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Abstract

The CC is the major white matter tract connecting the cerebral hemispheres and provides for 

interhemispheric integration of sensory, motor and higher-order cognitive information. The 

midsagittal area of the CC has been frequently used as a marker of brain development in humans. 

We report the first investigation into the development of the corpus callosum and its regional 

subdivisions in chimpanzees (Pan troglodytes). Magnetic resonance images were collected from 

104 chimpanzees (female n = 63, male n = 41) ranging in age from 6 years (pre-pubescent period) 

to 54 years (old age). Sustained linear growth was observed in the area of the CC subdivision of 

the genu; areas of the the posterior midbody and anterior midbody displayed non-linear growth 

during development. After adjusting for total brain size, we observed linear growth trajectories of 

the total CC and CC subdivisions of the genu, posterior midbody, isthmus and splenium, and non-

linear growth trajectories of the rostral body and anterior midbody. These developmental patterns 

are similar to the development of the CC in humans. As the growth curves of the CC mirrors 

growth seen in the percentage of white matter in humans, our results suggest chimpanzees show 

continued white matter development in regions related to cognitive development.

The well-known characteristics that distinguish humans from chimpanzees and other 

primates include an enlargement of the brain, enhancement of capacities for cognition and 

tool making, habitual bipedal walking, and an elongated potential lifespan (Carroll, 2003). 

Another distinguishing characteristic concerns the susceptibility to neurological disease, as 

humans appear to be particularly vulnerable to both neurodevelopmental and 

neurodegenerative diseases such as Alzheimer's Disease, Parkinson's and HIV progression 

into AIDS (Gearing et al., 1994; Hof et al., 2002; Olson & Varki, 2003 (but see Rosen et al., 

2008)). Determining the degree to which human brain development and aging differs from 

chimpanzees and other primates is likely to further our understanding of not only 

neurodevelopmental disorders and neurodegenerative disease but also differences in 

cognitive and motor functions.

Correspondence regarding this paper can be sent to: William Hopkins, Department of Psychology, Agnes Scott College, 141 E. 
College Avenue, Decatur, Georgia 30030. whopkins@agnesscott.edu. 
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The CC is the major white matter tract connecting the cerebral hemispheres and provides for 

interhemispheric integration of sensory, motor and higher-order cognitive information. The 

midsagittal area of the CC has been frequently used as a marker of brain development 

(Rakic & Yakovlev, 1968; LaMantia & Rakic, 1990; Giedd et al., 1996; Snook et al., 2005; 

Keshevan et al., 2002), hemispheric lateralization (Witelson & Goldsmith, 1991), and 

connectivity and function (Luders et al., 2007; Muetzel et al., 2008; Ringo et al., 1994; Wahl 

et al., 2007).

The CC can be subdivided into regions based on microstructure and functional connectivity 

with cortical areas (Alexander et al., 2007; Aboitiz et al., 1992; Hofer & Frahm, 2006). A 

commonly used approach is to divide the CC into seven subdivisions: rostrum, genu, rostral 

body, anterior midbody, posterior midbody, isthmus and splenium (Aboitiz et al., 1992; 

Witelson & Goldsmith, 1991). The anterior regions of the rostrum, genu and rostral body 

connect primarily higher-order cognitive regions; the anterior and posterior midbody 

connect primarily sensorimotor regions; the posterior regions of the isthmus and splenium 

integrate visuospatial regions of the cortex.

The CC undergoes significant developmental changes throughout the human lifespan (Allen 

et al., 1991; Pujol et al., 1993; Giedd et al., 1999; Lenroot et al., 2007). Across the lifespan, 

the midsagittal CC area growth curve follows an inverted U-shaped developmental pattern 

(Allen et al., 1991; Cowell et al., 1992; Hayakawa et al., 1989; Pujol et al., 1993; Hasan, 

Ewing-Cobbs et al., 2008). The growth trajectories of the CC subdivisions are also nonlinear 

and vary at the macrostructural and microstructural levels by subdivision (Hasan, Kamali et 

al., 2008). While some have reported sex differences in growth rates of the CC, with males 

having higher growth rates than females (De Bellis et al., 2001; Pujol et al., 1993), others 

have not (Giedd et al.1999; Hasan, Kamali et al., 2008; Lenroot et al., 2007; Rajapakse et 

al., 1996).

