the length of the horizontal wellbore the same as 

that shown in Figure 4.11. The horizontal lateral of the wellbore has four transverse 

hydraulic fractures, represented by short white lines. There is local grid refinement around 

the transverse fractures. The fracture width and permeability are set to be 0.2 ft and 500 

mD.  



 

97 

 

Figure 4.22–Layout of the case with hydraulic fractures 

 

 

Figure 4.23 shows the gas producing rate and cumulative gas production for 

fracture length equals to 150 ft and 350 ft respectively. The cumulative production of the 

two cases are 569 MMscf and 820 MMscf, significantly higher than that of the cases with 

uniform stimulation. There is no natural cyclical production in either case.  

 

Figure 4.23–Gas production rate and cumulative gas production for cases with fracture 

length equals to (a) 150 ft and (b) 350 ft.  
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Based on the dynamic wellbore pressure and reservoir pressure profiles shown in 

Figure 4.24, the initial pressure differences between wellbore and reservoir of the two 

cases are both about 500 psi at the onset of liquid loading. For the case with 150 ft 

fractures, liquid loading occurs at day 57.9 and water production ceases at day 153.5. For 

the case with 350 ft fractures, liquid loading occurs at day 98 and water production ceases 

at day 194.7. 

 

 

Figure 4.24–Dynamic wellbore pressure and reservoir pressure profiles at the second 

perforation for cases with fracture length equals to (a) 150 ft and (b) 350 ft. 

 

 

After the water production ceases, the gas producing rate first drop sharply and 

then maintains at low producing rates for hundreds of days. Therefore, there exists a 

transition period associated with the rate changes. For the case with 150 ft fractures, the 

transition period is smooth and around day 163. For the case with 350 ft fractures, there 

exists a sharp transition point at day 202. This observation can be explained by the 
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dynamic changes of wellbore pressure and reservoir pressure shown in Figure 4.24. When 

all the produced water starts to accumulate in the wellbore, the wellbore pressure increases 

sharply and the reservoir pressure in the near-wellbore region starts to build up. For the 

case with 150 ft fractures, the reservoir pressure remains higher than the wellbore pressure 

during the transition period. However, for the case with 350 ft fractures, the wellbore 

pressure exceeds the reservoir pressure after 202 days, which indicates the reinjection of 

wellbore water into the formation.  

Figure 4.25 presents the reservoir pressure along the cross section overlay the 

horizontal wellbore. The dash lines mark the location of hydraulic fractures. In both cases, 

the reservoir pressure slowly build up in the near-wellbore region after water production 

ceases. For the case with 150 ft fractures, almost no reinjection happens. For the case with 

350 ft fractures, an obvious wellbore fluid reinjection can be recognized after 202 days. 

The reinjection occurs at the second and the third perforations.  

 

 

Figure 4.25–Reservoir pressure along the horizontal wellbore for cases with fracture 

length equals to (a) 150 ft and (b) 350 ft at different times. 



 

100 

Figure 4.26 and Figure 4.27 present the pressure maps of the two cases. When the 

water production just ceases, the reservoir pressure around the second and the third 

fractures is significantly smaller than that around the first and the last fractures as shown 

in Fig. 4.26(a) and Fig. 4.27(a). Fig. 4.26(b) and Fig. 4.26(b) show the reservoir pressure 

maps during the gas rate transition periods. The pressure around the fractures significantly 

increases because of the reservoir pressure buildup. However, the pressure around the 

second and the third fractures remains lower than that of the first and the last fractures, 

especially for the case with longer fractures. This situation leads to the reinjection from 

the second and the third perforations, while the first and the last perforations continue 

producing. 

 

 

Figure 4.26–Reservoir pressure maps at (a) 153.5 day and (b) 163 day for the case with 

the fracture length equals to 150 ft. 
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Figure 4.27–Reservoir pressure maps at (a) 194.7 day and (b) 202.1 day for the cases 

with the fracture length equals to 350 ft.  

 

 

 

4.7 Conclusions 

 In this chapter, we for the first time applied a fully implicitly coupled wellbore-

reservoir model GURU-MSW to characterize the liquid loading phenomenon. We 

proposed a modified drift-flux model that is able to predict the transition from annular or 

stratified flow regime to churn or slug flow regime for nearly vertical, nearly horizontal 

and horizontal pipes. The modified model was incorporated into GURU-MSW to simulate 

the whole producing life of a liquid-loaded horizontal gas well.  We applied the model to 

analyze the gas and water production scenarios of an open-hole horizontal well, a 

horizontal well with uniform stimulation, and a horizontal well with multi-stage hydraulic 

fractures. The following conclusions can be obtained: 
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(1) There exists a gas-water coproduction period and a zero liquid production period 

after the onset of liquid loading for most production scenarios being investigated. The 

lengths of both production periods increase as reservoir permeability decreases from 5mD 

to 0.3mD.  

(2) For reservoir permeability equals to 0.1mD, the horizontal gas well experiences 

natural cyclical production after the onset of liquid loading. It is because of the periodic 

buildup and draw down of reservoir pressure. The production phenomenon is consistent 

with reported field observations. 

