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Zusammenfassung

In dieser Dissertation untersuchen wir die Existenz von D-Branen mit endlicher Größe (im
Gegensatz zu punktförmigen) in der Stringtheorie. Insbesondere betrachten wir gebun-
dene Zustände von D-Instantonen und höherdimensionalen D-Branen und untersuchen
die Möglichkeit die D-Instantonen aufzublasen.

Basierend auf der Äquivalenz zwischen getwisteten Bosonen auf einem Kreis und der
Orbifold-Theorie am kritischen Radius erhalten wir eine bosonisierte Darstellung von
Twistfeldern und somit eine freie Felddarstellung der letzteren. Dies erlaubt es, den
Modulraum der marginalen Deformationen von gebundenen Zuständen von D-Branen zu
untersuchen. Wir zeigen, dass das Aufblasen von D-Branen in der bosonischen Stringthe-
orie in zweiter Ordnung in der Größe obstruiert wird, sowohl aus Sicht der Weltfläche als
auch der Stringfeldtheorie.

Wir erweitern die Analyse auf die Superstringtheorie, insbesondere auf den gebun-
denen Zustand von D-Instantonen und D3-Branen. Wir zeigen, dass die marginale De-
formation, die das Aufblasen einer an einen D3-Hintergrund gebundenen D(−1)-Brane
mit Größe null beschreibt, in der dritten Ordnung in der Größe der D(−1)-Brane ob-
struiert wird. Diese Obstruktion kann jedoch durch einen geeigneten Nullimpuls-Gluon-
Hintergrund beseitigt werden. Diese Obstruktion ist auf Feinheiten in der Integration über
ungerade Moduli im Supermodulraum zurückzuführen, die vom Standard-Weltflächen-
Ansatz in Bezug auf Vertexoperatoren mit verschiedenen Picturedefiziten übersehen wer-
den. Auf der anderen Seite bestätigt dies die Intuition, dass D-Branen ausschließlich die
Rolle der effektiven Beschreibung der Weltfläche für Instantonen der Größe null spielen,
was ein singulärer Punkt ihres Modulraums ist.

Da die Deformation in zweiter Ordnung in der Größe nicht obstruiert wird, ist es
möglich, ein Instanton-Profil im Rahmen der Superstringtheorie zu definieren. Wir überprüfen
diese Herleitung, verbinden sie mit den Yang-Mills-Instantonen und erweitern sie mit α′-
Korrekturen.
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Abstract

In this thesis we study the possibility of defining finite-size (as opposed to pointlike)
D-branes in string theory. In particular, we consider bound states of D-instantons and
higher dimensional D-branes and we explore the possibility of blowing up of the size of
the D-instantons.

Based on the equivalence between twisted bosons on a circle and the orbifold theory
at the critical radius, we provide a bosonized representation of boundary twist fields and
thus a free field representation of the latter. This allows to explore the moduli space of
marginal deformations of bound states of D-branes. We show that the blow-up of the size
of D-branes in bosonic string theory is obstructed at second order in the size, both from
the worldsheet and string field theory point of view.

We extend the analysis to superstring theory, in particular to the bound state of
D-instantons and D3 branes. We show that the marginal deformation describing the
blow-up of a zero-size D(−1) brane bound to a background of D3 branes is obstructed,
at third order in the size of the D(−1) brane, by analyzing the equations of motion of
superstring field theory at this order. However, this obstruction can be removed by an
appropriate zero-momentum gluon background. This obstruction is due to subtleties in
the integration over odd moduli in super-moduli space, which are missed by the standard
worldsheet approach in terms of vertex operators of various pictures. On the other hand,
this confirms the intuition that D-branes play the role of effective worldsheet description
of zero size instantons, which is a singular point of their moduli space.

Since the deformation is not obstructed at second order in size, it is possible to define
an instanton profile in the context of superstring theory. We review this derivation,
connecting it to Yang-Mills instantons and extending it to include α′- corrections.
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Chapter 1

Introduction

1.1 Motivation

The goal of theoretical physics is to achieve a mathematical description of reality, in par-
ticular of fundamental particles and forces. Progress in theoretical physics can be achieved
in two ways: the first one is when the theory is able to describe some experimental facts
that were previously inexplicable or predict new phenomena. For example, Einstein’s
theory of general relativity was able to correctly predict the perihelion precession of Mer-
cury, which was previously unexplained. Furthermore, the theory predicted the precise
deflection of light caused by gravity, and the existence of black holes and gravitational
waves, which were all experimentally confirmed afterwards. The second type of progress
theoretical physics can aim at is summarized by the concept of “unification”. This is
achieved whenever different phenomena can be explained by the same underlying theory,
highlighting a connection that was previously hidden. For instance, Maxwell’s theory
unified the preexisting theories of electricity and magnetism, and the standard model of
particle physics unified the theories of electromagnetic and nuclear interactions. Typi-
cally, the process of unification relies on the identification of few basic rules, that every
theory should satisfy. After centuries of research, theoretical physicists have identified
few fundamental principles: locality, unitarity and gauge invariance.

The easiest example of the importance of these principles is Maxwell’s theory. Initially
formulated in terms of the electric and magnetic field strengths ~E and ~B, Maxwell’s theory
is local and unitary, and successfully describes many electromagnetic phenomena, includ-
ing electromagnetic waves. Gauge invariance, however, appears only when the theory is
reformulated in terms of a vector potential Aµ; this new formulation of Maxwell’s theory
is able to reproduce the electric and magnetic fields, but is subject to gauge redundancy:
different vector potentials Aµ and A′µ give rise to the same electromagnetic fields if they
are related by a local gauge transformation A′µ = Aµ+∂µΛ, where Λ is a scalar. Formally
speaking, Maxwell’s theory is invariant under local U(1) transformations. This may seem
an unnecessary complication; however, it turns out that this new mathematical descrip-
tion is simpler, more elegant and more powerful than the previous one. Furthermore,
after the discovery of quantum properties of nature, such as the Aharonov-Bohm effect,
it became clear that the vector potential should be regarded as a fundamental field, and
not just as a mathematical tool.

The role of gauge invariance is evident also in the standard model of particle physics.
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1. Introduction

This theory is based on a generalization of Maxwell’s theory, the so-called Yang-Mills
theory, where the U(1) gauge group is replaced by a bigger, non-abelian, gauge group,
typically SU(N). In particular, the standard model is characterized by a gauge group
given by the product U(1) × SU(2) × SU(3), with the addition of fermions and a Higgs
sector. The standard model of particle physics has been extremely successful in describing
and predicting various phenomena governed by the electromagnetic and nuclear forces;
recently, the discovery of the Higgs boson at the LHC has confirmed the validity of the
Higgs sector of the theory.

There are, however, some limitations in the predictive power of the standard model; the
main one is due to perturbation theory. Typically, interactions are interpreted through
the exchange of virtual particles; the total effect of an interaction has to be recovered
order by order, in an expansion in the number of virtual particle states. Such a process
is represented graphically in terms of Feynman diagrams, and of course is valid only in
the framework of perturbation theory. As a consequence, results derived in this way
are not exact, but are an approximation; the precision in the prediction depends on
how small the coupling constant is, and how many orders in perturbation theory (or
how many loops in Feynman diagrams) are considered. The perturbative approach fails
when the theory is strongly coupled; this happens for quantum chromodynamics (QCD),
since one cannot observe free quarks and gluons. This observation encouraged theoretical
physicists to develop methods for finding exact non-perturbative solutions to quantum
field theories. Such solutions do not have an interpretation in terms of particles, and
give rise to concepts like domain walls, monopoles and instantons. In this thesis we
are particularly interested in instantons, which are solutions of the classical equations of
motion of a theory formulated in Euclidean space, which play an important role when
studying quantum effects of the theory in Minkowski space. For Yang-Mills theory they
are used to describe tunneling behaviors between different vacua of the theory, which are
not captured by the perturbative approach.

Historically, quantum field theory was not the only approach to particle physics. A dif-
ferent proposal was the S-matrix theory, which focused on the properties of the S-matrix,
which is supposed to connect states in the infinitely far past and future, without needing
details on the intermediate steps. This approach is based on physical particle states, and
the form of the S-matrix is restricted by a postulated set of symmetries. The application
of the S-matrix approach to the strong interactions led to the development of string the-
ory. In fact, one of the first compatible S-matrices that was found was the so-called dual
resonance model. It turns out that this model can be interpreted as a theory where the
fundamental objects are not particles, but strings. Even though the S-matrix theory was
later abandoned in favor of QCD, string theory remained interesting to many physicists,
since its spectrum includes massless spin 2 particle states. Consequently string theory
was expected to describe interactions among gravitons. On the other hand, the spectrum
of string theory contains massless spin 1 particles, able to describe gauge interactions;
therefore, string theory was, and still is, considered as a promising candidate for a unified
theory describing all interactions.

String theory is consistent only as a supersymmetric theory on the worldsheet, con-
taining both bosons and fermions; a purely bosonic theory is, in fact, unstable due to the
presence of a tachyonic state in the spectrum. Superstring theory is naturally defined in

2



1.2. Instantons in Yang-Mills theory

10 spacetime dimensions, and is then related to lower dimensional quantum field theories
by a process of compactification. Even though its prediction of spacetime supersymme-
try at high energies has not been verified by the experiments so far, superstring theory
provides a simpler and more elegant framework to study supersymmetric field theories;
this is one of the biggest advantages of string theory.

The usual formulation of string theory is in the framework of “first quantization”,
where the fundamental degrees of freedom are the coordinates of the strings. The world-
sheet of strings is defined in terms of a sigma model path integral with conformal two-
dimensional gravity. Interactions among strings are then computed through a perturba-
tive expansion in the string coupling constant, starting from a fixed background. This
approach has been successful, reproducing the spectrum and the basic properties of gauge
theories, as well as of general relativity. Furthermore, some non-perturbative effects are
known in string theory, in particular D-branes; the latter are dynamical objects of the
theory, analogous to instantons and monopoles in QFT. Since non-perturbative effects
are usually the most complicated and counter-intuitive properties of a given theory, it is
of great importance to establish a connection between such effects in different theories.

The goal of this thesis is to explore the connection between D-branes in string theory
and instantons in Yang-Mills theory. In particular we want to investigate the possibility
of defining finite-size (non pointlike) D-branes, in analogy to the presence of instanton
of various sizes in QFT. An important comment has to be made here. The classical
formulation of string theory is not completely satisfactory; as gauge theories have shown,
a field theory, or “second quantization”, approach is probably needed. We will follow both
the worldsheet approach and the string field theory approach, and we will highlight when
the first one fails, and the second one is necessary. Furthermore, we will start considering
bosonic theories (pure Yang-Mills and bosonic string theory). We will then argue why
the presence of fermions is required; therefore, we will later consider the supersymmetric
extensions of string and Yang-Mills theory.

The rest of the introduction gives a short overview of instantons in Yang-Mills theory,
string theory and D-branes. We will review these concepts in more detail in the following
chapters.

1.2 Instantons in Yang-Mills theory

Yang-Mills theory is a generalization of Maxwell’s theory with a non-abelian gauge group;
in particular we consider SU(N). The vector potential Aµ is matrix valued; precisely it
belongs to the adjoint representation of the gauge group. The action of the theory is a
simple generalization of the one characterizing Maxwell’s theory of electromagnetism and
reads

SYM =
1

g2

∫
d4x Tr

{
1

2
FµνF

µν

}
, (1.1)

where g is the coupling constant and the field strength Fµν is given by Fµν = ∂µAν −
∂νAµ + [Aµ, Aν ]. In the action (1.1) we have omitted the matrix indices of Aµ and Fµν .

Considering now the theory in Euclidean space, there is a class of exact solution of
the equations of motion (2.1), which are characterized by a self-dual or anti-self-dual field

3



1. Introduction

strength. The presence of instantons distinguishes Yang-Mills theory from the abelian
Maxwell’s theory.

The simplest example of Yang-Mills instantons occurs for the gauge group is SU(2).
In this case we can use Pauli matrices τ c (c = 1, 2, 3) as a basis, and write

Aµ = Acµ
τ c

2i
, (1.2)

where 1/(2i) is the standard normalization. An instanton solution then reads

Acµ(x) = 2
ηcµν(x− x0)ν

(x− x0)2 + ρ2
, (1.3)

where ηcµν are a set of numbers called ’t Hooft symbols. The solution depends on five
parameters: the position xµ0 and the size of the instanton ρ. It can be thought of as a
generalization of the electromagnetic vector potential due to a charge positioned at the
point xµ0 . The analogy, however, stops here, since the instanton (1.3) has a non-vanishing
size ρ and, more importantly, is characterized by non-trivial topological properties, as we
will see in chapter 2.

Furthermore, the instanton (1.3) is a non-perturbative solution of the equations of
motion deriving from the action (1.1); in fact it is an exact solution of the theory and
does not depend on the value of the coupling constant g.

1.3 String theory and D-branes

It is well-known in the literature that instantons are connected to certain objects in string
theory, the so-called D-branes. Before giving the details in the following chapters, we want
to highlight here some similarities and differences between instantons and D-branes.

The basic constituents of string theory, the strings, are a two-dimensional generaliza-
tion of the concept of particles; they can either be closed or open. D-branes are other
dynamical objects of the theory, and represent hyperplanes embedded in the spacetime,
where open strings can attach (see figure 1.1).

Neumann

Dirichlet

Figure 1.1: Open string with endpoints lying on a D-brane.

Like instantons, D-branes have a non-perturbative (in the string coupling constant gs)
nature.

Unlike for quantum field theories (e.g. Yang-Mills theory) the usual approach to string
theory is in the framework of first quantization. The dynamical variables of the theory are
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1.4. Content of the thesis

the spacetime coordinates of the strings; when the theory involves open strings, certain
boundary conditions (Neumann or Dirichlet) must be imposed at the endpoints. This
means that the string theory action does not directly involve fields, like the gauge vector
Aµ in Yang-Mills theory.

The D-brane setup that is directly connected to the four-dimensional instantons de-
scribed above is a bound state of four-dimensional (D3) and instantonic (D(−1)) branes
(see figure 1.2).

D3

D(-1)

Figure 1.2: Open strings on the bound state of D3 and D(−1) branes, with different strings
stretching between them.

The four-dimensional background represents the four-dimensional spacetime in which
Yang-Mills theory lives, and the instantonic brane is analogous to the instanton solu-
tion.

We will see later that giving an expectation value to the strings stretching between
branes of different types corresponds to switching on a gauge vector which, at large
distances and in the limit where string effects disappear, looks like the instanton solution
in singular gauge. One natural question to ask is whether the correspondence can be
made complete, i.e. whether it is possible to recover the full instanton profile, not only at
large distances. This would correspond to “blowing up” the size of the instantonic brane
inside the D3 background, and it is the basic idea behind the project described in this
thesis.

1.4 Content of the thesis

The content of this thesis is as follows. In chapter 2 we revisit instantons in Yang-Mills
theory in more detail, and explain the idea of finding new solutions by deformation, in
the contexts of field theory and string field theory. This will serve as a guiding line for
the whole thesis.

In chapter 3 we review important background material. We discuss the conformal field
theory of bosons and fermions in two dimensions, which will be the building blocks of string
theory in the worldsheet approach. We discuss in particular the theories in the presence
of boundaries, and the possibility of Dirichlet and Neumann boundary conditions; this
will be useful when dealing with open strings and D-branes. Therefore, we study bosons
and fermions both in the Neveu-Schwarz (NS) and Ramond (R) sectors. We review the
process of bosonization for fermions, and finally we introduce twist fields, the operators
characterizing the Ramond sector of a bosonic conformal field theory.

Chapter 4 is devoted to the discussion of the conformal field theory of bosons in
the presence of twist fields. Using the connection to orbifold theories, we explore the

5



1. Introduction

possibility of a bosonization procedure for such operators. Furthermore we discuss in
detail correlation functions involving up to four twist fields.

In chapter 5 we review the basics of bosonic string theory; we discuss the role of the
ghosts b and c and we introduce the concept of D-branes. We highlight the connection
between bound states of D-branes and bosons in NS and R sectors. We study some
notable bound states, with difference of dimensions equal to 4, 8 and 16. For the D15-
D(−1) system, in particular, we study the marginality of a deformation corresponding to
increasing the size of the instantonic brane.

The study of bosonic string theory (and, correspondingly, pure Yang-Mills theory)
turns out to be insufficient to describe the properties of instantons. Therefore the problem
has to be studied in the context of superstring theory. Before doing that, chapter 6
contains a review of N = 4 Super Yang-Mills theory, the maximally supersymmetric
extension of the Yang-Mills theory discussed in this introduction. We present the theory
both in Minkowski and Euclidean space, focusing then on instantonic solutions.

In chapter 7 we review the basics of superstring theory. In analogy to chapter 5 we
introduce the β-γ ghost system, and we generalize the idea of D-branes. At the end of
the chapter we focus on a particular bound state of D-branes, the D3-D(−1) system.
We discuss all the vertex operators describing oscillations of the strings attaching to
these branes, and we review the connection with N = 4 super Yang-Mills theory and its
instantons.

The study of the blow-up of the size of the D(−1) brane is presented in chapter 8. We
do it in the framework of open superstring field theory (OSFT) and discuss the problems
of the usual on-shell approach. In the process we review the derivation of the instanton
profile, and extend it to include α′-corrections.

1.5 Published papers

Parts of this thesis are reproductions of the content of the author’s publications. Some of
the results presented here have been published in the following papers:

[1] L. Mattiello and I. Sachs, Z2 boundary twist fields and the moduli space of D-
branes, JHEP 07 (2018) 099, arXiv:1803.07500.

[2] L. Mattiello and I. Sachs, On Finite-Size D-Branes in Superstring Theory, 2019,
arXiv:1902.10955 (preprint submitted to the Journal of High Energy Physics).
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Chapter 2

Invitation: instantons, string field
theory and deformations

In this chapter we review instantons in Yang-Mills theory, focusing at times on the gauge
group SU(2). We discuss the role of the moduli characterizing instantons, and the pos-
sibility of deforming such solutions in a consistent way. We then explore the same idea
for D-branes in string theory; we introduce the second quantization approach, string field
theory, and discuss possible solutions.

2.1 Instantons in Yang-Mills theory

The action of Yang-Mills theory for with gauge group SU(N) is given in (1.1). The
equations of motion deriving from this action are

DµF
µν = ∂µF

µν + [Aµ, F
µν ] = 0 , (2.1)

which are non-linear in the field Aµ. We did not specify yet which metric is used in order
to contract spacetime indices in (1.1); the theory can be considered both in Minkowski
and in Euclidean space.

Considering now the theory in Euclidean space, there is a class of exact solution of
the equations of motion (2.1), the instantons, which are characterized by a self-dual or
anti-self-dual field strength. In order to understand why they provide solutions, let us
consider the quantity

Tr{(Fµν ± F̃µν)(F µν ± F̃ µν)} , (2.2)

where F̃µν = 1
2
εµνρσF

ρσ is the dual field strength. In Euclidean space the quantity (2.2)
is non-negative, from which it follows that

Tr{FµνF µν} ≥ ±Tr{FµνF̃ µν} . (2.3)

Therefore, the action is minimized for a self-dual (Fµν = F̃µν) or anti-self-dual field

strength (Fµν = −F̃µν).
The properties of instantons have been extensively discussed in the literature (see for

example [3], [4] and [5]); we just recall that they are actually solutions extremizing the
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2. Invitation: instantons, string field theory and deformations

Euclidean action in a particular topological sector. Every instanton is in fact characterized
by the winding number (or Pontryagin class) k, defined as

k = − 1

16π2

∫
d4x Tr

{
FµνF̃

µν
}
. (2.4)

k is a topological quantity and gauge fields leading to a field strength with different
winding numbers can not be related to each other by a gauge transformation.

2.1.1 SU(2) instantons

For concreteness, we focus on a particular gauge group, and we choose the simplest non-
trivial (and non-abelian) one, SU(2). In the case of a different gauge group, instantons
can be found starting with the SU(2) ones, as we will explain later.

The gauge field Aµ belongs here to the adjoint representation of SU(2); as done in
chapter 1, let us write

Aµ = AcµT
c , (2.5)

where T c are the generators of the su(2) algebra; we will use also T c = τc

2i
, where τ c

are the usual Pauli matrices (see appendix A). Instantonic solutions are well known in
the literature (see for example [6] or [4]), and we will simply give the explicit solutions
(for winding number k = 1) here. In the SU(2) case, two sets of solutions are known;
furthermore they are not independent, but they are related one to the other by means of
a gauge transformation. The first gauge we analyze is the regular gauge: the gauge vector
reads, as in (1.3),

Acµ(x;x0, ρ) = 2
ηcµν(x− x0)ν

(x− x0)2 + ρ2
. (2.6)

Here ηcµν are the ’t Hooft symbols, defined in appendix A. One can easily check that the
corresponding field strength is given by

F c
µν = −4ηcµν

ρ2

[(x− x0)2 + ρ2]2
; (2.7)

from this expression one can see that the field strength is self-dual and, using (2.4), that
the winding number is k = 1. The anti-instanton solution can be found replacing ηcµν with
η̄cµν ; in that case one has k = −1. The same solution can be written in another gauge,
the singular gauge; the gauge vector then reads

Acµ(x;x0, ρ) = 2η̄cµν
ρ2(x− x0)ν

(x− x0)2[(x− x0)2 + ρ2]
. (2.8)

Despite the presence of the anti-self-dual symbol η̄cµν , this solution has a self-dual field
strength and k = 1. This expression is singular at the point x0, and it is the one we
will use in the following when we will consider instantons from the point of view of string
theory.
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2.2. The instanton moduli space

2.1.2 Generalizations

Other SU(2) solutions can be found starting from the expressions (2.6) or (2.8). One can
always act with a SU(2) matrix on them and obtain a different solution:

Aµ(x;x0, ρ, ~θ) = U−1(~θ) (∂µ + Aµ(x;x0, ρ))U(~θ) . (2.9)

The same procedure can be used to derive instantonic solutions in the case of a more
general SU(N) group: given a matrix U ∈ SU(N) we can write the expression

ASU(N)
µ = U †

(
0 0

0 A
SU(2)
µ

)
U . (2.10)

This represents an instanton for the Yang-Mills theory with gauge group SU(N).

2.2 The instanton moduli space

Looking at the instanton solutions discussed above, we see that they are characterized by
some arbitrary parameters, also called collective coordinates or moduli. In particular the
solutions (2.6) and (2.8) are characterized by arbitrary size ρ and position of the center

xµ0 . Furthermore, other three arbitrary parameters (represented by ~θ) can be used to
construct a unitary matrix U and find a new solution through (2.9). This gives a total
of 8 independent collective coordinates for SU(2) instanton at level k = 1. Generalizing,
an SU(N) instanton at level k has 4Nk collective coordinates [4, 5]. It turns out that
the space spanned by this collective coordinates is actually a manifold, in particular a
hyper-Kähler manifold. We will refer to this manifold as the k-instanton moduli space.

A natural question to ask is whether the moduli space describes all the instantonic
solutions. One might try to start from a known instanton Aµ, deform it with a small
deformation δAµ and check if the sum preserves self-duality. It turns out that this is true
only if the deformation δAµ is self-dual itself, and satisfies the orthogonality condition
[4, 5]

DµδA
µ = 0 , (2.11)

where the covariant derivative is defined by the original solution Aµ. This implies that
the sum Aµ + δAµ has the same winding number k of the original solution, and therefore
represents another point in the k-instanton moduli space.

2.2.1 ADHM construction

The moduli space of SU(N) instantons at level k in four dimensions can be constructed
in a systematic way thanks to the so-called ADHM construction [7, 5, 8]. This is a
way of parametrizing the moduli space in a convenient way. The basic objects are the
(N + 2k)× 2k and 2k × (N + 2k) matrices

∆(x) = A+Bx , ∆̄(x) = Ā+ x̄B̄ , (2.12)

9



2. Invitation: instantons, string field theory and deformations

where xαβ̇ = xµ(σµ)αβ̇ and x̄α̇β = xµ(σ̄µ)α̇β describe the position of the center of the

instanton, while the matrices A and Ā contain the remaining moduli, which can be written
in the following form

A =

(
wuiα̇
ali
αβ̇

)
, Ā =

(
w̄α̇,iu, āα̇β,il

)
, (2.13)

where a and ā are defined in terms of a four vector Aµ analogously to x and x̄. On the
other hand, the matrices B and B̄ can be conveniently chosen as

B =

(
0

1l2k×2k

)
, B̄ = (0, 1l2k×2k) . (2.14)

These matrices have to satisfy the so-called ADHM constraints, which are

∆̄∆ = f−1
k×k 1l2×2 , (2.15)

where fk×k is an invertible k×k matrix. In terms of the moduli, equation (2.15) explicitly
reads

η̄µνc

(
[aµ + xµ, aν + xν ] +

1

2
w̄α̇(σ̄µν)

α̇β̇wβ̇

)
= 0 . (2.16)

Let us restrict to the case N = 2 and k = 1 for simplicity. Since k = 1, aµ and xµ are just

numbers, therefore [aµ+xµ, aν+xν ] = 0 and the constraint becomes w̄α̇(σ̄µν)
α̇β̇wβ̇ = 0. The

matrix (σ̄µν)
α̇β̇ is symmetric, hence we can parametrize a generic solution as w̄α̇wβ̇ = ρ2εα̇β̇,

where ρ is the size of the instanton.

2.2.2 Instantons as perturbative solutions

We have seen that instantons are intrinsically non-perturbative (in the coupling constant
g) solutions of the equations of motion (2.1). Such equations are non-linear, and in fact
the instanton solutions do not solve the linearized equations of motion, since

∂µ∂
µAν − ∂µ∂νAµ 6= 0 . (2.17)

It is however possible to “construct” the full instanton solution starting from a solution of
the linearized equations of motion, and proceed perturbatively. The perturbation series
is of course not related to the coupling constant g. Explicitly, if A

(1)
µ is a solution of the

linearized EOM (2.17)
∂µ∂

µA(1)
ν − ∂µ∂νA(1)

µ = 0 , (2.18)

it might be possible to construct a solution Aµ = λA
(1)
µ + λ2A

(2)
µ + . . . of the full non-

linear equations of motion (2.1). If this is so, A
(2)
µ must be a solution of the second order

equation

(δµν�− ∂µ∂ν)A(2)
µ + ∂µ[A(1)

µ , A(1)
ν ] + [Aµ(1), ∂µA

(1)
ν − ∂νA(1)

µ ] = 0 . (2.19)

This equation will schematically be solved by

A(2) = O−1F [A(1)] , (2.20)
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where F [A(1)] is some functional of the first order solution A
(1)
µ . Of course, in order for this

equation to be solvable for A
(2)
µ , the operator Oµν = δµν�− ∂µ∂ν must be invertible. This

has to be done fixing a gauge for the gluon Aµ: we choose here Feynman gauge, to make
calculations simpler. In principle there could be obstructions to this perturbative con-
struction, which appear whenever the combination ∂µ[A

(1)
µ , A

(1)
ν ] + [Aµ(1), ∂µA

(1)
ν − ∂νA(1)

µ ]

is such that equation (2.19) does not have solutions for A
(2)
µ .

We will represent the obstructions in the following way; let us call P0 the projector
onto the space of solutions for which O is not invertible. Therefore, in order for (2.19) to

be solvable, we have to require that P0

(
F [A

(1)
µ ]
)

= 0, where F is the functional defined

above. An obstruction will be present whenever

P0

(
F [A(1)

µ ]
)
6= 0 . (2.21)

If, instead, a solution A
(2)
µ can be found, the procedure has to be repeated order by order,

checking that no obstructions appear. If this is the case, a solution of the full non-linear
equations of motion Aµ =

∑
n λ

nA
(n)
µ can be found.

This procedure can be successfully followed starting from the first order term in a
large distance expansion of the full instanton solution. If we take, for example, the k = 1
SU(2) instanton in the singular gauge (2.8) and expand it in λ = ρ2, we arrive at

Aµ = ρ2A(1)
µ + ρ4A(2)

µ + · · · =

= ρ2

(
−σ̄µν

(x− x0)ν

(x− x0)4

)
+ ρ4

(
σ̄µν

(x− x0)ν

(x− x0)6

)
+ . . .

(2.22)

The perturbative construction discussed above will of course work starting from

A(1)
µ = −σ̄µν

(x− x0)ν

(x− x0)4
, (2.23)

at least for every point different from the origin. Notice that this is consistent with our
choice of Feynman gauge, since ∂µAµ = 0. On the other hand, we do not expect this

construction to work if the starting point A
(1)
µ is a generic field configuration.

2.3 Open string field theory

As introduced in 1.3, we would like to understand if it is possible to blow-up the size of
a D-brane in string theory, in order to reconstruct a moduli space corresponding to the
one of instantons in Yang-Mills theory. The proper framework to discuss this question is,
in analogy to Yang-Mills theory, a second quantization approach to string theory, the so-
called string field theory. Although closed string field theory approaches are complicated,
open string field theory (OSFT) is known (see [9, 10] for example).

String field theory is characterized by a space of states H, with a non-degenerate inner
product (Ψ1,Ψ2); the fields in H describe all possible string oscillations, including the one
corresponding to the gauge vector Aµ in the field theory limit. The kinetic term of the
action for a string field Ψ is given by

1

2
(Ψ, QΨ) , (2.24)
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2. Invitation: instantons, string field theory and deformations

where Q is the open string BRST charge. In addition to the quadratic term, OSFT has
a number of higher order interaction terms; to be precise, we have an infinite number for
superstring field theory, while bosonic string field theory has only a cubic interaction. Let
us write schematically

S(Ψ) =
1

2
(Ψ, QΨ) +

1

3
(Ψ,m2(Ψ,Ψ)) +

1

4
(Ψ,m3(Ψ,Ψ,Ψ)) + · · · (2.25)

The products m2, m3, ... are all associative and are defined in terms of the operator
product expansion (OPE) of conformal fields.