Despite being our closest primate relative, little is known about brain development in 

chimpanzees except that postnatal brain growth accounts for approximately 65 – 75% of 

total brain size (Vinicius, 2005). One reason for this lack of information includes the 

difficulty in obtaining either in vivo or post mortem samples for analysis. For the past 12 

years, systematic collection of magnetic resonance images have been obtained in a sample 

of chimpanzees housed at the Yerkes National Primate Research Center. Though a 

moratorium on breeding chimpanzees in U.S. research facilities has been in place for 10 

years and therefore very young chimpanzees were not available for imaging, the long term 

acquisition of these brain data provides an opportunity to consider age-related changes in the 

size of the CC from a cross-sectional perspective beginning with the juvenile period of life 

into adulthood and old age. In this report we describe the development of the chimpanzee 

CC from a cross-sectional sample, ranging in age from 6 years to 54 years, from non-

invasive MR imaging. Because our sample varied in sex and handedness and these variables 

might be confounded with variation in relative CC size (Witselson & Goldsmith, 1991), we 

statistically controlled for them., Handedness was assessed using a task requiring 

coordinated bimanual actions referred to as the TUBE task and has been described in detail 

elsewhere (Hopkins, 1995).
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Method

Subjects

Magnetic resonance images were collected from 104 chimpanzees (Pan troglodytes; female 

n = 63, male n = 41), ranging in age from 6 years to 54 years (Mean = 22.64, s.d. = 11.83). 

As male chimpanzees enter puberty around 9 years, and females at 8 years (Pusey, 1990) our 

sample begins at the pre-pubescent period and extends through aged chimpanzees. All the 

chimpanzees were members of a captive colony housed at Yerkes National Primate 

Research Center (YNPRC) in Atlanta, Georgia.

Image Collection and Procedure

In vivo and post-mortem MRI scans were obtained in this study. All postmortem scans were 

of chimpanzees that had died from natural causes. In total, 22 chimpanzees were scanned 

post-mortem while the remaining 82 subjects were scanned in vivo. For the chimpanzees 

scanned in vivo, the apes were first immobilized by ketamine injection (10 mg/kg) and 

subsequently anaesthetized with propofol (40–60 mg/(kg/h)) following standard procedures 

at the YNPRC. Subjects were then transported to the MRI facility. The subjects remained 

anaesthetized for the duration of the scans as well as the time needed to transport them 

between their home cage and the imaging facility (total time ~ 1.5 h). Subjects were placed 

in the scanner chamber in a supine position with their head fitted inside the human-head 

coil. Scan duration ranged between 40 and 80 min as a function of brain size.

Forty-seven chimpanzees were scanned on the same 3.0 Tesla scanner (Siemens Trio) 

located at YNPRC. T1-weighted images were collected using a 3D gradient echo sequence 

(pulse repetition = 2300 ms, echo time = 4.4 ms, number of signals averaged = 3, matrix size 

= 320 x 320). The remaining 35 chimpanzees were scanned using a 1.5 T machine. T1-

weighted images were collected in the transverse plane using a gradient echo protocol (pulse 

repetition =19.0 ms, echo time = 8.5 ms, number of signals averaged 8, and a 256 X 256 

matrix). For the 22 postmortem scans, T2-weighted images were collected in the transverse 

plane using a gradient echo protocol (pulse repetition = 22.0 s, echo time = 78.0 ms, number 

of signals averaged = 8-12, and a 256 × 192 matrix reconstructed to 256 × 256).

After completing MRI procedures, the subjects scanned in vivo were returned to the YNPRC 

and temporarily housed in a single cage for 6–12 h to allow the effects of the anesthesia to 

wear off, after which they were returned to their home cage. The archived MRI data were 

stored on optical diskettes and transported to an ANALYZE workstation for post-image 

processing.

Image Quantification Method

Corpus callosum area measurements were taken from the midsagittal slice using a method 

described by Witelson (1989) and others (Phillips, Sherwood, & Lilak, 2007; Pierre, 

Hopkins, Taglialatela, Lees, & Bennett, 2008) . The method divides the CC into seven 

segments which are roughly associated with different sets of fiber projections to various 

cortical regions of the brain (Pandya, Karol, & Heilbronn, 1971; Witelson, 1989) (see Figure 

1). ANALYZE 7.0, an MRI analysis software program distributed by the Mayo Clinic, was 
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used to divide and measure the corpus callosum. To subdivide the CC, the entire length of 

the CC was first measured, then divided into thirds. The anterior third was further divided 

into three regions by tracing a vertical line through the point where the anterior CC began to 

curve back slightly. This resulted in three subdivisions: rostrum (1), genu (2), and the rostral 

body (3). The middle third of the overall CC was subdivided into equal sections, resulting in 

the anterior midbody (4) and posterior midbody (5). Finally, the posterior third of the overall 

CC was subdivided into the isthmus (6) and splenium (7). The splenium was defined as the 

posterior fifth of the entire CC; the remaining area within the posterior third was defined as 

the isthmus. Using the tracing tool, the area (in mm2) of the CC lying within each outlined 

region was measured in each individual.