(3) Stimulation techniques such as near wellbore stimulation and hydraulic fracturing 

can decrease the initial pressure difference between wellbore and near-wellbore reservoir 

when liquid loading occurs, and thus mitigate or eliminate the natural cyclical production 

phenomenon. 
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5. A NEW UNIFIED DRIFT-FLUX MODEL FOR ALL PIPIE INCLINATIONS 

 

Implementation of a drift-flux multiphase flow model within a fully-coupled 

wellbore-reservoir simulator like GURU-MSW is non-trivial and must adhere to a number 

of very strict requirements in order to ensure numerical robustness and convergence. The 

existing drift-flux model inside ECLIPSE/INTERSECT is only fully posed for upward 

flow from 2 degrees (from the horizontal) to vertical. In this chapter, we attempt to extend 

the current DF model to a unified and numerically robust model that is applicable to all 

well inclinations.  

In order to achieve this objective, some 5805 experimental measured data from 22 

sources as well as 13440 data points from the OLGA-S library were utilized to 

parameterize a new DF model – one that makes use of the accepted upward flow DF model 

and a new formulation extending this to the horizontal and downward flow. The proposed 

model is compared against 2 existing drift-flux models (also applicable to all inclinations) 

and is shown to have better, or equivalent, performance. More significantly, the model is 

also shown to be numerically smooth, continuous and robust for co-current flow when 

implemented to GURU-MSW.  
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5.1 Model Development 

 In the new model, we apply the same profile parameter proposed by Shi et al. 

(2005). This has been given in section 4.2. We repeat it in a combined form as shown in 

Eq. (5.1). 
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  (5.1) 

The profile parameter changes within the range 1≤ C0 ≤A. C0 will be a constant of 1 if A 

equals to 1. 

The drift-velocity correlation comes from the idea of Bendiksen (1984), which 

combines drift velocity components for both horizontal and vertical flow as follows: 

 .dd

v h

dv siv n v cos = +    (5.2) 

For the vertical drift velocity (
v

dV ), we apply the existing drift-velocity expression 

documented by Holmes (1977) and Shi et al. (2005), namely:  
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For the horizontal drift velocity (
h

dV ), we propose the following correlation: 
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In Equation (5.4), viscosity number (Nµ) is defined as: 
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Eötvös number ( EoN ) is defined as: 
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The first and second terms in Eq. (5.4) are inspired by the work of Ben-Mansour et al. 

(2010), Jeyachandra et al. (2012), and Zukoski (1966). The horizontal drift velocity has 

been shown to be highly dependent on gas volume fraction (Isao and Mamoru, 1987). The 

purpose of the third term in Eq. (5.4) is to ensure that the horizontal drift velocity 

approaches to 0 as gas volume fraction approaches to 0 and 1.  

 The correlation in Eq. (5.3) was designed for upward and horizontal flow 0≤ 𝜃 

≤90. For downward flow, Bhagwat and Ghajar (2012) observed that drift-flux models 

developed for upward flow can be applied to downward flow by changing the sign the of 

the drift velocity term from positive to negative. They further proposed a model where the 

“sign flipping criteria” are defined at –50≤ 𝜃 <0 and when Frsg ≤ 0.1 (Bhagwat and 

Ghajar, 2014). Frsg is the gas Froude number defined by Eq. (A.6). However, the model is 

based on superficial gas velocity and is discontinuous in form, making it unsuited for 

implementation in coupled wellbore-reservoir simulation. This is contrary to typical 

steady-state pipe-flow multiphase simulators where superficial velocities are known 
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inputs and void fraction is an output. In coupled wellbore-reservoir simulation, this is 

reversed and void fraction is an input and superficial velocities are the outputs.  

 To fulfill our application objective, we propose the following drift velocity 

correlation, applicable for all pipe inclinations: 
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  (5.7) 

Equation (5.7) adds two new terms to the original correlation shown in Eq. (5.2). One is a 

logistic function to adjust the horizontal drift velocity term. The logistic function creates 

a smooth transition between 1 and -1 with the transition location being determined by 𝜃 

and Vm (the functionality of this term will be illustrated in the discussion Section). The 

second term utilizes the liquid Reynolds number defined by Eq. (5.8). The term accounts 

for deviations observed at low velocity (at low Reynolds number).  

 m l
L

l

Dv
Re




=   (5.8) 

5.2 Model Parameterization 

 The average in-situ gas volume fraction (𝛼g), across the pipe cross-section, is 

obtained by solving the following implicit function:  
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Xp are tunable model parameters, and ξ are input fluid properties. The Wijngaarden-

Dekker-Brent root-finding algorithm (Press et al., 1992) is applied to solve Eq. (5.9). If 
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multiple roots are found, the lower one is taken as the physical root (Landman, 1991). The 

vector Xp contains the following eleven empirical parameters from the model: 

 1 2 1 2 3 4 1 2 3, , ,  , , , , , , ,pX A B a a N N N N m m m=
 

These parameters are obtained by minimizing the average error between the experimental 

and calculated gas volume fraction. The objective function is defined as: 
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The parameters are optimized between the lower- and upper-bounds as follows: 

( )  = 1.0, 0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.5, 1.0, 0.5p lower
X  

( )  = 1.5, 0.9, 0.7, 0.9, 2.0, 2.0, 1.0, 1.0, 2.0, 3.0, 2.0p upper
X  

We utilize two distinct datasets to determine optimal model parameters. The first dataset 

contains 5805 data extracted from the Tulsa University Fluid Flow Project (TUFFP) 

database. This contains experimental data from 22 sources, all in the public domain with 

a summary of sources and property ranges in Table B-1. Worthy of note is the fact that the 

data covers pipe inclinations in the range –90≤ 𝜃 ≤90 and pipe diameters from 1 to 6.73 

inches. The second dataset comprises 13440 records generated from the OLGA-S library. 

