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Abstract

Despite a recent proliferation of research using cyclical long memory, surprisingly
little is known regarding the asymptotic properties of likelihood-based methods.
Estimators have been studied in both the time and frequency domains for the
Gegenbauer autoregressive moving average process (GARMA). However, a full
set of asymptotic results for all parameters has only been proposed by Chung
(1996a,b), who present somewhat tenuous results without an initial consistency
proof. In this paper, we review the GARMA process and the properties of fre-
quency and time domain likelihood-based estimators using Monte Carlo analysis.
The results demonstrate the strong efficacy of both estimators and generally sup-
port the proposed theory of Chung for the parameter governing the cycle length.
Important caveats await. The results show that asymptotic confidence bands can
be unreliable in very small samples under weak long memory, and the distribution
theory under the null of an infinitely long cycle appears to be unusable. Possible
solutions are proposed, including the use of narrower confidence bands and the
application of theory under the alternative of finite cycles.
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1. Introduction

Few contributions to time series analysis have fomented more interest than
the introduction of long memory by Granger and Joyeux (1980) and Hosking
(1981). These methods allow for slowly decaying autocorrelation functions and
the existence of spectral density functions with one or more singularity. In eco-
nomics, long memory has provided a major breakthrough in allowing researchers
to bridge the gap between unit roots and transitory I(0) dynamics.

As emphasized by Dissanayake et al. (2018), attention has recently focused
on methods that can accommodate cyclical long memory, including seasonal long
memory and Gegenbauer autoregressive moving average (GARMA) models. The
GARMA model, which has received specific attention, is defined as follows,

(1− 2ηL+ L2)λφ(L)(xt − µ) = θ(L)εt (1)

where φ(L) and θ(L) are p and q order polynomials in the lag operator L, and εt
is a mean zero disturbance sequence with E(ε2t ) = σ2 and no serial correlation.
With ν = cos−1(η) the process possesses a spectral density function given by

f(ω) =
σ2

2π

∣

∣

∣

∣

θ(e−iω)

φ(e−iω)

∣

∣

∣

∣

2| cos(ω)− cos(ν)|−2λ. (2)

When p = q = 0, the process has an autocorrelation function at lag j that is
proportional to cos(jν)j2λ−1. When ν = 0, the result is an ARFIMA(p, 2λ, q)
process as originally studied by Granger and Joyeux (1980) and Hosking (1981).
The process above is covariance stationary provided λ < 1/4 when ν ∈ {0, π} or
when λ < 1/2 otherwise (Gray et al. 1989).

This model, and its extension, the k-factor GARMA model, have been ap-
plied across virtually every discipline that uses time series methods. Examples
include atmosphere C02 (Woodward et al. 1998), sunspots (Chung 1996b; Artiach
and Arteche 2012), dust pollution (Reisen et al. 2014), river flow (Diongue and
Ndongo 2016), electricity demand (Leschinski and Sibbertsen 2019), and traffic
patterns (Ferrara and Guégan 2001). In economics and finance, the GARMA
and k-factor GARMA models have been applied to study information related to
equities (Beaumont and Smallwood 2019; Lu and Guegan 2011; Caporale and Gil-
Alana 2014), interest rates (Ramachandran and Beaumont 2001; Gil-Alana 2007;
Asai et al. 2018), inflation (Arteche and Robinson 2000; Caporale and Gil-Alana
2011; Peiris and Asai 2016), and unemployment (Gil-Alana 2007).

In spite of the intense interest in the GARMA model, there does not appear
to be a unifying estimation approach for all model parameters. Several plausible
estimators for λ, η, and ν exist, including parametric estimators in the time
domain (Chung 1996a,b; Dissanayake et al. 2018) and frequency domain (Giraitis
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et al. 2001) and semi-parametric estimators (Hidalgo and Soulier 2004; Hidalgo
2005) extending the log-periodogrom estimators of Geweke and Porter-Hudak
(1983) and Robinson (1995). However, a full set of accepted asymptotic results
does not exist. Yajima (1996) showed that maximization of the periodogram
could be used to consistently estimate the position of spectral poles, which would
include ν. For semi-parametric estimators, Hidalgo and Soulier (2004) provide
an asymptotic result for λ based on (1), demonstrating that the distribution
for ν unknown is identical to that for ν known. Hidalgo (2005) extends these
results and provides an estimator for ν that is asymptotically normal with rate of
convergence T β , with β < 1, and T denoting the sample size, whose distribution
depends on whether ν = {0, π} or ν ∈ (0, π). Giraitis et al. (2001) provide
the asymptotic distribution for λ for the parameterized Whittle estimator, and
establish rate T convergence for the estimate of ν. Unfortunately, as discussed
below, Giraitis et al. (2001) are unable to provide a full set of asymptotic results
for their estimator of ν.

Obtaining valid inference for η is vital for researchers interested in obtaining
confidence bands for estimated cycles and is imperative for those interested in
tests for specific values, such as η = 1. Perhaps the most promising results were
proposed by Chung (1996a,b) who argued that the constrained sum of squares
(CSS) estimator for η converges at either rate T (if |η| < 1) or T 2 (if |η| = 1) to
ratios of functionals of Brownian motion processes. Estimates for the remaining
parameters achieve asymptotic normality at the standard rate of T 1/2. The CSS
based results have recently been extended by Beaumont and Smallwood (2019)
to consider multiple long memory cycles, while Peiris and Asai (2016) provide
proposed distribution results for the estimator with heteroskedastic disturbances.
Regrettably, given the potential discontinuity in the distribution for η coupled
with the existence of a closed parameter space for this parameter, an initial
consistency proof for the CSS estimators has proven quite elusive. Specifically,
Chung and related extensions rely on the observation that the score evaluated
at the true parameters is zero, which, as pointed out by Giraitis et al. (2001),
may not be sufficient to establish consistency. Given the concerns regarding
the theoretical results for the CSS estimator, it remains an open question as to
whether or not the theory is practically useful.

In this paper, we review the properties of the two most commonly applied
likelihood based estimators for the GARMA parameters, the CSS and Whittle
estimators, and consider the consequences of using the distribution theory pro-
posed by Chung (1996a,b). The results show that both estimators of η yield
desirable results in terms of mean bias and root mean squared error. Further,
the distribution theory of Chung is generally supported. Using an algorithm that
does not bound the parameter space, however, there are important exceptions.
For |η| < 1, it would appear that in finite samples, the estimates of η have slightly
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fatter tails and a more peaked density than theory implies. Although the problem
may become negligible for very large samples, differences between theoretical and
empirical densities can become severe for very small T and values of λ close to
zero, such that asymptotic confidence bands can be quite unreliable. Further, the
results show that the use of distribution theory under the case |η| = 1 can lead to
severe size distortion potentially complicating issues for researchers attempting
to test if a finite cycle exists.

Awaiting additional theoretical results, we can offer practical solutions to
researchers interested in estimating confidence bands and employing statistical
tests. For small estimated values of λ, researchers should avoid using asymptotic
results when the sample size is small. Otherwise, results do show that narrower
asymptotic confidence bands can be quite reliable, even for moderately small
samples. Thus, a recommendation is made that when using theory, multiple sets
of confidence intervals should be presented. Finally, in testing the hypothesis that
|η| = 1, more conservative statistics based on the distribution theory under the
alternative appear to yield more reliable results. A parametric bootstrap applied
to US unemployment supports this assertion, and we can further recommend that
whenever possible theoretical limitations can potentially be overcome through
computational methods.