The equations of motion deriving from this action are simply

QΨ +m2(Ψ,Ψ) +m3(Ψ,Ψ,Ψ) + · · · = 0 . (2.26)

In analogy to the discussion of 2.2.2, we would like to understand if a solution Ψ(1) of the
linearized equations of motion (QΨ(1) = 0) can be lifted to a solution Ψ = λΨ(1)+λ2Ψ(2)+
. . . of the full non-linear equations of motion (2.26). In particular, our starting point will
be a field Ψ(1) describing an oscillation of the D3-D(−1) bound state described above,
and we will try to find a full solution, order by order, by solving the string field theory
equations of motion perturbatively. We will have to check if any obstructions appear,
analogously to 2.2.2. In particular, at second order, Ψ(2) needs to solve

QΨ(2) +m2(Ψ(1),Ψ(1)) = 0 , (2.27)

which has solutions only if P0

[
m2(Ψ(1),Ψ(1))

]
= 0, where P0 is the projector on the space

of fields for which Q is not invertible. If this is not the case, an obstruction is present.
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Chapter 3

The conformal field theories of free
bosons and fermions

In this chapter we introduce the conformal field theories of free bosons and free fermions,
with a particular focus on boundary conditions in the presence of a boundary. These will
serve as building blocks for the study of string theory, as we will see in chapter 5 and
7. We investigate the difference between Neveu-Schwarz and Ramond sector, and discuss
the role of spin fields and twist fields. In this chapter, when discussing the bosonic theory,
we use extensively the analogy to electrostatics in two dimensions.

3.1 Free boson

In this section we introduce the conformal field theory of a free boson X in one spacetime
dimension. We consider the theory on the complex plane, possibly restricted to the upper
part, with a boundary along the real line. The action is (in complex coordinates)

S[X] =
1

4π

∫
dzdz̄ ∂X(z, z̄)∂̄X(z, z̄) . (3.1)

Let us split the field in its holomorphic and anti-holomorphic part as X(z, z̄) = X(z) +
X̄(z̄), focusing on the first one. The equation of motion deriving from the action (3.1)
is ∂∂̄X = 0, which is the same equation characterizing an electrostatic potential in two
dimensions. We will use this analogy in order to derive more properties of the CFT of a
free boson. Out of the field X one constructs the current

j(z) = i∂X(z) , (3.2)

which is a primary field of conformal dimension 1 satisfying the operator product expan-
sion (OPE)

j(z)j(w) =
1

(z − w)2
+ . . . . (3.3)

Furthermore, let us assume that the domain of X is the upper half plane (Im z > 0),
and the boundary coincides with the real line. In this case one should always specify the
boundary conditions satisfied by the fields. There are two obvious boundary conditions,
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3. The conformal field theories of free bosons and fermions

which are consistent with the conformal symmetry. Neumann (N) boundary conditions
are given by

(∂ − ∂̄)X(z, z̄)
∣∣
z=z̄

= 0 , (3.4)

while Dirichlet (D) boundary conditions are characterized by

(∂ + ∂̄)X(z, z̄)
∣∣
z=z̄

= 0 , X(z, z̄)
∣∣
z=z̄

= x0 . (3.5)

In the language of electrostatics, if X represents the electrostatic potential, Dirichlet
boundary conditions correspond to the presence of a conductor along the boundary. On
the other hand, Neumann boundary conditions correspond to having a fixed amount of
charge along the boundary.

3.1.1 Boson in the Neveu-Schwarz sector

If the boundary condition is the same for the whole boundary, the boson is in the so-called
Neveu-Schwarz (NS) sector. In this sector the chiral part of the boson is periodic under
a rotation around the origin, i.e.

∂X(e2πiz) = ∂X(z) . (3.6)

This can not be the case if the boundary condition changes along the boundary, as we
will discuss in section 3.3. Let us study the boson in the NS sector by considering the
Green’s function for the Laplace operator, which is (using complex coordinates) G(z, w) =
log(z−w) and satisfies4zG(z, w) = 2πδ(2)(z−w) [11]. Some correlation functions among
the fields can be written in terms of the Green’s function and its derivatives, for example

〈X(z)X(w)〉 = −G(z, w) = − log(z − w) ,

〈j(z)j(w)〉 = ∂z∂wG(z, w) =
1

(z − w)2
.

(3.7)

All the properties of the free boson can be encoded in a mode expansion for the two
currents. In particular we can perform a Laurent expansion on the complex plane, namely

j(z) = i∂X(z) =
∑
n∈Z

jnz
−n−1 ,

j̄(z̄) = i∂̄X̄(z̄) =
∑
n∈Z

j̄nz̄
−n−1 .

(3.8)

where the modes satisfy the commutation relation [jn, jm] = nδn+m, and analogously for
j̄m. Notice that the expansion is over integer exponents, which enforces the periodicity
condition in the NS sector (3.6). Neumann or Dirichlet boundary conditions are translated
in conditions relating the modes jn and j̄n. In particular

jn = j̄n (Neumann) , jn = −j̄n (Dirichlet) (3.9)

Restricting on the chiral part of the theory, the modes generate a Hilbert space, starting
from the vacuum |0〉, which is characterized by

jn|0〉 = 0 , n ≥ 0 ,

〈0|jn = 0 , n ≤ 0 .
(3.10)
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Therefore jn behave as annihilation operators for n ≥ 1 and as creation operators for
n ≤ −1. Using (3.10) one can easily derive some correlation functions, for example

〈0|j(z)|0〉 = 0 ,

〈0|j(z)j(w)|0〉 =
1

(z − w)2
.

(3.11)

The energy momentum tensor of the theory arises from the regular part of the OPE of
two currents. In particular, let us define N(jj) as

j(z)j(w) =
1

(z − w)2
+N(jj)(w) + . . . ; (3.12)

this quantity is related to the energy momentum tensor of the theory by T (w) = 1
2
N(jj)(w).

Here N( ) indicates the normal ordered product. There is another notion of normal or-
dering, which coincides with the prescription of having creation operators to the left of
annihilation operators, which we indicate by : :. For the Neveu-Schwarz sector of the
boson, the two notions of normal ordering coincide and we have

T (w) =
1

2
N(jj)(w) =

1

2
: jj : (w) . (3.13)

Hence, the Laurent modes Lm of T are

Lm =
1

2

∑
k≥0

jm−k jk +
1

2

∑
k≤−1

jk jm−k . (3.14)

In addition
Ṽα(z) =: eiαX : (z) , (3.15)

are primaries with conformal dimension hα = α2/2. The OPE among them takes the
form

Ṽα(z)Ṽβ(w) = e−αβ〈X(z)X(w)〉 : ei(α+β)X : (w) + · · · = (z − w)αβṼα+β(w) + . . . . (3.16)

The OPE with the current j is given by

j(z)Ṽα(w) ∼ α ∂zG(z, w) Ṽα(w) =
α

(z − w)
Ṽα(w) + . . . . (3.17)

The correlation function of many primaries of the form Ṽα is then given by

〈Ṽα1(z1) . . . Ṽαn(zn)〉 = exp

(∑
i<j

αiαjG(zi, zj)

)
δ

(
n∑
i=1

αi

)
=
∏
i<j

(zij)
αiαj δ

(
n∑
i=1

αi

)
.

(3.18)
The delta function is a consequence of the integration over the zero modes.

From the energy momentum tensor on can derive the central charge of the theory.
The OPE relation

T (z)T (w) =
1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (3.19)

implies that the central charge of the bosonic theory is c = 1.
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3.2 Free fermion

In this section we introduce the conformal field theory of a free fermion ψ in one spacetime
dimension. Again, we consider the theory on the complex plane, possibly restricted to
the upper part, with a boundary along the real line. The action is

S[ψ] =
1

4π

∫
dzdz̄

(
ψ(z)∂̄ψ(z) + ψ̄(z̄)∂ψ̄(z̄)

)
. (3.20)

The equations of motion imply that the fields ψ and ψ̄ are chiral and anti-chiral respec-
tively. Focusing on the first one, it turns out that it is a conformal dimension 1/2 primary
field satisfying the operator product expansion

ψ(z)ψ(w) =
1

(z − w)
+ reg. , (3.21)

The chiral (and also the anti-chiral) part can be periodic (P) or antiperiodic (A) under a
rotation around the origin:

ψ(e2πiz) = ±ψ(z) . (3.22)

This is due to the OPE (3.21), which implies that the fermion lives naturally on a double
cover of the complex plane. Periodic and antiperiodic boundary conditions correspond to
different sectors for the fermion, Neveu-Schwarz and Ramond respectively.

If the theory is defined on the upper half plane, with boundary along the real line, the
fermion can be subject to two kinds of boundary conditions, analogously to the boson:

ψ(z) = ψ̄(z̄)
∣∣
z=z̄

(Neumann)

ψ(z) = −ψ̄(z̄)
∣∣
z=z̄

(Dirichlet)
(3.23)

Therefore, if the same boundary condition (Dirichlet or Neumann) is satisfied along the
whole boundary, a fermion with periodic boundary conditions should be used. If the
boundary condition changes from Dirichlet to Neumann at the origin, a fermion with
antiperiodic boundary conditions should be considered. Let us focus here on the Neveu-
Schwarz sector for the fermion; we will discuss the Ramond sector later.

3.2.1 Fermion in the Neveu-Schwarz sector

All the properties of the free fermion in the NS sector can be encoded in a mode expansion.
In particular we can perform a Laurent expansion on the complex plane, namely

ψ(z) =
∑

r∈Z+1/2

ψrz
−r−1/2 , (3.24)

where the modes satisfy the anticommutation relation {ψr, ψs} = δr+s. The antichiral
part ψ̄ can be expanded in a similar way.

In the NS sector there is no zero-mode for the fermion, and the other modes satisfy
the conditions

ψr|0〉 = 0 , r ≥ 1/2 ,

〈0|ψr = 0 , r ≤ −1/2 .
(3.25)
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One can easily derive some correlation functions, for example

〈0|ψ(z)ψ(w)|0〉 =
1

z − w
. (3.26)

The energy momentum tensor of the theory arises from the regular part of the OPE of
two fermions. In particular, the chiral part is

T (z) =
1

2
N(ψ∂ψ)(z) . (3.27)

As for the boson, in the NS sector the normal ordered product N( ) coincides with the
prescription of having creation operators to the left of annihilation operators, which we
indicate by : :. The Laurent modes Lm of T are then

Lm =
1

2

∑
s≥−1/2

(
s+

1

2

)
ψm−s ψs −

1

2

∑
s≤−3/2

(
s+

1

2

)
ψs ψm−s . (3.28)

From the energy momentum tensor on can derive the central charge of the theory. The
OPE relation

T (z)T (w) =
1/4

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (3.29)

implies that the central charge of the fermionic theory is c = 1/2.

3.3 Mixed boundary conditions and Ramond sector

In this section we consider free bosons and free fermions on the upper half plane with mixed
boundary conditions along the real line. We consider in particular the case where the
boundary Im z = 0 is divided in two intervals, Re z > 0 and Re z < 0, with Dirichlet and
Neumann boundary conditions respectively. The change in boundary condition appearing
at the origin z = 0 implies that the chiral part of the bosonic current and the chiral part
of the fermion must be antiperiodic under a rotation around the origin. In particular we
require

∂X(e2πiz) = −∂X(z) ,

ψ(e2πiz) = −ψ(z) .
(3.30)

We discussed already the possibility of this antiperiodicity for the fermion, since it natu-
rally lives on the double cover of the complex plane. Here we force the boson to behave
in the same way; this may sound counterintuitive, but it is necessary in the presence of
mixed boundary conditions. The conditions (3.30) imply that both the boson and the
fermion are now in the Ramond sector.

3.3.1 Boson in the Ramond sector

Since the boson is characterized by mixed boundary conditions, the Green’s function
defined in section 3.1 is not valid. However, we can still use the electrostatic analogy in
order to find the Green’s function corresponding to these boundary conditions. We will
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3. The conformal field theories of free bosons and fermions

do so using the methods of image charges [12]. The idea is to start with a boson defined
on an infinite strip (parametrized by 0 < Imw < π), and then map it to the complex
upper half plane Im z > 0 via z = ew. Let us impose different boundary conditions on
the boundaries of the strip; here we choose Dirichlet boundary conditions at Imw = 0
and Neumann boundary conditions at Imw = π. Consequently, the upper half plane
has Dirichlet and Neumann boundary conditions on the positive and negative real axis
respectively (see figure 3.1).

+

−

+

−

−

z = ew

D

N

N D

Figure 3.1: Green’s function with the method of image charges.

The electrostatic potential due to a unit charge at position w on the strip can be easily
determined if we introduce a set of image charges. We need one negative unit charge at
position w̄ in order to enforce Dirichlet boundary conditions at Rew = 0 and a positive
unit charge at position w̄ + 2πi in order to enforce Neumann boundary conditions at
Rew = π. But this is not sufficient, because we have to insert both charges at the same
time; therefore, in order to maintain the proper boundary conditions we need to introduce
an infinite number of image charges. In particular we need alternating charges of value
(−1)n at positions w + 2πin and (−1)n+1 at positions w̄ + 2πin, as in figure 3.1. In this
way the boundary conditions are automatically satisfied at the boundaries of the strip.
The electrostatic potential measured at some point w′ is then given by [12]

Gσ(w,w′) =

=

(∑
n

(−1)n
{

log [w′ − (w + 2πin)]− log [w′ − (w̄ + 2πin)]
})

+ (w′ ↔ w̄′) =

=

(
log

[ ∏
n=2mw

′ − (w + 2πin)∏
n=2m+1w

′ − (w + 2πin)

]
− (w ↔ w̄)

)
+ (w′ ↔ w̄′) ,

(3.31)

where the subscript σ indicated the fact that we are considering mixed boundary condi-
tions. Mapping now z = ew (and z′ = ew

′
) we obtain the Green’s function on the upper

half plane, which turns out to be (restricting ourselves to the chiral part)

Gσ(z, z′) = log

[ ∏
n=2mw

′ − (w + 2πin)∏
n=2m+1 w

′ − (w + 2πin)

]
= log

[
1− ew

′−w
2

1 + e
w′−w

2

]
= log

[
1−

√
z
z′

1 +
√

z
z′

]
.

(3.32)
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3.3. Mixed boundary conditions and Ramond sector

From the Green’s function (3.32) one can derive some correlation functions and OPE’s,
in analogy to (3.7):

〈X(z)X(w)〉σ = −Gσ(z, w) = − log

(
1−

√
z
w

1 +
√

z
w

)

〈j(z)j(w)〉σ = ∂z∂wGσ(z, w) =
1

2(z − w)2

(√
z

w
+

√
w

z

)
.

(3.33)

The presence of mixed boundary conditions can be encoded in a different mode expansion
for the two currents, namely:

j(z) = i∂X(z) =
∑
r∈Z+ 1

2

jrz
−r−1 ,

j̄(z̄) = i∂̄X̄(z̄) = −
∑
r∈Z+ 1

2

jrz̄
−r−1 ,

(3.34)

where the modes satisfy the commutation relation [jr, js] = rδr+s. The same set of modes
appear in the expansion of both j and j̄, in order to have Dirichlet boundary conditions
on the positive real axis. A branch cut is present in the complex plane, extending from
0 to −∞. We see that the expansion over half-integers implies that the boson is now, as
expected, antiperiodic under a rotation around the origin:

∂X(e2πiz) = −∂X(z) , (3.35)

in contrast to section 3.1. Equation (3.34) defines a boson ∂X in the Ramond sector,
instead of the usual integer mode expansion, which corresponds to the Neveu-Schwarz
sector. The ground state of this sector is different for the vacuum |0〉 defined above. We
will call it twist vacuum |σ〉: it can be defined (together with its dual) in such a way that
the modes jr are creation and annihilation operators:

jr|σ〉 = 0 , r ≥ 1/2 ,

〈σ|jr = 0 , r ≤ −1/2 .
(3.36)

The expansion (3.34) is not defined on the negative real axis; we can formally solve the
problem introducing a new current j(z), defined on the whole complex plane as

j(z) =
∑
r∈Z+ 1

2

jrz
−r−1 . (3.37)

This means that we are identifying j(z) = j(z) on the upper half plane, and j(z) = −j̄(z)
on the lower half plane. This new current is naturally defined on the two-fold branched
cover of the complex plane. Therefore, if one wants to study correlation functions of j(z)
on the upper half plane with mixed boundary conditions, one should first study correlation
functions of j(z) on the two-fold cover of the complex plane, and finally restrict the result
to Im z > 0.
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3. The conformal field theories of free bosons and fermions

Some correlation functions can be derived simply by means of the mode expansion
(3.37), and using the property (3.36). For example one obtains:

〈σ|j(z)|σ〉 = 0 ,

〈σ|j(z)j(w)|σ〉 =
1

2

(√
z
w

+
√

w
z

)
(z − w)2

.
(3.38)

3.3.2 Normal ordering

In the case of a boson in the Ramond sector we have two useful definitions of normal
ordering which do not coincide. Using the definitions of the previous section, the first one
(indicated with N( )) arises from the operator product expansion, while the second one
(indicated with : :) is a prescription on the order of annihilation and creation modes. Let
us consider the OPE of two currents j; the normal ordered product N(jj) is the finite
term of the expansion, i.e.

j(z)j(w) =
1

(z − w)2
+N(jj)(w) + . . . (3.39)

This quantity is related to the energy momentum tensor of the theory by T (w) =
1
2
N(jj)(w). Notice that since T is quadratic in j, there is no need to distinguish be-

tween j and j; the natural domain for T is simply the complex plane. Expanding as
in 3.34 one obtains an explicit expression in terms of the creation-annihilation normal
ordering, namely

T (z) =
1

2
N(jj)(z) =

1

2
: jj : (z) +

1

16z2
. (3.40)

Hence, the Laurent modes Lm of T are

Lm =
1

2

∑
r∈Z+1/2

jr jm−r , (m 6= 0)

L0 =
1

16
+

∞∑
r=1/2

j−r jr .

(3.41)

Other primaries of this theory in the Ramond sector are defined by

ψα(z) = N(eiαX)(z) =
: eiαX(z) :

(4z)α2/2
. (3.42)

The OPE of these primaries with the current j = i∂X is given by

j(z)ψα(w) = −α ∂zGσ(z, w)ψα(w) =
α

(z − w)

√
w

z
ψα(w) + . . . . (3.43)

The correlation function of many primaries ψα is slightly more complicated than the one
in (3.18). As clarified in [13], the zero mode is absent but there is an extra contribution
of the form

exp

(
n∑
i=1

α2
i

2
S0(zi)

)
. (3.44)
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3.3. Mixed boundary conditions and Ramond sector

It can be interpreted as a renormalized electrostatic self-energy and it takes care of the
difference in the two normal orderings (cfr. [14]). S0 is defined in general in terms of the
Green’s function by

G(z, w) = log(w − z) + S0(z) +O(w − z) . (3.45)

The Green’s function (3.32) gives S0(z) = log( 1
4z

), from which one can derive correlation
functions like

〈ψα(z)〉σ =
eiαx0

(4z)α2/2
,

〈ψα(z)ψβ(w)〉σ =
ei(α+β)x0

(4z)α2/2(4w)β2/2

(
1−

√
w/z

1 +
√
w/z

)αβ

,

(3.46)

where we highlighted the fact that the correlation functions have to be considered with
respect to the vacuum |σ〉.

3.3.3 Fermion in the Ramond sector

For a fermion in the Ramond sector the mode expansion is

ψ(z) =
∑
r∈Z

ψrz
−r−1/2 (R sector) ; (3.47)

the expansion over half-integer exponents implies that the antiperiodicity around the
origin is automatically satisfied. Differently from the NS sector, in the R sector there is
a zero-mode ψ0, which is neither a creation nor an annihilation operator. It acts actually
as a multiplicative factor, since it satisfies {ψ0, ψ0} = 1/2. Keeping this in mind, the
Hilbert space can be constructed starting from a different vacuum |S〉, with the following
properties:

ψr|S〉 = 0 , r ≥ 1 ,

〈S|ψr = 0 , r ≤ −1 .
(3.48)

The energy momentum tensor is again defined in terms of the OPE normal ordering, but in
the Ramond sector it does not coincide with the creation-annihilation modes prescription.
In particular we have

T (z) =
1

2
N(ψ∂ψ)(z) =

1

2
: ψ∂ψ(z) +

1

16z2
. (3.49)

Some correlation functions are different fro the NS sector, for example we have [15]

〈ψ(z)ψ(w)〉S =
1

2(z − w)

(√
z

w
+

√
w

z

)
, (3.50)

where the subscript S indicates the fact that we are in the Ramond sector, where the
vacuum is |S〉.
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3. The conformal field theories of free bosons and fermions

It is possible to connect the two vacua of the two sectors |S〉 and |0〉 using the state-
operator correspondence. We thus define an operator S(z) such that

lim
z→0

S(z)|0〉 = |S〉 . (3.51)

Since we can easily compute 〈S|T (z)|S〉 = 1/(16z2) we conclude that this operator has
conformal dimension 1/16. It is usually called fermionic twist field, but in this work we
will reserve the name “twist field” for the field σ twisting the free boson (see 3.5). When
fermions in higher dimensions are considered, the field S is directly connected to the spin
fields.

3.4 Fermions in higher dimensions, spin fields and

bosonization

Let us consider in this section d copies of a fermionic free theory; this will be useful later
when dealing with superstring theory. Assume we have fermions ψM(z) (and ψ̄M(z̄)) with
M = 1, . . . , d. If the dimension d is an even number, we can express the d fermions in
terms of d/2 free bosons in the following way: we first define d complex fermions (in the
so-called Cartan-Weyl basis) using

Ψ±i(z) =
1√
2

(
ψ2i−1(z)± iψ2i(z)

)
, i = 1, . . . d/2 (3.52)

After that we can bosonize the d complex fermions, expressing them in terms of d/2 free
bosons φi, in the following way:

Ψ±i(z) =: e±iφ
i

: (z) . (3.53)

One can easily check that the bosonization is consistent with all the fundamental prop-
erties of fermions, in particular their operator product expansion. Furthermore, the total
central charge is conserved, since c = 1 for bosons and c = 1/2 for fermions. This
procedure allows for easier derivations of correlation functions involving many fermions,
since equations like (3.18) can be used. To be precise, when many fermions are present
some cocycles ci must be added to the definition (3.53), in order to enforce the right
anticommutation relations between different fermions [16].

Each copy of the fermionic theory comes in principle with its fermionic twist field,
connecting the NS and R sector of the corresponding fermion. These can be bosonized in
terms of exponential operators of the form

si(z) =: e
1
2
iφi : (z) , s̄i(z) =: e−

1
2
iφi : (z) , (3.54)

which have both conformal dimension 1/16 as the fermionic twist fields. Out of these
operators we can define the so called spin fields in the following way:

SA =

d/2∏
i=1

: eiAiφ
i

: (z) , (3.55)
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3.5. Twist fields

where all the components of the vector Ai are ±1/2. The spin fields decompose into two
different irreducible representations of SO(d). We refer to them as positive and negative
chirality, corresponding to an even and odd number of minus signs in the components
of the vector Ai respectively. Furthermore, a spin field with positive chirality is usually
indicated by SA, while a spin field of negative chirality is indicated by SȦ. Again, as
for the fermions, to be precise some cocycles must be added to the definition of the spin
fields (3.55), in order to enforce the right (anti)commutation relations. If this is taken
into account, formulas like (3.16) and (3.18) make it easy to derive OPE’s and correla-
tion functions involving spin fields and fermions. See for example [16] for an extensive
discussion, and appendix B for some useful results in the case d = 4.

3.5 Twist fields

As for the fermion, we can connect the Ramond vacuum for the boson |σ〉 to the Neveu-
Schwarz vacuum by means of the state operator correspondence. Let us define an operator
σ(z), the (bosonic) twist field, such that

|σ〉 = lim
z→0

σ(z)|0〉 ,

〈σ| = lim
z→∞

z1/8〈0|σ̄(z) .
(3.56)

In the remainder of this work we will always use the name twist fields for bosonic twist
fields, while we will always deal with fermionic twist fields using the spin fields defined
above. The mode expansion for L0 given in (3.41) implies that the operator σ(z) has
conformal dimension 1/16, thus the factor z1/8 in the second line of (3.56). From the
correlation functions above we deduce that the OPE among the current j = i∂X and the
twist field contains a branch cut. We thus write (see for example [17] and [12])

i∂X(z)σ(w) =
σ′(w)

(z − w)1/2
+ . . .

i∂X(z)σ′(w) =
σ(w)

2(z − w)3/2
+

2 ∂σ(w)

(z − w)1/2
+ . . .

σ̄(z)σ(w) =
1

(z − w)1/8
+ . . .

(3.57)

where σ′(w) is another operator called excited twist field. In the rest of this thesis we take
this OPE (3.57) as the defining property of twist fields. Similar relations to the first two
hold for the conjugated fields σ̄ and σ̄′. σ (and its conjugated σ̄) is a conformal primary
of dimension 1/16, while σ′ (and σ̄′) has dimension 9/16. Notice that the square root
branch cut implies that the field X(z) changes sign when the point z is moved around the
point where the twist field is inserted. In the following we will always insert twist fields
at the boundary of the domain, i.e. on the real line (z = z̄). Therefore the branch cut in
the OPE changes the boundary condition from Neumann to Dirichlet (and vice versa), as
expected.
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3. The conformal field theories of free bosons and fermions

3.5.1 Correlation functions with two twist fields

All the correlation functions of a boson in the Ramond sector defined above can be
interpreted as correlation functions in the presence of two twist fields, one at the origin
and one at infinity. Using conformal symmetry we can easily derive the corresponding
correlation functions for the case where a pair of twist fields σ and σ̄ is inserted at generic
positions along the boundary. For example (3.38) is equivalent to

〈σ̄(z1)j(z2)σ(z3)〉 = 0 ,

〈σ̄(z1)j(z2)j(z3)σ(z4)〉 =
1

2

1

(z41)1/8(z32)2

(√
z31z42

z21z43

+

√
z21z43

z31z42

)
,

(3.58)

where zij = zi − zj. Taking appropriate limits of the second correlation function, and
using the OPE (3.57), we can derive correlation functions involving excited twist fields.
For example

〈σ̄(z1)j(z2)σ′(z4)〉 = lim
z3→z4

√
z3 − z4〈σ̄(z1)j(z2)j(z3)σ(z4)〉 . (3.59)

The result is

〈σ̄(z1)j(z2)σ′(z3)〉 =
z

3/8
31

2z
1/2
21 z

3/2
32

,

〈σ̄′(z1)j(z2)σ(z3)〉 =
z

3/8
31

2z
3/2
21 z

1/2
32

.

(3.60)

On the other hand, from (3.46) we can derive the more general correlation functions

〈σ̄(z1)ψα(z2)σ(z3)〉 =
eiαx0

(4z21z32)α2/2z
1/8−α2/2
31

,

〈σ̄(z1)ψα(z2)ψβ(z3)σ(z4)〉 =
ei(α+β)x0

(4z21z42)α2/2(4z31z43)β2/2z
1/8−α2/2−β2/2
41

(
1−√η
1 +
√
η

)αβ
,

(3.61)
where η is the conformal ratio η = z21z43

z31z42
. Again, taking appropriate limits we can derive

correlation functions involving excited twist fields, in particular

〈σ̄(z1)ψα(z2)σ′(z3)〉 =
−αeiαx0

4α2/2z
α2/2−1/2
21 z

α2/2+1/2
32 z

5/8−α2/2
31

,

〈σ̄′(z1)ψα(z2)σ(z3)〉 =
αeiαx0

4α2/2z
α2/2+1/2
21 z

α2/2−1/2
32 z

5/8−α2/2
31

,

〈σ̄′(z1)ψα(z2)σ′(z3)〉 =
−α2eiαx0

(4z21z
α2/2
32 )z

9/8−α2/2
31

.

(3.62)

From the correlation functions of twist fields with operators ψα we can see that the
operator product expansion of two twist fields must contain all these primaries. Therefore
we can guess that

σ̄(z)σ(w) =

∫
dα

e−iαx0

(z − w)1/8−α2/2
ψα(w) + . . . , (3.63)
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3.6. Marginal operators and deformations

where x0 is the Dirichlet boundary condition of the interval between the insertions of the
two twist fields. The rest of the OPE contains descendants of ψα, but can in principle
contain also other primaries. In any case the most divergent term in (3.63) is the one
corresponding to the identity, in agreement with (3.57).

3.6 Marginal operators and deformations

In this section we introduce the concept of marginal deformations in conformal field theory.
This will be of great importance in the following, when discussing deformations of bound
states of D-branes.

Conformal primeries can be categorized in three families, according to their conformal
dimension. Considering chiral fields, we have:

• relevant operators, if the conformal dimension is smaller than 1;

• irrelevant operators, if the conformal dimension is bigger than 1;

• marginal operators, if the conformal dimension is equal to 1.