The OLGA-S library is derived from high-quality experimental data from the SINTEF 

multiphase flow laboratory near Trondheim, Norway (Schlumberger, 2017b). This dataset 

covers pipe inclinations in the range of 80≤ 𝜃 ≤90 and pipe diameters from 1 to 7 inches. 

Table 5.1 summarizes the range of key properties of these datasets, including superficial 
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velocities, viscosities and gas volume fraction. Both datasets cover the typical operational 

range of gas and oil wells. 

 

 

Variables Pipe 

diameter 

(inch) 

Inclination 

 (degree) 

Gas 

superficial 

velocity 

(m/s) 

Liquid 

superficial 

velocity 

(m/s) 

Liquid 

Viscosity 

(cP) 

Gas 

volume 

fraction 

TUFFP Dataset 

Min 1.0 -90 0.023 0.0003 0.1 0.006 

Max 6.7 90 82.32 5.2 74.4 0.999 

OLGA-S Dataset 

Min 1.0 -80 0.0001 0.001 0.5 0.0001 

Max 7.0 90 14.976 14.965 50.0 0.997 

Table 5.1–Data range of the TUFFP dataset and the OLGA-S dataset for model 

parameterization. 
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 Figure 5.1 plots the distributions of the two datasets over gas input fractions 

(fg=Vsg/Vm), pipe inclinations and pipe diameters. We can observe that the TUFFP dataset 

is concentrated at the higher-end of gas input fraction range (fg > 0.8). Conversely, the 

dataset extracted from OLGA-S library has a more uniformly distributed gas input 

fractions. We also note that the TUFFP dataset has 2138 data points applicable to pure 

horizontal flow (𝜃=0), and 966 data points for pure vertical flow (𝜃=90). Contrary to 

such bias, the OLGA-S dataset is more evenly distributed in near horizontal flow (𝜃 = [–

5, –2, –1, 0, 1, 2, 5]) and also more evenly spread over other pipe inclinations. 

Finally, we note that TUFFP dataset has a greater propensity of small diameter conduits 

while data obtained from OLGA-S is uniformly distributed over the four pipe diameters 

considered, D (1, 3, 5, 7) inches. Note that while field units are stated here, all 

calculations except the reservoir simulation part used the SI system.  
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Figure 5.1–Distributions of (a) TUFFP dataset and (b) OLGA-S dataset over gas input 

fraction, pipe inclination and pipe diameter. 
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5.3 Other Models Used for Comparison 

Two state-of-the-art drift-flux models from literature are used for comparative 

analysis. One is the model proposed by Choi et al. (2012), while the other is that of 

Bhagwat and Ghajar (2014). Henceforth, we shall refer to these models as Choi’s model 

and B&G’s model. The B&G’s model was claimed by the authors to be the best 

performing model in the literature so far. 

The model proposed by Choi et al. (2012) is as follows: 
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The Retp has the same definition as shown in Equation (5.8). 

The model proposed by Bhagwat and Ghajar (2014) is as follows: 
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Coefficient C1=0.2 for circular and annular pipe geometries, and 
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The Froude number for superficial gas velocity is defined as: 
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χ  is two phase flow quality defined as follows: 
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The friction factor ftp is defined by Fanning function: 
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The drift velocity is defined as: 
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where C2, C3, C4, are defined as follows: 
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La is the inverse of non-dimensional hydraulic pipe parameter defined as: 
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5.4 Results 

 Using the datasets discussed in section 5.2, optimized model parameters were 

computed and are summarized in Table 5.2. Note that the units of m2 is deg•s/m, while all 

others are dimensionless. The best fit parameter set for the OLGA-S dataset includes A 

=1, which indicates that the profile parameter (Co) equals to 1 for all values of input gas 

fraction, and effectively renders parameter B redundant. 

 

Xp 𝑿𝒐𝒑𝒕
𝑻𝑼𝑭𝑭𝑷  𝑿𝒐𝒑𝒕

𝑶𝑳𝑮𝑨𝑺 

A 1.088 1.000 

B 0.833 0.773 

a1 0.577 0.591 

a2 0.769 0.786 

N1 1.981 1.968 

N2 1.759 1.759 

N3 0.574 0.574 

N4 0.477 0.477 

m1 1.017 1.000 

m2 2.303 2.300 

m3 1.000 1.000 

Table 5.2–Optimized parameters for the proposed model determined based on the two 

datasets. 
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5.4.1 TUFFP Dataset: Model Comparison 

 Table 5.3 summarizes the comparative performance of different drift-flux models 

against the TUFFP dataset. Model error is the mean absolute difference between predicted 

values and measured values defined by Equation (5.10). The percentage of the predictions 

located within ±20% and ±10% error bands are also shown in the table. The proposed 

model with its respective optimized parameter sets has the best performance in all pipe 

inclination ranges. The model predicts around 90% of the data points within ±20% error 

bands and 70% of the data points within ±10% error bands, for all pipe inclinations. 