The rest of the paper is organized as follows. In Section 2, we motivate
the problem using the US unemployment rate and present the two estimators
of the GARMA process due to Chung (1996a,b) and Giraitis et al. (2001). In
section 3, we present the Monte Carlo results, concentrating on the calculation of
confidence bands. Section 4 offers evidence specific to testing|η| = 1, and a final
section concludes.

2. Parametric Estimators of the GARMA Process

The two estimators analyzed here use time and frequency domain approxi-
mations for the Gaussian log likelihood function based on the GARMA process
defined in (1). The first estimator we consider is a Whittle type estimator. For
a sample size T , let T̃ = [T/2], where [·] denotes the integer part. Let ∆ denote
the set of all possible parameter values for δ = {φ′, θ′, λ, µ} and let QT denote
the set of Fourier frequencies, ωj = 2π j/T . Based on the spectrum f(ωj) defined
in (2), Giraitis et al. (2001) propose the following estimator (denoted GHR),

(

δ̂
ν̂

)

= argmin∆×QT
S(δ, ν) (3a)
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Importantly, note that the estimate of ν is obtained with respect to the discrete
set QT , and that the true value of ν need not be in this set. Under suitable
regularity conditions, Giraitis et al. (2001) establish asymptotic normality for
their estimate of δ, and prove that the estimate of ν is consistent. However,
a limiting distribution for ν̂ is not available, since the function in (3) is not
minimized for all values in the interval [0, π].

Concentrating out the residual variance, and under a Gaussian assumption
for εt, our second estimator is based on the constrained sum of squares (CSS)
function of the parameters, φ′, θ′, λ, η, µ and is given by

L(φ′, θ′, λ, η, µ) = −
T

2

[

ln(2π) + ln

(

1

T

T
∑

t=1

ε2t

)

+ 1

]

. (4)

Under an initialization assumption, maximization of the CSS function produces
a set of estimates that is asymptotically equivalent to the maximum likelihood
values.

The proposed theory of Chung (1996b) establishes asymptotic normality for
δ = (λ, φ′, θ′)′, where, for example, the element from the information matrix for λ
is given by Iλ = 2(π2/3−πν+ν2). For the CSS estimate of η, which is found to be
asymptotically independent of δ, Chung has the following proposed distributional
result in his Theorem 2:

T (η̂ − η) →
d

sin(ν)

λ
Y0 =

sin(ν)

λ

∫ 1
0 W1dW2 −

∫ 1
0 W2dW1

∫ 1
0 W 2

1 (r)dr +
∫ 1
0 W 2

2 (r)dr
, for |η| < 1 (5)

and

T 2(η̂ ± 1) →
d
∓

1

2λ
Y1 = ∓

1

2λ

∫ 1
0

[∫ r
0 W (s) ds

]

dW (r)
∫ 1
0

[∫ r
0 W (s) ds

]2
dr

, for η = ±1 (6)

where W,W1, and W2 are independent Brownian motions. Percentiles of Y0 and
Y1 can be simulated to yield confidence bands and test statistics for η.

To illustrate a concern regarding the use of these asymptotic results, the
following GARMA (2,1) model was obtained using the CSS estimator for the
seasonally adjusted US unemployment rate, ut, from Jan. 1980 through July
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2019,1

(1−2∗0.9986L+L2)0.326(1−0.934L−0.026L2)(ut−6.16) = (1−0.567L)εt. (7)

With η̂ = 0.9986 < 1, the estimated model represents a stationary process, albeit
highly persistent, with strong cycles. In contrast, if η = 1, the model reduces to
a non-stationary ARFIMA process lacking a finite cumulative impulse response
function. The asymptotic 99% confidence bands constructed under the assump-
tion η = 1 are [0.9980, 9987], while the corresponding quantities based on rate
T convergence are [0.9972, 1.0001].2 Although more formal testing procedures
advocated below generally yield evidence in support of η < 1, casual observation
of these confidence bands could prove confusing. The disparate conclusions also
highlight one of the potential concerns as it relates to the use of the proposed
distribution for the CSS estimator. In the following sections, we provide Monte
Carlo analysis to shed light on the applicability of theoretical results both in
forming confidence bands and for testing η = 1.

3. The Monte Carlo Results

In this section, we present Monte Carlo results to assess how the estimators
perform both in small and larger samples. From a computational perspective, an
advantage of the Whittle based estimator of Giraitis et al. (2001) is its relative
simplicity. For each Fourier frequency, ωj , we minimize the function S(δ, ωj) in (3)
with respect to δ, and track the value of the objective function for j = 0, 1, . . . , T̃ .
The estimate of ν, ν̂, is the Fourier frequency associated with the minimum value
of the objective function amongst the T̃ +1 alternatives. Then, the estimate of δ
is the value that minimizes the objective function with the frequency fixed at ν̂.
An estimate of η can be obtained through the functional relationship, η = cos(ν).

For the CSS estimator, note that the polynomial (1− 2ηL+ L2)−λ is related
to the Gegenbauer polynomials, cj , as follows (Gray et al. 1989):

(1− 2ηL+ L2)−λ =

∞
∑

j=0

cjL
j , (8a)

1Data are from the St. Louis Federal Reserve Bank. The GARMA(2,1) model was selected
on the basis of the AIC for all combinations of models with p and q less than 2.

2These quantities are calculated using (5) and (6) based on Chung’s simulated values for
Y0 and Y1. For example, the value of the 1st and 99th percentiles for Y0 is -4.238 and
4.238. With ν = 0.0525 and a sample size of T = 475, confidence bands can be calculated
as [−4.328 sin(ν)/(475 ∗ 0.326), 4.238 sin(ν)/(475 ∗ 0.326)].
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where

cj =

[j/2]
∑

k=0

(−1)kΓ(λ+ j − k)(2η)j−2k

Γ(λ)Γ(k + 1)Γ(j − 2k + 1)
(8b)

and Γ(·) is the gamma function. Starting from c0 = 1 and c1 = 2ηλ, the Gegen-
bauer polynomials can be computed recursively as

cj = 2η

(

λ+ 1

j
+ 1

)

cj−1 −

(

2
λ+ 1

j
+ 1

)

cj−2. (9)

The disturbance sequence in (1) is a function of the model parameters and in
turn the Gegenbauer polynomials as follows,

εt = (1− φ1L− · · · − φpL
p)(xt − µ)−

t−1
∑

j=1

cjεt−j

− θ1

t−2
∑

j=0

cjεt−j−1 − · · · − θq

t−q−1
∑

j=0

cjεt−j−q. (10)

To calculate the model parameters, Chung (1996a,b) and Gray et al. (1989), ad-
vocate a line-search for η.3 This implies that the parameter space being searched
over is a discrete set. This seems especially unfortunate as the theory is developed
under the assumption of a continuous parameter space and a potential advantage
of the CSS estimator relative to the GHR counterpart is lost. In instances where
the true value of η is unknown, a discretization implies that potentially large
biases can result or that a very fine grid would need to employed. Further, if a
large number of grid points is selected, it almost certainly becomes necessary to
impose boundary constraints on η for computational purposes.