Marginal operators are related to the possible existence of deformations of a conformal
field theory preserving the conformal symmetry and the central charge c [18]. This is
because a deformation generated by an operator V (z) results in an addition to the action
of the form

δS ∝
∫
V (z)dz . (3.64)

It is clear that only operators of conformal dimension 1 can preserve, at least at the
classical level, the conformal invariance of the action. An example of that is of course
the current ∂X of the bosonic theory. A perturbation generated by this operator results
simply in an overall renormalization of the action. If the theory is compactified on a circle
of radius R, this renormalization coincides with a change of the compactification radius.

It is not sufficient, however, to have marginal operators defining a deformation, in
order for this to preserve the conformal symmetry. Such deformations are called exactly
marginal deformations, in order to distinguish them from any deformation generated by
operators of conformal dimension 1. There are many ways to check whether a deformation
is exactly marginal; one of these tests is to make sure that the operator V defining the
deformation does not change its own conformal dimension. At first order, this can not
happen if the operator product expansion V (z)V (w) contains V itself. Checking exact
marginality at all orders is quite difficult; in some cases, however, it is sufficient to study
the four-point function of operators V [19]. The situation is a bit more complicated for
transformations generated by more than one marginal operator; we will see an example
of that in 5.2.3.

The concept of exactly marginal deformations is the counterpart of the discussion of
2.2.2 and 2.3 in the context of conformal field theories. Since string theory, as we will see,
is a conformal field theory on the two-dimensional worldsheet, well-defined deformations
of string theory must be exactly marginal from the worldsheet point of view.
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Chapter 4

The conformal field theory of twist
fields

In this chapter we analyze the conformal field theory of twist fields. We first discuss
the theory of a twisted boson, and highlight the connection with orbifolds. We focus on
the theory with a boundary, in order to later consider its application to bound states of
D-branes in chapter 5.

We explore the possibility of bosonizing the twist fields, analogously to what we did for
spin fields in section 3.4. We introduce the bosonized twist fields and explain their relation
with the usual twist fields; we argue that they describe an array of Dirichlet sectors.
Furthermore we the study correlation functions on the upper half plane in the presence
of two bosonized twist fields, and compare to the results of section 3.5. Afterwards
we consider more twist field insertions, and we present some new explicit results for
correlation functions in the presence of four or more twist fields. Finally we discuss
ordering issues when considering the twist fields on the boundary, and modular invariance
of bulk twist field correlation functions and their connection with partition functions on
Riemann surfaces.

Twist fields are very important when studying solitons and other non-perturbative
effects in string theory that can be described by bound states of D-branes [20, 21], for
instance the worldsheet description of black holes [22, 23, 24] and the reconstruction
of the instanton profile in terms of intersecting D-branes [25, 26, 27]. Generally, the
role of twist fields is essential when considering open strings stretched between branes
of different dimension, in such a way to have different boundary conditions on the two
endpoints; scattering amplitudes contain vertex operators built using twist fields [12].
Other important applications of twist fields are in the context of entanglement entropy
[28, 29] and in the context of intersecting D-branes at non-trivial angles [30, 31, 32].
In these cases twist fields allow transitions between many different kinds of boundary
conditions. In this work we restrict to Z2 twist fields, since we are dealing with Neumann
and Dirichlet boundary conditions only.

The content of this chapter is not directly relevant for the applications to string theory
presented in this thesis, except for some results concerning array of D-branes in chapter
5. However, the complete understanding of the next chapters does not rely on the results
presented here.
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4. The conformal field theory of twist fields

4.1 Orbifolds and bosonized twist fields

Let us start by considering the bulk CFT, where one can twist both the holomorphic
and the anti-holomorphic part of the boson. Correspondingly we will have a pair of twist
fields σ(z) and σ(z̄) satisfying the OPE (3.57) with j = i∂X and j̄ = i∂̄X̄(z̄) respectively.
A bulk twist field, twisting the full boson X(z, z̄), can be defined by σ(z, z̄) = σ(z)σ(z̄).
In the previous chapter we have considered X in a non-compact space; if, instead, the
boson is compactified on a circle of radius R, the insertion of twist fields creates the
twisted sector of a symmetric orbifold [33]. Twist fields have the same local properties
(3.57) independently of the radius of the orbifold, but correlation functions can be affected
by the value of the radius. In general the calculation of correlation functions involving
bosonic twist fields is a complicated task (see e.g. [17, 13]), since these fields are non-local
with respect to the boson X. For fermions, ghosts and fermionic twist fields (spin fields)
it is possible to use a bosonization procedure [16] in order to simplify the calculation
of correlation functions, in analogy to section 3.4. In this chapter we will see that it is
possible to apply the same procedure to bosonic twist fields; however this works only for
a particular value of the radius of the orbifold.

To see how this comes about, we recall the classification of conformal field theories at
c = 1 (see, for example, [15, 34]).

Rorbifold

Rcircle

√
2

2
√

2 KT point

2 (Ising)2

2
√

2 4-state Potts

Dirac

2

(SU(2))2

√
2

Figure 4.1: Classification of conformal field theories at central charge c = 1.

These theories can be divided in two families as in figure 4.1. One describing a boson
compactified on a circle S1, and one describing a boson compactified on an orbifold S1/Z2.
Both of these lines are parametrized by the radius of the circle. Some points on this graph
correspond to particular models, for which it is possible to find a description in terms of
a boson. It turns out that the two branches in the picture intersect, since the orbifold
theory at R =

√
2 is equivalent to the circle theory at R = 2

√
2, which corresponds to the

continuum limit of the XY-model at the Kosterlitz-Thouless point [18]. This duality is
valid also at the level of boundary CFT; it has been shown that the two bulk CFT’s admit
the same boundary conditions and boundary operators or, in string theory language, the
same set of D-branes [35]. This leads us to the idea of bosonizing boundary changing
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4.1. Orbifolds and bosonized twist fields

operators (the bosonized twist fields) in terms of another boson compactified on S1.

4.1.1 su(2) Kač-Moody algebra

Let us now return to boundary CFT; hence, let us restrict to the holomorphic part of
the boson. Let us consider the primary operators Ṽα(z), in particular the ones with
α = ±

√
2. These are allowed operators when the boson is compactified on a circle with

radius multiple of 1/
√

2. Out of these two operators we can construct two other currents,
namely:

j1(z) =
1√
2

(
Ṽ√2(z) + Ṽ−

√
2(z)

)
, j2(z) =

i√
2

(
Ṽ√2(z)− Ṽ−√2(z)

)
. (4.1)

The three currents j1, j2 and j3 = j = i∂X constitute a su(2) Kač-Moody algebra, which
means that they satisfy the following OPE’s:

ji(z)jj(w) =
δij

(z − w)2
− i
√

2εijk
jk(w)

(z − w)
+ reg. , (4.2)

where εijk is the completely antisymmetric tensor. If the currents are expanded as usual
in Laurent modes, the OPE’s are equivalent to the commutation relations

[jim, j
j
n] = −i

√
2εijkjkm+n +mδijδm+n . (4.3)

To continue we perform a change of basis by introducing a new chiral boson Ω(z), satis-
fying the same OPE

Ω(z)Ω(w) ∼ − log(z − w) , (4.4)

as the chiral field X(z). Out of the boson Ω we can construct three currents J i(z)
(i = 1, 2, 3), analogously to the currents ji constructed out of X. We then express ∂X in
terms of Ω, identifying

i∂X(z) = j3(z) ≡ J2(z) =
i√
2

(
: ei
√

2Ω : (z)− : e−i
√

2Ω : (z)
)
. (4.5)

This change of basis is equivalent to a rotation in the three-dimensional space generated
by the three currents of the su(2) Kač-Moody algebra (cfr. [15]). For consistency we also
impose the identifications

i∂Ω(z) = J3(z) ≡ j1(z) =
1√
2

(
: ei
√

2X : (z)+ : e−i
√

2X : (z)
)
,

1√
2

(
: ei
√

2Ω : (z)+ : e−i
√

2Ω : (z)
)
= J1(z) ≡ j2(z)=

i√
2

(
: ei
√

2X : (z)− : e−i
√

2X : (z)
)
.

(4.6)
Once we have done this rotation, we have a description of the CFT of a free boson in
another basis. This may not seem convenient, since the conformal primaries Ṽα =: eiαX :
do not have a local description in terms of Ω in this new picture. However, this rotation
allows us to identify new primaries which do not have a local description in terms of X.

29



4. The conformal field theory of twist fields

Namely they are the primaries Vα(z) =: eiαΩ : (z), and the bosonized twist fields will be
among them.

Considering again the bulk theory, the same procedure can be done for the anti-
holomorphic part of the boson, defining an anti-chiral field Ω̄. Notice that Ω(z, z̄) =
Ω(z) + Ω̄(z̄), as a functional of X(z, z̄) = X(z) + X̄(z̄), will be periodic under a shift of
2π
√

2n (n ∈ Z), which means that also Ω is compactified on a circle at the self-dual radius.
Let us now consider the boson X(z, z̄) compactified on an orbifold at the self-dual radius,
with the Z2 transformation defined by X → −X. The boson Ω(z, z̄) should be unaffected
by this transformation; this can be achieved if Ω(z, z̄) is compactified on a circle with
half the radius, namely R = 1/

√
2. Notice that this is consistent with the identifications

(4.5) and (4.6). Furthermore, T-duality implies that the circle theory at R = 1/
√

2 is in
turn equivalent to a circle theory at radius R′ = 2/R = 2

√
2, in accordance with what

depicted in figure 4.1.

4.1.2 Boundary conditions and bosonized twist fields

Let us now consider a boundary CFT, with the chiral and anti-chiral part of the boson X
related by appropriate boundary conditions. If we define the chiral and anti-chiral part
of a boson Ω as in the previous subsection, we can deduce the boundary conditions in
terms of Ω. For this we note that a change of sign in ∂X(z), which one needs in order to
interchange Dirichlet and Neumann boundary conditions, can be achieved by shifting the
chiral field Ω(z) by π/

√
2; therefore Neumann and Dirichlet boundary conditions for X

(on the real line z = z̄) correspond to

Neumann: Ω(z) = Ω̄(z̄) ,

Dirichlet: Ω(z) = Ω̄(z̄) +
π√
2
.

(4.7)

These boundary conditions may look unfamiliar from the point of view of the Ω boundary
conformal field theory. However, it is not hard to see that they are conformal, as it must
be since they correspond to the usual Neumann and Dirichlet boundary conditions for
the boson X.

Among the primaries Vα, there are some that have the same local properties (3.57)
as twist fields. Indeed, let us consider the two primaries σB = V√2/4 and σ̄B = V−

√
2/4,

both with conformal dimension 1/16. σB will be called bosonized twist field, and σ̄B is its
conjugated field. Moreover, we identify the excited bosonized twist field σ′B = 1√

2
V−3

√
2/4

and its conjugated σ̄′B = 1√
2
V3
√

2/4. Given these definitions, using the relation (3.16)

(which is valid for Vα as it was for Ṽα) we can derive that the bosonized twist fields satisfy
the following OPE’s with the current j = i∂X:

i∂X(z)σB(w) =
σ′B(w)

(z − w)1/2
+ . . .

i∂X(z)σ′B(w) =
σB(w)

2(z − w)3/2
+

2 ∂σB(w)

(z − w)1/2
+ . . . ,

(4.8)

which are identical to (3.57), at least for the most divergent terms. The description in
terms of Ω allows to treat the bosonized twist fields and the current ∂X in the same way,
having a free field representation for all of them at the same time.
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4.2. Single twist field insertion

The way we interpret these (boundary) twist fields is the following: usually twist fields
relate the Neumann sector (∂− ∂̄)X = 0 to the Dirichlet sector X(z, z̄) = x0, where x0 is
some value for the boundary condition, and this information is encoded in the twist fields.
The bosonized version σB = V√2/4, however, cannot provide the information about x0;

furthermore, the periodicity property X(z, z̄) ∼ X(z, z̄)+2π
√

2n suggests that these twist
fields describe the superposition of different Dirichlet sectors with boundary conditions
xn0 = 2π

√
2n (n ∈ Z). We will give more evidence in favor of this interpretation in the

following sections.

4.2 Single twist field insertion

In 3.5.1 we derived some correlation functions involving a pair of twist fields σ̄-σ. Let us
compare them to the corresponding ones with the bosonized version σ̄B-σB. The presence
of at least two twist fields is needed, because one of them, say σ, changes the boundary
condition from Dirichlet to Neumann, while σ̄ changes from Neumann to Dirichlet. In
the bosonized language, the presence of both a twist field and its conjugated is necessary,
since the integration over the zero mode of Ω implies that the sum of all the exponents αi
in 〈
∏

i Vαi〉 has to be zero. Hence correlation functions with just one σ (or just one σB)
would vanish.

4.2.1 Correlation functions with two bosonized twist fields

Correlation functions involving bosonized twist fields can be easily computed, since the
current j = i∂X and the bosonized twist fields have both a local description in terms
of the boson Ω. Correlation functions involving only j and bosonized twist fields are
straightforward; for the explicit calculation we use

〈Vα1(z1) . . . Vαn(zn)〉 =
∏
i<j

(zij)
αiαj δ

(
n∑
i=1

αi

)
, (4.9)

which is completely analogous to (3.18). From this one obtains

〈σ̄B(z1)j(z2)σB(z3)〉 = 0 ,

〈σ̄B(z1)j(z2)j(z3)σB(z4)〉 =
1

2

1

(z41)1/8(z32)2

(√
z31z42

z21z43

+

√
z21z43

z31z42

)
,

〈σ̄B(z1)j(z2)σ′B(z3)〉 =
z

3/8
31

2z
1/2
21 z

3/2
32

,

〈σ̄′B(z1)j(z2)σB(z3)〉 =
z

3/8
31

2z
3/2
21 z

1/2
32

,

(4.10)

in agreement with (3.58) and (3.60). This is not surprising since the zero mode of X does
not appear in the current j = i∂X.

When fields like ψα are present, correlation functions depend explicitly on the particu-
lar boundary condition x0. Therefore, we expect them to be different when the bosonized
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4. The conformal field theory of twist fields

twist fields σB and σ̄B are used instead of σ and σ̄. As explained before, however, we
want to interpret the result in terms of a superposition of different sectors with boundary
conditions x0 =

√
2πn (considering only the holomorphic part of X). We thus assume,

for example, that

〈σ̄B(z1)ψα(z2)σB(z3)〉 =
∑
n∈Z

〈σ̄(z1)ψα(z2)σ(z3)〉x0=
√

2πn , (4.11)

and check this hypothesis. Since the sum is over an infinite number of Dirichlet sectors,
the result must be normalized, in order to match with the normalization of the two-
point function 〈σ̄(z1)σ(z3)〉 = z

−1/8
13 . The right hand side of (4.11) is straightforward to

compute, starting from (3.61), and involves the Dirac comb

XT (t) =
1

T

∑
n∈Z

e2πin t
T =

∑
k∈Z

δ(t− kT ) . (4.12)

The final result for the right hand side of (4.11) is

√
2

z
1/8
13

(
z13

4z12z23

)α2/2

X√
2(α) =

=

√
2

z
1/8
13

(
z13

4z12z23

)α2/2 (
δ(α) + δ(α +

√
2) + δ(α−

√
2) + . . .

)
.

(4.13)

The calculation of the left hand side is more involved, since σB and σ̄B are naturally
written in terms of Ω, while ψα is not local with respect to it. However, we can rewrite
the combination σ̄B(z1)σB(z3) as

σ̄B(z1)σB(z3) = V−
√

2/4(z1)V√2/4(z3) =
1

z
1/8
31

exp

(√
2

4

∫ z1

z3

i∂Ω(z)dz

)
(4.14)

and express ∂Ω in terms of X using (4.6). This gives a path integral over X,

〈σ̄B(z1)ψα(z2)σB(z3)〉 =
1

Z

∫
[dX] (σ̄B(z1)ψα(z2)σB(z3)) e−S[X] . (4.15)

We can split the integral as
∫

[dX] =
∫
dx0

∫
[dX⊥], where x0 represents the zero mode of

X. The periodicity properties of ∂Ω imply that the
∫
dx0 integral is of the form∫

dx0 e
iαx0f(x0) , (4.16)

where eiαx0 accounts for the zero mode in ψα and f is a periodic function f(x) = f(x +√
2π). This integral can be rewritten as

∑
n∈Z

eiαn
√

2π

∫ √2π

0

dx0 f(x0)eiαx0 . (4.17)
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4.3. More twist field insertions

Using the definition of Dirac comb, we then notice that

〈σ̄B(z1)ψα(z2)σB(z3)〉 ∝X√
2(α) =

(
δ(α) + δ(α +

√
2) + δ(α−

√
2) + . . .

)
, (4.18)

in agreement with (4.13). Furthermore, the dependence on the positions z1, z2 and z3 is
fixed by conformal invariance, hence it must coincide with the one in (4.13) (up to an
overall normalization).

Finally we discuss the OPE of two bosonized twist fields. Let us consider the OPE of
two normal twist fields (3.63): if the boson is compactified, the allowed values of α are
restricted, and the integral becomes a sum. For example, in the case of bosonized twist
fields, α must be a multiple of

√
2. This can be derived also in the Ω picture, since

σ̄B(z)σB(w) =
1

(z − w)1/8

(
1−
√

2

4
(z − w)i∂Ω(w) + . . .

)
, (4.19)

and ∂Ω is expressed in terms of exponential operators through (4.6).

4.3 More twist field insertions

With four or more twist fields the situation is more complicated, for three reasons. First,
the operator formalism used in chapter 3 is not applicable. The second reason is that
we have two or more cuts on the complex plane where the fields are defined; this means
that the worldsheet is now effectively a hyperelliptic surface with genus g > 0 [36, 13].
Finally, using the electrostatic analogy for finding correlation functions on the upper half
plane is still possible, but an explicit expression for the Green’s function with appropriate
boundary conditions is known only in integral form. Let us then review the connection
between twist field insertions and hyperelliptic surfaces, in particular in the case of four
twist fields.

4.3.1 Twist fields and hyperelliptic surfaces

Let us consider 2n twist fields at positions zi on the real line. We assume that the fields
σ are at position zi with i even, and the fields σ̄ correspond to odd i. The current j
has Neumann boundary conditions on the intervals [z2i−1, z2i], and Dirichlet boundary
conditions on the intervals [z2i, z2i+1]. The real line has to be considered as compactified,
therefore there are Dirichlet boundary conditions also on the interval [z2n, z1], containing
the point at infinity. The complex plane (described by a coordinate z) has cuts along the
real axis, in correspondence to the intervals with Neumann boundary conditions. The
associated hyperelliptic surface, which has genus g = n− 1, is described by the equation

w2 = P (z) :=
2n∏
i=1

(z − zi) . (4.20)

Let us define some useful quantities; first of all we consider a canonical homology class
{Ak, Bk}, where Ak and Bk are the A and B cycles of the hyperelliptic surface. In the
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4. The conformal field theory of twist fields

description on the complex plane, these cycles surround two neighboring ramification
points. There is a basis for holomorphic 1-forms on this hyperelliptic surface, given by

ωk =
zk−1 dz√
P (z)

for k = 1, . . . , g . (4.21)

Denoting with Ak the A-cycle surrounding the two ramification points z2k−1 and z2k, the
period of the 1-form ωl along Ak is defined as

Ωkl =

∮
Ak

ωl =

∮
Ak

zl−1 dz√
P (z)

. (4.22)

There is also a dual basis for holomorphic 1-forms ζl, satisfying∮
Ak

ζl = δkl . (4.23)

The period matrix of the hyperelliptic surface is defined in the following way:

τkl =

∮
Bk

ζl , (4.24)

where Bk is the B-cycle surrounding the two ramification points z2k and z2k+1.

4.3.2 Four twist fields and the associated torus

When we have only four twist fields, the genus of the surface is g = 1. This means that
we are dealing with a torus, whose A and B cycles are shown in figure 4.2.

z1 z2 z3 z4

A B

Figure 4.2: A and B cycles for a complex plane with 4 twist fields insertions.

We have only one holomorphic 1-form

ω =
dz√
P (z)

, (4.25)

and its dual ζ given by

ζ =
ω

Ω
= ω

/∮
A

ω . (4.26)

Therefore the period τ is simply

τ =

∮
B

ω

/∮
A

ω . (4.27)
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4.3. More twist field insertions

It can be useful to distinguish the two periods of the torus as τ1 =
∮
A
ω and τ2 =

∮
B
ω,

τ being the ratio of the two. Notice that, given the definition (4.20) and assuming that
the twist fields are inserted on the real line, the quantity τ2 is real, while Ω = τ1 and τ
are purely imaginary. Introducing the conformal cross ratio η = z43z21/(z42z31), where
zij = zi − zj, the period can be written as

τ = i
K(1− η)

K(η)
, (4.28)

where K is the complete elliptic integral of the first kind. This relation can be inverted
using Jacobi theta functions, namely

η =

(
ϑ2(0; τ))

ϑ3(0; τ)

)4

. (4.29)

A positive, purely imaginary τ corresponds to 0 < η < 1; the modular transformation
τ → −1/τ corresponds to the map η → 1− η. We will also use the so-called uniformized
coordinates, defined by

x(z) =
1

Ω

∫ z

z1

ω =
1

Ω

∫ z

z1

dw√
P (w)

. (4.30)

In these coordinates the torus is flat, and we identify points on the complex plane via
x ≡ x+m+ nτ , where m,n ∈ Z. The four points z1, z2, z3 and z4 are mapped to 0, τ/2,
(τ + 1)/2 and 1/2 respectively. The torus can thus be described as the quotient

T2 =
C

Z + τZ
. (4.31)

The fundamental domain is shown in figure 4.3.

τ

1z1 z2

z3z4

Figure 4.3: Fundamental domain of a torus in uniformized coordinates.

4.3.3 Correlation functions with four twist fields

Let us now consider correlation functions involving four twist fields; many of them are
already known and have been derived solving systems of differential equations, similar
to the Knizhnik-Zamolodchikov equations (see [17, 13, 37] and also [38, 39] for parallel
results in the context of D-branes at angles). We review here some of these results, and we
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4. The conformal field theory of twist fields

extend them to the corresponding correlation functions involving the bosonized version
of the twist fields. Let us consider first of all the correlation function of four twist fields,
namely

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (4.32)

This correlation function is well known in the literature, and was computed for example
in [17]; the detailed derivation can be found in appendix C. It is important to notice that
in the presence of four twist fields there are two Dirichlet intervals on the boundary. The
boson X(z, z̄) can in principle have different boundary conditions X = xi0 (i = 1, 2) on
the two intervals. Adapting the result of [17] to our notations, the correlation function is

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

(
z31z42

z21z41z32z43

)1/8√
π

2K(η)
exp

(
i

8π
(x1

0 − x2
0)2τ

)
, (4.33)

where the conformal ratio η is given by η = z43z21/(z42z31), and K(η) is the complete
elliptic integral of the first kind. In order to derive this four-point function one encounters
other correlation functions, namely 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉, 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉
and 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉; explicit expressions are given in appendix C.

Another important correlation function that can be computed is the one involving two
currents j and four twist fields. The result is known (see [33, 37]) when the difference of
the two boundary conditions δ = x1

0−x2
0 is zero. In appendix D we generalize to the case

δ 6= 0, the result being

〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

=
G(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
+

+

√
2π√

P (z)P (w)

(
z31z42

z21z41z32z43

)−7/8

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
,

(4.34)

where G(zi) is the four-point function G(zi) = 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉.
Starting with the correlation function with two currents one can easily obtain other

correlation functions involving excited twist fields. It is sufficient to consider the limit
when one of the currents approaches a twist fields, and use the corresponding OPE, as
done in section 4.2. In particular, we derive explicit results for 〈σ̄′(z1)σ′(z2)σ̄(z3)σ(z4)〉 and
〈σ̄′(z1)σ(z2)σ̄′(z3)σ(z4)〉 in appendix D. Similar and other correlation functions involving
excited twist fields can be found in [40], and in [41] for the case of twist fields connecting
D-branes at different angles.

4.3.4 Correlation functions with four bosonized twist fields

We now compare the above results to the case with four bosonized twist fields. The
calculation of the four twist correlator is straightforward using (4.9):

〈σ̄B(z1)σB(z2)σ̄B(z3)σB(z4)〉 =

(
z31z42

z21z41z32z43

)1/8

. (4.35)
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4.3. More twist field insertions

This correlation function should represent a double array of Dirichlet sectors, whose
boundary conditions are separated by 2

√
2π. This is because each pair σ̄B-σB connects

the Neumann sector to the array; therefore a sum over the array has to be performed for
both pairs. Thus we should compare (4.35) with the quantity∑

a,b∈Z

(
z31z42

z21z41z32z43

)1/8√
π

2K(η)
exp

(
i

8π
(2
√

2π(a− b))2τ

)
. (4.36)

The sum is infinite but will give a finite result after dividing by the two-point function∑
n∈Z〈σ̄(z1)σ(z2)〉x0=2

√
2πn, which is the correct normalization of correlation functions.

Using the Jacobi theta function ϑ3, which satisfies

ϑ3(0; τ) =
∑
n∈Z

eiπτn
2

=

√
2K(η)

π
, (4.37)

we notice that (4.36) is equal to (4.35).
We can proceed in an analogous way for the correlation function with two currents

and four twist fields. Using the bosonized expression of j one easily derives

〈j(z)j(w)σ̄B(z1)σ(z2)Bσ̄B(z3)σB(z4)〉 =

=
1

2(z − w)2

(
z31z42

z21z41z32z43

)1/8
[√

(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
.

(4.38)

Let us now compare (4.38) to the sum of (4.34) over the array. Summing the first term
gives simply

GB(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
, (4.39)

where GB(zi) = 〈σ̄B(z1)σB(z2)σ̄B(z3)σB(z4)〉. The second term in (4.34) is proportional
to

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
. (4.40)

Summing over δ = 2
√

2πn we get ∂η

√
2
π

= 0. Putting all together we notice that (4.38)

is recovered.
Correlation functions involving excited twist fields, in particular 〈σ̄′Bσ′Bσ̄BσB〉 and

〈σ̄′BσBσ̄′BσB〉 are computed in appendix D, and agree with the sum over the array of
〈σ̄′σ′σ̄σ〉 and 〈σ̄′σσ̄′σ〉 respectively. The results of this section give further support to our
claim that bosonized twist fields describe an array of Dirichlet sectors.

4.3.5 Correlation functions with more than four bosonized twist
fields

The calculation of correlation functions becomes increasingly more complicated when the
number of twist fields is more than four. Some results have been derived through the
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4. The conformal field theory of twist fields

electrostatic analogy (see [13] for Z2 twist fields and [42, 43, 32] for generic angle twist
fields); this procedure is however quite formal, since an explicit expression for the Green’s
function is known only in integral form. Furthermore, the generalization of the methods
described in appendices C and D is problematic.

In the bosonized case, however, it is still possible to compute correlation functions
involving bosonized twist fields and, possibly, the current ∂X. For example the 2n-point
function of twist fields is given by

〈σ̄B(z1)σB(z2) . . . σ̄B(z2n−1)σB(z2n)〉 =
∏
i>j

(i−j)∈2N

z
1/8
ij

∏
i>j

(i−j)∈2N+1

z
−1/8
ij =

∏
i>j

z
(−1)i−j

8
ij . (4.41)

The correlator with two currents reads

〈j(z)j(w)σ̄B(z1) . . . σB(z2n)〉 =
G2n
B (zi)

2(z − w)2

(∏
i odd

√
z − zi
w − zi

∏
i even

√
w − zi
z − zi

+ (z ↔ w)

)
,

(4.42)
where G2n

B (zi) is the 2n-point function (4.41). Correlators involving excited twist fields
can also be considered; for example the correlation function of two excited and four normal
twist fields is

〈σ̄′B(z1)σ′B(z2)σ̄B(z3)σB(z4)σ̄B(z5)σB(z6)〉= 1

2z
9/8
21

(
z53z64

z43z63z54z65

)1/8(
z31z51z42z62

z32z52z41z61

)3/8

.

(4.43)
Through the bosonization procedure one might easily see if a correlation function vanishes;
this happens whenever the sum of all the exponents of operators Vα can not give zero.
For example, a correlator with one excited and 2n− 1 normal twist fields is always zero:

〈σ̄′B(z1)σB(z2) . . . σ̄B(z2n−1)σB(z2n)〉 = 0 . (4.44)

The same is true for a correlator of m excited and 2n−m normal twist fields, when m is
odd. Analogously, a correlator involving two excited twist fields vanishes if they are both
conjugated (or both non-conjugated). For example

〈σ̄′B(z1)σB(z2)σ̄′B(z3) . . . σ̄B(z2n−1)σB(z2n)〉 = 0 . (4.45)

Furthermore, every correlation function with an odd number of currents and 2n normal
twist fields is zero:

〈j(w1) . . . j(w2m+1)σ̄B(z1) . . . σB(z2n)〉 = 0 . (4.46)

We have seen in appendices C and D that these correlation functions (with n = 2) are in
general non-vanishing for normal (non-bosonized) twist fields. The setup with the array
of Dirichlet sectors is special, and makes many correlation functions vanish.