Although Choi’s model also has similar performance within ±20% error bands, far fewer 

predictions lie within ±10% error bands. The performance of the proposed model with 

𝑋𝑜𝑝𝑡
𝑂𝐿𝐺  as model parameters is also reasonable compared with the other two drift-flux 

models. For all three models, the performance in the horizontal flow region are 

comparable to the accuracy obtained for upward flow prediction. The proposed model and 

Choi’s model have better performance in upward and horizontal flow, while the B&G’s 

model has better predictive performance for downward flow.   
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Pipe 

Inclination 

Range 

Criteria This model 

(𝑿𝒐𝒑𝒕
𝑻𝑼𝑭) 

This model 

(𝑿𝒐𝒑𝒕
𝑶𝑳𝑮) 

Choi’s 

model 

B&G’s 

model 

Upward  

(2730 data) 

0 < 𝜃  ≤ 90 

error 0.045 0.06 0.078 0.069 

±20% 90.4 87.9 88.9 83.3 

±10% 73.4 59 45.8 53.9 

Horizontal 

(2138 data)  

 𝜃  = 0 

error 0.042 0.066 0.072 0.077 

±20% 94.2 87.8 90 83.2 

±10% 77.3 62.2 52.7 48 

Downward  

(937 data) 

 –90 ≤  𝜃 < 0 

error 0.062 0.072 0.099 0.065 

±20% 88.9 85.1 90 86.9 

±10% 69.9 62 42 67.2 

Table 5.3–Statistical comparison of different drift-flux models against the TUFFP 

dataset. 

 

 

Figure 5.2 presents cross plots of predicted gas volume fractions for different drift-

flux models against measured gas volume fractions for horizontal and upward data in 

TUFFP dataset. The ±20% and ±10% error bands are shown as dashed lines, respectively. 

It is clear from the figure that the major differences among models corresponds to high 

gas volume fraction region (0.75 < 𝛼g < 1).  The proposed model, using the optimized 

parameter set 𝑋𝑜𝑝𝑡
𝑂𝐿𝐺 tends to overpredict gas volume fraction in this region. This is mainly 

due to the fact that the profile parameter always equals to 1 in this parameterization. Choi’s 

model tends to under predict gas volume fraction when 𝛼g > 0.8. B&G’s model tends to 

over predict gas volume fractions when 𝛼g > 0.5.  
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Figure 5.2–Cross-plots of model comparative performance for horizontal and upward 

flow: (a) the proposed model with 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹 parameter set, (b) the proposed model with 

𝑋𝑜𝑝𝑡
𝑂𝐿𝐺 parameter set, (c) the Choi’s model and (d) the B&G’s model against upward and 

horizontal pipe inclinations in the TUFFP dataset. 

 

 

Figure 5.3 presents similar comparison cross plots for downward flow data in 

TUFFP dataset. Compared to Figure 5.2, the cross plots for downward flow are more 

scattered. Outliers of the proposed model are evenly distributed outside the ±20% error 

bands, while the outliers of Choi’s and B&G’s model are densely distributed below the –
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20% error band. Possible reasons for these significant differences in behavior for 

downward flow will be discussed later in section 5.6.1.  

 

Figure 5.3–Cross-plots of model comparative performance for downward flow: (a) the 

proposed model with 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹 parameter set, (b) the proposed model with 𝑋𝑜𝑝𝑡

𝑂𝐿𝐺 parameter 

set, (c) the Choi’s model and (d) the B&G’s model against downward pipe inclinations 

in the TUFFP dataset. 
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5.4.2 OLGA-S Dataset: Model Comparison 

 Table 5.4 summarizes the comparative performance of different drift-flux models 

against the OLGA-S dataset. The predictions of the correlations are all improved over 

those observed using the TUFFP dataset. It is probably due to data quality, namely that 

the OLGA-S dataset is more consistent. The performance of the proposed model, applying 

optimized parameter sets 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹 and 𝑋𝑜𝑝𝑡

𝑂𝐿𝐺  are similar, with the 𝑋𝑜𝑝𝑡
𝑂𝐿𝐺 parameter set slightly 

outperforming in terms of the quantity of data points falling within ±10% error bands. The 

proposed model and that of B&G have similar mean absolute errors for both upward and 

downward inclinations. The error of B&G’s model for horizontal flow is slightly higher 

than that obtained from the proposed model. The performance of the two models are 

comparable in terms of the percentage of data falling within ±20% and ±10% error bands. 

In general, however, both models perform significantly better than Choi’s model. We also 

observe that all three models have significantly better performance for upward and 

horizontal inclinations than they do for downward inclinations. 
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Pipe 

Inclination 

Range 

Criteria This model 

(𝑿𝒐𝒑𝒕
𝑻𝑼𝑭) 

This model 

(𝑿𝒐𝒑𝒕
𝑶𝑳𝑮) 

Choi’s 

model 

B&G’s 

model 

Upward  

(6720 data) 

0 < 𝜃  ≤ 90 

error 0.022 0.019 0.050 0.022 

±20% 97.9 97.8 95.4 95.4 

±10% 80.6 90.7 32.4 83.7 

Horizontal  

(960 data)  

 𝜃  = 0 

error 0.023 0.023 0.043 0.027 

±20% 97.3 96.7 96.0 96.3 

±10% 82.0 89.2 43.0 78.8 

Downward  

(6720 data) 

 –90 ≤  𝜃 < 0 

error 0.030 0.030 0.055 0.033 

±20% 95.1 94.7 91.6 92.8 

±10% 81.8 84.9 45.0 80.8 

Table 5.4–Statistical comparison of different drift-flux models against the OLGA-S 

dataset. 