Individual brain volumes were also determined for each subject using an automated 

segmentation program. Each individual MRI scan was segmented into grey, white and CSF 

tissue using FSL (Analysis Group, FMRIB, Oxford, UK) (Smith et al., 2004; Zhang, Brady, 

& Smith, 2001). Brain volumes were calculated by adding the summed grey and white 

matter volumes, thereby omitting all CSF in the calculation of the volume.

Handedness Measurement

As noted above, we sought to statistically control for individual differences in handedness as 

well as the chimpanzee sex in our assessment of age-related changes in relative CC size. For 

this study, we used handedness data for a task requiring coordinated bimanual actions, 

referred to as the TUBE task (Hopkins, 1995). Though we were not specifically interested in 

the association between handedness and CC size in this paper, here we provide a brief 

description of the procedure used to assess handedness. For the TUBE task, peanut butter is 

smeared on the inside edges of poly-vinyl-chloride (PVC) tubes approximately 15 cm in 

length and 2.5 cm in diameter. Peanut butter is smeared on both ends of the PVC pipe and is 

placed far enough down the tube such that the subjects cannot lick the contents completely 

off with their mouths but rather must use one hand to hold the tube and the other hand to 

remove the substrate. The PVC tubes were handed to the subjects in their home cages and a 

focal sampling technique was used to collect individual data from each subject. The hand of 

the finger used to extract the peanut butter was recorded as either right or left by the 

experimenter. Each time the subjects reached into the tube with their finger, extracted peanut 

butter and brought it to their mouth, the hand used was recorded as left or right. For each 

chimpanzee, a handedness index (HI) was derived by subtracting the number of left-handed 

responses from the number of right-handed responses and dividing by the total number of 

responses: HI = (R – L) / (R + L). Positive values reflect right-hand preference and negative 

values represent left-hand preference. In the analysis of age related changes in CC size, the 

HI values served as a predictor variable in order to account for this variable in the regression 

analyses.

Data analysis

We analyzed growth of the CC using both the raw area measures of the total CC and its 

subdivisions, and the size of the total CC and its subdivisions after adjusting for brain size. 

To statistically adjust the CC data for total brain volume, we followed a recommendation by 

Smith (2005) wherein the square root of the CC area was divided by the cube root of the 
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brain volume (grey and white matter only) for each individual to bring all measures into the 

same geometric dimensionality. Additionally, we applied this adjustment to the various 

subdivisions of the CC following the same formula. Analyses of total CC area and CC 

subdivision areas were conducted using a one-way MANCOVA to determine the effect of 

sex on these areas while controlling for age. F- tests were then used to determine whether 

linear or quadratic growth models best fit the developmental change in these regions (Hasan 

et al., 2008; McLaughlin et al., 2007; Phillips & Sherwood, 2008; Pujol et al., 1993; Rauch 

& Jinkins, 1994). SPSS 15.0 was used for conducting all analyses.

Results

Because we obtained MRI scans on both cadaver and in vivo specimens, we initially ran an 

analysis to assess whether the relative sizes in the 7 CC regions differed significantly 

between the two cohorts using MANCOVA. Sex (male, female) and specimen type 

(cadaver, in vivo) were the independent variables while the ratio values for each CC region 

served as the dependent variable. Age was a covariate. Neither sex nor specimen type were 

significant main effects in the MANCOVA nor was the interaction between these two 

variables significant; however, the covariate (age) significantly influenced the combined 

DV, Wilks’ Λ = .789, F (7, 91) = 3.469, P = .003, multivariate partial η2 = .211. Univariate 

ANOVA results indicated the total CC midsagittal area (F (1, 97) = 10.82, P < .000, η2 = .

10) and callosal subdivisions of the genu (F (1, 97) = 4.03, P =.05, η2 = .04), rostral body (F 

(1, 97) = 6.49, P =.016, η2 = .06), anterior midbody (F (1, 97) = 8.09, P = .008, η2 = .08), 

posterior midbody (F (1, 97) = 10.46, P = .001, η2 = .10), isthmus (F (1, 97) = 15.01, P < .

000, η2 = .14), and splenium (F (1, 97) = 7.10, P = .017, η2 = .07) were all significantly 

affected by the covariate age.