4.4 Ordering of boundary twist fields

In the previous sections, when computing correlation functions with twist fields on the
boundary, we have always implicitly assumed a particular ordering of the twist fields.
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4.4. Ordering of boundary twist fields

This is because a twist field connects a CFT to a different one (corresponding to different
boundary condition for the boson), and it must be followed by a conjugated twist field,
in such a way that the correlation function is computed with respect to the vacuum
of the original CFT. For concreteness, let us consider the two-point function of twist
fields 〈σ̄(z)σ(w)〉. The two twist fields connect the boundary conformal field theory of
a boson with Dirichlet boundary condition (BCFTD) to the boundary conformal field
theory of a boson with Neumann boundary condition (BCFTN); more precisely, reading
the correlation function from left to right, σ̄ connects BCFTD to BCFTN and σ connects
BCFTN to BCFTD. To make things clear, we will indicate explicitly with N or D the
vacuum of the reference CFT, which is the BCFTD in this case. Therefore, the correlation
function has to be interpreted as

〈σ̄(z)σ(w)〉D =
〈1l〉D

(z − w)1/8
=

ZD
(z − w)1/8

, (4.47)

where we have used the OPE (3.57), and ZD is the partition function in BCFTD. If we
now want to consider the opposite ordering, we have to consider the BCFTN as reference
theory. Assuming that the OPE is

σ(z)σ̄(w) =
α

(z − w)1/8
, (4.48)

we will have 〈σ(z)σ̄(w)〉N = α(z − w)−1/8〈1l〉N = α(z − w)−1/8ZN , where ZN is the
partition function in BCFTN . Since we are considering the twist fields inserted on the
boundary of a disk (or, alternatively, on the compactified real line), cyclicity implies that
〈σ̄(z)σ(w)〉D = 〈σ(w)σ̄(z)〉N , from which we conclude that

α = ZD/ZN . (4.49)

On the other hand, the number α can be computed using the four-point function. In fact

lim
z2→z3

(z2 − z3)1/8〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = α〈σ̄(z1)σ(z4)〉D =
Z2
D/ZN

(z1 − z4)1/8
. (4.50)

In the previous section we have chosen to normalize ZD = 1. The explicit form of the
four-point function gives the result

lim
z2→z3

(z2 − z3)1/8〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = 0 , (4.51)

which means that the partition function ZN is divergent. However, ZN can be regularized,
for example compactifying the boson on a circle of radius R, which would give ZN = 1/R
(see[44]).

The cyclical property we used for the two-point function generalizes to more compli-
cated correlation functions of twist fields, provided that the appropriate reference CFT is
taken into account. For example, for the four-point function,

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = 〈σ(z2)σ̄(z3)σ(z4)σ̄(z1)〉N . (4.52)

With this rule, every correlation function with an even number of boundary twist fields,
and with alternating σ’s and σ̄’s has a precise and unambiguous meaning.
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4.5 Bulk twist fields and modular invariance

In the previous section we reviewed how the cuts created by the presence of twist fields
have the effect of transforming the worldsheet into a higher genus Riemann surface. It
is thus natural to think that the correlation function of twist fields, without any other
operator, is associated to the partition function of a twisted boson on this surface. This
was examined for example in [34] and [45]. In order to connect to this result, we have to
consider bulk twist fields, twisting both the chiral (X) and anti-chiral (X̄) parts of the
boson. The bulk twist fields are given by the product of a chiral and an anti-chiral twist
fields. Effectively, a correlation function of bulk twist fields is given by the square of the
correlation function of chiral twist fields. An important observation that we have to make
is that the Riemann surface is not sensible to which points the cuts are connecting and
to which twist fields are conjugated and which are not. For concreteness, if we indicate
(12)(34) the correlation function 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉, where the cuts are connecting z1

to z2 and z3 to z4, we see that the combination (34)(12), (21)(43) and (43)(21) describe the
same situation. In total there are 6 independent ways of partitioning the points zi in two
non-ordered pairs, which correspond to different conformal ratios and, correspondingly,
to different periods of the associated torus (see table 4.1).

Partition Conformal ratio Period
(12)(34) η τ
(14)(32) 1− η - 1

τ

(12)(43) η
η−1

τ + 1

(13)(42) 1
1−η − 1

τ+1

(13)(24) 1
η

τ
1−τ

(14)(23) η−1
η

− 1
τ

+ 1

Table 4.1: Partition of four points and modular transformations.

In order to recover the partition function on the torus, one should sum over all these
independent partitions. Looking at the associated periods, we notice that the different
partitions generate modular transformations on the period τ . To be precise, the modular
group can be generated by only two transformations:

S : τ → −1

τ
, η → 1− η ,

T : τ → τ + 1 , η → η

η − 1
.

(4.53)

We refer to [34] for the proof that the sum

Z ∝ |〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉|2 + permutations. (4.54)

is indeed the partition function of a twisted boson on a torus. Here we just notice that
the result (4.54) is manifestly modular invariant.
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4.5. Bulk twist fields and modular invariance

The same discussion can be done for bosonized twist fields; the resulting modular
invariant partition function will be the one corresponding to a twisted boson on an orbifold
of radius R =

√
2. This partition function and the one obtained by normal twist fields

are related. The “quantum” part of the partition function (which depends only on the
local property of twist fields) is the same, while the “classical” part, which depends on
the topology of the surface, is different. In order to obtain the classical part, one has to
sum over all the classical solutions in the different winding sectors around the circle (see
e.g. [34]):

Zcl(R) =
∑
(p,p̄)

exp [iπ(p · τ · p− p̄ · τ̄ · p̄)] , (4.55)

where p and p̄ are the allowed momenta running through the loops of the hyperelliptic
surface. It was noticed in [17] that when the radius of the compactification is exactly√

2, the total partition function simplifies, and can be expressed in terms of correlation
functions of operators of the form : eiαφ(z) :, where φ is a scalar field. The bosonization
introduced in this chapter makes it clear that this scalar field is not the boson X, but it
is the dual boson Ω, and that the operators : eiαφ(z) : are the bosonized twist fields.

If one wants to insert twist fields on the boundary, and interpret them as boundary
changing operators, not all the partitions of table 4.1 are allowed. As we discussed in
section 4.4, only the partitions (12)(34) and (14)(32) are well defined. This means that
summing over the allowed partitions would give a result which is invariant only under
the subgroup of the modular group generated by the S transformation. This is consistent
with the fact that, if the four twist fields are inserted on the real line, the associated
period is purely imaginary, and a T transformation would spoil this property.
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Chapter 5

Finite-size D-branes in bosonic
string theory

In this chapter we introduce bosonic string theory, stressing its connection to the con-
formal field theory of a free boson discussed in chapter 3. We introduce the theory,
both for closed and open strings, and discuss the importance of ghosts for the quanti-
zation. Furthermore, we discuss scattering amplitudes and vertex operators. Focusing
on open strings, we introduce D-branes, which are dynamical objects of the theory, non-
perturbative by nature. Bound states of D-branes make it necessary to consider bosons
in the Ramond sector; we discuss relevant correlation functions including twist fields and
the possibility of having a marginal deformation corresponding to the blow-up of the size
of a D-brane.

5.1 Bosonic String Theory and D-branes

A fundamental string is the one-dimensional generalization of the concept of particle.
Each point of a string in d dimension is characterized by its position XM(σ0 = τ, σ1 = σ),
where τ and σ are the worldsheet coordinates. σ indicates the position of the point along
the string and τ is a time coordinate. The action for a bosonic string is given by the
so-called Polyakov action, which is [46]

SP =
1

4πα′

∫
d2σ
√
−ggαβ∂αXM∂βX

NηMN , (5.1)

where gαβ is the worldsheet metric, which is an auxiliary field, and g = detgαβ; σα

(α = 0, 1) are the worldsheet coordinates. The indices M,N are contracted using a target
space metric ηMN . The quantity T = 1/(2πα′) is the so-called tension of the string, and is
the generalization of the concept of mass for particles. The quantity α′ is called universal
Regge slope; it has dimension (length)2, and is sometimes written as α′ = l2s , where ls is
the string scale.

The Polyakov action is characterized by some symmetries, namely

• Poincaré invariance of the target space XM → ΛM
NX

N .

• Reparametrization invariance of the worldsheet coordinates σα.
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5. Finite-size D-branes in bosonic string theory

• Weyl invariance, which corresponds to a rescaling of the worldsheet metric
gαβ(σ, τ)→ Ω2(σ, τ)gαβ(σ, τ).

These symmetries imply that string theory is a two dimensional conformal field theory on
the worldsheet. Furthermore, one can use these symmetries in order to fix three degrees
of freedom. The most convenient choice is to work in the so-called conformal gauge, where
the worldsheet metric is flat and the action reads

S =
1

4πα′

∫
d2σ ∂αX

M∂αXM . (5.2)

The equations of motion for the worldsheet metric, on the other hand, imply that string
theory can describe only oscillations transverse to the string. The action (5.2) can describe
both closed and open strings. For closed strings we assume that the σ coordinates is
compactified, identifying XM(σ, τ) = XM(σ + 2π, τ). For open strings we consider σ
restricted to the interval σ ∈ [0, π], with σ = 0 and σ = π representing the two endpoints
of the string. The worldsheets for closed and open strings are represented in figure 5.1.

σ

τ

σ

τ

Figure 5.1: Worldsheets for closed (left) and open (right) strings.

We can use complex coordinates for describing the worldsheet, i.e.

w = τ + iσ , w̄ = τ − iσ . (5.3)

In this way the worldsheet is mapped to a strip on the complex plane. Defining now
z = ew we can map the strip to the complex plane, analogously to what we have done in
section 3.3. In these coordinates the action (5.2) becomes

S =
1

4π

∫
d2z

(
2

α′
∂XM ∂̄XM

)
, (5.4)

which is nothing else than d copies of the free bosonic theory described in chapter 3. For
open strings, the endpoints σ = 0, π are mapped to the positive and negative real line
respectively, therefore the boundary is the same one considered in chapter 3.
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5.1. Bosonic String Theory and D-branes

5.1.1 The b-c ghost system

The symmetries of the Polyakov action described above can be considered as gauge in-
variance of the theory. This gauge invariance plays a fundamental role when we want to
quantize the theory. We do not go into details here, but if we quantize the theory using
the Faddeev-Popov method, as one would do for other gauge theories, it turns out that
we have to introduce new non-physical fields to the theory, the so-called ghosts. In the
case of bosonic string theory we need to introduce two anticommuting fields b(z) and c(z)
(together with their anti-holomorphic partners), with action given in complex coordinates
by [46, 47]

Sb,c =
1

4π

∫
d2z

[
b(z)∂̄c(z) + b̄(z̄)∂c̄(z̄)

]
. (5.5)

This is a conformal model, independent on the dimension of the spacetime d, that can be
studied with the same methods we used for the free boson and the free fermion in chapter
3. In particular b and c are primaries of conformal dimension 2 and -1 respectively, and
they satisfy the OPE

b(z)c(w) ∼ c(z)b(w) =
1

z − w
+ . . . , (5.6)

and the energy momentum tensor is given by

Tb,c(z) = 2N(∂c b)(z) +N(c ∂b)(z) . (5.7)

We refer to appendix B for other properties of these fields, in particular for their bosoni-
zation. What is important for us now is the central charge of the theory, which can be
computed through the OPE T (z)T (w). The explicit calculation gives cb,c = −26. The fact
that the central charge is negative is another sign that the theory describes non-physical
fields.

The central charge of the theory is related to the anomaly at quantum level for the
Weyl symmetry. This means that a conformal theory is anomalous if the central charge
does not vanish. If this is the case, the spectrum of the quantized theory turns out not to
be Lorentz-invariant [47]. The theories of a free boson and a free fermion are manifestly
anomalous, since their central charge is 1 and 1/2 respectively. For string theory, however,
the presence of the ghost system can solve the Weyl anomaly. Considering bosonic string
theory for the moment, where no fermions are present, the total central charge in d
dimensions is given by

ctotal = d · cboson + cb,c = d− 26 , (5.8)

which vanishes in 26 dimensions. This is the so-called critical dimension, and from now
on we consider bosonic string theory in d = 26, where the Weyl anomaly is absent.

5.1.2 Vertex operators and tree-level scattering amplitudes

When bosonic string theory is quantized, one can construct states corresponding to string
excitations, which will form a Hilbert space generated from a vacuum state |0〉 applying
a given number of creation operators. These states will correspond, through the state-
operator correspondence, to operators of the conformal field theory describing the string
worldsheet. For example there will be states corresponding to the operators Ṽα =: eiαX :
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5. Finite-size D-branes in bosonic string theory

defined in chapter 3. Since bosonic string theory is defined in d = 26, the correct gener-
alization of these operators is

Ṽk(z) =: eikMX
M

: (z) , (5.9)

where kM is a d-dimensional vector, describing the momentum of the corresponding state.
We focus here only on the chiral part of the vertex operators; this is enough when dealing
with open strings, while the treatment of closed strings involves also the anti-chiral part
of vertex operators. States like that can be physical or not: physical states turn out to be
the ones for which the conformal dimension of the operator Ṽk is equal to 1. Furthermore,
physical vertex operators can be expressed in two versions [47, 48]:

• Unintegrated version. A c-ghost is added to the vertex operator; the resulting
operator has combined conformal dimension equal to zero. Example: c(z)Ṽk(z).

• Integrated version. The vertex operator of conformal dimension 1 is integrated over
the position of the insertion z. Example:

∫
dz Ṽk(z).

Like any other physical theory, it is not sufficient to know which states arise from string
oscillations; one would also like to understand how these strings (or some particular string
states) interact among themselves. We do not enter in details here, but we just highlight
the procedure one should follow. The S-matrix is constructed considering amplitudes
corresponding to particular external asymptotic states. Thanks to conformal symmetry,
such amplitudes reduce to the calculation of correlation functions of vertex operators over
certain Riemann surfaces with genus g. The analogous of the loop expansion in quantum
field theory is then an expansion over all types of topologies. Tree-level amplitudes are the
ones for which the genus is 0: correspondingly, the amplitude is calculated on a sphere
for closed strings or a disk for open strings. In the latter case appropriate boundary
conditions have to be imposed at the border of the disk.

All vertex operators are inserted inside amplitudes with appropriate powers of gs, the
string coupling constant; the coupling constant for closed strings is gclosed = gs, while for
open strings we have gopen =

√
gs. This is not a fundamental constant of the theory, since

it does not appear in the action, and can be changed simply rescaling all vertex operators.
Amplitudes are normalized with a certain power of gs as well; for closed strings the weight
depends on the genus g of the Riemann surface, in particular it is given by (g2

s)
g−1. The

sphere, for example, comes with a prefactor g−2
s . For open strings the normalization

is the square root of the corresponding one for closed string; for the disk, for example,
it is g−1

s . Notice that the “loop” expansion, or expansion over Riemann surfaces with
different genus, corresponds to a perturbative expansion with parameter gs (or

√
gs for

open strings).
Furthermore, the integration over the moduli space has to be taken into account: it

turns out that this corresponds to integrating over the positions of all the vertex operators,
except three of them, which can be inserted at a fixed position in their unintegrated form,
with a c-ghost.

5.1.3 D-branes

Let us consider now the (bosonic) theory of open strings in d dimensions. In complex
coordinates it corresponds to d copies of the theory of a free boson on the upper half plane,
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5.1. Bosonic String Theory and D-branes

with boundary along the real line. We have seen in chapter 3 that in order to have a well-
defined theory we need to specify the boundary conditions along the boundary. Since the
real line corresponds to the endpoints of open strings, this corresponds to impose certain
boundary conditions on such points. In terms of the coordinates σ and τ , Neumann and
Dirichlet boundary conditions correspond to:

∂σX
M = 0 (Neumann) ,

∂τX
M = 0 (Dirichlet) .

(5.10)

These conditions must be imposed on the two endpoints of the open string. In principle it
is possible to have different boundary conditions on the two endpoints; for the moment we
restrict to the case when the condition is the same at the two extremities. In such a case,
the theory in complex coordinates is characterized by homogeneous boundary conditions
along the whole boundary, which means that the bosons XM are all in the NS sector.

The physical meaning of the boundary conditions is the following: for Dirichlet con-
ditions the endpoints of the string are forced to lie at some fixed positions along the
directions xM . On the contrary, for Neumann conditions the extremities of the string can
move freely. It is possible to choose Neumann boundary conditions for some coordinates
(M = 0, . . . , p), and Dirichlet conditions for the others (M = p+1, . . . , d−1); this is what
defines a Dp brane [49, 21, 50], where D stands for “Dirichlet” and p indicates the number
of spatial dimensions. Such an object can be seen as an hypersurface where endpoints of
open strings can lie (see picture 5.2).

Neumann

Dirichlet

Figure 5.2: Open string with endpoints lying on a D-brane.

The presence of a Dp-brane has the effect to break the Lorentz group of the target space
into

SO(1, d− 1) −→ SO(1, p)× SO(d− p− 1) . (5.11)

A particular case is a D(−1) brane, or D-instanton, for which the strings satisfy Dirichlet
boundary conditions for all M , including the time direction.

It turns out that D-branes should be considered as dynamical objects in string theory;
their action is the generalization of the string action, i.e.

SDp = Tp

∫
dp+1ξ

√
−detγ , (5.12)

where Tp is the tension of the brane, ξa (a = 0, . . . , p) are coordinates of the (p + 1)-
dimensional worldvolume, and γab is the pullback of the spacetime metric given by

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν . (5.13)
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5. Finite-size D-branes in bosonic string theory

For D-branes the action is proportional to the area of the branes itself, in analogy to the
action of the string, which is proportional to its length.

There are however fundamental differences between strings and D-branes. As we
have seen, the string action is characterized by the conformal symmetry, which makes
the theory easy to study and quantize. An important consequence is the fact that the
spectrum of string oscillation is discrete. For D-branes, however, this is not the case; the
action is not Weyl invariant and thus the spectrum is continuous. Intuitively, this can be
explained by the fact that a higher dimensional D-brane is allowed to change its shape
without changing its area, and therefore without changing its energy. This fact shows
that a quantized D-branes can not have an interpretation in terms of particle states, but
it should rather describe multi-particle states [46].

On the other hand, string theory allows to explicitly compute the D-brane tension
Tp appearing in (5.12); the result is proportional to g−1

s [47, 48]. This means that D-
branes can not be properly considered in a perturbative approach to string theory, since
the latter relies on a perturbative expansion in powers of gs. Therefore D-branes should
be considered as non-perturbative objects, analogously to monopoles and instantons in
quantum field theory.

5.2 D-branes bound states in bosonic string theory

As mentioned above, in principle it is possible to have different boundary conditions
on the two endpoints of an open string, for some particular direction xM . This means
that the corresponding coordinate XM will behave as a boson in the Ramond sector, as
explained in chapter 3. The physical meaning of this, is that one endpoint of the string
lies on some Dn brane, while the other one lies on a Dm brane, a D-brane which extends
on a different number of spatial dimensions. The theory thus contains a bound states of
D-branes. For example, let us consider a bound state of a Dn and a Dm brane in bosonic
string theory, with n < m. An open string stretching between the two different branes
has mixed boundary conditions along the directions XM with (n < M ≤ m). Therefore
the coordinates XM will behave as bosons in the NS sector for M ≤ n and M > m, and
in the R sector for n < M ≤ m. Along these directions twist fields need to be taken into
account, in order to properly describe the properties of the string.

5.2.1 Boundary changing operators

In the following we will focus on the bound state of a D(−1) and a D(n− 1) brane; other
bound states with a difference of dimension equal to n can be related to this one. Let us
study then the n “mixed” directions together. The corresponding bosons XM are all in
the Ramond sector, and the corresponding vacuum state is related to twist fields, thanks
to the operator-state correspondence. Let us define the boundary changing operators
∆(z) (and ∆̄) as the product of these twist fields, i.e.

∆(z) =
n−1∏
µ=0

σµ(z) , ∆̄(z) =
n−1∏
µ=0

σ̄µ(z) . (5.14)
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5.2. D-branes bound states in bosonic string theory

Boundary changing operators are primaries of conformal dimension n/16, and satisfy

∆̄(z)∆(w) =
1

(z − w)n/8
+ . . . . (5.15)

Correlation functions involving boundary changing operators can be derived from correla-
tion functions with twist fields. When the difference of dimension equals some particular
values, correlation functions can become quite simple. This is the case when n is a multi-
ple of four. We start considering co-dimension 8 and 16, and comment on the n = 4 case
at the end, due to its importance in superstring theory.

5.2.2 D7-D(−1) system

Let us now consider the difference of dimension to be 8, in particular the bound state of
a D7 and a D(−1) brane. The four-point function of boundary changing operator has a
simple form, namely

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)(
π

2K(η)

)4

. (5.16)

The bosonized version of twist fields, as described in chapter 4, can also be used, but
it describes a different setup. The periodicity properties of the boson Ω can be used
for describing a set of D(−1) branes positioned on a lattice with period 2

√
2π. A pair

of boundary changing operators connects the D7 brane to one of these D(−1) branes;
the four-point function can then depend on the positions of two different branes. If the
difference of the two positions is given by the vector ~δ, the four-point function is

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)(
π

2K(η)

)4

exp

(
i|~δ|2τ(η)

8π

)
. (5.17)

The position of every brane on the lattice can be described by a vector of four integer
numbers nµ, i.e. xµ = 2

√
2πnµ. The correlation function of bosonized twist fields is then

given by the superposition of four-point function corresponding to single branes, the result
being

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =
z31z42

z21z41z32z43

. (5.18)

Notice that in this case (co-dimension n = 8) the boundary changing operator ∆ has
conformal dimension 1/2. We want now to argue that, at least in the bosonized case,
it behaves effectively as a fermion. From the eight bosons Ωµ, we can construct the
normalized boson ΩCM as

ΩCM =
1√
8

8∑
µ=1

Ωµ . (5.19)

Given this definition, the boundary changing operator can be written as

∆B(z) = exp

(
i

√
2

4

8∑
µ=1

Ωi(z)

)
= eiΩCM (z) . (5.20)

We notice that this expression represents a complex fermion in its bosonized representation
(cfr. section 3.4).
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5.2.3 D15-D(−1) system

Another notable situation is when the difference of dimension is 16. The four-point
function of boundary changing operators is simply (allowing D(−1) branes at different
positions)

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)2(
π

2K(η)

)8

exp

(
i|~δ|2τ(η)

8π

)
, (5.21)

while in the bosonized case the result is

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =

(
z31z42

z21z41z32z43

)2

. (5.22)

The boundary changing operator has conformal dimension 1, and can be written (in the
bosonized case), as

∆B(z) = exp

(
i

√
2

4

16∑
µ=1

Ωi(z)

)
= ei

√
2ΩCM (z) =: J+

CM(z) , (5.23)

where ΩCM =
∑

Ωµ/
√

16 and J+
CM(z) is a generator of the current algebra described in

section 4.1. Following the discussion of section 3.6, a natural question to ask is whether
this dimension 1 operator can generate an exactly marginal deformation of the boundary
conformal field theory. We have to remember, however, that a twist field must always
appear together with its conjugate

∆̄B(z) = e−i
√

2ΩCM (z) =: J−CM(z) . (5.24)

This means that the deformation of the boundary CFT is given by

exp

(
λ2

∫
J+
CM(z)dz

∫
J−CM(w)dw

)
, (5.25)

where λ is the modulus of the deformation. As discussed in [51], a set of dimension 1
boundary operators produces a marginal deformation only if these operators are mutually
local, meaning that the OPE among them must not contain single poles. A similar result
for bulk deformations states that a set of operators of the form Ji(z)J̄i(z̄) generates an
exactly marginal deformation of the theory if and only if these currents form an abelian
subalgebra (see e.g. [52, 53]). In our case, however, we have

∆̄B(z)∆B(w) = J−CM(z)J+
CM(w) =

1

(z − w)2
− i
√

2∂ΩCM

z − w
+ . . . , (5.26)

which means that ∆̄B and ∆B are not mutually local. Equivalently, J+
CM and J−CM do not

constitute a subalgebra of the su(2) Kač-Moody, since [J+
CM , J

−
CM ] ∼ ∂ΩCM . In conclusion,

even if the boundary changing operator has conformal dimension 1, it does not generate
an exactly marginal deformation of the bosonic conformal theory. Geometrically, the
deformation generated by the twist field ∆B(z) (which is the massless excitation of the
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5.2. D-branes bound states in bosonic string theory

(−1)/15 string) corresponds to blowing up the point-like D(−1) branes inside the D15
brane. We then conclude that this blow-up mode is not a modulus in the lattice.

One may wonder if this obstruction is an artifact of compactification. Recalling the
OPE (3.63) of the original twist field we see that a simple pole will be present whenever
the compactification radius is a multiple of

√
2, and also if the boson is not compactified.

So, we expect the obstruction to persist if this condition is met. A possible interpretation
for the lifting of this modulus from string theory is that the the constituents of the array
feel each other through the exchange of a massless primary.

5.2.4 D3-D(−1) system

Let us consider now a difference of dimension equal to 4. The D3-D(−1) state is very
important in superstring theory, as we will see in chapter 7; here we focus on the bosonic
content of the spectrum. As we will see later, in superstring theory the full boundary
changing vertex operators contains also spin fields. Due to picture changing, one also en-
counters the “excited” bosonic boundary changing operator, which consists of the product
of one excited twist field and 3 normal ones. More specifically we define

τµ = σ′µ(z)
3∏

ν=0
ν 6=µ

σν(z) , τ̄µ = σ̄′µ(z)
3∏

ν=0
ν 6=µ

σ̄ν(z) . (5.27)

Excited boundary changing operators are primaries of conformal dimension 3/2; the ope-
rator product expansions can be easily derived from the ones defining the twist fields, for
example

i∂Xµ(z)∆(w) =
τµ(w)

(z − w)1/2
+ . . . ,

i∂Xµ(z)τµ(w) =
∆(w)

2(z − w)3/2
+

2 ∂∆(w)

(z − w)1/2
+ . . . ,

(5.28)

where we are not summing over the index µ in the second expression. Furthermore we
have

τ̄µ(z)τ ν(w) =
ηµν

2(z − w)n/8+1
, (5.29)

where ηµν is the metric of the target space. The calculation of four-point correlation
functions is straightforward, and gives

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)1/2(
π

2K(η)

)2

exp

(
i~δ2τ(η)

8π

)
, (5.30)
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〈τ̄µ(z1)τ ν(z2)∆̄(z3)∆(z4)〉 =

ηµν

z
3/2
21 z

1/2
43

(
π

2K(η)

)2
1

1− η

(
E(η)

2K(η)
−

~δ2

16K(η)2

)
exp

(
i~δ2τ(η)

8π

)
,

〈τ̄µ(z1)∆(z2)τ̄ ν(z3)∆(z4)〉 =

=
ηµνz

1/2
42

z
1/2
31 z43z21

(
π

2K(η)

)2
1

1− η

(
1− η

2
− E(η)

2K(η)
+

~δ2

16K(η)2

)
exp

(
i~δ2τ(η)

8π

)
.

(5.31)

where K(η) and E(η) are the complete elliptic integrals of the first and second kind respec-
tively. Correlation functions of bosonized twist fields are then given by the superposition
of four-point functions corresponding to single branes, the results being

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =

(
z31z42

z21z41z32z43

)1/2

,

〈τ̄µB(z1)τ νB(z2)∆̄B(z3)∆B(z4)〉 =
ηµν

2z
3/2
21 z

1/2
43

,

〈τ̄µB(z1)∆B(z2)τ̄ νB(z3)∆B(z4)〉 = 0 .

(5.32)

These correlation functions can also be derived in a straightforward way by expressing
the boundary changing operators in the Ω picture.

5.3 String field theory approach

In this section we reformulate the question of whether it is possible to find a marginal
deformation corresponding to twist fields in the language of open string field theory, as
discussed in chapter 1. The BRST charge for bosonic string theory is given by [48]

Q =

∮
dz

2πi

(
cTX,ψ,β,γ + c(∂c)b

)
(z) . (5.33)

The space of physical states of string field theory is then given by the cohomology of
Q. This means that it is spanned by states Ψ annihilated by Q (QΨ = 0), with the
equivalence relation Ψ ∼ Ψ+QΦ. For states with ghost number 1, physical states are the
ones at conformal dimension 0. These are exactly the states corresponding to unintegrated
vertex operators discussed in 5.1.2.

Since the ghost c has conformal dimension −1, we need a matter vertex operator of
conformal dimension 1. Let us then consider the boundary changing operators ∆ and ∆̄
of the D15-D(−1) system, and arrange them in the matrix

Ψ(1) = c(z)

(
0 ∆
∆̄ 0

)
(z) , (5.34)

where the different entries represent 15/15, 15/(−1), (−1)/15 and (−1)/(−1) string os-
cillations. We would like then to explore the possibility of extending the solution Ψ(1) of
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the linearized equations of motion of OSFT to a solution of the full non-linear equation.
As found in (2.27), at second order we would have

QΨ(2) +m2(Ψ(1),Ψ(1)) = 0 , (5.35)

provided that no obstruction is present. An obstruction appears whenever Q can not
be inverted, and this happens if m2(Ψ(1),Ψ(1)) contains states of conformal dimension 0.
This is completely analogous to the requirement of mutual locality discussed above in
5.2.3. In particular for the bosonized version we have

P0m2(Ψ(1),Ψ(1)) = −i
√

2∂ΩCMTr

(
1l 0
0 −1l

)
= −15i

√
2∂ΩCM 6= 0 , (5.36)

which shows the presence of an obstruction. Since mixed strings oscillations (∆ and ∆̄)
would correspond to switching on the size of the D(−1) branes, (5.36) shows that the
blow-up of these branes is obstructed at second order in the size. This is true not only
for bosonized boundary changing, but also for normal boundary changing operators, since
the OPE of normal twist fields also contains the field ∂Ω. As a consequence, the blow-up
mode is obstructed also when there is only one D(−1) brane, instead of an array.