 

 

Figure 5.4 presents cross plots of predicted gas volume fractions for different drift-

flux models against measured gas volume fractions for horizontal and upward flow in 

OLGA-S dataset. The performance of the proposed model, applying 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹 and 𝑋𝑜𝑝𝑡

𝑂𝐿𝐺   are 

comparable. The major outliers observed for all three models approximately lie within the 

mid-range of gas volume fraction (0.25 < 𝛼g ≤ 0.75), and lie above the +20% error bound. 

For high gas volume fraction region (0.75 < 𝛼g < 1), the proposed model (using both 

optimized parameter sets) slightly over predicts gas volume fraction. Choi’s model tends 

to under predict the gas volume fraction when 𝛼g > 0.8, while B&G’s model tends to over 

predict gas volume fraction when 𝛼g > 0.5.  
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Figure 5.4–Cross-plots of model comparative performance for horizontal and upward flow: 

(a) the proposed model with 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹  parameter set, (b) the proposed model with 𝑋𝑜𝑝𝑡

𝑂𝐿𝐺 

parameter set, (c) the Choi’s model and (d) the B&G’s model against upward and 

horizontal pipe inclinations in the OLGAS dataset. 

 

 

Figure 5.5 presents comparisons for downward pipe inclinations. We observe 

similar model behavior as stated previously for the TUFFP dataset. The major outliers 

attributed to the proposed model are slightly fewer than those attributed to the Choi’s and 

B&G’s models. Those outliers are also more evenly distributed outside both the ±20% 
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error bands. The outliers associated with both Choi’s and B&G’s models are more densely 

distributed below the –20% error band, indicating a consistent underestimation of gas 

volume fraction. 

  

 

Figure 5.5–Cross-plots of model comparative performance for horizontal and upward 

flow: (a) the proposed model with 𝑋𝑜𝑝𝑡
𝑇𝑈𝐹 parameter set, (b) the proposed model with 

𝑋𝑜𝑝𝑡
𝑂𝐿𝐺 parameter set, (c) the Choi’s model and (d) the B&G’s model against upward and 

horizontal pipe inclinations in the OLGAS dataset. 
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5.5 Application in GURU-MSW 

 We apply GURU-MSW to test the numerical stability of this newly developed 

drift-flux model. As we mentioned in section 2.3.1. The primary variables of the wellbore 

module in GURU-MSW are pressure, water holdup (αw), mixture velocity, and molar 

density of each hydrocarbon component. Since pressure and molar density of each 

hydrocarbon component are implicitly correlated with density and viscosity, we take water 

holdup and mixture velocity as representative parameters to evaluate. We plot calculated 

drift velocity (vd) over 0 ≤ vm ≤ 50ft/s and 0 ≤ 𝛼w ≤ 1 for six inclinations: 𝜃 = 90, ±10, 

0, -45 and -80 as shown in Figure 5.6 These plots illustrate the model continuity and 

smoothness over the entire solution space. At 𝜃 = –10, we observe a smooth transition of 

drift velocity from positive to negative as vm decreases.  
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Figure 5.6–Numerical smoothness demonstration of drift velocity at six different pipe 

inclinations. Model test following 𝑋𝑜𝑝𝑡
𝑂𝐿𝐺. 
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  To further test that the new model is compatible with mass and momentum 

conservations inside the coupled wellbore-reservoir simulator, we design four test cases 

with reservoir layout and wellbore trajectories shown in Figure 5.7. The reservoir model 

is shown on the top with the wellbore location shown in red. The dash line represents the 

flow influx region. The four wellbores specified possess inclinations of ±10. The four 

well configurations are: toe-up, toe-down, undulating hump and undulating sump. The 

existing DF model (defined for +2 degrees to vertical) is, therefore, only applicable to the 

toe-down scenario.  
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Figure 5.7–Sketch of the four well configurations assessed in the numerical testing with 

GURU-MSW. 

 

 

Parameters of the simulation are shown in Table 5.5. There are three phases (gas, 

oil and water) presented in the simulation. We combine the oil and water phases into a 

“liquid” phase (slippage between oil and water is not considered).  
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Parameter Value Units 

Reservoir properties 

Initial reservoir pressure 6000 psia 

Initial water saturation  0.3 - 

Reservoir temperature 200 F 

Reservoir porosity 0.1 - 

Reservoir permeability 1 mD 

Rock compressibility 4×10
-6

 psi
-1

 

Wellbore properties 

Wellbore diameter 0.3 ft 

Wellbore relative roughness 0.0005 - 

Well index (geometry) 0.7 bbl·cP/day/psi 

Maximum oil produce rate 10000 STB/day 

Minimum bottom hole pressure 1000 psia 

Fluid properties 

Water viscosity 0.31 cP 

Water compressibility 3×10
-6

 psi
-1

 

Oil fluid composition 25.0 N2C1  

35.0 C2C5 

40.0 C6+ 

mol% 

Table 5.5–Parameters applied in the testing case shown by Figure 5.7. 

 

 

The predicted cumulative oil and gas production for all well configurations in a 

1000-day window are shown in Figure 5.8 and Figure 5.9 respectively. The results first 

prove that the new drift-flux model is applicable in MSW-reservoir simulation for 

different well trajectories. The predicted cumulative production of all four well 

configurations are almost coincident, which is because of the same well index and inflow 

region length. If we zoom in the cumulative production for the last 100 days, we can find 

slight differences among different configurations. The following ranking can be obtained 

for both oil and gas production: toe down > undulating sump > undulating hump > toe up. 