We conducted similar analyses on the raw area measures to assess whether CC size differed 

significantly between the two cohorts. Neither sex nor specimen type were significant main 

effects in the MANCOVA nor was the interaction between these two variables significant; 

however, there was a borderline significant effect of the covariate (age) on the combined 

DV, Wilks’ Λ = .876, F (7, 93) = 1.86, P = .08, multivariate partial η2 = .124. Univariate 

ANOVA results indicated the total CC midsagittal area (F (1, 97) = 10.82, P < .000, η2 = .

10) and callosal subdivisions of the rostral body (F (1, 97) = 4.44, P =.038, η2 = .04), 

anterior midbody (F (1, 97) = 5.27, P = .024, η2 = .05), posterior midbody (F (1, 97) = 4.51, 

P = .036, η2 = .05), and isthmus (F (1, 97) = 8.39, P = .005, η2 = .08 were all significantly 

affected by the covariate age.

To further assess the nature of the relationship between age and CC size, we used the curve 

fit function in SPSS to evaluate whether linear or quadratic changes best explained the 

developmental change. To control for the subjects sex and handedness, the HI values for the 

TUBE task and the dummy coded sex scores (−1= female, 1 = male) were entered as 

predictor variables in a stepwise multiple regression analysis. Following the entry of these 

two variables, the linear and quadratic age predictor variables were subsequently entered in 

to the regression model. This analysis was conducted on the raw and adjusted CC area 

measures.
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The cumulative R values for the predictor variables of sex, handedness and the linear and 

quadratic age components when regressed on each adjusted CC region are shown in Table 1. 

Sex accounted for a significant proportion of variance in relative CC size for the total CC 

and the subdivisions of the rostral body, anterior midbody, posterior midbody, isthmus and 

splenium. Handedness on the TUBE task accounted for a borderline significant proportion 

of variance for the subdivision of the genu. Additionally, a significant proportion of 

variability in relative CC size in relation to age was explained by either the linear or 

quadratic equation for all regions, save the rostrum. Linear equations best explained 

variability in the total CC, genu, posterior midbody, isthmus and splenium. Quadratic 

equations explained a significant proportion of variance, over and above that of the linear 

equation, for the rostral body and anterior midbody. These best fit parameters were used to 

generate the growth curves that are illustrated in Figures 2a and 3.

The cumulative R values for the predictor variables of sex, handedness and the linear and 

quadratic age components when regressed on each raw CC region are shown in Table 2. Sex 

accounted for a significant proportion of variance for the total CC and subdivisions of 

anterior midbody, posterior midbody, and isthmus. Handedness did not account for a 

significant proportion of variance in CC size for any of the regions. A significant proportion 

of variability in CC size in relation to age was explained by either the linear or quadratic 

equation for the total CC, isthmus and anterior midbody. Linear equations best explained 

variability in the total CC and isthmus; quadratic equations explained a significant 

proportion of variance, over and above that of the linear equation, for the rostral body and 

anterior midbody. It should noted though that the multiple R value for the rostral midbody 

was not significant, thus the significant quadratic association found between age and this CC 

region should be interpreted cautiously. These best fit parameters were used to generate the 

growth curves that are illustrated in Figures 2b and 4.

Discussion

Our results show growth trajectories of the total CC and CC subdivisions in chimpanzees 

that vary by region and continue to increase in midsagittal area well into adulthood. The CC 

has been widely viewed as an ideal structure for quantifying brain development as growth 

trajectories of the human CC correspond to lifespan growth curves of white matter volume 

(Sowell et al., 2003; Hasan et al., 2007). These results thus suggest that chimpanzees display 

continued development of cortical white matter into adulthood.

The area of the genu showed linear growth, increasing in area across the juvenile – late 

adulthood period. For the rostral body and anterior midbody areas, the quadratic equation 

accounted a significantly greater amount of variability in CC size compared to the linear 

equation, indicating that these subdivisions displayed non-linear growth. These growth 

trajectories are similar to reports of human CC growth during development (Allen et al., 

1991; Cowell et al., 1993; Hasan et al., 2008; Hayakawa et al., 1989; Pujol et al., 1993; 

Rauch & Jinkins, 1994). One difference between humans and chimpanzees concerning life-

span development of the CC is that humans show decreases in CC size during old age 

(Hasan et al., 2008). Our chimpanzee sample did not display this decrease.
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In humans, the growth curve of the CC mirrors growth curves in the percentage of white 

matter (Hasan et al., 2007; Sowell et al., 2003). Furthermore, there is an increasing 

accumulation of data supporting that maturation of white matter is related to the 

development of cognitive functions including bimanual coordination (Muetzel et al., 2008), 

proficiency in reading ability (Beaulieu et al., 2005; Deutsch et al., 2005; Klingberg et al., 

