
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Summer 2019

Optimal sampling paths for autonomous vehicles
in uncertain ocean flows
Andrew J. de Stefan
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Applied Mathematics Commons, Artificial Intelligence and Robotics Commons, and

the Robotics Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
de Stefan, Andrew J., "Optimal sampling paths for autonomous vehicles in uncertain ocean flows" (2019). Dissertations. 1421.
https://digitalcommons.njit.edu/dissertations/1421

https://digitalcommons.njit.edu/?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1421?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

OPTIMAL SAMPLING PATHS FOR AUTONOMOUS VEHICLES IN
UNCERTAIN OCEAN FLOWS

by
Andrew J. de Stefan

Despite an extensive history of oceanic observation, researchers have only begun to

build a complete picture of oceanic currents. Sparsity of instrumentation has created

the need to maximize the information extracted from every source of data in building

this picture. Within the last few decades, autonomous vehicles, or AVs, have been

employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs

are capable of spending weeks, if not months, exploring and monitoring the oceans.

However, the quality of data acquired by these vehicles is highly dependent on the

paths along which they collect their observational data. The focus of this research is

to find optimal sampling paths for autonomous vehicles, with the goal of building the

most accurate estimate of a velocity field in the shortest time possible.

The two main numerical tools employed in this work are the level set method

for time-optimal path planning, and the Kalman filter for state estimation and

uncertainty quantification. Specifically, the uncertainty associated with the velocity

field is defined as the trace of the covariance matrix corresponding to the Kalman

filter equations. The novelty in this work is the covariance tracking algorithm, which

evolves this covariance matrix along the time-optimal trajectories defined by the

level set method, and determines the path expected to minimize the uncertainty

corresponding to the flow field by the end of deployment. While finding optimal

sampling paths using this method is straightforward for the single-vehicle problem,

it becomes increasingly difficult as the number of AVs grows. As such, an iterative

procedure is presented here for multi-vehicle problems, which in simple cases can be

proven to find controls that collectively minimizes the expected uncertainty, assuming

that such a minimum exists.

This work demonstrates the utility of combining methods from optimal control

theory and estimation theory for learning uncertain fields using fleets of autonomous

vehicles. Additionally, it shows that by optimizing over long-duration, continuous

trajectories, superior results can be obtained when compared to ad hoc approaches

such as a gradient-following control. This is demonstrated for both single-vehicle and

multi-vehicle problems, and for static and evolving flow models.

OPTIMAL SAMPLING PATHS FOR AUTONOMOUS VEHICLES IN
UNCERTAIN OCEAN FLOWS

by
Andrew J. de Stefan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey – Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences, NJIT
Department of Mathematics and Computer Science, Rutgers-Newark

August 2019

Copyright c© 2019 by Andrew J. de Stefan

ALL RIGHTS RESERVED

APPROVAL PAGE

OPTIMAL SAMPLING PATHS FOR AUTONOMOUS VEHICLES IN
UNCERTAIN OCEAN FLOWS

Andrew J. de Stefan

Richard O. Moore, Dissertation Advisor Date
Professor of Mathematics, New Jersey Institute of Technology

Wooyoung Choi, Committee Member Date
Professor of Mathematics, New Jersey Institute of Technology

David G. Shirokoff, Committee Member Date
Professor of Mathematics, New Jersey Institute of Technology

M. Ani Hsieh, Committee Member Date
Professor of Mechanical Engineering and Mechanics, University of Pennsylvania

Stephen R. Guimond, Committee Member Date
Professor of Physics, University of Maryland - Baltimore County

BIOGRAPHICAL SKETCH

Author: Andrew J. de Stefan

Degree: Doctor of Philosophy

Date: August 2019

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,

New Jersey Institute of Technology, Newark, NJ, 2019

• Bachelor of Science in Engineering Physics
Ramapo College of New Jersey, Mahwah, NJ, 2014

• Associate of Science in Business Administration
Bergen Community College, Paramus, NJ, 2011

Major: Mathematical Sciences

Presentations and Publications:

Andrew J. de Stefan, “Airborne Radar Analysis of Hurricanes,” NASA Goddard
Space Flight Center Summer Intern Poster Session, Greenbelt, MD, August
2018.

Andrew J. de Stefan, “Optimal Sampling Paths for Autonomous Vehicles in Uncertain
Ocean Flows,” Center for Applied Mathematics and Statistics (CAMS)
Research Day, Newark, NJ, April 2018.

Andrew J. de Stefan, “Numerical Methods for Finding Optimal Sampling Paths for
Autonomous Vehicles,” 14th Annual Conference on Frontiers in Applied and
Computational Mathematics (FACM), Newark, NJ, August 2017.

Andrew J. de Stefan and Yunjie Xu, “Magnetoelastic Properties of an FeNiMoB
Amorphous Alloy,” School of Theoretical and Applied Science (TAS) Research
Symposium, Mahwah, NJ, April 2013.

iv

This work is dedicated to my wife and best friend, Liz.
You are a continuous source of inspiration to me,

and I couldn’t have done this without you.
Thank you for always believing in me.

v

ACKNOWLEDGMENT

First and foremost, I would like to thank my dissertation advisor, Richard

Moore, who has served as a role model for me both professionally and personally,

and has taught me more than I could ever give him credit for here.