This ranking mainly comes from different well inflow rates due to hydrostatic depth 
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corrections between completion depth and the center of grid blocks. In GURU-MSW, the 

correction is calculated from the saturation weighted fluid densities in the completion grid 

block. 

 

 

Figure 5.8–Predicted oil cumulative production for the four well configurations. 
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Figure 5.9–Predicted gas cumulative production for the four well configurations. 

 

 

 We also compare the cumulative oil and gas production of a horizontal wellbore 

predicted by the homogeneous model and the new drift-flux model, as shown in Figure 

5.10. The reservoir setting and simulation parameters are the same as Figure 5.7 and Table 

5.5. Comparing with the results predicted by the drift-flux model, the homogeneous model 

underpredicts the cumulative oil production for 16.2% and over predicts the cumulative 

gas production for 11.3%.  
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Figure 5.10–(a) Oil and (b) gas cumulative production predicted by the homogeneous 

model and the proposed drift-flux model for the horizontal wellbore configuration. 

 

 

The differences are resulted from the different evolution of wellbore mole fractions 

predicted by the two models. Figure 5.11 presents the wellbore average mole fraction with 

time for the three pseudo-components. Figure 5.12 presents the average mole fraction of 

flow influx into wellbore. The results predicted by the proposed drift-flux model and the 

homogeneous model are compared in both figures. Although the two models predict the 

same flow influx mole fraction, the mole fraction inside the wellbore is much more 



 

130 

 

different because of the phase slippage consideration. During the 1000-day production 

window, the drift flux model predicts that the light component N2C1 increases from 0.25 

to 0.3, the heavy component C6+ reduces from 0.4 to 0.3, and the mole fraction of the 

middle component remains almost unchanged. For the same production period, the 

homogeneous model predicts that the light component N2C1 increases from 0.25 to 0.45, 

the heavy component C6+ reduces from 0.4 to 0.2, and the mole fraction of the middle 

component also remains almost unchanged. Compared to the drift-flux model, the 

homogeneous model predicts more light components and fewer heavy components in the 

wellbore. This is mainly because of the no-slip assumption held by the homogeneous 

model, which can lead to large errors in production predictions. 
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Figure 5.11–Average mole fraction in wellbore predicted by (a) the proposed drift-flux 

model and (b) the homogeneous model. 
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Figure 5.12–Average mole fraction of flow influx predicted by (a) the proposed drift-

flux model and (b) the homogeneous model. 

 

 

5.6 Discussion 

5.6.1 Analysis on Upward and Downward Flow Behavior 

 To understand the differences associated with upward and downward pipe 

inclinations, we analyze the trend of OLGA-S data by plotting pipe inclinations with gas 

volume fraction for different gas input fractions (fg). Figure 5.13 presents these plots at 

different mixture velocities. The pipe inclination range is –80≤ 𝜃 ≤ 90, and the gas input 

fraction range is 0.01≤ fg  ≤0.99. Different marker color on the plot represents different 

flow regimes. It may be observed that pipe inclinations have significant effects on gas 
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volume fraction at low mixture velocity with low gas fractions. For Vm = 1m/s and fg = 

0.99, the gas volume fraction of 𝜃 = –2 is 38% higher than that of 𝜃 = 0, and the gas 

volume fraction of 𝜃 = 2 is 26% lower than that of 𝜃 = 0. At this same mixture velocity 

(Vm = 1m/s), the value of gas volume fraction at 𝜃 = 0 is much closer to that observed at 

𝜃 = 2 than to that at 𝜃 = –2 in the range of 0.3≤ fg  ≤0.9. For example, the gas volume 

fraction of fg = 0.7 at of 𝜃 = 2, 0, –2 are 0.363, 0.365 and 0.759 respectively. The gas 

volume fraction difference of upward and downward flow becomes much smaller as fg 

becomes smaller and Vm becomes larger.  
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Figure 5.13–Plots of gas volume fraction (𝛼g) against inclination for various gas input 

fractions. Each plot exhibits OLGA-S data sampled based on the mixture velocity 

shown. Different color represents different flow regimes given by the OLGA-S library. 

 

 

 

 

 Ghajar and Bhagwat (2014) reported similar qualitative results to those observed  

in Figure 5.13 by analyzing experimental data over the range –20≤ 𝜃 ≤ 20 and 0.01≤ fg  

≤0.92. They observed a significant decrease in gas volume fraction when inclination 

changed from –20 to +20 at low liquid and gas flow rates. They suggested that the reason 

for high gas volume fraction values was due to long “residence” time of the gas phase (in 

the test section) caused by the flow stratification at downward inclinations. The OLGA-S 
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library predicts stratified flow patterns for downward flow and slug flow for upward flow 

at these low flow rates – which is in keeping with these observations. 

 Figure 5.14 presents the gas volume fraction predictions for the proposed model, 

Choi’s model and B&G’s model. The figure compares model responses for two values of 

mixture velocity, namely: vm = 1m/s and 5m/s. For vm = 1m/s, the proposed model 

characterizes gas volume fraction at the horizontal transition reasonably well (i.e., the 

regions between upward and downward flow). Choi’s model (middle) is unable to capture 

this trend, while B&G’s model is only partially successful (not predict well when fg ≥ 0.9). 

On the other hand, the proposed model does appear to resemble OLGA-S data trend over 

the whole range of input gas fractions.  