Here, we advocate the use of a double gradient-based procedure as in Ra-
machandran and Beaumont (2001). A set of starting values for η is selected,
which is typically a grid from -1 to 1, using a relatively small step size to avoid
potential local minima. Conditional on each value of η in the grid, an estimate
of δ is obtained using a gradient based method. Conditional on the estimate of
δ, we estimate the parameter η, again using a search algorithm. The procedure
continues as we update the value of η along the grid. Once a neighborhood for
the maximum value of the CSS function is obtained, we iterate using the two-step
procedure until the norm of the estimated parameters between steps is sufficiently
small. This procedure allows one to search over all possible values of η and does
not impose boundary constraints that could artificially improve the fit of the CSS

3Chung (1996a,b) proposes estimation of δ using a gradient based method for each value η
along the grid, while Gray et al. (1989) also estimate λ using a line search.
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estimator in a simulation environment.
For the Monte Carlo experiments, we considered a total of eight different

cases, including six GARMA(0,0) (Table 1) and two GARMA(1,0) models (Ta-
ble 2). The true values of η are {−1,−0.9995,−0.50, 0.50, 0.9995, 1} for the
GARMA(0,0) cases. For |η| = 1, we fix λ = 0.20, where λ = 0.40 otherwise.
For the GARMA(1,0) cases, we fixed λ = 0.40 and φ = 0.80, allowing the true
values of η to be 0.50 and 0.9995. Note that the last model has short memory
dynamics and is parametrically close to the non-stationary border. We thus an-
ticipate that this model may produce relatively poor results. For each model, we
performed 2500 simulations and considered sample sizes of 100, 300, 500, 1000,
and 2000 observations. To generate a data series, xt, we calculated the autoco-
variances of the long memory processes and obtained the Cholesky factorization
of the Toeplitz matrix.4 This factorization is then multiplied by a sequence of nor-
mal random variates of the desired length. Data are generated through recursion
for each GARMA(1,0) case, where µ is set to 0 throughout.

Tables 1-2 report the results of the mean bias and RMSE for each model and
both the time domain estimator of Chung (CSS) and the frequency-based esti-
mator of Giraitis et al. (2001) (GHR). To help interpret the results, the estimator
that yields the smallest bias/RMSE in absolute value for a given sample size is
shown in bold type. For both estimators, the absolute value of the mean bias
associated with η is remarkably small, with a value that decreases rapidly with
the sample size. The CSS outperforms the GHR estimator in terms of the mean
bias of η. There are instances where the improvement in mean and RMSE can
be somewhat large, especially when |η| = 0.50, likely resulting from the fact that
the true value of η is not typically in the discrete parameter space for the GHR
estimator (except when ν is 0 or π). When ν 6= 0, the GHR estimator tends to
dominate in mean bias for λ. In terms of RMSE, for |η| 6= 1, the CSS estimator
tends to dominate for η, λ, and in the cases of the GARMA(1,0) model, for φ
as well. It should be noted that the RMSE for both estimators of λ and φ are
generally quite similar, and compare favorably with the computed asymptotic
standard deviations of these parameters from Chung (1996b), Theorem 3, with
one exception. In particular, performance of the estimators for the GARMA(1,0)
model with η = 0.9995, λ = 0.40, and φ = 0.80 tends to be quite poor. For
sample sizes less than 2000, the CSS and GHR procedures can result in a mean
bias for λ of -0.2023 and -0.3017, respectively. A similar picture emerges for φ,
where the mean bias of φ can be as large as 0.0992 for the CSS estimator, while
the GHR estimator tends to underestimate φ with a mean bias that is typically
quite large in absolute value. The results for the GARMA(1,0) cases show that

4See McElroy and Holan (2012) for details concerning the autocovariances of Gegenbauer
processes).
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the mean bias in λ tends to be inversely related to the mean bias in φ , especially
for the CSS estimator. As is well known to researchers using parametric esti-
mators in the ARFIMA context, it can be difficult to distinguish high frequency
components from low frequency pieces (Nielsen and Frederiksen 2005).

For researchers interested in obtaining point estimates for GARMA param-
eters, and η specifically, the GHR and CSS estimators appear to provide highly
robust options. However, the question remains as to whether or not proposed
distribution theory can be used for inference and the construction of confidence
bands. To this end, Table 3 displays the estimated and theoretical percentiles
from two potentially problematic cases, one with η near 1 and another with an
autoregressive component.5 Below the reported sample size, we present the per-
centiles of the distribution of the statistic calculated from Chung (1996a), using
his equation 19 and Table 1, along with the empirical distribution of the same
quantity resulting from both the CSS and GHR estimators.

We are primarily interested in the CSS estimator, noting two things regarding
the GHR estimator. First, the empirical distribution of T (η̂−η) for the GHR es-
timator confirms the established convergence rate of T as shown by Giraitis et al.
(2001). Second, we note that for the GHR estimator, the underlying parameter
space is discrete. Consider for example, the empirical distribution of T (η̂ − η)
when the true values of η and λ are 0.9995 and 0.40 for a sample size equal to
300. Of the estimated 2500 values of η, 1162 are exactly equal to 0.99912, the
closest possible value to 0.9995. While the estimator unquestionably performs
well, this discretization can naturally result in small biases, which again helps to
explain the findings in Tables 1-2, where the CSS estimator tends to dominate. It
additionally highlights a potential concern in using a CSS-based algorithm that
establishes a line search for η using a discrete set as in Chung (1996a) and Wood-
ward et al. (1998). In what follows, we concentrate on the properties of the CSS
estimator and algorithm proposed here.

For the two cases in Table 3, we generally see that the CSS estimator of η has
an empirical distribution that is well approximated by the asymptotic distribution
provided by Chung (1996a,b). The values of the empirical percentiles are typically
quite close to the reported percentiles of Chung, especially for the 2.5% and 5.0%
levels, which are important for statistical testing. Based on 500 observations, for
example, with η = 0.50 and φ 6= 0, the empirical 5th percentile for T (η̂ − η) is
-4.41, which closely matches the proposed theoretical quantity equal to -4.70.6

5For brevity, we do not include all results from Tables 1 and 2, which are available upon
request. Briefly summarizing, they provide conclusions that are qualitatively identical to those
reported in Table 3 for the other parameterizations, except perhaps the case where φ = 0.80
and η = 0.9995. Here, not surprisingly, for small samples, we find the distribution of is skewed
left.

6We obtain similar results for the GARMA(1,0) case with η = 0.50, λ = 0.40, where for
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In spite of generally confirming the proposed distributional results, Table 3
hints that the finite sample distribution may have a more peaked density and
fatter tails than theory implies. Consider Figure 1, which provides kernel density
plots of 2000(η̂ − η) and the corresponding theoretical quantity using the dis-
tribution theory for the CSS estimator based on the GARMA(0,0) model with
η = 0.50 and λ = 0.40.7 Indeed, the figure shows that there are several places
where the associated kernel density plots cross, suggesting that in finite samples,
the empirical distribution may have larger kurtosis and a more peaked density
than implied by theory. We now turn to the question of whether these issues
impact the practical usefulness of the distributional results in constructing con-
fidence bands.

A large number of simulations generally reveal that theoretical confidence
bands provide remarkably accurate coverage relative to empirical counterparts
when |η| is in the neighborhood of unity and/or λ is near the non-stationary
boundary. However, there can be very serious concerns with the use of theory,
especially when T is small and λ is near 0. Tables 4 and 5 highlight these issues,
where we present the associated biases that would result from the use of theory in
constructing confidence bands. More specifically, the tables report the difference
between the theoretical value of η at the upper and lower 68%, 90%, 95%, and 99%
confidence bands and the associated empirical quantity based on 5000 simulated
values for GARMA(0,0) models with η = 0.50 and 0.98. For each value of η, we
allow λ to take on the values {0.1, 0.2, 0.3, 0.4}, and as above, we consider several
sample sizes ranging from 100 to 2000. As a reference, the theoretical bands for
sample sizes of 500 observations are presented in bold font.