The presence of this obstruction has also another consequence; the impossibility of
defining a second-order solution Ψ(2) means that it is also impossible to associate a profile
to the field Aµ living on the D3 brane. As a consequence, a connection to Yang-Mills
instantons can not be found in bosonic string theory. For this reason, from now on
we consider superstring theory; this was in any case necessary, due to the instability of
bosonic string theory related to the presence of a tachyon in the spectrum. In chapter 8
we will see that the obstruction (5.36) is resolved in superstring theory, and this will allow
us to properly define a profile for the field Aµ, and establish a connection to Yang-Mills
instantons.
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Chapter 6

Supersymmetric Yang-Mills theory

Up to this point in this thesis we have worked only with bosonic string theory. This might
seem reasonable, since we are ultimately interested in the connection to instantons in pure
Yang-Mills theory, which contains only the vector boson Aµ in its spectrum. However,
bosonic string theory is not sufficient for mainly two reason. First of all, its spectrum
contains a tachyonic state, indicating instability in the theory. Secondly, bound states of
D-branes in string theory fail to represent instantons in Yang-Mills theory. Both of these
problems can be solved by introducing supersymmetry in the worldsheet theory. This will
give the so-called superstring theory, which we will discuss in chapter 7. In this chapter
we discuss the supersymmetric generalization of the pure Yang-Mills theory presented in
chapters 1 and 2; in particular we focus on the maximally supersymmetric N = 4 Super
Yang-Mills (SYM) theory. We review the action and the spectrum both in Minkowski and
Euclidean space, and see how instanton solutions presented in chapter 2 are still valid.

6.1 Minkowskian N=4 SYM theory

In order to discuss instantons in this theory, we need to consider the Euclidean version
of the theory; however, before doing that, we review the theory in Minkowski space.
The N=4 Super Yang-Mills theory is well known in Minkowski space, and its action and
properties have been extensively studied in the literature. Using the conventions of [4],
we write the action as:

SSYM =
1

g2

∫
d4x Tr

{
1

2
FµνF

µν − iλ̄α̇A /̄Dα̇βλ
βA − iλAα /D

αβ̇
λ̄Aβ̇ +

1

2
(Dµφ̄AB)(DµφAB)

−
√

2φ̄AB{λαA, λBα } −
√

2φAB{λ̄α̇A, λ̄α̇B}+
1

8
[φAB, φCD][φ̄AB, φ̄CD]

}
(6.1)

The indices µ, ν = 1, . . . , 4 are space-time indices, while α, α̇ = 1, 2 are chiral and anti-
chiral spinor indices. The indices A,B = 1, . . . , 4 take into account the R-symmetry group
SU(4). The fields described by this action are:

• A gauge field Aµ, with field strength Fµν (This field appears in the action also
through the covariant derivative Dµ);
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6. Supersymmetric Yang-Mills theory

• 4 pairs of Weil spinors (gauginos) λαA and λ̄α̇A, respectively right- and left-handed;

• 6 scalars φAB = −φBA. Their duals are not independent, and are defined by φ̄AB =
1
2
εABCDφ

CD.

All these fields belong to the adjoint representation of the gauge group (typically SU(N));
in the action (6.1) we have omitted the corresponding indices. The trace is taken precisely
in this adjoint representation. The reality conditions on the fields are the Majorana
conditions (λαA)∗ = −λ̄α̇A . Furthermore, the scalars satisfy the reality condition (φAB)∗ =
φ̄AB. Some properties of the σµ matrices used to define the operator /D are collected in
appendix A.

The action (6.1) is invariant under the following supersymmetry transformations, with
parameters ζAα and ζ̄α̇A:

δζAµ = −iζ̄ α̇A(σ̄µ)α̇βλ
βA + iλ̄β̇A(σµ)αβ̇ζAα ;

δζφ
AB =

√
2
(
ζαAλBα − ζαBλAα + εABCDζ̄ α̇C λ̄α̇D

)
;

δζλ
αA = −1

2
(σµν)αβFµνζ

βA − i
√

2ζ̄α̇B /D
αα̇
φAB + [φAB, φ̄BC ]ζαC .

(6.2)

We now turn to the analysis of N=4 SYM theory in Euclidean space, since we are ulti-
mately interested in instantonic solutions.

6.2 Euclidean N=4 SYM theory

The definition of the SYM theory in 4-dimensional Euclidean space is not easy, given
to the fact that a real representation of Dirac matrices in such a space does not exist.
Consequently, one can not define easily Majorana spinors. However we can proceed in
another way; one can derive the action of the N=4 SYM in four dimensional Euclidean
space starting from the N=1 SYM theory in 10-dimensional (9+1) Minkowski space-time.
The action of this theory is extremely simple, and reads:

S10 =
1

g2
10

∫
d10x Tr

{
1

2
FMNF

MN + Ψ̄ΓMDMΨ

}
, (6.3)

where the index M runs from 0 to 9, and Ψ is a Majorana-Weyl spinor. In order to derive
the N=4 SYM theory in four Euclidean dimensions we have to compactify over a torus
with one time and five space coordinates. We refer to [4] for details, and here we just
state the results.

The action in Euclidean space turns out to be formally identical to the one in Minkowski
space given in (6.1); anyway the matrices used to define the /D operator are different from
the Minkowskian case; details can be found in appendix A. Furthermore, now the fields
satisfy different relations; the usual Majorana condition is replaced by the so-called sym-
plectic Majorana condition:

(λαA)∗ = −ε̃ABεαβλβB

(λ̄α̇A)∗ = −ε̃ABεα̇β̇λ̄β̇B ,
(6.4)
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where ε̃AB is an antisymmetric tensor whose non-zero components are ε̃14 = −ε̃41 = ε̃23 =
−ε̃32 = 1. Furthermore, the scalar fields are constrained by the relation

(φAB)∗ = ε̃ACφ
CD ε̃DB . (6.5)

The action is invariant under supersymmetry transformations, which are formally identical
to the ones in (6.2), provided that also the fermionic parameters ζ and ζ̄ satisfy the
symplectic Majorana condition (6.4). From the action (6.1) one can derive the equations
of motion of the theory, which are [54]:

DνFµν − i
{
λ̄α̇A(σ̄µ)α̇β, λ

βA
}
− 1

2

[
φ̄AB, Dµφ

AB
]

= 0 ,

D2φAB +
√

2
{
λαA, λBα

}
+

1√
2
εABCD

{
λ̄α̇C , λ̄α̇D

}
− 1

2

[
φ̄CD,

[
φAB, φCD

]]
= 0 ,

/̄Dα̇βλ
βA + i

√
2
[
φAB, λ̄α̇B

]
= 0 ,

/D
αβ̇
λ̄β̇A − i

√
2
[
φ̄AB, λ

αB
]

= 0 .

(6.6)

This is a complicated system of coupled differential equations, and in general it is a
difficult task to find solutions of these equations. Anyway, simple solutions can be found
by setting the gauginos and the scalars to zero. If this is the case, the equations of motion
reduce to

DνFµν = 0 , (6.7)

which are exactly the equations of motion of the pure Yang-Mills theory (2.1). This
means that all the instanton solutions discussed in chapter 1 are still valid, once vanishing
gauginos and scalars are added.

The equations of motion (6.6) have also more complicated solutions involving fermions
and scalars, and not only the gauge field. In the case of N = 4 SYM theory, we have non
trivial fermion-scalar interactions. This means that, once we have a non trivial fermion,
the complete solution has also non trivial scalar fields; this generalization of the instanton
solution is called superinstanton. However, the set of equations of motion (6.6) is too
complicated to be solved in full generality; a super-instanton solution is not known in
closed form. As explained in [54] and [5] we can only recover it iteratively, starting from
the pure gauge instanton solution and applying suitable supersymmetry transformations.
The discussion of super-instantons is beyond the purpose of this thesis, hence we focus in
the following on pure instantons.

We conclude this section by writing the action in 4 euclidean dimensions in an equiv-
alent version, which will be useful later:

SSYM =
1

g2
YM

∫
d4x Tr

{
1

2
F 2
µν − 2Λ̄α̇A /̄D

α̇β
Λ A
β + (Dµϕa)

2 − 1

2
[ϕa, ϕb]

2

− i(Σa)ABΛ̄α̇A[ϕa, Λ̄
α̇
B]− i(Σ̄a)ABΛαA[ϕa,Λ

B
α ]

}
,

(6.8)

where the six scalars are now labeled by ϕa, with a = 1, . . . , 6.
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Chapter 7

Superstring theory and the
D3-D(−1) bound state

In this chapter we review some basic concepts in superstring theory. We present the action
of the theory, and highlight its connection to the conformal theories of free bosons and
fermions discussed in chapter 3. We generalize the discussion of chapter 5 and introduce
the superconformal ghosts. We study vertex operators in superstring theory, in particular
the ones describing massless oscillations of open strings on a D3-D(−1) brane system. We
discuss the connection of this model to the Super Yang-Mills theory presented in chapter
6.

7.1 Superstring theory

A complete discussion of superstring theory is far beyond the purpose of this work; here
we will just review some concepts we will use in the following. Further details can be
easily found in the literature, for example in [55], [48] or [56].

The starting point is the superstring action, which differs from (5.2) because of the
presence of fermions. The action reads, in the so-called superconformal gauge,

S =
1

8π

∫
d2σ

(
2

α′
∂αX

M∂αXM + 2iψ̄Mρα∂αψM

)
, (7.1)

where ρα are matrices satisfying the Clifford algebra in two dimensions. The invariance
under supersymmetry transformations has been used to write the action in the simple
form (7.1). As in the case of bosonic string theory, this action can describe both closed
and open strings.

It is useful to express the theory in terms of complex coordinates, as was done for
bosonic string theory. The action (7.1) can thus be written in the following form:

S =
1

4π

∫
d2z

(
2

α′
∂XM ∂̄XM + ψM ∂̄ψM + ψ̄M∂ψ̄M

)
. (7.2)

From this we see that superstring theory consists of d copies of a free bosonic theory
coupled to d copies of a free fermionic theory. The action is invariant under the following
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N = 1 supersymmetry transformations with (anticommuting) parameter η:√
2

α′
δηX

µ(z, z̄) = η(z)ψ(z) + η(z)∗ψ̄(z̄) ,

δηψ
µ(z) = −η(z)

√
α′

2
∂Xµ(z) ,

δηψ̄
µ(z) = −η(z)∗

√
α′

2
∂̄Xµ(z̄) .

(7.3)

7.1.1 The β-γ ghost system

In analogy to what discussed in chapter 5 for the bosonic string, the quantization of a
theory subject to gauge invariance implies the presence of ghost fields. In addition to
the b-c ghost system, superstring theory is characterized by another ghost system, with
action given by

Sβ,γ =
1

4π

∫
d2z

[
β(z)∂̄γ(z) + β̄(z̄)∂γ̄(z̄)

]
. (7.4)

β and γ are commuting fields, with conformal dimension 3/2 and −1/2 respectively, and
are the superpartners of b and c. They satisfy the OPE

β(z)γ(w) ∼ −γ(z)β(w) = − 1

z − w
+ . . . , (7.5)

and the energy momentum tensor is given by

Tβ,γ(z) = 2N(∂γ β)(z) +N(γ ∂β)(z) . (7.6)

The bosonization of these ghosts is slightly more complicated than the one of the b-c
ghosts: we refer to B for details. The central charge of the β-γ system is cβ,γ = 11. This
means that the total central charge of superstring theory is

ctotal = d · (cboson + cfermion) + cb,c + cβ,γ = d ·
(

1 +
1

2

)
− 26 + 11 , (7.7)

which vanishes in d = 10 dimensions. Therefore the Weyl anomaly is absent in d = 10,
which is the critical dimension for superstring theory.

7.1.2 Quantization of the theory and spectrum

There are different ways of quantizing superstring theory; roughly speaking, one has to
deal both with bosonic and fermionic oscillators, and impose appropriate quantization con-
ditions. The physical states of the theory are constructed applying bosonic and fermionic
creation operators to a vacuum state; at the end one gets an infinite tower of states, cor-
responding to particles with increasing mass. The first physical particles are the massless
ones, which are the ones we are interested in. We focus only on open superstrings; the
spectrum of the theory is divided in the two sectors (NS and R):
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• NS sector: the vacuum state |0〉 corresponds to a tachyon, which is not physical.
Applying a fermionic creation operator to the vacuum one gets the first excited state
|AM〉, which corresponds to a massless vector boson in d = 10.

• R sector: there are two different ground states, corresponding to spin fields of even
and odd chirality respectively, which create two massless spinors of opposite chirality,
which we indicate by |SA〉 and |SȦ〉. We denote with A, Ȧ = 1, . . . , 16 chiral and
antichiral indices in 10 dimensions.

There are many other physical states in the theory, but they are all massive, with masses
proportional to α′−1; in the field theory limit α′ → 0 they can be integrated out. For
the purposes of this work it is sufficient to deal with massless states, i.e. only with |AM〉,
|SA〉 and |SȦ〉.

7.1.3 Vertex operators

Given the conformal character of string theory, the calculation of scattering amplitudes
can be simplified a lot. As for the bosonic theory, it turns out that the contribution of
every external state can be reduced to the insertion of a vertex operator on the worldsheet.
The latter is topologically equivalent to a sphere or a disk, in the case of closed and
open strings respectively. The calculation of an amplitude is performed computing the
correlation function of the vertex operators corresponding to each external leg.

We can express the vertex operators using the bosonization procedure explained in
section 3.4, in terms of five bosons φi; the explicit form for the vector boson and the two
massless spinor is ([48]):

|AM〉 −→ VA(z) = ψM(z) =: eiλA·φ : λA = (0, . . . ,±1, . . . , 0) ,

|SA,Ȧ〉 −→ VS(z) = SA,Ȧ(z) =: eiλA,Ȧ·φ : λA,Ȧ =

(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
.

(7.8)

The vector λA has only one entry equal to ±1, while the remaining four are 0. The vectors
λA and λȦ have an even and an odd number of minus signs respectively, for even and odd
chirality. The vertex operators are primary operators; their conformal dimensions is 1/2
and 5/8 respectively.

In superstring theory, the operators (7.8) are not sufficient to describe the massless
states. First of all one has to take care of the ingoing momentum kM (with k2 = 0) carried
by the massless particle. Furthermore, as for bosonic string theory, the vertex operators
corresponding to physical massless particles must have conformal dimensions 1 (or 0 if
the c-ghost is added). The correct operators are of the form([48]):

Vλ,q(z; k) =: eiλiφ
i(z)eqφ(z)eik·X(z) : , (7.9)

where φ(z) comes from the bosonization of the superghosts (see appendix B), and q is
called superghost charge. Such a field has conformal dimension equal to

h =
1

2
λ2 − 1

2
q2 − q . (7.10)
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Therefore, the complete vertex operators for the vector boson and the two fermions are
given by:

|AM〉 −→ V
(−1)
λA

(z; k) = εMψ
M(z)e−φ(z)eik·X(z) ,

|SA〉 −→ V
(−1/2)
λA

(z; k) = uAS
A(z)e−

1
2
φ(z)eik·X(z) ,

(7.11)

and similarly for |SȦ〉. We have also added a possible polarization vector or spinor which,
for on-shell states, must satisfy

k · ε = 0 , (/ku)A = 0 . (7.12)

The vertex operators in (7.11) are in the so-called canonical picture. There are other
equivalent pictures that can be used, with different superghost charge.

7.1.4 Superstring scattering amplitudes

We discussed already in 5.1.2 scattering amplitudes in bosonic string theory. We general-
ize here the discussion to superstring theory. The general idea is the same: the calculation
of the S-matrix reduces to the computation of scattering amplitudes on Riemann surfaces,
with the insertion of vertex operators. Again, conformal invariance implies that three ver-
tex operators have to be inserted in their unintegrated version (with a c-ghost) while the
others have to be integrated over all possible positions of the insertions. The difference
resides in the integration over the supermoduli. In superstring theory all vertex operators
have to be inserted in their canonical picture, and the integration over the supermoduli
results in the insertion of a number of picture changing operators such that the total
superghost charge is -2. If all the states in consideration are on-shell, these vertex oper-
ators can be moved in such a way to act on vertex operators. When this is the case the
amplitude can be simply computed considering vertex operators in various pictures, in
such a way that the total picture is -2. The result does not depend on where the picture
changing operators are inserted, as long as the total picture is conserved [48, 55].

However, this is not valid for off-shell amplitudes, and the integration over the su-
permoduli is more delicate. This will be important later, when considering the theory
in Euclidean space, since a state with non-vanishing momentum is necessarily off-shell
(k2 6= 0).

7.2 The D3-D(−1) system

In this section we study the string theory setup we will use in order to describe instantons
in N = 4 SYM theory in 4 dimensions. As explained in [57], [26] and [25], such a
setup consists of a bound state of N D3 branes and k D(−1) branes. This configuration
can describe instantons with winding number k in a theory with gauge group SU(N).
The bosonic coordinates XM and ψM (M = 0, . . . , 9) obey different boundary conditions
depending on the type of boundary: on the D(−1) branes all the coordinates satisfy
Dirichlet boundary conditions, while on the D3 branes the first coordinates Xµ and ψµ

(µ = 0, . . . , 3) satisfy Neumann conditions and the remaining Xa and ψa (a = 4, . . . , 9)

62



7.2. The D3-D(−1) system

satisfy Dirichlet conditions. Furthermore the presence of the D3 branes breaks SO(10) to

SO(4) × SO(6) (we consider the euclidean theory); therefore the spin fields SA and SȦ

can be expressed in terms of the spin fields in 4 and 6 dimensions as follows ([27]):

SA −→ (SαS
A, Sα̇SA) ,

SȦ −→ (SαSA, S
α̇SA) ,

(7.13)

where Sα and Sα̇ are SO(4) spin fields of even and odd chirality respectively, and SA and
SA are SO(6) spin fields of even and odd chirality respectively. The explicit bosonized
form for these spin fields is analogous to the one in (7.8); in d = 4 we have only few
possibilities:

λα =

(
1

2
,
1

2

)
or

(
−1

2
,−1

2

)
,

λα̇ =

(
1

2
,−1

2

)
or

(
−1

2
,
1

2

)
.

(7.14)

Other details on the spin fields can be found in [21] and [27].
In the system we are considering, there are four types of open strings: those stretch-

ing between two D3 branes (3/3 strings), those stretching between two D(−1) branes
((−1)/(−1) strings) and finally those with one endpoint on a D3 brane and the other one
on a D(−1) brane (3/(−1) and (−1)/3 strings). We have to consider each type of string
separately, as each one has its own spectrum and properties. Let us consider first of all
the 3/3 strings. The massless NS state, corresponding to AM in (7.11), can be divided in
a four-vector Aµ and six scalars ϕa; the corresponding (unintegrated) vertex operators in
the canonical (−1) picture are:

VA(z; k) = Aµc(z)ψµ(z)e−φ(z)eik·X(z) ,

Vϕ(z; k) = ϕac(z)ψa(z)e−φ(z)eik·X(z) ,
(7.15)

where the momentum kµ is ingoing and the polarizations have to satisfy Aµk
µ = 0.

Furthermore we consider momentum flowing only along the 4 directions parallel to the
D3 brane. The on-shell condition is k2 = 0; notice that this condition can be met only
in Minkowski space. In Euclidean space these vertex operators are necessarily off-shell,
if the momentum kµ is not zero. In the R sector, the massless excitations, corresponding
to SA and SȦ in (7.11), are the gauginos λαA and λ̄α̇A, with vertex operators (in the
canonical (−1/2) picture):

Vλ(z; k) = λαAc(z)Sα(z)SA(z)e−
1
2
φ(z)eik·X(z) ,

Vλ̄(z; k) = λ̄α̇Ac(z)Sα̇(z)SA(z)e−
1
2
φ(z)eik·X(z) ,

(7.16)

where the polarizations satisfy /kλ = 0 and λ̄/k = 0, where /k = kµγ
µ is defined through

the gamma matrices in d = 10. We can immediately recognize that the spectrum of the
3/3 strings reproduces exactly the fields of N=4 SYM in four dimensions, as described
in chapter 6. If N is greater than 1, these vertex operators must be multiplied by a
N × N Chan-Paton factor (T I)uv, in order to take care of all the possible D3 branes on
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7. Superstring theory and the D3-D(−1) bound state

which the endpoints of the strings can lie. Here I is a SU(N) color index; therefore all
the polarizations will transform in the adjoint representation of SU(N), as expected. In
what follows we will assign Chan-Paton indices directly to the polarizations if needed (for
example we will write Auvµ ).

Let us now consider (−1)/(−1) strings; the situation is different from the 3/3 case,
because now there are no longitudinal Neumann direction. Therefore, the states corre-
sponding to oscillations of these strings do not carry momentum, and have to be considered
as moduli rather than dynamical fields. Among the 10 scalars of the NS sector, it is con-
venient to divide the ones corresponding to the longitudinal directions of the D3 branes
from the others; their vertex operators are (in the canonical (−1) picture):

Va(z; k) = aµc(z)ψµ(z)e−φ(z) ,

Vχ(z; k) = χac(z)ψa(z)e−φ(z) .
(7.17)

In the R sector we have sixteen fermionic moduli, indicated by MαA and M̄α̇A; their vertex
operators in the canonical (−1/2) picture are:

VM(z; k) = MαAc(z)Sα(z)SA(z)e−
1
2
φ(z) ,

VM̄(z; k) = M̄α̇Ac(z)Sα̇(z)SA(z)e−
1
2
φ(z) .

(7.18)

Again, we have not written explicitly the indices labeling between which of the k D(−1)
branes the string is stretching; we should add to all the vertex operators a k × k Chan-
Paton matrix (tU)ij with indices i, j = 1, . . . , k. Here U is a SU(k) color index.

Finally we consider 3/(−1) and (−1)/3 strings. In this case the four directions µ =
0, . . . , 4 are characterized by mixed boundary conditions, again, the fields corresponding
to these strings do not carry momentum. A closer analysis of these strings (see [12]) shows
that in the NS sector one has two bosonic Weyl spinors of SO(4), w and w̄, with vertex
operators given, in the canonical (−1) picture, by

Vw = wα̇c(z)∆(z)Sα̇(z)e−φ(z) ,

Vw̄ = w̄α̇c(z)Sα̇(z)∆̄(z)e−φ(z) .
(7.19)

Notice that only the anti-chiral spin fields Sα̇ appear in these vertex operators; the anal-
ogous vertex operators of opposite chirality, containing Sα, can be considered instead. In
technical terms, the choice of chirality is called GSO projections, and is needed to elimi-
nate tachyons from the spectrum of the theory [55, 56]. ∆ and ∆̄ are the bosonic twist
and anti-twist fields; they have conformal dimension 1/4, and they change the boundary
conditions of the four Xµ coordinates. They can be expressed as product of four twist
fields corresponding to each direction longitudinal to the D3 branes, as we did in chapter
5:

∆(z) = σ0(z)σ1(z)σ2(z)σ3(z) . (7.20)

In the R sector we find two fermionic spinors of SO(6) (µ and µ̄), with vertex operators
given, in the canonical (−1/2) picture by:

V (−1/2)
µ = µA∆(z)SA(z)e−

1
2
φ(z) ,

V
(−1/2)
µ̄ = µ̄ASA(z)∆̄(z)e−

1
2
φ(z) .

(7.21)
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7.2. The D3-D(−1) system

Again, the two spinors have definite chirality. We also have to add to all the vertex
operators in (7.19) and (7.21) a matrix ζui or ζ̄ui with N × k entries, corresponding to all
the possible pairs of D3 and D(−1) branes.

7.2.1 Tree-level amplitudes, effective actions and ADHM
constraints

From the setup consisting of N D3 branes and k D(−1) branes it is possible to derive the
corresponding effective action in the following way. One should first compute all string
scattering amplitudes involving massless string states, using the vertex operators defined
above. One should then find an effective Lagrangian able to reproduce these amplitudes.
Since the string tension α′ is the only dimensionful constant, an expansion of the action in
the number of derivatives corresponds to an expansion in powers of

√
α′. The low-energy

effective action is the one resulting from the field theory limit α′ → 0.
When dealing with string scattering amplitudes in the presence of two different sets of

D-branes, it is important to specify what kind of correlation function one is considering.
For example, a scattering amplitude involving only 3/3 strings must be normalized with
the disk amplitude with the boundary conditions of a D3 brane (see [44, 1] and section
4.4 for related discussions). For example, the scattering amplitude of a gauge vector and
two gauginos is given by (see [27])

〈〈VΛ̄VAVΛ〉〉D3 = C4〈VΛ̄VAVΛ〉 , (7.22)

where 〈VΛ̄VAVΛ〉 is the pure CFT correlation function and C4 = 〈〈1l〉〉D3. Correlation
functions of (−1)/(−1) strings, on the other hand, must be normalized with the prefactor
C0 = 〈〈1l〉〉D(−1). The values of C4 and C0 can be computed using unitarity methods, the
results being (see e.g. [58])

C4 ∝
1

g2
YMα

′2
, C0 ∝

1

g2
YM

, (7.23)

where gYM is the (adimensional) gauge coupling constant of the four-dimensional Eu-
clidean theory. In fact, the full low-energy effective field theory corresponding to the
massless 3/3 interactions is

SSYM =
1

g2
YM

∫
d4x Tr

{
1

2
F 2
µν − 2Λ̄α̇A /̄D

α̇β
Λ A
β + (Dµϕa)

2 − 1

2
[ϕa, ϕb]

2

− i(Σa)ABΛ̄α̇A[ϕa, Λ̄
α̇
B]− i(Σ̄a)ABΛαA[ϕa,Λ

B
α ]

}
,

(7.24)

which is exactly the action of the four-dimensional N = 4 SYM theory (6.8), with Fµν =
∂µAν − ∂νAµ + [Aµ, Aν ]. An alternative choice is to rescale all the vertex operators by
gYM ; the corresponding effective action would be the same as (6.8), but without the
prefactor g−2

YM , and with Fµν = ∂µAν − ∂νAµ + gYM [Aµ, Aν ]. The same procedure can be
repeated for the (−1)/(−1) strings and the mixed strings. Since the normalization of the
corresponding amplitudes is C0, the resulting effective action will be of the form

Smoduli =
1

g2
0

tr

{
− 1

4
[aµ, aν ]

2 + . . .

}
, (7.25)
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where we have written explicitly only one term, and the trace is over SU(k) and not
SU(N) as before. We have highlighted one particular term of the action, in order to
discuss the role of the prefactor g−2

0 , where g0 is the coupling of a zero-dimensional SYM
theory. Unlike the gauge coupling gYM , however, g0 is a dimensionful constant, that can
be expressed as g0 ∝ gYM/α

′. Therefore the field theory limit α′ → 0 is problematic. The
solution to this issue is to rescale some of the moduli with a prefactor g0, as explained in
[27], in order to obtain a well defined low-energy action for the moduli. For the mixed
strings, for example, the vertex operators one should use are

Va ∼ g0

√
α′aµcψ

µe−φ ∼ gYM√
α′
aµcψ

µe−φ ,

Vw ∼ g0

√
α′wα̇c∆S

α̇e−φ ∼ gYM√
α′
wα̇c∆S

α̇e−φ ,

Vw̄ ∼ g0

√
α′w̄α̇cS

α̇∆̄e−φ ∼ gYM√
α′
w̄α̇cS

α̇∆̄e−φ .