For vm = 5m/s, we observe that gas volume fraction behave almost linearly with 

respect to fg. The effect of pipe inclination on gas volume fraction also appears less 

significant. Only the proposed model captures the modest impact of inclination on gas 

volume fraction. Conversely, predictions from Choi and B&G appear to be almost 

independent of inclinations. In the region of high gas fractions, i.e., fg ≥ 0.7, the proposed 

model and also B&G’s model tend to over predict gas volume fraction, while Choi’s 

model tends to under predict this quantity. This is consistent with the observations shown 

earlier (Figure 5.4). 
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Figure 5.14–Predictions of gas volume fraction of (a) the proposed model, (b) the Choi’s 

model, and (c) the B&G’s model for Vm equals to 1 and 5m/s. 

 

 

 

The utility of having a parameter set tuned to OLGA-S data allows engineers to 

construct a fully unified flow model from sandface-to-facilities. This means a completely 
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unified flow model throughout which has benefits for inversion and consistency as there 

is now a single harmonious model describing the multiphase flow in all conduits. In 

addition, applying a profile parameter equals to one can guarantee hyperbolicity of the 

transient drift flux modeling in a standalone wellbore or pipeline simulator (Eghorieta et 

al., 2018). This has implications in gas kick modeling and detection for drilling operations 

(Tang et al., 2019; Xu et al., 2018). 

 

5.6.2 Model Limitations 

 Although the proposed model successfully resembles the gas volume fraction 

trends exhibited by OLGA-S, it still suffers from some inaccuracy predictions for 

vm≲2m/s. This is particularly visible over the mid-range of gas input fractions, namely: 

0.3≤ fg  ≤0.7. In general, the stratified flow behavior observed at low mixture velocity and 

slightly-downward flow cause difficulties to all drift-flux models. It is non-trivial to derive 

a simple correlation to predict these dramatic changes in gas volume fraction at the 

transition. 

Subsequent to reported observations by Ghajar and Bhagwat (2014), a revised 

correlation to better model behavior at the transition between stratified and non-stratified 

flow in downward flow was proposed by Bhagwat and Ghajar (2015). This correlation is 

more complex than their previous model where the transition criterion involved a 

superficial gas velocity Froude number such that Frsg ≤ 0.1. 

 Several researchers have suggested a larger profile parameter (Co≃2) for gas-

liquid flow with high liquid viscosity (Choi et al., 2012; Ghajar and Bhagwat, 2014; 
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Gokcal, 2008). To avoid potential numerical difficulties in coupled wellbore-reservoir 

simulation, the proposed model only allows the profile parameter change in the range 1≤ 

C0 ≤ 1.2. The optimized parameter set based on the TUFFP dataset has a profile parameter 

range of 1≤ C0 ≤ 1.088. The optimized parameter set based on the OLGA-S dataset has a 

constant profile parameter of 1. Therefore, we only suggest the application of the proposed 

model in low and medium liquid viscosity range (µl ≲70cP).  

 

5.7 Conclusions 

 In this chapter, we proposed a new unified gas-liquid drift-flux model suitable for 

all pipe inclinations. The model has parameters optimized through data from the TUFFP 

and the OLGA-S library. The model was compared against two state-of-the-art drift-flux 

models and proved to have comparable, or better, performance. The primary conclusions 

from the study are as follows: 

(1) Gas-liquid two phase flow becomes stratified at low mixture velocities (≲2m/s) 

for slightly downward pipe inclinations, which is difficult for any drift-flux model to 

represent. The proposed model furnishes acceptable results for this flow regime.  

(2) Gas volume fraction increases sharply at the transition of horizontal-upward to 

horizontal-downward at low mixture velocities. The proposed model can represent this 

trend reasonably well. 

(3) The model is proved to be numerically stable in GURU-MSW over four testing 

well configurations.  
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(4) In a compositional test case, the homogeneous model predicted 16.2% less oil 

production and 11.3% more gas production than the proposed drift-flux model. 
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 In this work, we develop a general simulation framework for coupled wellbore 

reservoir simulation (GURU-MSW) based on a general-purpose compositional reservoir 

simulator (GURU). In GURU-MSW, the wellbore module and the reservoir module are 

at the same level and fully implicitly coupled. Although taking the most developing effort, 

the fully implicit mechanism is unconditionally stable and faster than those iteratively or 

loosely coupling mechanisms. With a flexible segment connection list embedded, GURU-

MSW can handle complex wellbore structures and well group modeling.  

 GURU-MSW is applied in the analysis of two production scenarios: one is well 

interference in shale reservoir development, and the other is gas well liquid loading 

phenomenon. Both applications start with verification of GURU-MSW against relevant 

cases in ECLIPSE 300. Those verification and application cases help with debugging 

GURU-MSW comprehensively. For example, the well interference application tests 

GURU-MSW in wellbore cross flow modeling, and it also demonstrates GURU-MSW’s 

capability in handling multiple wells under group control strategy.  

On the other hand, we make valuable efforts in extending the application range of 

coupled wellbore-reservoir simulation. Applying an MSW-reservoir simulator for well 

interference and liquid loading modeling are both first attempts in the literature. The liquid 

loading application is a big improvement based on the current literature. The dynamic 

nature of liquid loading phenomenon cannot be comprehensively modeled through either 
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a single reservoir simulator or a single wellbore simulator. The analysis with GURU-

MSW allows us to observe some interesting phenomena that have never been studied. The 

natural cyclical production observation can serve as the best illustration.  