From Table 4, we see that the amplified empirical kurtosis is especially prob-
lematic for small T and λ. Generally speaking, the 99% bands appear to be un-
informative when λ = 0.10, even for moderately large sample sizes. For T = 500,
for example, 0.5% of estimated values of η are less than 0.2295, which starkly
contrasts the theoretical value of 0.4799. Although somewhat reliable results can
be obtained for 68% bands and sample sizes of at least 1000, the results with
λ = 0.10 show that the existing theory may need to be exercised with some cau-
tion. We do note that the time series with λ = 0.10 might be viewed as somewhat
extreme here, in light of the fact that they display characteristics that are difficult
to distinguish from short memory. The theoretical first order autocorrelation co-
efficient, for example, is 0.1015, and after the first lag, there is no value in excess
of 0.05 in absolute value.

example the empirical 5th percentile T (η̂ − η) is -4.11. The results support the proposed inde-
pendence of η from other parameters.

7We use a Gaussian smoothing window and a bandwidth parameter of 3. To calculate the
theoretical density, one needs the associated percentiles of Y0 from (5). These values have been
simulated using MATLAB code available on request, using equation 25 in Chung (1996a).
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Remaining results generally support the use of CSS theory for construction
of confidence bands, especially for samples larger than 100 and narrower bands.
Overall, biases rapidly decrease with both sample size and the value of λ. With
T = 2000 and λ = 0.40, as an example, 95% of all estimated values of η lie
between 0.4962 and 0.5040, implying confidence bands for estimated cycles of
between 5.975 and 6.0266 periods. These values are remarkably close to those
implied by theory, where theoretical bands of 0.4970-0.5030 correspond to cycle
lengths between 5.98 and 6.02 periods.

The results in Table 5 indicate that generally small biases in calculating confi-
dence intervals with asymptotic quantities further decline as η approaches unity.
Here for all cases, except when λ = 0.10 and T is smaller than 500, the empir-
ical coverage areas are very well captured by asymptotic quantities. Especially
when λ is large, the differences between empirical percentiles and the theoret-
ical quantities becomes negligible. Displayed in the final panel in Table 5, we
present results with λ = 0.40 where η = 0.9995, a parameterization very close
to a unit root. Except in the case of the 99% confidence bands with T = 100,
the associated biases are never greater than 0.0013 and are essentially zero for
T > 1000.8

4. Hypothesis Testing for η

Overall, the results indicate that the proposed distribution theory for max-
imum likelihood-based estimators works well in constructing confidence bands
as |η| → 1. The question remains as to whether these results are useful for
statistical testing purposes. Here, as recently emphasized by Dissanayake et al.
(2018), there are several specific hypotheses of interest, including H0 : η = 1
versus HA : η < 1. Regrettably, as discussed above, a discontinuity exists in the
proposed theory of Chung (1996a), such that we anticipate potential inferential
problems. These concerns are validated in Table 6, which depicts the empirical
distribution of the CSS estimator standardized by both T and T 2 when the true
value of η is 1.

Turning to the specific percentile values, we note that the empirical distribu-
tion of T 2(η̂− 1) does not match the proposed asymptotic distribution of Chung
(1996a). For example, in Table 6, the value of the empirical 1st percentile for
T 2(η̂− 1) can be more than 11 times larger than the value established by Chung.

8We also consider the case where η = 0.9995 and λ = 0.10. Relative to other cases with
λ = 0.10, resulting biases are typically much smaller. For example, with T = 100 and 300,
the theoretical lower bands of the 68% confidence intervals are 0.9958 and 0.9983, whereas the
associated empirical quantities are 0.9750 and 0.9938. For all coverage areas, biases decrease
rapidly with the sample size, even becoming as small as 0.0017 and 0.0002 for 99% lower and
upper limits when T=2000.
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In other words, the empirical distribution is dramatically more skewed left than
the theoretical results would imply. Further, the empirical distribution takes on
fewer positive entries than the proposed asymptotic distribution. For example,
the value associated with the 99th percentile from Chung’s asymptotic distribu-
tion for T 2(η̂− 1) is 31.13. Based on a sample size of 300, this implies that when
η = 1, 1% of all estimates of this parameter will be at least 1.00035. In contrast,
the empirical distribution shows that only 1% of all values exceed 1.00018.

To analyze how empirical and theoretical distributional disparities impact
inference, we consider the proposed tests of Chung (1996a,b) in Table 7 for |η| = 1,
when the true value of η is 1 or -1. The hypothesis can be tested by constructing
confidence intervals about the estimate of η, where an ARFIMA process cannot
be rejected if the value of unity lies within the confidence interval. The left-hand
side of Table 7 reports the empirical size based on the 95% and 99% confidence
intervals when the true value of η is 1, while the right hand side of Table 7 presents
the same results when η = −1. Note, the confidence intervals are constructed here
using the distributional results with T 2 rate of convergence when |η| = 1 (see (6)).
The table shows that the implementation of the proposed distribution theory
under the null will result in massive size distortion, with only mild relief as the
sample size increases. Consider the case where the generated data are ARFIMA
processes with η = 1. Even with 2000 observations and a 5% test, the constructed
theoretical confidence bands underH0 fail to include unity 17.6% of the time. The
rejection rates of the true null η = 1 can be larger than 20%. Moving to the 99%
confidence intervals (e.g. a 1% test), we still see that the rejection rates exceed
13%. Throughout, the results are slightly worse when η = −1. For even large
samples, these results suggest that the proposed distributional theory is unlikely
to be useful to researchers interested in determining if the true data generating
process is an ARFIMA or GARMA process. This can be especially problematic
for those interested in testing for stationarity, where non-stationarity occurs for
all values of λ ≥ 0.25 when |η| = 1, but only occurs when λ ≥ 0.50 otherwise.
Clearly, suitable testing procedures are needed. We offer two possibilities that
we wish to posit as potential avenues for future work.

A conservative approach in testing |η| = 1 would involve the use of both sets
of confidence intervals that assume different rates of convergence. Recall from
above that values of η in excess of unity are plausible, and thus the distribution
theory for |η| < 1 is not applicable given a complex value for ν (see (5)). While
it is quite clear that more work is needed in establishing an appropriate test,
one possibility might be the implementation of a one-sided test for η = 1 versus
the alternative η < 1, where any estimated value in excess of unity is taken as
an automatic failure to reject. As an example, we implemented this approach
for the generated ARFIMA data with the sample sizes ranging from 100 to 2000
observations using the test statistic from (5). The test statistic based on a 5%
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test size that assumes rate T convergence, yielded rejection rates of 6.64%, 5.28%,
4.84%, 5.44%, and 4.36%, respectively.

A more formal test that is potentially preferred has recently been advocated
by Dissanayake et al. (2018), who discuss the use of quasi-likelihood ratio test
statistics based on a state space representation of the GARMA model. Following
a similar approach, one could obtain the value of the likelihood function in (4),
with and without η = 1 imposed, and form the test statistic as follows,

LR = 2

[

max
φ′,θ′,λ,η,µ

L(φ′, θ′, λ, η, µ)− max
φ′,θ′,λ,µ

L(φ′, θ′, λ, 1, µ)

]

. (11)

Under the null, the value of η lies on the boundary of the parameter space, and
given the difficulties above, it seems likely that the distribution of the resulting
test statistic will be non-standard. In light of the problems with the existing
theory, as discussed here, computational methods may be preferred.