(7.26)

Since the vertex operators for the moduli should be dimensionless, this means that the
polarizations of the vertex operators are dimensionful. In this case a, w and w̄ have
dimension (length)1, and are associated to the position and size of the instanton. After
this rescaling, the limit α′ → 0 (with gYM held fixed) is well defined. This also means
that we are considering the limit α′ → 0 with the size of the instanton kept constant. The
final result for the moduli action is given in [27], in terms of some auxiliary fields. The
equations of motion of these auxiliary fields give rise to some constraints on the moduli.
In particular we have

η̄µνc

(
[aµ, aν ] +

1

2
w̄α̇(σ̄µν)

α̇β̇wβ̇

)
= 0 , (7.27)

which is the bosonic ADHM constraint, as seen in 2.2.1 (here xµ = 0). Let us restrict to the
case N = 2 and k = 1 for simplicity. Since k = 1, aµ are just numbers, therefore [aµ, aν ] =

0 and the constraint becomes w̄α̇(σ̄µν)
α̇β̇wβ̇ = 0. The matrix (σ̄µν)

α̇β̇ is symmetric, hence
we can parametrize a generic solution as w̄α̇wβ̇ = ρ2εα̇β̇, where ρ has dimension (length)1,
and corresponds to the size of the instanton, as we will see later. For SU(2) an explicit
solution to the constraint is given by

w̄1̇ = (ρ, 0) , w̄2̇ = (0, ρ) , w1̇ =

(
0
−ρ

)
, w2̇ =

(
ρ
0

)
. (7.28)

7.2.2 Marginal vertex operators

Out of all the vertex operators introduced in the previous section, we can identify some
which are marginal, i.e. vertex operators of conformal dimension 0 (or 1 if the c-ghost is
not taken into account). In the NS sector they correspond to the moduli w, w̄, a and χ,
and to the zero-momentum A and φ. We will focus on the four mixed directions, thus
neglecting φ and χ. We can join the remaining vertex operators into a matrix, taking
into account all possible strings. This matrix has (N + k)× (N + k) entries, and is of the
form (eventually rescaling the polarizations)

V (z) = c(z)

(
VA Vw
Vw̄ Va

)
(z) =

gYM√
α′
c(z)

(
Auvµ ψ

µ wujα̇ ∆Sα̇

w̄ivα̇ S
α̇∆̄ aijµψ

µ

)
(z)e−φ(z) , (7.29)
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where we have explicitly written the Chan-Paton indices. This vertex operator can be
expressed in the canonical −1 picture, as in (7.29), or in picture 0. In order to change the
picture of this vertex operator we notice that it has the form V = cV1/2e

−φ, where V1/2

is a Grassmann-odd superconformal matter primary of weight 1/2. Changing the picture
on such a vertex operator is simple, and was discussed in [59]. Here we choose a slightly
different notation: we call X the picture changing operator, and we express it in terms
of the BRST charge and the ξ ghost (which comes from the bosonization of the β and γ
ghosts, see appendix B) as

X = {Q, ξ} . (7.30)

The BRST charge for superstring theory, in turn, is given explicitly by Q = Q0 +Q1 +Q2

with (see [48, 60])

Q0 =

∮
dz

2πi

(
cTX,ψ,β,γ + c(∂c)b

)
(z) ,

Q1 = −
∮

dz

2πi
γTF (z) ,

Q2 = −1

4

∮
dz

2πi
bγ2(z) ,

(7.31)

where TF is the matter supercurrent TF (z) = i√
2α′
ψµ∂X

µ. This is the proper generaliza-

tion of (5.33). We then have

X V = −cV1 +
1

4
γV1/2 , (7.32)

where V1 is a Grassmann-even superconformal primary of weight one defined by

TF (z)V1/2(0) =
V1(0)

z
+ regular . (7.33)

The explicit calculation for the vertex operator (7.29) gives

XV (z) = −gYM√
α′
c


i√
2α′

Auvµ ∂X
µ − 1

2
√

2
wujα̇ τµ(σ̄µ)α̇βS

β

− 1

2
√

2
w̄ivα̇ (σ̄µ)α̇βS

β τ̄µ
i√
2α′

aijµ ∂X
µ

 (z)+

+
1

4

gYM√
α′
γ

(
Auvµ ψ

µ wujα̇ ∆Sα̇

w̄ivα̇ S
α̇∆̄ aijµψ

µ

)
(z) ,

(7.34)

where τµ (and analogously τ̄µ) is a combination of an excited twist field along the µ
direction and three normal twist fields along the other directions [1] (see also 5.2.4 for
some relevant correlation functions).
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Chapter 8

Finite-size D-branes in superstring
theory

In this chapter we explore the possibility of a marginal deformation corresponding to the
blow-up of the size of a D-brane in superstring theory. For concreteness, we consider the
bound state of D3-D(−1) branes introduced in chapter 7. We discuss the importance of
string field theory for this problem, and study marginality up to third order in size. In
the process we review the derivation of the instanton profile from superstring theory.

8.1 Second order deformation

In this section we start analyzing exact marginality of the blow-up of the size of a D(−1)
brane in a D3 background. We do this in the framework of open superstring field theory
(OSFT); this is necessary for two reasons. As we shall see shortly, we will encounter
amplitudes with on-shell internal states as well as off-shell external states. Off-shell states,
for example, appear whenever we consider a vector boson vertex operator VA with non-
vanishing momentum in euclidean space, as in (7.15). Furthermore, the analysis discussed
in 5.2.3 is not easily generalizable, since in superstring theory one has to deal with vertex
operators in different pictures.

The Yang-Mills action (6.8) arises, in the limit α′ → 0, from open superstring field
theory after integrating out massive and auxiliary fields [61, 59]. We will not need all of
the technical material that goes into its construction. Let us instead begin by reviewing
some details relevant for this thesis.

8.1.1 Open superstring field theory

The NS sector of open superstring field theory is defined perturbatively on the space of
states H of the worldsheet SCFT of (−1)/(−1), (−1)/3, 3/(−1) and 3/3 strings with a
non-degenerate BPZ inner product

(Ψ1,Ψ2) = lim
z→0

Tr 〈(I∗OΨ1)(z)OΨ2(z)〉H , (8.1)

where the trace is over NN and DD boundary conditions, 〈. . . 〉H is the correlator on
the upper half plane and I(z) = −1/z while I∗O denotes the conformal transformation
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8. Finite-size D-branes in superstring theory

of O with respect to I. The BPZ inner product is graded symmetric due to the 3 ghost
insertions originating from the SL(2,R) isometry group of the disk. With this, the kinetic
term is given by

1

2
(Ψ, QΨ) , (8.2)

where Q is the open string BRST charge (7.31) of ghost number one and Ψ is an arbitrary
state in the state space of the matter plus ghost SCFT.

In addition to the quadratic term, OSFT has an infinite number of higher order inter-
action terms, in analogy to bosonic string field theory:

S(Ψ) =
1

2
(Ψ, QΨ) +

1

3
(Ψ,M2(Ψ,Ψ)) +

1

4
(Ψ,M3(Ψ,Ψ,Ψ)) + · · · (8.3)

All of these vertices are contact terms, meaning that they do not involve integrals over even
directions in moduli space. However, they do involve integrals over the odd directions,
which are implemented by the insertion of a BPZ-even picture changing operator X [62].
Let us focus on M2 at present. Ignoring picture changing for the moment, M2 reduces to
an associative product

m2 : H×H → H , (8.4)

which can be described by the three-point correlator

(Ψ1,m2(Ψ2,Ψ3)) := Tr 〈(f ∗∞OΨ1)(0)(f ∗1OΨ2)(0)(f ∗0OΨ3)(0)〉 , (8.5)

where fw(z) is a family of conformal maps from the half disk to the upper half plane such
that fw(0) = w. For now we will not need any further information on fw(z) since we will
consider mostly on-shell operators (except in section 8.2). Equivalently, m2 is defined in
terms of the operator product expansion (OPE) of conformal fields. This will sometimes
be more convenient for our use below.

In order to implement the integration over the odd moduli we define the picture
changing operators [62]

X =
1

2πi

∮
dx

z
X(z) , ξ =

1

2πi

∮
dx

z
ξ(z) (8.6)

around each puncture, withX(z) = {Q, ξ(z)} where ξ(z) is defined in (B.11). The product
M2 can then be expressed as

M2(A,B) =
1

3

(
Xm2(A,B) +m2(XA,B) +m2(A,XB)

)
, (8.7)

where Xm2(A,B) can be evaluated with the help of the BPZ inner product, using

(C,Xm2(A,B)) = (XC,m2(A,B)) , (8.8)

where |C| is the ghost number of C. Note that M2 so defined is associative only up
to homotopy, that is a Q-exact term, due to the fact that X does not commute with
the m2 operation. Consequently the algebraic structure of OSFT is that of a homotopy
associative (or A∞) algebra. This structure then uniquely determines the higher order
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products, up to field redefinitions. This is how the A∞-OSFT of [62] is constructed.
However, we will not need any details of this construction other than the fact that M3

cancels the non-associativity of M2 and that M2 itself is exact in the large Hilbert space,
that is,

M2 = {Q, µ2} , µ2(A,B) =
1

3

(
ξm2(A,B) +m2(ξA,B) + (−1)|A|m2(A, ξB)

)
. (8.9)

The large Hilbert space includes the totality of all operators. We consider also the so-
called small Hilbert space, which consists of states that do not depend on the zero mode
of ξ [60]. Alternatively, the small Hilbert space is defined as the kernel of the zero-mode
of the ghost field η (defined in appendix B). In the following we consider massless fields Ψ
of the small Hilbert space at ghost number 1 and picture −1. This defines the so-called
Siegel gauge; formally we write

η0Ψ = 0 , b0Ψ = 0 , pict[Ψ] = −1 . (8.10)

Nonetheless, it will be useful to perform some calculations in the large Hilbert space.

8.1.2 Second order deformation

A marginal deformation in the worldsheet CFT is exactly marginal if the corresponding
solution of the linearized equation of motion of OSFT can be integrated to a solution of
the nonlinear equation of motion. So let us start by writing down the equation of motion
following from (8.3):

QΨ +M2(Ψ,Ψ) +M3(Ψ,Ψ,Ψ) + · · · = 0 . (8.11)

We then expand the field in a perturbation series, as in 2.3 and 5.3, with dimensionless
parameter λ = ρ√

α′
:

Ψ =
ρ√
α′

Ψ(1) +

(
ρ√
α′

)2

Ψ(2) +

(
ρ√
α′

)3

Ψ(3) + . . . , (8.12)

where
ρ√
α′

Ψ(1) = V , (8.13)

which, for V as in (7.29), is a solution of the linearized equation of motion QV = 0 that
describes an infinitesimal blow-up of the D(−1) brane, and ( ρ√

α′
)2Ψ(2) + . . . are the higher

order correction to ( ρ√
α′

)Ψ(1). To first order in the non-linearity (second order in ρ/
√
α′)

we then have
QΨ(2) +M2(Ψ(1),Ψ(1)) = 0 , (8.14)

which is solved by
Ψ(2) = −Q−1M2(Ψ(1),Ψ(1)) + ψ2 , (8.15)

with ψ2 a solution to the homogeneous equation, Qψ2 = 0. Equation (8.15) is well defined
provided that Q has an inverse. For this we need to choose a gauge fixing. Here we will
work in Siegel gauge, b0Ψ = 0, with Q−1 = b0

L0
. Then

QQ−1 +Q−1Q = 1− P0 , (8.16)
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where P0 is the projector on the cohomology H(Q) ⊂ ker(L0), satisfying

QP0 = P0Q = 0 . (8.17)

To see if Ψ(2) in (8.15) is well defined we then compute

QΨ(2) = −QQ−1M2(Ψ(1),Ψ(1)) = (Q−1Q+ P0 − 1)M2(Ψ(1),Ψ(1)) . (8.18)

The first term on the r.h.s vanishes using [Q,M2] = 0 (which, in turn, follows from the
fact that [Q,X] = 0) and that Q is a derivation of the star product m2 defined through
(8.5). Thus (8.15) is meaningful provided that

P0M2(Ψ(1),Ψ(1)) = 0. (8.19)

To prove that (8.19) holds we show that P0M2(V, V ) = 0 for a vertex operator of the
form V (z) = cV1/2 e

−φ(z), where V1/2 is a matter vertex operator of conformal dimension
1/2; this is the prototype of vertex operator we are interested in (cfr. (7.29)). Let us
first consider the contribution P0[m2(V,XV ) + m2(XV, V )] in (8.7). Since all operators
involved have total conformal weight zero we can evaluate this expression using the OPE.
That is, using (7.32),

P0[m2(V,XV ) +m2(XV, V )] = lim
z→0

P0 [V (z)XV (0) +XV (0)V (z)] =

= lim
z→0

P0

[
cV1/2e

−φ(z)

(
−cV1 +

1

4
γV1/2

)
(0) +

(
−cV1 +

1

4
γV1/2

)
(z)cV1/2e

−φ(0)

]
,

(8.20)

where V1 is the matter operator of conformal dimension 1 defined in (7.33). Since the
OPE V1/2(z)V1/2(0) contains a single pole, while the OPE V1/2(z)V1(0) does not, we
conclude that

P0[m2(V,XV ) +m2(XV, V )]= lim
z→0

P0

[
1

4
z cη(0)

(
V1/2(z)V1/2(0)− V1/2(z)V1/2(0)

)]
= 0,

(8.21)
where we used the fact that V1/2 and c are fermionic operators. Let us then consider the
remaining term P0[Xm2(V, V )] = XP0[m2(V, V )] in (8.7). Recalling (8.16) we restrict the
OPE to the kernel of L0,

m2(V, V )|ker(L0) = lim
z→0

(cV1/2 e
−φ)(z)(cV1/2 e

−φ)(0) = ∂(c∂ce−2φV′0) + c∂cV′1e−2φ , (8.22)

where V′0 and V′1 are matter vertex operators of conformal weight 0 (thus proportional
to the identity) and 1 respectively. It is not hard to see that the first term in (8.22) is
Q-exact, i.e.

∂(c∂ce−2φV′0) = Q
(
∂ce−2φV′0

)
, (8.23)

and therefore it is annihilated by P0, since P0Q = 0, leaving

P0m2(V, V ) = c∂cV′1e−2φ . (8.24)
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For the second term in (8.22) we proceed using the the identity X = {Q, ξ} in the large
Hilbert space. Since V is on-shell,

P0M2(V, V ) = Q
(
ξc∂cV′1e−2φ

)
= (Q0 +Q1 +Q2)

(
ξc∂cV′1e−2φ

)
, (8.25)

where we used the explicit definition (7.31). Bosonizing the ghosts as in appendix B we
can compute each term in (8.25). The first and last term clearly vanish, while the second
term extracts the double pole of the OPE

TF (z)V′1(0) . (8.26)

In our case, however, the operator V′1 is proportional to ψµν , as we will see in section 8.3.
The OPE with the supercurrent is then given by

TF (z)ψµν(0) ∼ 1

z
(∂Xµψν − ∂Xνψµ) (0) + . . . (8.27)

Therefore we conclude that (8.25) vanishes, thus establishing that P0M2(V, V ) = 0.
Hence, the first order correction Ψ(2) in (8.15) is well defined, even without specifying
the ADHM constraints. Notice that this is an improvement with respect to bosonic string
theory, where an obstruction at second order in size was found (see equation (5.36)).

8.2 Instanton profile

The fact that no obstruction is present at second order in the deformation implies that
we can compute the first order correction to the instanton profile, that is the projection
of Ψ(2) to a gluon state. This should correspond to computing the instanton profile at
second order in ρ/

√
α′, valid for ρ2 � α′. For simplicity we set aµ = 0; a different value

for aµ would correspond to moving the position of the instanton. Concretely we consider

Ac(1)
µ =

(
ρ√
α′

)2

(VAcµ ,Ψ
(2)) = −

(
ρ√
α′

)2

(VAcµ , Q
−1M2(Ψ(1),Ψ(1))) . (8.28)

Since VAcµ is a vertex operator in the 3/3 sector, this matrix element projects the 3/3

component of M2(Ψ(1),Ψ(1)). Thus

Ac(1)
µ = −(VAcµ , Q

−1M2(Vw, Vw̄)) . (8.29)

where we used the same symbol M2 for the matrix components of M2. The latter in-
volves picture changing operators on the inputs as well as on the output of the product.
However, since X is a conformal scalar we can pull it through the propagator Q−1 onto
VAcµ . Furthermore, since none of the vertex operators involves the η ghost, we can move
X from either input to VAcµ in spite of VAcµ being off-shell. Consequently we can take VAcµ
in picture zero while the boundary changing vertex operators are in picture −1.

The calculation of this quantity can be done in two steps. Using the definition (8.5),
we first need to compute the correlator

Tr〈〈(f ∗∞V
(−1)
w̄ )(0)(f ∗1V

(0)
Acµ

)(0;−k)(f ∗0V
(−1)
w )(0)〉〉D(−1) , (8.30)
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8. Finite-size D-branes in superstring theory

where Vw̄ and Vw are boundary changing operators, and VAcµ is the gluon vertex operator
with outgoing momentum, with a free Lorentz and color index. Notice that the topological
normalization is the one of the lowest brane [27]. Then we act with Q−1, which, in Siegel
gauge, results in multiplication by 1/k2. The calculation of (8.28) is sketched in figure
8.1.

w̄

w

u

v

k c

µ

Figure 8.1: First order contribution to the instanton profile. The solid line represents the D3
branes, while the dashed one represents the D(−1) brane; the indices u, v = 1, 2 label the
particular D3 branes. The vector Acµ (with outgoing momentum kν) comes from a 3/3 string,
and the corresponding vertex operator has to be inserted in the middle of the solid line. The
curly line represents the presence of a gluon propagator.

Explicitly, the boundary changing operators (in picture −1) in (8.30) are the ones given
in (7.19) with the rescaling (7.26), while VAµ is given (in picture −1) by

V(−1)uv
Acµ

(z;−k) =

√
α′

2

(τ c)uv

2
c(z)ψµ(z)e−φ(z)e−ik·X(z) , (8.31)

where we have used the Chan-Paton factor (T c)uv = (τ c)uv/2i. Applying the picture
changing operator to (8.31) we get

V(0)uv
Acµ

(z;−k) =
(τ c)vu

2
(i∂Xµ −

α′

2
k · ψψµ)e−ik·X(z) . (8.32)

In contrast to (7.34), there is an extra contribution due to the non-vanishing momentum
kµ. Furthermore, only the term with a c-ghost (and not the one with a γ-ghost) can
contribute to the correlation function (8.30). We note here that the action of the maps
fz reduces for primary operator A(w) to

f ∗zA(w) = f ′z(w)hA(fz(w)) , (8.33)

where h is the conformal dimension. In our case, since two operators are on-shell, we need
only one map f1, for the gauge vector. Therefore the correlation function reduces to

Ac(1)
µ (k) = C0f

′
1(0)α

′k2/2〈V (−1)u
w̄ (∞)V(0)uv

Aµ
(1; k)V (−1)v

w (0)〉 , (8.34)

where we made the SU(2) indices explicit. The detailed calculation is done in appendix
E. Here we state the final result in momentum space, that is

Ac(1)
µ (k) =

(
f ′1(0)

4

)α′k2/2
iρ2kν η̄cνµe

−ik·x0 , (8.35)
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where the factor (1/4)α
′k2/2 takes into account the proper normal ordering on a twisted

background (see (3.44) [63, 14]). Notice that this result depends on α′ and on the choice
of the map f1 (different maps correspond to different field redefinitions); (8.35) differs
from the result in [27], where the off-shell amplitude (8.30) was computed within the
on-shell formalism. Let us now perform a Fourier transform, in order to have a result in
configuration space; as explained above, the propagator in Siegel gauge has to be added.
The result is (see appendix E for the detailed calculation)

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4

[
1 + e(x−x0)2/(2α′L1)

(
1− (x− x0)2

2α′L1

)]
, (8.36)

where L1 = log(f ′1(0)/4) < 0 since f ′1(0) < 1. In the field theory limit α′k2 � 1 the
dependence on f ′1(0) drops out. Since we also assumed from the beginning that ρ2 � α′,
the field theory limit will also correspond to a large distance (compared to the size ρ)
limit. In this limit the profile in position space is (see appendix E)

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4
, (8.37)

which is exactly the leading term in a large distance expansion (ρ2 � (x − x0)2) of the
full SU(2) instanton solution (2.8), as previously found in [27].

In closing this section we note that a zero momentum gluon, appearing in vertex
operator in (7.29), does not source a non-linear correction to (8.36). This is because the
correction would be proportional to the three point function

〈V (−1)
A (∞; 0)V(0)

A (1; k)V
(−1)
A (0; 0)〉 , (8.38)

which vanishes, since two of the vertex operators have vanishing momentum. Thus, the
complete profile up to order ρ2 is given by

Acµ(x) = Ac (0)
µ + Ac (1)

µ (x) , (8.39)

where A
c (0)
µ is constant in position space and A

c (1)
µ (x) given by (8.36). For the same

reason this zero momentum gluon does not source a deformation in the 3/(-1), (-1)/3 or
(-1)/(-1) sectors.

8.3 Third Order Deformation

At second order in the deformation (third order in ρ/
√
α′) the equation of motion (8.11)

reads

QΨ(3) −M2(Q−1M2(Ψ(1),Ψ(1))− ψ2,Ψ
(1))+

−M2(Ψ(1), Q−1M2(Ψ(1),Ψ(1))− ψ2) +M3(Ψ(1),Ψ(1),Ψ(1)) = 0 ,
(8.40)

where we used the solution for Ψ1 given in (8.15). The obstruction to inverting Q is given
by

(Q−1Q+ P0)
[
M2(Q−1M2(Ψ(1),Ψ(1))− ψ2,Ψ

(1))+

+M2(Ψ(1), Q−1M2(Ψ(1),Ψ(1))− ψ2)−M3(Ψ(1),Ψ(1),Ψ(1))
]
.

(8.41)
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Let us first consider the terms involving Q−1Q. They add up to (using also Qψ1 = 0)

Q−1
[
M2(M2(Ψ(1),Ψ(1)),Ψ(1))−M2(Ψ(1),M2(Ψ(1),Ψ(1)))−QM3(Ψ(1),Ψ(1),Ψ(1))

]
,

(8.42)
which vanishes by the A∞ relations (see e.g [62, 64]). The remaining obstruction is then

P0

[
M2(Q−1M2(Ψ(1),Ψ(1))− ψ2,Ψ

(1))+

+M2(Ψ(1), Q−1M2(Ψ(1),Ψ(1))− ψ2)−M3(Ψ(1),Ψ(1),Ψ(1))
]
.

(8.43)

We note, in passing, that (8.43) is just the minimal model map to fourth order of the
underlying A∞ algebra which extracts the S-matrix elements of string field theory. This
does not come as a surprise, since S-matrix elements are known to be given by the
obstructions of a linearized solution to give rise to a non-linear solution (e.g. [65]).

In order to analyze this obstruction we first note that P0M2(ψ1,Ψ
(1)) and P0M2(Ψ(1), ψ1)

vanish. The proof of this is completely analogous to that given above for P0M2(Ψ(1),Ψ(1)).
Next, we consider P0M2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1)), which we write as∑

i

ei〈ei,M2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉 , (8.44)

where ei (ei) is a basis (and its dual) of the image of P0 with 〈ei, ej〉 = δij. To continue
we use (8.9) to write

〈ei,M2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉 = −1

2
〈ei, ξ M2(Q−1{Q, µ2}(Ψ(1),Ψ(1)),Ψ(1))〉L+

− 1

2
〈ei, ξ {Q, µ2}(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉L ,

(8.45)

where, since (8.9) holds only in the large Hilbert space HL, we now use the BPZ inner
product in HL with an extra insertion of ξ to saturate the extra zero mode in HL. The
second term in (8.43) is treated analogously. Next we commute Q−1 across Q and use
the fact that Q commutes with M2 and annihilates Ψ(1). In doing so we pick up the
contributions

1

2
〈ei, ξ M2(P0µ2(Ψ(1),Ψ(1)),Ψ(1))〉L +

1

2
〈ei, X M2(Q−1µ2(Ψ(1),Ψ(1)),Ψ(1))〉L+

− 1

2
〈ei, X µ2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉L −

1

2
〈ei, ξ µ2(P0M2(Ψ(1),Ψ(1)),Ψ(1))〉L .

(8.46)

The last term above vanishes for the same reason as in subsection 8.1.2. In the two terms
above involving X, the ξ zero-mode must be provided by µ2, so that, for instance,

− 1

2
〈ei, X µ2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉L = −1

2
〈ei, Xξ m2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉L

(8.47)
and similarly for the second term in (8.46). In what follows, we will neglect the terms
that originate from the identity in (8.16) since, as shown in [62], these cancel against M3
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in (8.43). Applying (8.9) to (8.47) we get

− 1

2
〈ei, X µ2(Q−1M2(Ψ(1),Ψ(1)),Ψ(1))〉L = −1

2
〈ei, Xξ m2(Q−1{Q, µ2}(Ψ(1),Ψ(1)),Ψ(1))〉L .

(8.48)
We then commute Q−1 across Q and use again that Q annihilates Ψ(1). Therefore (8.48)
gives a contribution

1

2
〈ei, Xξ m2(P0 µ2(Ψ(1),Ψ(1)),Ψ(1))〉L −

1

2
〈ei, X2m2(Q−1 µ2(Ψ(1),Ψ(1)),Ψ(1))〉L . (8.49)

The objective of deriving the expressions (8.46) and (8.49) was to isolate the contact terms
that originate in the integration over odd moduli in the super moduli space (encoded in
the super string products M2 and M3). This procedure can be applied in complete analogy
to the remaining terms in (8.43). More details on this derivation can be found in appendix
F. The result is a sum of two contributions, one involving the projector P0 and the other
involving the propagator Q−1. The first contribution reads

A =− 1

3
〈P0µ2(Ψ(1),Ψ(1)), 4m2(Ψ(1), ξXei)− 4m2(ξXei,Ψ

(1))〉 (8.50)

− 1

3
〈P0µ2(Ψ(1)m2(XΨ(1), ξei)−m2(ξei, XΨ(1))〉L

− 1

3
〈P0m2(Ψ(1),Ψ(1)), ξm2(Ψ(1), ξXei)− ξm2(ξXei,Ψ

(1))〉 (8.51)

− 1

3
〈P0m2(Ψ(1),Ψ(1)),m2(ξΨ(1), ξXei)−m2(ξXei, ξΨ

(1))〉L

− 1

3
〈XP0µ2(Ψ(1),Ψ(1)),m2(Ψ(1), ξei)−m2(ξei,Ψ

(1))〉L , (8.52)

where we used the cyclic properties of the string products m2 and µ2 (see Appendix F) as
well as XξΨ(1) = ξXΨ(1) (and similarly for ei). The second term, involving the propagator
is given by

B = −2〈X ◦X ei,m2(Q−1m2(Ψ(1),Ψ(1)),Ψ(1)) +m2(Ψ(1), Q−1m2(Ψ(1),Ψ(1))〉 . (8.53)

In the next two subsections we will evaluate these two terms separately.

8.3.1 Evaluation of A

To continue we evaluate the terms appearing in (8.50). In principle there are anomalous
contributions due to the fact that ξXei contains the operator : ξη : which is not primary;
we are going to discuss this problem in appendix G, where we show that all anomalous
contributions cancel. For the moment we proceed as we would do if all the vertex operators
were primaries; let us start with P0m2(Ψ(1),Ψ(1)). Using the OPE relations given in
appendix B with ρ√

α′
Ψ(1) = V , we find (for a single D(−1) brane, i.e. k = 1 and assuming

aµ = 0 for simplicity)(
ρ√
α′

)2

P0m2(Ψ(1),Ψ(1)) = P0m2(V, V ) =
1

2

g2
YM

α′
c∂ce−2φψµνMµν , (8.54)
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with

Mµν =

(
[Aµ, Aν ] + 1

2
wα̇(σ̄µν)

α̇β̇w̄β̇ 0

0 1
2
w̄α̇(σ̄µν)

α̇β̇wβ̇

)
, (8.55)

where we have projected out the Q-exact piece, in analogy to the one in (8.22). On the
other hand, P0µ2(V, V ) is given by(

ρ√
α′

)2

P0µ2(Ψ(1),Ψ(1)) = P0µ2(V, V ) =
1

2

g2
YM

α′
ξc∂ce−2φψµνMµν +

g2
YM

3α′
∂ξc∂ce−2φU ,

(8.56)
where the last term is proportional to the identity in the matter sector and

U =

(
AµAνδ

µν + wα̇ε
α̇β̇w̄β̇ 0

0 w̄α̇ε
α̇β̇wβ̇

)
. (8.57)

To continue note that, without restricting the generality, we may parametrize a generic
zero-momentum Siegel gauge state ei in physical subspace Hphys by

ei(z) =
gYM√
α′
c(z)

(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
(z)e−φ(z) , (8.58)

which is basically the same as (7.29), but with a different generic polarizations Bµ, vα̇, v̄α̇
and bµ. In order to evaluate A We need the explicit expressions of ξei and ξXei, given by

ξei =
gYM√
α′
ξc

(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
e−φ , ξXei =

gYM

4
√
α′

: ξη : eφ
(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
,

(8.59)
where we used (8.6) and for Xei we kept only the term with the γ-ghost in (7.32). This
is because all the terms involving ξXei in (8.50) already have three c-ghost insertions,
therefore only the term with a γ ghost in ξXei can contribute to the correlation functions.
Using the OPE’s in appendix B we can check that

P0[m2(V, ξXei)−m2(ξXei, V )] = P0[V, ξXei]m2 =
g2
YM

4α′
c : ξη : W , (8.60)

with

W =

(
AµBνδ

µν + wα̇ε
α̇β̇ v̄β̇ 0

0 w̄α̇ε
α̇β̇vβ̇ ,

)
−

(
BµAνδ

µν + vα̇ε
α̇β̇w̄β̇ 0

0 v̄α̇ε
α̇β̇wβ̇ ,

)
≡ W ′−W ′′

(8.61)
while

P0ξm2(V, ξXei) = P0ξm2(ξXei, V ) = 0 . (8.62)

The terms in (8.60), when coupled to (8.54), cannot contribute to (8.50), since they
produce the one-point function 〈ψµν〉 in the matter sector, which vanishes. However, we
get a non-vanishing contribution from the remaining terms in (8.50). In particular, we
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can compute

P0[XV, ξei]m2 =
g2
YM

4α′
cψρσNρσ −

g2
YM

4α′
c : ξη : W +

g2
YM

4α′
c∂φW +

g2
YM

4α′
∂cW ′′ ,

P0[ξV, ξXei]m2 = −g
2
YM

4α′
ξ0cψ

ρσNρσ +
g2
YM

4α′
ξ0c∂φW −

g2
YM

4α′
ξ0∂cW

′ − g2
YM

4α′
∂ξcW ′′ ,

P0[V, ξei]m2 = −g
2
YM

α′
ξ0c∂ce

−2φψρσNρσ −
g2
YM

α′
∂ξc∂ce−2φW ′′ ,

(8.63)

where [ ·, · ]m2 denotes the graded commutator with respect to Witten’s star product m2,

Nρσ =

[Aρ, Bσ] + 1
4

(
wγ̇(σ̄ρσ)γ̇δ̇v̄δ̇ + vγ̇(σ̄ρσ)γ̇δ̇w̄δ̇

)
0

0 1
4

(
v̄γ̇(σ̄ρσ)γ̇δ̇wδ̇ + vγ̇(σ̄ρσ)γ̇δ̇w̄δ̇

) ,

(8.64)
and W , W ′ and W ′′ were defined above. Here ξ0 is the zero mode of ξ. In the last line of
(8.63) we furthermore used that the combination

g2
YM

α′
ξce−2φ

(
∂c∂φ− 1

2
∂2c

)
(W ′ +W ′′) (8.65)

contributing to [V, ξei]m2 is Q-exact and thus annihilated by the projector P0. Indeed,
Q(∂ce−2φ) = c∂2ce−2φ − 2∂φc∂ce−2φ. Again, only the term with a γ ghost in XV can
contribute to (8.50), because it is inserted inside correlation functions with already three
c-ghost insertions. Let us now contract the terms in (8.63) with (8.54) and (8.56) respec-
tively. Focussing first on the terms containing the matter operator ψµν , and using the
known correlation functions

〈ξc∂ce−2φ(z)c(w)〉L = −(z − w)2 ,

〈ψµν(z)ψρσ(w)〉L =
−δµρδνσ + δµσδνρ

(z − w)2
,

(8.66)

we conclude that the first two lines of (8.50) exactly cancel for the state ei. First, there is
a precise cancellation of the terms proportional to ψµν in (8.63). The terms proportional
to the identity, on the other hand, give rise to a contribution proportional to

Tr [AµAµ(AνBν −BνAν)] . (8.67)

While this is in general non-zero, it vanishes for the SU(2) gauge group1.
Concerning the last line of (8.50), the first term in (8.56) can be treated in the large

Hilbert space,

P0Xξm2(V, V ) = P0ξQξm2(V, V ) = ξP0Xm2(V, V ) = 0 , (8.68)

where we have used the fact that V is on-shell and the last step was proven in subsection
8.1.2. The second term in (8.56), on the other hand, does not contain any zero mode of
ξ. This means that the zero mode has to come from the first term in P0[m2(V, ξei) −
m2(ξei, V )] (see the third line of (8.63)); however, this would give rise, in the matter
sector, to the one-point function 〈ψρσ〉, which is zero. Therefore the last line in (8.50)
vanishes as well; this concludes the proof that A = 0.