We also make significant contributions in gas-liquid drift-flux modeling within 

coupled wellbore-reservoir simulation. Two novel drift-flux models are proposed in this 

work. One drift-flux model is specially designed for application in liquid loading analysis. 

The model considers the transition criteria from annular to churn/slug flow, which governs 

the onset of liquid loading. Applicable to pipe inclinations from 0 (horizontal) to 90 

(vertical upward), the model is incorporated into GURU-MSW for liquid loading analysis 

in horizontal wellbore.   

The other is a unified drift-flux model applicable to whole pipe inclination range 

from -90 to 90. Some previously reported drift-flux models have the same application 

range, however none of them are applicable to a coupled wellbore-reservoir simulator. 

Being tested in GURU-MSW, the new model demonstrates its potential in filling in the 

gap left by the existing drift flux model in MSW modeling (horizontal and downward 

flow).  

 

6.2 Future Work 

 We would like to give the following recommendations for future work associated 

with GURU-MSW: 

(1) Incorporate the models of inflow control device (ICD) and inflow control valves 

(ICV) to extend the capability of GURU-MSW in smart well modeling.  
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(2) Extend the capability of GURU-MSW in multi-level well group modeling. This 

should start with developing an advanced algorithm for active well constraint 

determination (Watts et al. 2012). 

(3) Improve the computation efficiency of GURU-MSW by designing more advanced 

data structure and novel preconditioners for linear solver.  

(4) Incorporate the phase behavior of asphaltene and wax to extend the application of 

GURU-MSW in flow assurance analysis. 

(5) Develop new oil-water drift-flux models (applicable to whole pipe inclinations) 

for application in coupled wellbore-reservoir simulation. 
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APPENDIX A 

 

This appendix lists the definitions of parameters in Eq. (2.8) of Section 2.1.2. The 

compressibility factor Z is solved by finding the cubic root of Peng-Robinson equation of 

state (Peng and Robinson, 1976). 
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κcj is the binary interaction coefficient between component c and j. wj is the acentric factor 

of component j. Tcj and Pcj are critical temperature and critical pressure of component j.  
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APPENDIX B 

 

The sources and property ranges of the TUFFP dataset mentioned in Section 5.2 

are summarized as follows: 

Investigator (s) Inclination 

range  

𝜃 (degree) 

Pipe 

Diameter 

D (cm) 

Gas superficial 

velocity  

Vg (m/s) 

Liquid 

superficial 

velocity  

Vl (m/s) 

Liquid 

viscosity    

µl (cP) 

Abdul-Majeed 

(2000) 

0 5.08 [0.196 : 48.908] [0.002 : 1.825] [1.3 : 1.9] 

Akpan (1980) 0 7.62 [0.199 : 5.458] [0.137 : 1.701] [0.1 : 

0.14] 

Alsaadi (2013) [2 : 30] 7.62 [1.829 : 39.992] [0.010 : 0.101] [0.9 : 1.3] 

Beggs (1973) [-10 : 10] 2.54 [0.299 : 25.323] [0.023 : 5.203] [0.7 : 1.6] 

Brill et al. (1996) 0 7.79 [3.629 : 12.656] [0.004 : 0.046] [1.6 : 1.8] 

Caetano (1986) 90 6.34 [0.023 : 22.859] [0.002 : 3.579] [0.5 : 2.7] 

Cheremisinoff 

(1977) 

0 6.35 [2.582 : 25.241] [0.017 : 0.070] [0.9 : 1.2] 

Eaton (1965) 0 10.20 [0.112 : 21.901] [0.011 : 2.108] [0.7 : 1.3] 

Fan (2005) [-2 : 2] 5.08 [4.93 : 25.70] [0.0003 : 

0.052] 

1.0 

Felizola (1992) [0 : 90] 5.10 [0.39 : 3.36] [0.050 : 1.490] [1.3 : 4.7] 

Guner (2012) [0 : 45] 7.62 [1.485 : 39.388] [0.010 : 0.100] 1.0 

Johnson (2005) [0 : 5] 10.00 [0.711 : 4.523] [0.019 : 0.605] 1.0 

Kouba (1986) 0 7.62 [0.302 : 7.361] [0.152 : 2.137] [1.2 : 1.8] 

Magrini (2009) [0 : 90] 7.62 [36.63 : 82.32] [0.003 : 0.040] 1.0 

Meng (1999) [-2 : 2] 5.08 [4.6 : 26.6] [0.001 : 0.054] [4.7 : 6.3] 

Minami (1983) 0 7.79 [0.475 : 16.590] [0.005 : 0.951] [0.6 : 2] 

Mukherjee (1980) [-90 : 90] 3.81 [0.037 : 41.310] [0.015 : 4.362] [0.6 : 

74.4] 

Rothe et al. (1986) [-2,0] 17.10 [0.610 : 4.633] [0.061 : 1.830] 0.88 

Roumazeilles 

(1994) 

[-30 : 0] 5.10 [0.914 : 9.357] [0.884 : 2.438] [1.4 : 2.2] 

Schmidt (1976) 90 5.08 [0.042 : 13.146] [0.012 : 3.480] [1 : 2.4] 

Vongvuthipornchai 

(1982) 

0 7.62 [0.061 : 2.938] [0.070 : 2.146] [1.1 : 1.5] 

Yuan (2011) [30 : 90] 7.62 [9.90 : 36.00] [0.005 : 0.100] 1.0 

 