As a reasonable approach, one could use the estimated model under the null
hypothesis to form a parametric bootstrap. Data of the desired length could
be simulated based on sampling with replacement from the residuals of the null
model, and the critical values of the distribution could be formed based on the
test statistic in (11). This procedure was applied to the unemployment rate
data described in Section 2, using the residuals from an estimated ARFIMA(2,1)
model. Results, which are based on 5000 simulations, are presented in Table 7.9

Here, we see that the likelihood ratio test statistic associated with the hypothesis
η = 1 takes on a value of 6.31, exceeding simulated critical values at the 5%, but
not at the 1% levels. As discussed above, these findings are likely of tremendous
importance to applied researchers in economics, since the null model is non-
stationary, but strong stationary cycles result under the alternative.

The results provide reasonably strong support favoring |η| < 1 and also high-
light the difficulties that could be encountered for researchers employing CSS
theory. More specifically, confidence bands constructed under the null hypothe-
sis |η| = 1 suffer from such severe size distortion they are likely uninformative.
For the example here, a more careful testing analysis shows a marginal rejection
of η = 1 , whereas strong rejection occurs for virtually any size when using the
theory of Chung (1996a,b) based on the assumed T 2 rate of convergence. Finally,
we see that the associated theoretical confidence bands under |η| < 1 only contain
unity when considering 99% intervals, matching the likelihood ratio test results.
In instances where a parametric bootstrap is not available, these findings suggest
that more conservative bands may be informative in determining if long memory

9For computational purposes, and given the non-stationarity of the null model, the data are
simulated recursively using the coefficients of the expansion of (1− L)−0.3301 and the standard
assumption that pre-sample observations are 0.
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cycles have finite length.

5. Conclusions

Considerable attention has recently focused on the use of models that allow for
long memory cycles and potential singularities in the spectral density function,
notably Gegenbauer autoregressive moving (GARMA) and associated k-factor
GARMA models. While a number of robust estimators appears to exist in the
time and frequency domain, it does not appear that there are an accepted set
of distributional results related to the parameter, or parameters in the case of
k-factor models, dictating the cycle length and the positions of spectral poles.

In this manuscript, we analyze the performance of two relevant likelihood-
based estimators, where at least partial distributional results have been proposed.
This includes, the Whittle estimator (GHR) described by Giraitis et al. (2001),
and the approximate maximum likelihood estimator (CSS) analyzed by Chung
(1996a,b). While Giraitis et al. (2001) were able to prove rate-T convergence of
the estimator of the pole, they were unable to provide an exact limiting distri-
bution given its discrete nature. To date, only Chung (1996a,b) has proposed
an approximate maximum likelihood estimator that could be used for statistical
inference and the calculation on confidence bands. However, the results were
obtained without a formal consistency proof, given complications in the distri-
bution theory, including the fact that the relevant parameter space is closed and
the proposed distribution appears to have a potential discontinuity. The pro-
posed theory is potentially relevant for other likelihood-based estimators, serving
at least as a reference point, and has recently been extended by Beaumont and
Smallwood (2019) and Peiris and Asai (2016) to accommodate multiple poles and
heteroskedastic disturbances. It is therefore imperative to understand the extent
to which the proposed asymptotic theory is relevant.

Using a double gradient-based search algorithm, an extensive Monte Carlo
analysis revealed that both estimators are highly robust in estimating model pa-
rameters, specifically the position of the spectral pole and its associated cosine,
denoted η. As the CSS estimator admits a continuous parameter space, it is
found to be relatively superior in estimation of η. Empirical results very strongly
support the proposed distribution theory of Chung (1996a,b) for stationary pa-
rameterizations in a neighborhood of a unit root process, especially for larger
samples. Additionally, in most cases, the distribution theory is shown to be
quite useful in constructing confidence bands, where empirical coverage areas are
sometimes surprisingly well captured by associated asymptotic quantities.

The findings are not without important caveats. For our estimator, in smaller
samples, empirical distributions can have larger kurtosis than implied by theory.
Although there may be evidence that this is a small sample problem, the sim-
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ulation results show that constructed wider confidence bands are likely to be
uninformative under very weak long memory in samples less than 500 observa-
tions. From a practical perspective, we would recommend the avoidance of the
proposed asymptotic theory for very small samples when weak persistence is sus-
pected, perhaps as evidenced by a differencing parameter in the neighborhood of
zero. Otherwise, narrower confidence bands are generally found to be robust, such
that we would also recommend using multiple sets of intervals when presenting
theoretical results.

From a testing perspective, we further show that the proposed distribution
theory under the null |η| = 1 would render severe size distortion and can cause
confusion regarding whether a series is a stationary GARMA process or non-
stationary ARFIMA/unit root process. This does not appear to be a small prob-
lem, with rejection rates under the null approaching 20% for a 5% test size in
samples of about 2000. We are able to demonstrate however, that the more
conservative use of theory under the assumption |η| < 1 may be useful in distin-
guishing ARFIMA/ARIMA processes from GARMA counterparts.

The paper concludes with an application to unemployment, where evidence
using a parametric bootstrap provides support for the existence of stationary,
long memory cycles in the labor market. The overall conclusions suggest that
GARMA parameters can be well estimated by existing likelihood-based tech-
niques. For researchers interested in obtaining confidence bands for cycle lengths
and conducting inference, the existing theory also appears to be largely applica-
ble. Nonetheless, the results also show there are still several gaps in the existing
theory that merit additional exploration, specifically as it relates to testing for
|η| in the neighborhood of 1. Awaiting additional distributional results, we sus-
pect computational methods are most likely to be informative for researchers
interested in statistical inference.
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Table 1: Bias and RMSE for Whittle and CSS estimates of GARMA(0,0) model parameters

CSS η GHR η CSS λ GHR λ CSS η GHR η CSS λ GHR λ Chung
T Bias Bias Bias Bias RMSE RMSE RMSE RMSE Asymp

Model #1: GARMA(0,0); η = 1, λ = 0.20

100 -0.00644 -0.00659 0.00564 -0.03109 0.0262 0.0237 0.0444 0.0591 0.0390
300 -0.00089 -0.00093 0.00311 -0.01106 0.0058 0.0043 0.0251 0.0278 0.0225
500 -0.00027 -0.00028 0.00228 -0.00630 0.0017 0.0012 0.0194 0.0199 0.0174

1000 -0.00006 -0.00008 0.00173 -0.00320 0.0003 0.0004 0.0131 0.0133 0.0123
2000 -0.00002 -0.00002 0.00210 -0.00158 0.0001 0.0002 0.0095 0.0092 0.0087

Model #2: GARMA(0,0); η = −1, λ = 0.20

100 0.00724 0.00624 0.00498 -0.03160 0.0277 0.0248 0.0448 0.0593 0.0390
300 0.00090 0.00091 0.00306 -0.01025 0.0052 0.0039 0.0252 0.0276 0.0225
500 0.00031 0.00027 0.00249 -0.00670 0.0019 0.0012 0.0191 0.0205 0.0174

1000 0.00007 0.00009 0.00183 -0.00342 0.0004 0.0004 0.0134 0.0138 0.0123
2000 0.00002 0.00002 0.00167 -0.00176 0.0002 0.0002 0.00935 0.0092 0.0087