1More generally, these terms are absent if one uses a symmetric OPE as in [66]. These two prescriptions
are related by a field redefinition.
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8.3.2 Evaluation of B

Let us now analyze the terms involving the propagator Q−1, that is

B = −2〈X ◦X ei,m2(Q−1m2(Ψ(1),Ψ(1)),Ψ(1)) +m2(Ψ(1), Q−1m2(Ψ(1),Ψ(1))〉 . (8.69)

The field ei is of the form ei = cṼ1/2e
−φ, where Ṽ1/2 is a matter primary operator of

conformal dimension 1/2; using the picture changing we get

Xei = −cṼ1 +
1

4
γṼ1/2 ; (8.70)

we now apply another picture changing operator. We consider only terms with a c-ghost
in the final result, since they are the only ones contributing to correlation functions. For
the first term in (8.70) only Q1(−ξcṼ1) maintains the c-ghost; for the second term we get

a contribution from Q0(: ξη : eφṼ1/2), due to the fact that : ξη : is not a primary field
(see appendix B for details). We thus have, up to terms that do not contribute to the
correlators,

X ◦Xei = Q1(−ξcṼ1) +Q0(: ξη : eφṼ1/2) + · · · =

=

∮
dz

2πi
(ηeφTF )(z)(ξcṼ1)(0) +

∮
dz

2πi
(cT )(z)

(
1

4
: ξη : eφṼ1/2

)
(0) + . . .

(8.71)

For the explicit calculation we notice that the supercurrent satisfies

TF (z)Ṽ1/2(0) =
1

z
Ṽ1(0) + . . . ,

TF (z)Ṽ1(0) =
1

4z2
Ṽ1/2(z) +O(z0) .

(8.72)

The OPE relations (8.72) imply that the supercurrent can always be written as normal

ordered product of the spacetime fermion and boson appearing in Ṽ1/2 and Ṽ1 respectively.
In particular this is obvious for the gluon vertex operator, for which the spacetime fermion
and boson are proportional to ψµ and i∂Xµ, but it is also true in the case of boundary
changing operators, since we can write

TF ∝ ψµ∂X
µ =

1√
2

: ∆Sα̇(σ̄µ)α̇βS
βτµ :=

1√
2

: ∆̄Sα̇(σ̄µ)α̇βS
β τ̄µ : . (8.73)

Therefore (8.71) becomes

X ◦Xei =c(0)

∮
dz

2πi
eφ(z)Ṽ1/2(z)

(
1

z
+ : ηξ : +z : ∂η ξ : + . . .

)(
1

4z2
+ : Ṽ1Ṽ1 : + . . .

)
+

+

∮
dz

2πi

1

4
c(z)

(
−
eφṼ1/2

z3
+
∂(: ξη : eφṼ1/2)

z

)
+ · · · =

=
1

8
c∂2
(
eφṼ1/2

)
− 1

8
(∂2c)eφṼ1/2 + ceφṼ1/2 : Ṽ1Ṽ1 : +

1

4
c : ∂ξ η : eφṼ1/2 + . . . ,

(8.74)
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where the 1/z3 term comes from the anomalous OPE (B.15) between the energy mo-
mentum tensor and : ξη : and . . . indicates terms without a c-ghost. We notice that
ceφṼ1/2 : Ṽ1Ṽ1 : and c : ∂ξ η : eφṼ1/2 are not primary, since the OPE with the energy-
momentum tensor gives

T (z) ceφṼ1/2 : Ṽ1Ṽ1 : (0) =
1

4z4
ceφṼ1/2 + . . .

T (z) c : ∂ξ η : eφṼ1/2(0) = − 1

z4
ceφṼ1/2 + . . .

(8.75)

From these equations, however, we can see that the combination

ceφṼ1/2 : Ṽ1Ṽ1 : +
1

4
c : ∂ξ η : eφṼ1/2 (8.76)

is a primary field, and thus behaves regularly inside the BPZ product (8.69).
In the absence of twist field insertions these two terms will not contribute, since they

give rise to one-point functions of normal ordered products. In particular, the term
proportional to : Ṽ1Ṽ1 : contributes, in the matter sector, a correlator of the form

〈Ṽ1/2 : Ṽ1Ṽ1 : (z1)V1/2(z2)V1/2(z3)V1/2(z4)〉 =

= 〈: Ṽ1Ṽ1 : (z1)〉〈Ṽ1/2(z1)V1/2(z2)V1/2(z3)V1/2(z4)〉 = 0 ,
(8.77)

where the first factor is evaluated in the un-twisted vacuum.
We then rewrite the two remaining terms in (8.74) as

X ◦X ei =
1

8
c∂2
(
eφṼ1/2

)
− 1

8
∂2c(eφṼ1/2) + · · · = 1

8
Q
(
∂(eφṼ1/2)

)
=: QΦ + . . . , (8.78)

up to terms that do not not contribute to the correlation function. Since this is a Q-exact
quantity we can compute the propagator term (8.69), which becomes

B =− 2〈QΦ,m2(Q−1m2(Ψ(1),Ψ(1)),Ψ(1)) +m2(Ψ(1), Q−1m2(Ψ(1),Ψ(1))〉 =

=− 2〈Φ,m2((1− P0)m2(Ψ(1),Ψ(1)),Ψ(1))−m2(Ψ(1), (1− P0)m2(Ψ(1),Ψ(1))〉 =

=2〈Φ,m2(P0m2(Ψ(1),Ψ(1)),Ψ(1))−m2(Ψ(1), P0m2(Ψ(1),Ψ(1))〉 ,
(8.79)

where the terms with the identity cancel, due to the associativity of the m2 product. This
can be written as

B = 2〈P0m2(Ψ(1),Ψ(1)),m2(Ψ(1),Φ)−m2(Φ,Ψ(1))〉 =

=
1

4
〈P0m2(Ψ(1),Ψ(1)),m2(Ψ(1), ∂(eφṼ1/2))−m2(∂(eφṼ1/2),Ψ(1))〉 .

(8.80)

The operator ∂(eφṼ1/2) is not primary, therefore there are anomalous contributions anal-
ogous to the ones appearing in (8.50). We refer to appendix G for the proof that all
anomalies cancel. In the meantime we proceed as if all vertex operators were primaries,
so that the product m2 can be evaluated simply as the OPE. We have already computed
P0m2(Ψ(1),Ψ(1)); in fact (8.54) gives(

ρ√
α′

)2

P0m2(Ψ(1),Ψ(1)) = P0m2(V, V ) =
1

2

g2
YM

α′
c∂ce−2φψµνMµν , (8.81)
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with Mµν given in (8.55). On the other hand we have

P0

[
m2(V, ∂(eφṼ1/2))−m2(∂(eφṼ1/2), V )

]
= P0

[
V, ∂(eφṼ1/2)

]
m2

= lim
z→w

(
∂w[cV1/2e

−φ(z)eφṼ1/2(w)]− ∂z[eφṼ1/2(z)cV1/2e
−φ(w)]

)
= −g

2
YM

α′
cψρσNρσ ,

(8.82)

with Nρσ as in (8.64). Putting all together we get(
ρ√
α′

)3

B =
1

4
Tr [MµνN

µν ] , (8.83)

or, explicitly, assuming the ADHM constraints,

g4
YM

8α′2
Tr

[(
[Aµ, Aν ] +

1

2
wα̇(σ̄µν)

α̇β̇w̄β̇

)(
[Aµ, Bν ] +

1

4
wγ̇(σ̄

µν)γ̇δ̇v̄δ̇ +
1

4
vγ̇(σ̄

µν)γ̇δ̇w̄δ̇

)]
.

(8.84)
In the absence of twist fields (wα̇ = 0) this gives the correct equation of motion for a
zero-momentum gluon field, in agreement with the 4-gluon vertex in Yang-Mills theory.
For non-vanishing wα̇, while there is a choice, as we will see later, of a zero-momentum
gluon such that the anti-self-dual part of the commutator [Aµ, Aν ] cancels the combination
1
2
wα̇(σ̄µν)

α̇β̇w̄β̇, that still leaves us with the self-dual part of [Aµ, Aν ] so that full matrix

[Aµ, Aν ] +
1

2
wα̇(σ̄µν)

α̇β̇w̄β̇ (8.85)

does not vanish all together, indicating an obstruction to the blow-up mode at this order.
The loop-hole in this argument is that the first term in (8.76), being normal ordered w.r.t.
the untwisted vacuum, may still be give a non-vanishing contribution in the twisted
vacuum. It turns out that the contribution form this term is rather cumbersome to
evaluate explicitly due to the presence of branch-cuts in the integrand. This difficulty
can be circumvented by evaluating (8.69) in a different manner, making use of the fact
that the world-sheet CFT has an SO(4)-invariance acting exclusively on the world-sheet
fermions ψµ, µ = 1, · · · , 4 (e.g. [67]) and on the spin fields. As advocated in [59, 68],
but with a slight difference due to the opposite choice of chirality for the twisted vertex
operators, a convenient basis is

ψ±1 =
1√
2

(
ψ1 ± iψ2

)
, ψ±2 =

1√
2

(
ψ4 ± iψ3

)
(8.86)

in which only a U(2) invariance is manifest. As a consequence of the SO(4)-invariance
just described the U(1)-charge

J = − 1

2πi

∮ 2∑
i=1

: ψ+
i ψ
−
i : dz =

i

2πi

∮ (
ψ12 − ψ34

)
dz (8.87)

is conserved, with

[J, ψ+
i ] = ψ+

i and [J, ψ−i ] = −ψ−i (i = 1, 2) , (8.88)
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while the spin fields have U(1)-charge

[J, S 1̇] = S 1̇, [J, S 2̇] = −S 2̇ and [J, Sα] = 0. (8.89)

With our choice of chirality for the vertex operators only the spin fields with non-vanishing
U(1)-eigenvalues will enter in the fields Ψ(1) and ei. Consequently, Ψ(1) decomposes into
eigenstates of the U(1)-charge, i.e. Ψ(1) 7→ Psi(1)+ + Psi(1)−, in particular

ρ√
α′

Ψ(1) = V = V + + V − = cV+
1/2e

−φ + cV−1/2e
−φ . (8.90)

An analogous decomposition holds for ei, while

ρ√
α′
XΨ(1) = XV = −cV1 +

1

4
γV+

1/2 +
1

4
γV−1/2 ; (8.91)

(and analogously for Xei), where V1 is uncharged ([J,V1] = 0), both for the twisted and
untwisted sector. Upon substitution of this decomposition into (8.69) we get

〈X ◦X ei,m2(Q−1m2(Ψ(1),Ψ(1)), ξ0Ψ(1))〉=〈X ◦X ei,m2(Q−1m2(Ψ(1)+,Ψ(1)+), ξ0Ψ(1)−)〉L
+ 〈X ◦X ei,m2(Q−1m2(Ψ(1)−,Ψ(1)−), ξ0Ψ(1)+)〉L
− 〈X ◦X ei,m2(Q−1m2(Ψ(1)+, ξ0Ψ(1)−),Ψ(1)+)〉L
+ 〈X ◦X ei,m2(Q−1m2(ξ0Ψ(1)+,Ψ(1)−),Ψ(1)−)〉L
+ 〈X ◦X ei,m2(Q−1m2(ξ0Ψ(1)−,Ψ(1)+),Ψ(1)+)〉L
− 〈X ◦X ei,m2(Q−1m2(Ψ(1)−, ξ0Ψ(1)+),Ψ(1)−)〉L

(8.92)

and analogously for the second term in (8.69). Here we have used the conservation of
J and that, while the J-charge of X ◦ X ei can take all values form -3 to 3, in order to
saturate the ghost zero-modes only the he J-charge ±1 part of X ◦ X ei can contribute
to the correlator. In addition the r.h.s. of (8.92) is expressed in the large Hilbert space.
The position of the ξ-zero mode is correlated with relative sign of each term. Next we
write X ◦ X ei = Qξ ◦ X ei and bring the BRST charge Q to the other side through
BPZ-conjugation. The only contribution comes from the commutator {Q,Q−1} since,
whenever Q hits a ξ, the J-charge does not add up to zero or the ghost zero-modes are
not saturated. Adding in the second term on the r.h.s. of (8.69) we are left with

−1

2
B =〈ξ ◦X ei,m2(P0m2(Ψ(1)+,Ψ(1)+), ξΨ(1)−)−m2(Ψ(1)+, P0m2(Ψ(1)+, ξΨ(1)−)〉L

+ 〈ξ ◦X ei,m2(P0m2(Ψ(1)−,Ψ(1)−), ξΨ(1)+)−m2(Ψ(1)−, P0m2(Ψ(1)−, ξΨ(1)+)〉L
− 〈ξ ◦X ei,m2(P0m2(Ψ(1)+, ξΨ(1)−),Ψ(1)+) +m2(Ψ(1)+, P0m2(ξΨ(1)−,Ψ(1)+)〉L
+ 〈ξ ◦X ei,m2(P0m2(ξΨ(1)+,Ψ(1)−),Ψ(1)−)−m2(ξΨ(1)+, P0m2(Ψ(1)−,Ψ(1)−)〉L
+ 〈ξ ◦X ei,m2(P0m2(ξΨ(1)−,Ψ(1)+),Ψ(1)+)−m2(ξΨ(1)−, P0m2(Ψ(1)+,Ψ(1)+)〉L
− 〈ξ ◦X ei,m2(P0m2(Ψ(1)−, ξΨ(1)+),Ψ(1)−) +m2(Ψ(1)−, P0m2(ξΨ(1)+,Ψ(1)−)〉L ,

(8.93)
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where we have used the associativity of m2. With the help of the cyclic property (F.11)
of m2 this can be recast into

−1

2
B =〈P0m2(Ψ(1)+,Ψ(1)+), [ξΨ(1)−, ξXei]m2〉L + 〈P0m2(Ψ(1)−,Ψ(1)−), [ξΨ(1)+, ξXei]m2〉L

− 〈P0[Ψ(1)+, ξΨ(1)−]m2 , [Ψ
(1)+, ξXei]m2〉L + 〈P0[ξΨ(1)+,Ψ(1)−]m2 , [Ψ

(1)−, ξXei]m2〉L .
(8.94)

The four contributions to the r.h.s. of (8.94) can be read-off from eqns. (8.54-8.64).
Explicitly we have(

ρ√
α′

)2

P0m2(Ψ(1)± ,Ψ(1)±) = P0m2(V ±, V ±) = −1

4

g2
YM

α′
c∂ce−2φη̄µν∓ Mµνψ

±±
12 ,(

ρ√
α′

)
P0[ξΨ(1)± , ξXe±i ]m2 = P0[ξV ±, ξXe±i ]m2 =

1

8

g2
YM

α′
ξ0cη̄

ρσ
∓ Nρσψ

±±
12 + . . . ,(

ρ√
α′

)2

P0[Ψ(1)± , ξΨ(1)∓]m2 = P0[V ±, ξV ∓]m2 = ± i
4

g2
YM

α′
∂ξc∂ce−2φη̄µν3 Mµν + . . . ,(

ρ√
α′

)
P0[Ψ(1)± , ξXe∓i ]m2 = P0[V ±, ξXe∓i ]m2 = ∓ i

8
c : ξη : η̄ρσ3 Mρσ ,

(8.95)

where η̄µν± = η̄µν1 ± iη̄
µν
2 are defined in terms of the ’t Hooft symbols, and Mµν and Nρσ

are matrices defined above. The . . . denote terms that vanish upon insertion in the inner
product in (8.94). Putting all together we end up with(

ρ√
α′

)3

B =
1

8
Tr [MaNa] , (8.96)

where the matrices Ma and Na are as

Ma = η̄aµν

(
[Aµ, Aν ] +

1

2
wα̇(σ̄µν)α̇β̇w̄β̇

)
,

Na = η̄aµν

(
[Aµ, Bν ] +

1

4
wγ̇(σ̄

µν)γ̇δ̇v̄δ̇ +
1

4
vγ̇(σ̄

µν)γ̇δ̇w̄δ̇

)
.

(8.97)

Notice that this reproduces (8.83), however, with the important difference that Tr (2MµνN
µν)

is replaced by Tr (MaNa). This can be seen clearly if we rewrite, assuming the ADHM
constraints,

Tr(MµνN
µν) =

1

2
Tr (MaNa)− Tr

[
[Aµ, Aν ]

(
1

4
wγ̇(σ̄

µν)γ̇δ̇v̄δ̇ +
1

4
vγ̇(σ̄

µν)γ̇δ̇w̄δ̇

)]
+

− Tr

(
[Aµ, Bν ]

1

2
wα̇(σ̄µν)

α̇β̇w̄β̇

)
.

(8.98)

This means that the contributions coming from (8.77) in the twisted sector have the effect
of exactly cancelling all the terms in Tr[MµνN

µν ] that are not anti-self-dual, leaving only
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terms proportional to Tr (MaNa). It is then possible, in agreement with [68, 66], to set
Ma to zero assuming the ADHM constraints (7.27)

η̄µνa

(
[aµ, aν ] +

1

2
w̄α̇(σ̄µν)

α̇β̇wβ̇

)
= 0 , (8.99)

and with a suitable choice of the matrices Aµ, that is

Aµ =
ρ√
2
σµ =

ρ√
2

(1l,−i~τ) . (8.100)

As discussed in section 8.2, this zero momentum gluon contributes to the instanton profile
at order ρ (see (8.39)) but not at order ρ2. Furthermore, it is in principle possible to
compute all contributions to the instanton profile at order O(ρ3), inverting (8.40). The
explicit calculation is, however, quite involved.
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Conclusions

The main goal of this thesis has been to explore the moduli space of bound states of
D-branes, both in bosonic and superstring theory, and to understand its relation to the
moduli space of instantons in Yang-Mills theories. Bound states of D-branes were consid-
ered, in particular systems involving instantonic D(−1) branes. Given the fact that string
theory is a conformal field theory on the worldsheet, this results in the study of exactly
marginal deformations of a given background.

We studied in detail the conformal field theory of twist fields, and provided a boso-
nization for them, thanks to their relation to orbifold theories. The OPE of twist fields
allowed to study the bound state of D-instantons and D15 branes in bosonic string theory.
We found that the blow-up of the size of D-instantons is obstructed at second order. As
a consequence, the profile of four dimensional Yang-Mills instanton can not be recovered
from bosonic string theory.

Turning then to superstring theory, a marginal operator corresponding to the blow-up
of the size of a D-instanton is present only for a bound state of branes with codimension
4, in particular for the D3-D(−1) system. The spectrum of open strings populating this
bound state is, in the low-energy limit, equivalent to the maximally supersymmetricN = 4
Yang-Mills theory in four dimensions, and field configurations of pointlike instantons can
be recovered in this limit.

We studied the possibility to extend this connection to finite-size (not pointlike) D(−1)
branes inside a D3 background, constructing them as marginal deformations of the world-
sheet theory of pointlike D(−1) branes. The standard worldsheet approach can not be
applied here for two reasons. First, the computation of the instanton profile is an off-
shell problem in string theory; second, there are subtleties with the integration over odd
moduli in super moduli space which are not captured by the worldsheet description. We
dealt with these problems by working with a second quantization approach, the A∞ su-
perstring field theory. We studied the deformation corresponding to the blow-up mode
of the size of a D(−1) brane inside a D3 background. This deformation was found to
be marginal at second order in size, unlike for bosonic string theory, while at third or-
der in addition to the ADHM constraints an addition zero-momentum gluon is required
for marginality. Marginality at second order allowed us to derive the instanton profile,
including α′-corrections.

An interesting question to explore is whether it is possible to find more generic hermi-
tian string fields that are solutions to the equations of motion not satisfying the ADHM
constraints. We were not able to find any such solutions but cannot exclude them on
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general grounds at this point.
While we considered the specific case of the D(−1)-D3 brane bound state in this

paper, our approach applies equally well to generic Dp-D(p + 4) brane bound states.
Furthermore, in this work we focused on open strings and D-branes, hence we had to deal
with boundary twist operators. It would be interesting to extend the analysis to bulk twist
fields, which are naturally related to closed strings and orbifolds; an interesting extension
to our work would concern the blow-up of orbifold singularities in closed superstring field
theory [71, 72, 73, 74].
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Appendix A

Notation and conventions

Notation for indices

In this work we use many indices with different meanings. The most used ones are the
following:

• d = 4 vector indices: µ, ν = 0, . . . , 3;

• d = 6 vector indices: a, b = 4, . . . , 9;

• Chiral and anti-chiral spinor indices in d = 4: α and α̇;

• Spinor indices in d = 6: A and A in the fundamental and anti-fundamental of
SU(4) ' SO(6);

• D3 indices: u, v = 1, . . . , N ;

• D(−1) indices: i, j = 1, . . . , k;

• SU(2) color indices: c, d = 1, 2, 3.

d=4 Clifford algebra and spinors

In d = 4 we can either deal with the Euclidean (SO(4)) or Minkowskian (SO(1,3)) Lorentz
group; its Clifford algebra is defined by {γµ, γν} = 2ηµν 1l, where the metric η has signature
(+,+,+,+) or (−,+,+,+) respectively. Let us consider the Pauli matrices τ c

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
. (A.1)

Gamma matrices in four dimensions can be expressed in terms of the matrices (σµ)αβ̇ and

(σ̄µ)α̇β in the following way:

γµ =

(
0 σµ

σ̄µ 0

)
, (A.2)
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where σµ and σ̄µ are defined in terms of the Pauli matrices, but in a different way for
Euclidean and Minkowski space:

σµ = (1l,−i~τ) and σ̄µ = (1l, i~τ) (Euclidean)

σµ = (1l, ~τ) and σ̄µ = (−1l, ~τ) (Minkowski)
(A.3)

They satisfy the appropriate Clifford algebra σµσ̄ν + σν σ̄µ = 2ηµν 1l.
It is convenient to divide every Dirac spinor into its two Weyl components as follows:

ψ =

(
ψα
ψα̇

)
(A.4)

We raise and lower spinor indices contracting always with the second index of the anti-
symmetric ε tensor:

ψα = εαβψβ , ψα̇ = εα̇β̇ψ
β̇ , (A.5)

with ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = 1. Therefore, we have also

ψα = ψβεβα , ψα̇ = ψβ̇ε
β̇α̇ . (A.6)

Depending on the metric η, the σ matrices behave differently under complex conjugation.
In Euclidean space one has

(σµ)∗
αβ̇

= −(σµ)αβ̇ and (σ̄µ)α̇β∗ = −(σ̄µ)α̇β , (A.7)

while in Minkowski space one type of index gets changed into the other:

(σµ)∗
αβ̇

= (σµ)βα̇ . (A.8)

Both in Minkowskian and in Euclidean case we have the following important relation:

(σµ)αβ̇ = (σ̄µ)β̇α . (A.9)

Euclidean d=4 Clifford algebra and ’t Hooft symbols

In the following we focus only on the Euclidean case, because it is the one we are interested
in when dealing with instantons. The SO(4) generators are defined in terms of σ matrices
in the following way:

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) ; (A.10)

These matrices satisfy self-duality or anti-self-duality conditions respectively, in particular:

σµν =
1

2
εµνρσσρσ , σ̄µν = −1

2
εµνρσσ̄ρσ (A.11)

The mapping between a self-dual (or anti-self-dual) SO(4) tensor into the corresponding
adjoint representation of SU(2) is given in terms of the ’t Hooft symbols as follows:

(σµν)
β
α = iηcµν(τ

c) β
α , (σ̄µν)

α̇
β̇

= iη̄cµν(τ
c)α̇

β̇
. (A.12)
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An explicit representations of these symbols is given by:

ηcµν = η̄cµν = εcµν , µ, ν ∈ {1, 2, 3}
ηc0ν = −η̄c0ν = δcν ,

ηcµν = −ηcνµ ,
η̄cµν = −η̄cνµ .

(A.13)

Many properties of these symbols can be found in the literature. In particular the symbols
ηcµν and η̄cµν are self-dual and anti-self-dual respectively.
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Appendix B

Relevant operators, OPE’s and
bosonization

In the calculation of amplitudes in a conformal field theory it is important to know the
operator product expansion (OPE) of primary fields O(z1)O(z2). In this appendix we
focus on the properties of the operators appearing in superstring theory. First of all, let
us consider the primary fields ∂Xµ(z), with conformal weight 1. The OPE of two of them
is

∂Xµ(z)∂Xν(w) = −α
′

2

δµν

(z − w)2
+ . . . , (B.1)

where . . . indicate regular terms. For the spinors ψµ the OPE is given by

ψµ(z)ψν(w) =
δµν

z − w
+ ψµν + . . . . (B.2)

The presence of D3 branes breaks SO(10) to SO(4) × SO(6) (we consider the euclidean

theory); therefore the ten dimensional spin fields SA and SȦ can be expressed in terms
of the spin fields in 4 and 6 dimensions as follows:

SA −→ (SαS
A, Sα̇SA) ,

SȦ −→ (SαSA, S
α̇SA) ,

(B.3)

where Sα and Sα̇ are SO(4) spin fields of even and odd chirality respectively, and SA and
SA are SO(6) spin fields of even and odd chirality respectively. Spin fields in d = 4 can
be bosonized with exponents:

λα =

(
1

2
,
1

2

)
or

(
−1

2
,−1

2

)
,

λα̇ =

(
1

2
,−1

2

)
or

(
−1

2
,
1

2

)
.

(B.4)
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Their OPE contains branch cuts; explicitly we have

Sα̇(z)Sβ(w) =
1√
2

(σ̄µ)α̇βψµ(w) + . . . ,

Sα̇(z)Sβ̇(w) = − εα̇β̇

(z − w)1/2
+

1

4
(z − w)1/2(σ̄µν)

α̇β̇ψµν + . . . ,

Sα(z)Sβ(w) =
εαβ

(z − w)1/2
− 1

4
(z − w)1/2(σµν)αβψ

µν + . . . .

(B.5)

All these expressions can be derived using the bosonization of the spin fields; furthermore,
one can also derive the following OPE involving spinors and spin fields:

ψµ(z)Sα̇(w) =
1√
2

(σ̄µ)α̇βSβ(w)

(z − w)1/2
+ . . . ,

ψµν(z)Sα̇(w) = −1

2

(σ̄µν)
α̇
β̇
Sβ̇(w)

z − w
+ . . . .

(B.6)

From these OPE one can easily compute some three-point functions, for example:

〈Sα̇(z1)ψµ(z2)Sβ(z3)〉 =
1√
2

(σ̄µ)α̇β

z
1/2
12 z

1/2
23

,

〈Sα̇(z1)ψµν(z2)Sβ̇(z3)〉 = −1

2
(σ̄µν)

α̇β̇ z
1/2
13

z12z23

,

(B.7)

where we have introduced the notation zij = zi − zj. Other details on the spin fields and
their bosonization can be found in [16, 21].

Regarding the twist operators, we have to deal with non trivial OPE with the fields
∂Xµ and eik·X . Remembering that the field ∆(z) is made of four twist operators (∆(z) =
σ0σ1σ2σ3(z)), it is sufficient to know the behavior of one field σµ(z), which has conformal
dimension 1/16. We have the following relevant OPE, involving also the so-called excited
twist field σ′µ(z), with conformal dimension 9/16 [1]:

σµ(z)σ̄ν(w) =
δµν

(z − w)1/8
+ . . . ,√

2

α′
i∂Xµ(z)σν(w) =

δµνσ′ν(w)

(z − w)1/2
+ . . . ,√

2

α′
i∂Xµ(z)σ′ν(w) =

1

2

δµνσν(w)

(z − w)3/2
+

2δµν∂σν(w)

(z − w)1/2
+ . . .