2000; Niogi & McCandliss, 2006), reaction time (Liston et al., 2006) and visuospatial 

working memory (Mabbott et al., 2006; Nagy et al., 2004; Olesen et al., 2003). While 

similar studies correlating the development of both cognitive function and brain 

development are lacking in chimpanzees, an ongoing longitudinal study of chimpanzee brain 

development indicated rapid growth in the prefrontal cortex from age 1.5 to 6 years which 

continued to develop into adulthood, similar to humans (Sakai et al., 2008). Our failure to 

detect significant developmental trajectories in the rostrum, corresponding to one region of 

white matter growth associated with prefrontal cortex, is likely explained by the absence of 

subjects less than 6 years. However, the genu did display significant linear growth, 

indicating continued development of fibers connecting higher-order cognitive regions into 

adulthood. This suggests that, similar to humans, chimpanzees show continued white matter 

development related to cognitive development well into adulthood.

Sex differences in the growth of the chimpanzee CC were detected in this sample for total 

CC and subdivisions of anterior midbody, posterior midbody, and isthmus when considering 

both the adjusted CC measures and the raw area measures. While some have reported sex 

differences in humans in the growth trajectories of the CC and its subdivisions (De Bellis et 

al., 2001; Pujol et al., 1993), others have not (Giedd et al., 1999; Hasan et al., 2008; Lenroot 

et al., 2007; Rajapakse et al., 1996). However, it is important to note that the current sample 

was not matched with respect to age and sex; in particular there were few older males in the 

dataset.

Increases in midsagittal area of the human CC appear to be related to increased myelination 

more than increased axonal density (Aboitiz et al., 1992; LaMantia & Rakic, 1990); 

presumably similar mechanisms underlie these increases in chimpanzees but postmortem 

histological data are necessary to evaluate this hypothesis. A microstructural analysis of the 

chimpanzee CC across the lifespan would allow for examination of the fiber tracts 

connecting prefrontal cortical regions (higher association areas) to determine if these areas 

in particular show greater myelination during development. Unfortunately, due to the 

difficulty of obtaining chimpanzee post-mortem tissue samples, it seems unlikely that such 

an analysis will be completed anytime in the immediate future. As an alternative approach to 

measuring myelination development, in chimpanzees (and indeed in many primate species) 

perhaps some tests of interhemispheric transfer could be beneficial.

The sustained growth in midsagittal area of the CC might also reflect the relative proportion 

of white matter in brain region corresponding to terminal homotopic regions within the 

cortex. Studies of the proportion of white to gray matter in chimpanzees have shown that the 

central regions corresponding to primary motor and somatosensory cortex have relatively 

large proportion of white matter compared to premotor and prefrontal cortex (Hopkins, 

Taglialatela, Dunham, & Pierre, 2007). Thus, the different developmental trajectory may 
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simply reflect the number of connections that must form between these regions relative to 

other cortical areas during development.

In summary, our results provide the first data on development of the CC from the juvenile 

period through adulthood in chimpanzees. Our study statistically controlled for the possible 

confounds of sex and handedness effects. Ideally, longitudinal studies would provide a more 

accurate means of tracking the development of the CC in chimpanzees and other primates 

for comparison to humans. This may lead to important discoveries on the similarities and 

differences that may underlie the development and evolution of higher order cognitive and 

motor functions in primates, including humans.
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Figure 1. 
Anatomical subdivision of the chimpanzee corpus callosum from MRI sagittal view. The 

total midsagittal area was divided into seven equally spaced subdivisions: 1 = rostrum, 2 = 

genu, 3 = rostral body, 4 = anterior midbody, 5 = posterior midbody, 6 = isthmus, and 7 = 

splenium.
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Figure 2. 
a. Growth trajectory of the total midsagittal CC area (adjusted for brain size) in a sample of 

104 chimpanzees from 6 – 54 years.

Figure 2b. Growth trajectory of the total midsagittal CC area (raw area measures) in a 

sample of 104 chimpanzees from 6 – 54 years.
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Figure 3. 
Growth trajectories of CC subdivisions adjusted for total brain size in a sample of 

chimpanzees from 6 – 54 years: (a) genu, (b) rostral body, (c) anterior midbody, (d) 

posterior midbody, (e) isthmus, and (f) splenium. Quadratic equations best explained growth 

in the rostral body and anterior midbody; linear equations best explained growth in the genu, 

posterior midbody, isthmus and splenium.
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Figure 4. 
Growth trajectories of CC subdivisions in a sample of chimpanzees aged 6 – 54 years: (a) 

rostral body, (b) anterior midbody, and (c) isthmus. Growth in the isthmus was best 

explained by linear equations; growth in the rostral body and anterior midbody was best 

explained by quadratic equations.
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