Model #3: GARMA(0,0); η = 0.9995, λ = 0.40

100 -0.00070 -0.00118 0.01696 0.00227 0.0029 0.0044 0.0470 0.0546 0.0396
300 -0.00008 -0.00018 0.01057 0.00999 0.0005 0.0008 0.0274 0.0316 0.0229
500 -0.00002 -0.00006 0.00809 0.00918 0.0002 0.0004 0.0213 0.0245 0.0177

1000 1.18E-06 -1.99E-06 0.00562 -0.00107 0.0001 0.0001 0.0149 0.0133 0.0125
2000 1.59E-06 2.22E-06 0.00495 -0.00007 0.0001 0.0001 0.0108 0.0092 0.0089

Model #4: GARMA(0,0); η = −0.9995, λ = 0.40

100 0.00089 0.00120 0.01566 0.00180 0.0039 0.0042 0.0453 0.0458 0.0390
300 0.00009 0.00014 0.01049 0.00929 0.0006 0.0007 0.0276 0.0309 0.0229
500 0.00002 0.00006 0.00823 0.00839 0.0003 0.0004 0.0214 0.0243 0.0177

1000 1.63E-06 1.43E-06 0.00553 -0.00123 0.0001 0.0001 0.0149 0.0131 0.0125
2000 6.80E-07 -3.76E-06 0.00452 -0.00022 0.0001 0.0001 0.0106 0.0093 0.0089

Model #5: GARMA(0,0); η = 0.50, λ = 0.40

100 0.00102 -0.00587 0.02535 0.00602 0.0298 0.0437 0.0805 0.1050 0.0675
300 0.00029 0.00051 0.01620 -0.01930 0.0102 0.0114 0.0458 0.0480 0.0390
500 0.00001 0.00152 0.01245 0.00467 0.0060 0.0079 0.0361 0.0387 0.0302

1000 -0.00002 -0.00080 0.00754 0.00472 0.0030 0.0038 0.0248 0.0268 0.0214
2000 -0.00002 0.00036 0.00521 0.00397 0.0016 0.0020 0.0170 0.0630 0.0151

Model #5: GARMA(0,0); η = −0.50, λ = 0.40

100 -0.00002 0.00621 0.02950 -0.02176 0.0313 0.0429 0.0812 0.1039 0.0675
300 -0.00006 -0.00016 0.01535 -0.01945 0.0102 0.0113 0.0447 0.0490 0.0390
500 0.00002 -0.00151 0.01112 0.00245 0.0063 0.0080 0.0346 0.0374 0.0302

1000 -0.00005 0.00063 0.00736 0.00456 0.0031 0.0039 0.0239 0.0260 0.0214
2000 -0.00001 -0.00035 0.00460 0.00328 0.0016 0.0020 0.0166 0.0020 0.0151

Notes: The asymptotic standard error for λ using the theory of Chung (1996a) is presented in the last
column. Quantities appearing in bold font indicate the smaller bias/RMSE between the CSS and GHR
estimators.
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Table 2: Bias and RMSE for Whittle/CSS based estimates of the GARMA(1,0) model

T CSS: η GHR: η CSS: λ CSS: λ CSS: φ GHR: φ Chung
Model #7: GARMA(1,0); η = 0.50, λ = 0.40, φ = 0.80 (Asymp λ)

Parameter Bias

100 -0.00058 -0.00901 0.01937 -0.05005 -0.02735 -0.02068 0.06779
300 -0.00036 -0.00005 0.01320 -0.02692 -0.01035 -0.00357 0.03914
500 -0.00016 0.00119 0.00999 -0.00106 -0.00683 -0.00724 0.03032

1000 -0.00001 -0.00086 0.00710 0.00249 -0.00348 -0.00319 0.02144
2000 -0.00001 0.00037 0.00655 0.00488 -0.00146 -0.00150 0.01516

Model #7: GARMA(1,0); η = 0.50, λ = 0.40, φ = 0.80 (Asymp φ)
Parameter RMSE

100 0.03235 0.04947 0.07735 0.11326 0.07617 0.07828 0.06024
300 0.01075 0.01152 0.04481 0.05360 0.03854 0.03769 0.03478
500 0.00641 0.00784 0.03435 0.03796 0.02918 0.03093 0.02694

1000 0.00334 0.00408 0.02422 0.02584 0.01951 0.02004 0.01905
2000 0.00161 0.00201 0.01736 0.01867 0.01369 0.01394 0.01347

T CSS: η GHR: η CSS: λ CSS: λ CSS: φ GHR: φ Chung
Model #8: GARMA(1,0); η = 0.9995, λ = 0.40, φ = 0.80 (Asymp λ)

Parameter Bias

100 -0.01416 -0.02782 -0.20227 -0.30174 0.09923 0.10871 0.12635
300 -0.00223 -0.00796 -0.15377 -0.11110 0.09992 -0.11546 0.07295
500 -0.00065 -0.00337 -0.12132 -0.01833 0.07958 -0.24442 0.05651

1000 -0.00009 -0.00066 -0.08719 0.00541 0.06242 -0.13533 0.03996
2000 0.000002 -0.00004 0.01609 0.01929 -0.02224 -0.10542 0.02825

Model #8: GARMA(1,0); η = 0.9995, λ = 0.40, φ = 0.80 (Asymp φ)
Parameter RMSE

100 0.03787 0.05880 0.24362 0.33197 0.22420 0.20178 0.06024
300 0.00981 0.01753 0.19453 0.24230 0.15666 0.41871 0.03478
500 0.00466 0.00822 0.16658 0.20506 0.14172 0.48856 0.02694

1000 0.00162 0.00255 0.12891 0.14197 0.12002 0.33196 0.01905
2000 0.00006 0.00037 0.04347 0.10770 0.07160 0.27240 0.01347

Notes: The asymptotic standard error for λ using the theory of Chung (1996a) is presented in the first
panel for both models and in the last column. The analogous quantity for φ is presented in the second
panel, and again in the last column. Quantities appearing in bold font indicate a smaller bias/RMSE
between the CSS and GHR estimators.
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Table 3: Empirical distribution for the percentiles T (η̂ − η)

.
Model: GARMA(0,0) with η = 0.9995, λ = 0.40

0.001 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
Chung -0.335 -0.284 -0.220 -0.172 -0.124 0.124 0.172 0.220 0.284 0.335

CSS/100 -1.639 -1.268 -0.689 -0.386 -0.169 0.047 0.067 0.092 0.120 0.140
GHR/100 -3.092 -1.721 -0.739 -0.739 -0.147 0.050 0.050 0.050 0.050 0.050

CSS/300 -1.002 -0.628 -0.319 -0.194 -0.096 0.066 0.115 0.149 0.166 0.182
GHR/300 -1.493 -0.902 -0.442 -0.442 -0.113 0.084 0.150 0.150 0.150 0.150

CSS/500 -0.722 -0.431 -0.275 -0.155 -0.075 0.071 0.137 0.202 0.247 0.260
GHR/500 -0.737 -0.737 -0.382 -0.382 -0.105 0.092 0.211 0.211 0.250 0.250

CSS/1000 -0.460 -0.368 -0.209 -0.122 -0.072 0.079 0.152 0.229 0.345 0.494
GHR/1000 -0.763 -0.467 -0.211 -0.211 0.007 0.007 0.184 0.184 0.322 0.421