(B.8)

where we do not sum over equal indices. From these OPE one can derive the three-point
function

〈∆̄(z1)e−ik·X(z2)∆(z3)〉 =
e−ik·x0

(z13)1/2−α′k2/2(4z12z23)α′k2/2
, (B.9)

where xµ0 is the zero-mode of the field Xµ(z). More properties of these twist operators
can be found for example in [1, 17].
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In superstring theory one has also to deal with ghosts and superghosts, which are
characterized by the OPE relations

b(z)c(w) ∼ c(z)b(w) =
1

z − w
+ . . . ,

c(z)c(w) = −(z − w)c∂c(w)− 1

2
(z − w)2c∂2c(w) + . . . ,

β(z)γ(w) ∼ −γ(z)β(w) = − 1

z − w
+ . . . .

(B.10)

These ghosts can be bosonized in the following way

b = e−σ , c = eσ ,

β = e−φ∂ξ = e−φeχ∂χ , γ = ηeφ = e−χeφ ,
(B.11)

with the following OPE relations

σ(z)σ(w) = log(z − w) + . . . ,

φ(z)φ(w) = − log(z − w) + . . . ,

χ(z)χ(w) = log(z − w) + . . . ,

ξ(z)η(w) = η(z)ξ(w) ∼ 1

z − w
+ . . . ,

e−φ(z)eφ(w) ∼ eφ(z)e−φ(w) = (z − w) + . . . ,

e−φ(z)e−φ(w) =
1

z − w
e−2φ(w)− ∂φe−2φ(w) + . . . .

(B.12)

The relevant two- and three-point functions used in this work are the following ones:

〈c(z1)c(z2)c(z3)〉 = z12z23z13 ,

〈e−φ(z1)e−φ(z2)〉 =
1

z12

,

〈c∂ce−2φ(z)c(w)〉 = −(z − w)2 .

(B.13)

Non-Primary Operators

In chapter 8 we have to deal with some operators that are not primary. In particular we
encounter : ξη : eφṼ1/2 and ∂(eφṼ1/2). The normal ordered product is defined in terms of
the OPE as

: ξη : (w) =

∮
dx

2πi

ξ(x)η(w)

x− w
; (B.14)

ξ and η are primaries, thus we can compute

T (z) : ξη : (0) = T (z)

∮
dx

2πi

ξ(x)η(0)

x
= − 1

z3
+

: ξη : (0)

z2
+
∂ : ξη : (0)

z
+ . . . (B.15)

The presence of a cubic pole shows that : ξη : is not a primary operator; from this we
derive

T (z) : ξη : eφṼ1/2(0) = T (z)

∮
dx

2πi

ξ(x)η(0)

x
= −

eφṼ1/2(0)

z3
+
∂(: ξη : eφṼ1/2)(0)

z
+ . . .

(B.16)
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B. Relevant operators, OPE’s and bosonization

Similarly, for ∂(eφṼ1/2) we get

T (z)∂(eφṼ1/2)(0) = −2
eφṼ1/2(0)

z3
+
∂2(eφṼ1/2)(0)

z
+ . . . (B.17)
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Appendix C

Four-point function of twist fields

In this appendix we follow the procedure of [17] in order to compute the four-point function
of twist fields

G(zi) = 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (C.1)

As in appendix 4.3.2, we have two Dirichlet intervals [z4, z1] (which includes the point at
infinity) and [z2, z3]. We consider the closed cycle C, that encircles the point z1 and z2.
We assume furthermore that the cycle is symmetric with respect to the real axis. We
have that∮

C

dz j(z) =

∫
C>

dz j(z)−
∫
C<

dz j̄(z) =

∫
C>

dz i(∂ + ∂̄)X(z, z̄) = iδx0 , (C.2)

where δx0 is the difference between the zero modes ofX(z, z̄) on the two Dirichlet intervals.
Consider now a new correlation function

Γ(w, zi) = 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (C.3)

Integrating around the circle C we get the so-called block condition∮
dw

2πi
Γ(w, zi) = pG(zi) , (C.4)

where p = δx0/2π. Considering the OPE defining the twist fields, we can use the following
Ansatz for Γ:

Γ(w, zi) = [(w − z1)(w − z2)(w − z3)(w − z4)]−1/2A(zi) , (C.5)

where A(zi) does not depend on w. Performing now the limit w → z2, and using again
the OPE, we find

lim
z→z2

Γ(w, zi) =
1

(w − z2)1/2
G(2)(zi) + . . . , (C.6)

where G(2)(zi) = 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 and . . . represent terms of order (z −w)1/2. On
the other hand (C.5) implies

lim
z→z2

Γ(w, zi) =
1

(w − z2)1/2

A(zi)√
z21z32z42

+ . . . . (C.7)
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C. Four-point function of twist fields

Comparing the two equations gives A(zi) =
√
z21z32z42G

(2)(zi). Consider now another
correlation function, namely

Γ(2)(w, zi) = 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 . (C.8)

Integrating over w around the cycle C we obtain another block condition, that reads∮
dw

2πi
Γ(2)(w, zi) = pG(2)(zi) , (C.9)

Considering now the local properties when w approaches the insertion points zi, the proper
Ansatz for Γ(2) is

Γ(2)(w, zi) = [(w − z1)(w − z2)(w − z3)(w − z4)]−1/2

(
B(zi)

w − z2

+ C(zi)

)
. (C.10)

Expanding this for w → z2 we find

lim
z→z2

Γ(2)(w, zi) =

=
1√

(w − z2)z21z32z42

(
B(zi)

w − z2

+ C(zi)−
1

2
B(zi)

(
1

z21

+
1

z23

+
1

z24

))
+ . . .

(C.11)

On the other hand, the OPE implies that

lim
z→z2

Γ(2)(w, zi) =
1

2(w − z2)3/2
G(zi) +

2

(w − z2)1/2
∂z2G(zi) + . . . (C.12)

Comparing the last two equations we find closed expression for B(zi) and C(zi):

B(zi) =
1

2

√
z21z32z42G(zi) ,

C(zi) =
√
z21z32z42

(
1

4

(
1

z21

+
1

z23

+
1

z24

)
+ 2

∂

∂x2

)
G(zi) .

(C.13)

Finally we use the relation

K(zi) =

∮
C

dw[(w − z1)(w − z2)(w − z3)(w − z4)]−1/2 =
4i

√
z31z42

K(η) , (C.14)

where η = z43z21/(z42z31), and K(η) is the complete elliptic integral of the first kind.
Using this we can rewrite the two block conditions as

A(zi)K(zi) = 2πipG(zi) ,(
C(zi) + 2B(zi)

∂

∂x2

)
K(zi) = 2πipG(2)(zi) .

(C.15)

Inserting the relations we found for A, B and C we finally find a differential equation for
the original correlation function:

K3/2(zi)
∂

∂x2

[
(z21z32z42)1/8K1/2(zi)G(zi)

]
= −2π2p2(z21z32z42)−7/8G(zi) , (C.16)
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whose solution is

G(zi) ∝
(

z31z42

z21z41z32z43

)1/8
1√
K(η)

exp

(
i(δx0)2

8π
τ(η)

)
. (C.17)

Here τ(η) is given by τ(η) = iK(1 − η)/K(η). The overall normalization factor can be
fixed using the OPE of twist fields. Knowing that σ̄(z)σ(w) ∼ (z−w)−1/8 + . . . , we have
to require that

lim
z1→z2

G(zi)(z1 − z2)1/8 = (z3 − z4)−1/8. (C.18)

This fixes the overall factor to be

√
π

2
. We summarize here the result for the four-point

function of twist fields and the other correlators introduced for the derivation:

G(zi) =〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

(
z31z42

z21z41z32z43

)1/8√
π

2K(η)
exp

(
i(δx0)2

8π
τ(η)

)
,

Γ(w, zi) = 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

=
1

4

√
π

2P (w)

(z31z42)5/8

(z21z41z32z43)1/8

δx0

K(η)3/2
exp

(
i(δx0)2

8π
τ(η)

)
,

G(2)(zi) = 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 =

=
1

4

√
π

2

(
z31

z21z32

)5/8(
z42

z41z43

)1/8
δx0

K(η)3/2
exp

(
i(δx0)2

8π
τ(η)

)
,

Γ(2)(w, zi) = 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 =

=

√
π

2P (w)K(η)
z

9/8
31

(
z42

z21z32

)5/8(
1

z41z43

)1/8

δx0·

·
(

w − z1

2(w − z2)

z32

z31

+
E(η)

2K(η)
− δ2

16K(η)2

)
exp

(
i(δx0)2

8π
τ(η)

)
.

(C.19)

Here P (w) indicates the product P (w) = (w − z1)(w − z2)(w − z3)(w − z4). Notice that
the three correlation functions Γ(w, zi), G

(2)(zi) and Γ(2)(w, zi) are proportional to the
difference δx0; therefore, when summed over the array, they give vanishing results. This
means that the bosonized version of these correlation functions are zero, as one could
derive by direct calculation in the Ω picture.
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Appendix D

Correlation function with four twist
fields and two currents

In this appendix we consider the Green’s function in the presence of four twist fields. In
particular, following [33] and [37], we compute (assuming that Imz > 0 and Imw > 0)

g(z, w, zi) = ∂z∂wG(z, w) =
〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉
〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

. (D.1)

Taking in consideration the OPE among j and the twist fields, we can make an Ansatz
for g, which reads

g(z,w, zi) =

=
1

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
+

A(zi)√
P (z)P (w)

,

(D.2)

where P (z) = (z − z1)(z − z2)(z − z3)(z − z4). We now use the definition of energy-
momentum tensor

T (z) =
1

2
N(jj)(z) =

1

2

(
lim
w→z

j(z)j(w)− 1

(z − w)2

)
; (D.3)

this implies that

1

2

(
lim
w→z

j(z)j(w)− 1

(z − w)2

)
=
〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

G(zi)
. (D.4)

The direct calculation gives

〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉
G(zi)

=
1

2

A(zi)

P (zi)
+

1

16

(
1

z − z1

− 1

z − z2

+
1

z − z3

− 1

z − z4

)2

.

(D.5)
We can now use the OPE of T with σ(z2), in order to get the condition

lim
z→z2
〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

G(zi)

16(z − z2)2
+
∂z2G(zi)

z − z2

. (D.6)
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D. Correlation function with four twist fields and two currents

Performing the limit on (D.5) gives the equation

∂z2 log(G(zi)) =
A(zi)

2z21z23z24

− 1

8

(
1

z21

+
1

z23

− 1

z24

)
, (D.7)

from which we find the function A(x):

A(zi) =

= 2z21z23z24
∂

∂z2

[
log
(
(z21z23/z24)1/8G(zi)

)]
= z42z31

(
1− η

2
− E(η)

2K(η)
+

δ2

16K(η)2

)
,

(D.8)

where δ = δx0 and K(x) and E(x) are the complete elliptic integrals of the first and
second kind respectively. Analogous equations can be found for z1, z3 and z4. We can
finally join the equations together, using the property (for any function f(z1, z2, z3, z4))

η(1− η)∂ηf(zi) =
1

z42z31

(z12z13z14∂z1 + z21z23z24∂z2 + z31z32z34∂z3 + z41z42z43∂z4) f(zi) .

(D.9)
The final compact expression for A(zi) is

A(zi) = 2z42z31η(1− η)∂η log

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
, (D.10)

which was found in [33], in the case δ = 0. Multiplying (D.2) by G(zi) we find the
correlator

〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

=
G(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
+

+

√
2π√

P (z)P (w)

(
z31z42

z21z41z32z43

)−7/8

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
.

(D.11)

Taking appropriate limits one can derive correlation functions involving excited twist
fields. For example, we can recover the correlator 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉, which was
already computed in appendix C. Considering the limit when both of the currents collide
with a twist field we find correlators with two excited twist fields. For example

〈σ̄′(z1)σ′(z2)σ̄(z3)σ(z4)〉 =

=
1

z
9/8
21 z

1/8
43

(
z31z42

z41z32

)5/8(
E(η)

2K(η)
− δ2

16K2(η)

)√
π

2K(η)
exp

(
iδ2

8π
τ(η)

)
.

(D.12)

When the two excited twist fields are not adjacent we get

〈σ̄′(z1)σ(z2)σ̄′(z3)σ(z4)〉 =

=
z

1/8
31 z

9/8
42

(z43z41z32z21)5/8

(
1− η

2
− E(η)

2K(η)
+

δ2

16K2(η)

)√
π

2K(η)
exp

(
iδ2

8π
τ(η)

)
.

(D.13)
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Correlation functions involving excited twist fields are easily computed summing (D.12)
and (D.13) over the array of Dirichlet sectors, or simply using the bosonized expressions
of these fields. The results are

〈σ̄′B(z1)σ′B(z2)σ̄B(z3)σB(z4)〉 =
1

2z
9/8
21 z

1/8
43

(
z41z32

z42z31

)3/8

,

〈σ̄′B(z1)σB(z2)σ̄′B(z3)σB(z4)〉 = 0 .

(D.14)

103





Appendix E

Details on the calculation of the
instanton profile

In this appendix we discuss in detail the calculation of the instanton profile sketched in
section 8.2. We start from

Ac(1)
µ (k) = C0f

′
1(0)α

′k2/2〈V (−1)u
w̄ (∞)V(0)uv

Aµ
(1;−k)V (−1)v

w (0)〉 . (E.1)

The boundary changing operators (in picture -1) are the ones given in (7.19) with the
rescaling (7.26), while VAµ is given (in picture 0) by (8.32). We also compute the corre-
lation function at generic positions z1, z2 and z3, and then consider the particular case
z1 → ∞, z2 = 1 and z3 = 0. We can split the amplitude (E.1) in four sub-amplitudes,
which are independent from each other because they contain fields belonging to different
CFT’s:

Ac(1)
µ (k) ∼ w̄uα̇(τ c)vuwv

β̇
kν〈c(z1)c(z2)c(z3)〉〈e−φ(z1)e−φ(z3)〉·

· 〈∆̄(z1)e−ik·X(z2)∆(z3)〉〈Sα̇(z1)ψνψµ(z2)Sβ̇(z3)〉 .
(E.2)

The first term in (8.32) has not been taken into account: its contribution would be
proportional to kµ; anyway, the polarization Aµ of the vector is subjected to the constraint
A · k = 0. Notice that all factors of α′ (except the exponent of f ′1(0)) and gYM disappear,
thanks to the rescaling (7.26). All the correlation functions appearing in (E.2) are well
known (see appendix B); we can thus write

Ac(1)
µ (k) ∼ f ′1(0)α

′k2/2w̄uα̇(τ c)vuwv
β̇
kν (z12z23z13)

(
1

z13

)
·

·

(
e−ik·x0

z
(1−α′k2)/2
13 (4z12z23)α′k2/2

) (
−1

2
(σ̄νµ)α̇β̇

z
1/2
13

z12z23

)
,

(E.3)

where the 4-vector xµ0 denotes the position of the D(-1) brane inside the D3 brane. Sim-
plifying the result we are left with

Ac(1)
µ (k) ∼

(
f ′1(0)z13

4z12z23

)α′k2/2
1

2
w̄uα̇(σ̄νµ)α̇

β̇
wvβ̇(τ c)vukν e−ik·x0 . (E.4)
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E. Details on the calculation of the instanton profile

It is convenient now to use the ’t Hooft symbols (see (A.12)); we then obtain

Ac(1)
µ (k) ∼

(
f ′1(0)z13

4z12z23

)α′k2/2
i

2
η̄dνµ

(
w̄uα̇(τ d)α̇

β̇
wvβ̇
)

(τ c)vukν e−ik·x0 . (E.5)

Using the solution to the ADHM constraint

wvβ̇w̄vα̇ = ρ2δβ̇α̇ , (E.6)

we can see that the N ×N matrices

(td)uv =
1

ρ2

(
w̄uα̇(τ d)α̇

β̇
wvβ̇
)

(E.7)

satisfy the relation [td, te] = 2iεdef tf . If the solution (7.28) is considered, we can identify
them with the Pauli matrices (td)uv = (τ d)uv. We can then conclude that (rescaling the
size ρ if necessary, and setting the three points to ∞, 1 and 0 respectively)

Ac(1)
µ (k) =

(
f ′1(0)

4

)α′k2/2
iρ2

2
kν η̄dνµe

−ik·x0Tr(τ dτ c) = f ′1(0)α
′k2/2iρ2kν η̄cνµe

−ik·x0 . (E.8)

As discussed in section 8.2, we now insert the gluon propagator and perform a Fourier
transform, in order to obtain the result in position space. First of all we do it in the field
theory limit α′k2 → 0. In this case we have

Ac (1)
µ (x;α′k2 → 0) =

∫
d4k

(2π)2
Ac (1)
µ (k;α′k2 → 0)

1

k2
eik·x = ρ2η̄cνµ

∫
d4k

(2π)2

ikν

k2
eik·(x−x0) .

(E.9)
We remember that the scalar massless propagator in configuration space is

G(x− x0) =

∫
d4k

(2π)2

1

k2
eik·(x−x0) =

1

(x− x0)2
. (E.10)

Deriving it with respect to xν we have

∂νG(x− x0) =

∫
d4k

(2π)2

ikν

k2
eik·(x−x0) = −2

(x− x0)ν

(x− x0)4
; (E.11)

going back to (E.9) we can conclude that

Ac (1)
µ (x;α′k2 → 0) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4
, (E.12)

which is exactly the leading term of the full instanton solution (with size ρ) in an SU(2)
gauge theory (2.8). It is also possible to compute α′-correction to the profile (still in the
limit ρ �

√
α′): it is sufficient to perform the Fourier transform of (E.8), adding a the

propagator in Siegel gauge. Therefore

Ac (1)
µ (x) =

∫
d4k

(2π)2
Ac (1)
µ (k)

1

k2
eik·x = ρ2η̄cνµ

∫
d4k

(2π)2

ikν

k2
eik·(x−x0)eαk

2/2 , (E.13)
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where α = α′L1 = α′ log(f ′1(0)/4). It can be checked that the quantity α is always
negative, since f ′1(0) < 1 (see below). We have

d

dα
Ac (1)
µ (x) =

1

2
∂ν
[
ρ2η̄cµν

∫
d4k

(2π)2
eik·(x−x0)eαk

2/2

]
. (E.14)

The gaussian integral is easily computed, and we are left with

d

dα
Ac (1)
µ (x) =

1

2
ρ2η̄cµν∂

ν

[
e(x−x0)2/(2α′L1)

(α′L1)2

]
, (E.15)

which integrates to

Ac (1)
µ (x) = Ac (1)

µ (x;α′k2 → 0) +
1

2
ρ2η̄cµν∂

ν

[
−2

e(x−x0)2/(2α′L1)

(x− x0)2

]
, (E.16)

where the integration constant is given by the result in the field theory limit (E.12).
Altogether the final result is

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4

[
1 + e(x−x0)2/(2α′L1)

(
1− (x− x0)2

2α′L1

)]
. (E.17)

Notice that, as expected, the correction to (E.12) disappears in the limit α′/(x−x0)2 → 0.

Conformal map

The function f1 defined above can be obtained in two steps. First of all the unit semicircle
around the origin can be mapped to a third of a disk with unit radius, with the origin
mapped to the point 1. This corresponds to the map g1 of figure E.1, which is given by

g1(z) =

(
i− z
i+ z

)2/3

. (E.18)

g1 G

0

1

e2πi/3

e−2πi/3

0 1 ∞

f1 = G ◦ g1

Figure E.1: Conformal map from the disk around the origin, to a disk divided in three sectors,
and back to the upper half plane.
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E. Details on the calculation of the instanton profile

The second step is to map this unit disk to the upper half plane. We choose a confor-
mal map such that the insertion points e−2πi/3, 1 and e2πi/3 are mapped to 0, 1 and ∞
respectively. Such a map is given by

G(w) =

(
1− e2πi/3

) (
w − e−2πi/3

)
(1− e−2πi/3) (w − e2πi/3)

. (E.19)

The map f1 is then given by the composition f1(z) = G(g1(z)), and its derivative at the
origin is f ′1(0) = 4

3
√

3
< 1.

It would also be possible to choose three different points z1, z2 and z3 in (E.4); in that
case the map G(w) would have to be a different SL(2,C) function, such that G(e−2πi/3) =
z1, G(1) = z2 and G(e2πi/3) = z3. In this way the derivative f ′(0) can change its value,
but it turns out that the combination f ′1(0)z13/(z12z23) appearing in the prefactor of (E.4)
has always norm equal to 4

3
√

3
< 1, independently on the particular choice of z1, z2 and

z3.
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Appendix F

Derivation of the contact terms

In order to keep track of all the signs that arise in the graded algebra of the compositions
of string vertices it is convenient to work with a shifted vector space (or a suspension).
That is, we define the degree of x as deg(x) = |x| − 1, where |x| is the ghost number of
x. We denote the shifted vector space by A[1] and a shift operator s as A[1] = sA, or

(sA)i = Ai−1. (F.1)

where the subscript denotes the degree. With this convention, Q, ξ and the products

m̂2 := s ◦m2 ◦ (s−1 ⊗ s−1) ,

M̂2 := s ◦M2 ◦ (s−1 ⊗ s−1) ,

M̂3 := s ◦M3 ◦ (s−1 ⊗ s−1 ⊗ s−1)

(F.2)

all have degree one while X and Ψ(1) have degree zero. In addition we define

Q ◦ m̂2 := Qm̂2 and m̂2 ◦Q := m̂2 ◦ (Q⊗ 1l) + m̂2 ◦ (1l⊗Q) (F.3)

and similarly for M̂2, M̂3, µ̂2 etc. Then (8.7) and (8.9) become simply

M̂2 =
1

3
{X, m̂2}◦ = [Q, µ̂2]◦ , with µ̂2 =

1

3
{ξ, m̂2}◦ . (F.4)

We are now ready to extract the contact terms in (8.43) which, when expressed in terms
of the maps on the shifted vector space, take the simple form

(8.43) = P0

[
M̂2 ◦Q−1 ◦ M̂2 − M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
=

=
∑
i

sei〈sei,
[
ξ ◦ M̂2 ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L .

(F.5)
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F. Derivation of the contact terms

Then, using (F.4) we have

〈sei,
[
ξ ◦ M̂2 ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L =

=
1

2
〈sei,

[
ξ ◦ M̂2 ◦Q−1 ◦ [Q, µ̂2]◦ − ξ ◦ M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L+

+
1

2
〈sei,

[
ξ ◦ [Q, µ̂2]◦ ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L =

=
1

2
〈sei,

[
ξ ◦ M̂2 ◦Q−1 ◦Q ◦ µ̂2 − ξ ◦ µ̂2 ◦Q ◦Q−1 ◦ M̂2

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L+

+
1

2
〈sei,

[
X ◦ µ̂2 ◦Q−1 ◦ M̂2 − 2ξ ◦ M̂3

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L ,

(F.6)

where we used {Q, ξ}◦ = X and Qei = 0 in the last identity. So far this calculation is
identical to the calculation of the four-point scattering amplitude in [62]. To continue
we commute Q−1 through Q using (8.16). This is again identical to [62] apart form the
presence of P0 in (8.16).1 This leaves us with

〈sei,
[
−ξ ◦ M̂2 ◦ P0 ◦ µ̂2 + ξ ◦ µ̂2 ◦ P0 ◦ M̂2

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L+

+ 〈sei,
[
X ◦ ξ ◦ M̂2 ◦Q−1 ◦ m̂2 +X ◦ ξ ◦ m̂2 ◦Q−1 ◦ M̂2

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L ,
(F.7)

where we used {Q, ξ}◦ = X and Qei = 0 one more time and furthermore, that in the
second line, the ξ zero-mode has to be provided by µ̂2. Applying (8.9) once more to the
second line of (F.7) we are left with

〈sei,
[
−ξ ◦ M̂2 ◦ P0 ◦ µ̂2 + ξ ◦ µ̂2 ◦ P0 ◦ M̂2

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L+

+ 〈sei, [X ◦ ξ ◦ µ̂2 ◦ P0 ◦ m̂2 −X ◦ ξ ◦ m̂2 ◦ P0 ◦ µ̂2]
(
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L+

+ 〈sei,
[
X ◦X ◦ µ̂2 ◦Q−1 ◦ m̂2 +X ◦X ◦ m̂2 ◦Q−1 ◦ µ̂2

] (
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L .
(F.8)

Before continuing, we note that the second term in the first line vanishes since in section
8.1.2 we showed that P0M2(Ψ(1),Ψ(1)) = 0.

To express the contribution containing P0 in terms of elementary operator products
we undo the shift (F.2) and use (8.7) as well as (8.9). This gives, for example,

3·〈sei, ξ ◦ M̂2 ◦ P0 ◦ µ̂2

(
sΨ(1) ⊗ sΨ(1) ⊗ sΨ(1)

)
〉L =

= 〈Xξei,m2(P0µ2(Ψ(1),Ψ(1)),Ψ(1))〉L + 〈ξei,m2(XP0µ2(Ψ(1),Ψ(1)),Ψ(1))〉L+

+ 〈ξei,m2(P0µ2(Ψ(1),Ψ(1)), XΨ(1))〉L + 〈Xξei,m2(Ψ(1), P0µ2(Ψ(1),Ψ(1)))〉L+

+ 〈ξei,m2(XΨ(1), P0µ2(Ψ(1),Ψ(1)))〉L + 〈ξei,m2(Ψ(1), XP0µ2(Ψ(1),Ψ(1)))〉L ,

(F.9)

1In [62] P0 did not contribute due to kinematics for scattering states with finite momentum.
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where we used the fact that ξ and X are both BPZ even. The remaining terms in the
second line of (F.8) give in turn

− 〈Xξei,m2(P0µ2(Ψ(1),Ψ(1)),Ψ(1)) +m2(Ψ(1), P0µ2(Ψ(1),Ψ(1)))〉L+

− 〈Xξei, µ2(P0m2(Ψ(1),Ψ(1)),Ψ(1))− µ2(Ψ(1), P0m2(Ψ(1),Ψ(1)))〉L .
(F.10)

Making use of the cyclic properties of m2 and µ2 (e.g. [64])

〈a,m2(b, c)〉 = (−1)|a|(|b|+|c|)〈b,m2(c, a)〉 ,
〈a, µ2(b, c)〉 = (−1)|a|+|b|+|a|(|b|+|c|)〈b, µ2(c, a)〉

(F.11)

we can recast (F.9) and (F.10) into

− 1

3
〈P0µ2(Ψ(1),Ψ(1)), 4m2(Ψ(1), ξXei)− 4m2(ξXei,Ψ

(1)) +m2(XΨ(1), ξei)−m2(ξei, XΨ(1))〉L+

− 1

3
〈XP0µ2(Ψ(1),Ψ(1)),m2(Ψ(1), ξei)−m2(ξei,Ψ

(1))〉L+

− 〈P0m2(Ψ(1),Ψ(1)), µ2(Ψ(1), ξXei)− µ2(ξXei,Ψ
(1))〉L ,

(F.12)

where we have furthermore used that XξA = ξXA for A = V, ei. Finally, we can use
the definition of the product µ2 in the last line, and arrive at the result that we quote in
(8.50).

This leaves us with the terms containing the propagator Q−1 (F.8). Here, the ξ zero-
mode has to be provided by µ2. Thus, the last line in (F.8) can be written in the small
Hilbert space as

−2〈X ◦X ei,m2(Q−1m2(Ψ(1),Ψ(1)),Ψ(1)) +m2(Ψ(1), Q−1m2(Ψ(1),Ψ(1))〉 . (F.13)
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Appendix G

Anomalous Contributions due to
Non-Primary Fields

The explicit calculation of the product m2 and of the BPZ inner product requires a set
of conformal transformation that map each vertex operator to the upper half plane. In
this way the product m2 can be expressed in terms of the operator product expansion
of operators in CFT, and the BPZ inner product is equivalent to a correlation function
on the upper half plane. If all the vertex operators are primaries of conformal dimension
0 this does not pose any problem. In chapter 8, however, we are dealing with some
non-primaries operators, hence we should consider anomalous contributions due to these
conformal transformations. Let us consider an operator W of scaling dimension h = 0,
but with anomalous OPE with the energy-momentum tensor given by

T (z)W (0) =
α

z3
+
∂W (0)

z
+ . . . (G.1)

Considering now an infinitesimal transformation z → z+ε(z), the operator W transforms
according to

δεW (w) =
1

2πi

∮
dz[T (z)ε(z),W (w)] = α∂2ε(w)W (w) + ε(w)∂W (w) . (G.2)

The last term in (G.2) would be present even if the operator W was primary, while the
first term ε′′(z)W (z) is an anomalous contribution.

In chapter 8 we have encountered two non-primary operators, namely 1
4

: ξη : eφṼ1/2

and ∂(eφṼ1/2) (see appendix B). The first one appearns in ξXei and gives anomalous
contributions to (8.50). This anomalous contribution will thus be equal, using (B.15), to

− 6

3

1

4
(∂2ε3(0)−∂2ε4(0))〈ξP0m2(Ψ(1),Ψ(1)),m2(Ψ(1), eφṼ1/2)−m2(eφṼ1/2,Ψ

(1))〉L , (G.3)

where ε3,4 represent the infinitesimal part of the two conformal transformation that have
to be done in order map the BPZ product to a correlation function on the upper half
plane. On the other hand, ∂(eφṼ1/2) gives anomalous contributions to (8.80). Using
(B.17) we find that the anomaly is given by

1

4
(2∂2ε3(0)− 2∂2ε4(0))〈P0m2(Ψ(1),Ψ(1)),m2(Ψ(1), eφṼ1/2)−m2(eφṼ1/2,Ψ

(1))〉 , (G.4)

which exactly cancels the other anomalous contribution (G.3).
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