CSS/2000 -0.369 -0.276 -0.189 -0.118 -0.064 0.064 0.126 0.236 0.343 0.461
GHR/2000 -0.421 -0.421 -0.194 -0.194 -0.194 0.013 0.201 0.201 0.368 0.516

Model: GARMA(1,0) with η = 0.50, λ = 0.40, φ = 0.80

0.001 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
Chung -9.176 -7.786 -6.012 -4.700 -3.399 3.399 4.700 66.012 7.786 9.176

CSS/100 -14.111 -10.745 -6.949 -4.284 -2.348 2.226 4.476 7.491 10.681 12.771
GHR/100 -19.098 -13.188 -7.422 -7.422 -1.825 3.583 3.583 8.779 13.7421 22.897

CSS/300 -13.187 -11.189 -7.236 -4.840 -2.388 2.048 4.125 6.488 10.263 12.863
GHR/300 -11.011 -11.011 -5.474 -5.474 0.000 0.000 5.408 5.408 10.748 16.018

CSS/500 -14.513 -10.683 -6.761 -4.417 -2.164 1.975 3.966 6.564 10.153 13.467
GHR/500 -14.648 -14.648 -9.123 -3.636 -3.636 1.812 7.220 7.220 12.587 12.587

CSS/1000 -12.619 -9.842 -6.535 -3.972 -2.139 2.107 4.117 6.774 9.783 13.259
GHR/1000 -12.750 -12.750 -7.273 -7.273 -1.815 3.623 3.623 9.041 9.041 14.440

CSS/2000 -15.543 -11.177 -6.657 -3.872 -2.046 2.043 3.752 6.869 10.212 13.488
GHR/2000 -14.545 -9.083 -9.083 -3.630 -3.630 1.813 7.246 7.246 12.670 12.670

Notes: In bold font, we present the values at theoretical percentiles for the test statistic using equation
(4) and the associated simulated quantities for Y0 from Chung (1996a). The remaining elements yield the
associated values at a given percentile for η̂ using the CSS and GHR estimators.
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Table 4: Bias in estimating confidence bands in GARMA(0,0) models with η = 0.05.

68%L 68%U 90%L 90%U 95%L 95%U 99%L 99%U

Theory: 500 0.4799 0.5201 0.4623 0.5376 0.4517 0.5482 0.4267 0.5733
BIAS WITH λ = 0.10

CSS/100 0.2504 -0.1563 0.4764 -0.2420 0.6080 -0.2297 0.8701 -0.1318
CSS/300 0.0518 -0.0627 0.1154 -0.1123 0.1753 -0.1429 0.4368 -0.2568
CSS/500 0.0328 -0.0361 -0.0641 -0.0657 0.0830 -0.0766 0.1623 -0.1394
CSS/1000 0.0140 -0.0178 -0.0290 -0.0317 0.0354 -0.0378 0.0469 -0.0499
CSS/2000 0.0077 -0.0090 -0.0151 -0.0158 0.0175 -0.0194 0.0231 -0.0273

Theory: 500 0.4900 0.5101 0.4812 0.5188 0.4759 0.5241 0.4634 0.5366
BIAS WITH λ = 0.20

CSS/100 0.0110 -0.0251 0.0858 -0.1001 0.1279 -0.1321 0.2952 -0.2209
CSS/300 0.0045 -0.0092 -0.0303 -0.0336 0.0435 -0.0435 0.0655 -0.0674
CSS/500 0.0032 -0.0056 0.0166 -0.0201 0.0239 -0.0248 0.0348 -0.0396
CSS/1000 0.0026 -0.0029 0.0098 -0.0093 0.0122 -0.0122 0.0198 -0.0174
CSS/2000 0.0016 -0.0018 0.0055 -0.0053 0.0068 -0.0067 0.0105 -0.0085

Theory: 500 0.4933 0.5067 0.4874 0.5125 0.4839 0.5161 0.4756 0.5244
BIAS WITH λ = 0.30

CSS/100 -0.0161 0.0162 0.0044 -0.0095 0.0200 -0.0326 0.0553 -0.0731
CSS/300 -0.0042 0.0041 0.0050 -0.0046 -0.0115 -0.0118 0.0256 -0.0214
CSS/500 -0.0019 0.0017 0.0019 -0.0040 0.0064 -0.0080 0.0157 -0.0168
CSS/1000 -0.0006 0.0005 0.0022 -0.0020 0.0040 -0.0040 0.0081 -0.0077
CSS/2000 0.0001 -0.0001 0.0018 -0.0018 0.0027 -0.0028 0.0043 -0.0042

Theory: 500 0.4950 0.5050 0.4906 0.5094 0.4879 0.5120 0.4817 0.5183
BIAS WITH λ = 0.40

CSS/100 -0.0181 0.0195 -0.0301 0.0305 -0.0266 0.0269 -0.0151 -0.0064
CSS/300 -0.0054 -0.0057 -0.0076 0.0075 -0.0053 0.0040 0.0037 -0.0034
CSS/500 -0.0030 0.0031 -0.0036 0.0028 -0.0016 0.0013 0.0022 -0.0022
CSS/1000 -0.0012 0.0012 -0.0006 0.0007 0.0004 -0.0001 0.0027 -0.0011
CSS/2000 -0.0003 0.0002 0.0004 -0.0006 0.0008 -0.0010 0.0022 -0.0023

Notes: The table reports the difference between the value of η associated with theoretical confidence bands,
which have been constructed using equation (5) along with simulated values for Y0, and the estimated value
of η associated with a given percentile. 68%L and 68%U refer to 68% lower and upper confidence bands,
with similar meaning for other quantities. Values appearing in bold font are the actual values of η (e.g.
not the biases) that are generated from equation (5) for a sample size of 500 observations.
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Table 5: Bias in estimating confidence bands in GARMA(0,0) models with η = 0.98.

68%L 68%U 90%L 90%U 95%L 95%U 99%L 99%U

Theory: 500 0.9754 0.9846 0.9713 0.9866 0.9689 0.9911 0.9632 0.9968
BIAS WITH λ = 0.10

CSS/100 0.1104 0.0063 0.9097 0.0145 0.9732 -0.0211 1.1108 0.0267
CSS/300 0.0151 -0.0059 0.0336 -0.0052 0.0478 -0.0015 0.0987 0.0078
CSS/500 0.0079 -0.0066 0.0172 -0.0089 0.0218 -0.0079 0.0358 -0.0031
CSS/1000 0.0036 -0.0036 0.0073 -0.0062 0.0099 -0.0068 -0.0158 -0.0071
CSS/2000 0.0018 -0.0018 -0.0036 -0.0032 0.0043 -0.0037 0.0061 -0.0051

Theory: 500 0.9777 0.9823 0.9757 0.9843 0.9745 0.9855 0.9716 0.9884
BIAS WITH λ = 0.20

CSS/100 0.0105 0.001 0.0047 0.0036 0.0760 0.0081 0.2348 0.0206
CSS/300 0.0023 -0.0014 0.0090 -0.0049 0.0129 -0.0057 0.0235 -0.0047
CSS/500 0.0013 -0.0010 0.0055 -0.0037 0.0067 -0.0045 0.0120 -0.0051
CSS/1000 0.0007 -0.0006 0.0025 -0.0020 0.0035 -0.0027 0.0056 -0.0035
CSS/2000 0.0004 -0.0004 0.0013 -0.0012 0.0017 -0.0016 0.0027 -0.0021

Theory: 500 0.9785 0.9815 0.9771 0.9829 0.9763 0.9837 0.9744 0.9856
BIAS WITH λ = 0.30

CSS/100 -0.0030 0.0041 0.0047 0.0028 0.0107 0.0020 0.0387 0.0081
CSS/300 -0.0009 0.0009 0.0015 -0.0007 0.0036 -0.0020 0.0071 -0.0028
CSS/500 -0.0004 0.0005 0.0012 -0.0008 0.0024 -0.0015 0.0047 -0.0030
CSS/1000 -0.0001 0.0001 0.0007 -0.0005 0.0011 -0.0011 0.0021 -0.0019
CSS/2000 0.00002 -0.00002 0.0005 -0.0004 0.0007 -0.0006 0.0013 -0.0012

Theory: 500 0.9788 0.9812 0.9778 0.9822 0.9772 0.9828 0.9758 0.9842
BIAS WITH λ = 0.40

CSS/100 -0.0040 0.0043 -0.0068 0.0072 -0.0064 0.0070 0.0034 0.0059
CSS/300 -0.0012 0.0013 -0.0016 0.0018 -0.0007 0.0010 0.0005 -0.0005
CSS/500 -0.0007 0.0007 -0.0006 0.0009 -0.0001 0.0005 0.0004 -0.0002
CSS/1000 -0.0003 0.0003 -0.0001 0.0003 0.0001 0.0001 0.0009 -0.0005
CSS/2000 -0.0001 0.0001 0.0001 -0.0001 0.0002 -0.0002 0.0007 -0.0004

GARMA(0,0) model η = 0.9995, λ = 0.40
Theory: 500 0.9900 0.9997 0.9992 0.9998 0.9991 0.9999 0.9998 1.0002

BIAS FOR MODEL NEAR UNIT ROOT BOUNDARY

CSS/100 -0.0006 0.0004 -0.0008 0.0009 0.0001 0.0011 0.0066 0.0017
CSS/300 -0.0002 0.0002 -0.0003 0.0002 0.00002 0.0003 0.0013 0.0005
CSS/500 -0.0001 0.0001 -0.0001 0.0001 0.00004 0.0001 0.0002 0.0002
CSS/1000 -0.00005 0.00003 -0.00004 -0.00003 0.00001 -0.00003 0.0001 -0.00004
CSS/2000 -0.00002 0.000001 0.00001 -0.00003 0.00003 -0.00004 0.00009 -0.00006

Notes: The table reports the difference between the value of η associated with theoretical confidence bands,
which have been constructed using equation (5) along with simulated values for Y0, and the estimated value
of η associated with a given percentile. 68%L and 68%U refer to 68% lower and upper confidence bands,
with similar meaning for other quantities. Values appearing in bold font are the actual values of η (e.g.
not the biases) that are generated from equation (5) for a sample size of 500 observations.
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Table 6: Percentiles for T (η̂− η) and T 2(η̂− η) for the empirical distribution of η when |η| = 1.

MODEL: GARMA(0,0): η = 1.00, λ = 0.20

T (η̂ − η) 0.001 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
Chung -244.44 -185.29 -121.23 -81.00 -75.13 10.14 15.44 21.53 31.18 39.85

CSS:T=100
T (η̂ − η) -17.791 -13.262 -7.194 -3.825 -1.238 0.074 0.101 0.133 0.167 0.211
T 2(η̂ − η) -1779.1 -1326.2 -719.39 -382.49 -123.84 7.365 10.106 13.297 16.654 21.114

CSS:T=300
T (η̂ − η) -9.974 -6.843 -2.328 -0.846 -0.297 0.024 0.032 0.042 0.053 0.060
T 2(η̂ − η) -2992.3 -2052.8 -698.42 -253.80 -89.105 7.306 9.543 12.469 15.824 18.050

CSS:T=500
T (η̂ − η) -5.020 -3.332 -1.116 -0.494 -0.1774 0.014 0.019 0.024 0.031 0.037
T 2(η̂ − η) -2510.1 -1666.2 -557.87 -246.83 -88.696 7.041 9.350 11.796 15.253 18.704

CSS:T=1000
T (η̂ − η) -2.072 -1.4230 -0.593 -0.286 -0.087 0.007 0.009 0.012 0.015 0.017
T 2(η̂ − η) -2072.1 -1429.8 -592.49 -286.06 -86.90 6.839 9.208 11.978 14.823 17.289

CSS:T=2000
T (η̂ − η) -0.911 -0.644 -0.247 -0.010 -0.034 0.003 0.005 0.006 0.007 0.009
T 2(η̂ − η) -1821.5 -1288.0 -493.68 -199.01 -68.111 6.656 8.930 11.097 14.235 18.194

Notes: In bold font, we present the values at theoretical percentiles for the test statistic T 2(η̂ − η) using
equation (6) and the associated simulated quantities for Y1 from Chung (1996a). The remaining elements
yield the associated values at a given percentile for η̂ using the CSS estimator.
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Table 7: Rejection rates of the null hypothesis |η| = 1 using Chung’s confidence intervals

GARMA(0,0) GARMA(0,0)
η = 1, λ = 0.20 η = −1, λ = 0.20

Sample Size 99% 95% 99% 95%

100 0.1780 0.2184 0.1808 0.2268
300 0.1468 0.1864 0.1704 0.2236
500 0.1492 0.1848 0.1724 0.2180
1000 0.1460 0.1812 0.1528 0.1964
2000 0.1328 0.1756 0.1424 0.1844

Notes: The results use the estimated value of λ based on equation (6) to calculate 95% and 99% confidence
bands about the estimated value of η when |η| = 1, using the CSS estimator. Quantities here indicate the
proportion of occurrences where the associated upper bands are less than 1, for η = 1, or where the lower
band is greater than -1, when the true value of η = −1.
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Table 8: Results of parametric bootstrap applied to US unemployment

η λ φ1 φ2 θ SSR CSS
ARFIMA: 1 0.3301 0.9234 0.0292 -0.5481 11.613 207.421
GARMA: 0.9986 0.3263 0.9341 0.0263 -0.5674 11.459 210.574

Confidence bands for η̂ under the assumption |η| < 1
90%L 90%U 95%L 95%U 99%L 99%U
0.9979 0.9994 0.9977 0.9995 0.9972 1.0001

Bootstrapped test statistic for H0 : η = 1

Test stat: 2(CSSu − CSSr) = 6.3067(0.0224)
Bootstrapped Critical Values

1% 5% 10%
3.7671 5.0200 7.8154

Notes: The ARFIMA model has been obtained with the restriction η = 1 imposed. Given the functional
relationship d = 2λ, the model can be written as:

(1− L)0.6602(1− 0.923L− 0.029L2)(ut − 6.20) = (1− 0.548L)εt.

CSS denotes the value of the likelihood function in (4) with and without the restriction η = 1 imposed. The
test statistic has been calculated as in equation (11). Critical values have been calculated on the basis of
a parametric bootstrap, where the residuals from the ARFIMA model above have been randomly sampled
with replacement to generate 5000 samples of 475 observations using the parameters of the ARFIMA
model. For computational purposes, the set of starting values for η range from 0.925 to 1, where no
constraints have been imposed on the parameter space. Using the estimated values of the CSS function
with and without the constraints imposed, the test statistic in (11) has been calculated and the associated
critical values are presented in the final panel.
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Figure 1: Theoretical and Empirical Kernel Density Plot of T (η̂−η) for T = 2000 and η = 0.50.
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