In addition to my advisor, I would like to express my great appreciation to the

rest of my dissertation committee: Wooyoung Choi, David Shirokoff, M. Ani Hsieh,

and Stephen Guimond. Thank you for always making yourselves available to provide

guidance and encouragement whenever it has been needed.

I am profoundly grateful to my classmates: R.J., Mahdi, Malik, and Matt.

Your friendship and support has always kept me going, despite the many challenges

we have encountered these last five years.

Last, but not least, I would like to thank my family. To my wife, my parents,

my siblings, and my in-laws: your unwavering support and unconditional love have

been paramount to me, and I would never have made it here without each and every

one of you.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 BACKGROUND . 6

2.1 Level Set Method . 6

2.1.1 Level Set Equation . 6

2.1.2 Level Set Method . 9

2.1.3 Backtracking Algorithm . 10

2.1.4 Example . 11

2.2 Kalman Filter . 12

2.2.1 Sequential Kalman Filter . 12

2.2.2 Kalman-Bucy Filter . 14

2.2.3 Extended Kalman Filter . 14

2.2.4 Alternative Methods . 15

3 COVARIANCE-TRACKING . 17

3.1 Problem Statement . 17

3.2 Covariance-Tracking Algorithm . 18

3.3 Time-Independent Systems . 20

3.3.1 Example 1 . 21

3.3.2 Example 2 . 24

3.4 Time-Dependent Systems . 27

4 COORDINATED CONTROL OF MULTIPLE VEHICLES 29

4.1 Problem Statement . 29

4.2 Finding Optimal Trajectories . 30

4.3 Convergence of Optimal Trajectories 30

4.4 Examples . 33

4.4.1 Example 1 . 33

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.2 Example 2 . 36

5 TIME-EVOLVING FLOWS . 41

5.1 The Shallow Water Equations . 41

5.2 Example . 46

5.3 Convergence . 51

6 CONCLUSIONS AND FUTURE WORK 54

6.1 Conclusions . 54

6.2 Future Work . 55

6.2.1 Expanding to Three Dimensions 55

6.2.2 Efficiently Modeling Velocity Fields 56

6.2.3 Experimental Verification . 57

BIBLIOGRAPHY . 59

viii

LIST OF FIGURES

Figure Page

2.1 Convergence of the level set method . 12

3.1 Covariance-tracking example 1 . 24

3.2 Convergence of optimal solution for covariance-tracking example 1 . . . 25

3.3 Paths for covariance-tracking example 2 27

3.4 Error convergence for covariance-tracking example 2 27

4.1 Expected covariance trace for multi-vehicle example 1 36

4.2 Optimal controls for multi-vehicle example 1 37

4.3 Paths for multi-vehicle example 2 . 39

4.4 Error convergence for multi-vehicle example 2 39

4.5 Inferred velocity fields for multi-vehicle example 2 40

5.1 Demonstration of weighted-average observation operator for SWE model 45

5.2 Inference grid for SWE example . 46

5.3 Paths for SWE example . 48

5.4 Evolution of the estimated and true velocity fields for SWE example . . 49

5.5 Error convergence for SWE example . 50

5.6 RMS errors for SWE example . 51

5.7 Inferred velocity fields for SWE example 52

6.1 Experimental mCoSTe testbed and mASVs 58

ix

CHAPTER 1

INTRODUCTION

A better understanding of our oceans and ocean currents is of growing importance

for a variety of environmental, ecological, and economic reasons. One of the most

pressing is the large accumulation of marine debris (garbage, plastics, abandoned

fishing gear, etc.) in the oceans. Having a better knowledge of ocean currents would

aid in the modeling of debris transport and allow for more targeted cleanups [3]. A

similar benefit would apply to other cleanup initiatives, such as those following the

2010 Deepwater Horizon Oil Spill in the Gulf of Mexico [7]. Accurate ocean models

are also needed for efficiently transporting goods, providing boundary conditions for

climate and weather models, search and rescue missions [2], understanding marine

ecosystems [6], and much more.

While some of these issues have only recently garnered scientific interest, oceanic

data assimilation is by no means a new field. Between the years of 1904 and 1906

the Marine Biological Association of the United Kingdom released over one-thousand

weighted bottles into the Northern Sea to study deep water currents. This idea

of using weighted devices (also known as floats, or Lagrangian drifters) to study

currents continued, and was further advanced in 1955 by John Swallow. Known as the

Swallow float, his device used a magnetostrictive “pinger” to send out signals, which

allowed the float’s depth and position to be determined via acoustic triangulation.

Unfortunately, not only could early floats be quite expensive, they also had to remain

fairly close to the acoustic receivers in order to be tracked. This gave way to the

SOFAR float in 1966. The SOFAR float made use of the Sound Fixing and Ranging

(SOFAR) channel, which is an ocean layer (typically 1,000-1,300 meters below the

surface) that acts as an underwater waveguide. Using this channel allowed these floats

1

to send signals much further, approximately 846 kilometers. In addition, they were

ultimately constructed using commercially available aluminum tubes and piezoelectric

plates, which together acted as a resonating tube. This reduced the cost of fabrication

and made it possible to perform studies using large numbers of floats. The first major

study to do this was in 1973, in the Mid-Ocean Dynamics Experiment (MODE), where

a fleet of twenty SOFAR floats were used to study sub-mesoscale dynamics. [14]

Around this same time period (specifically in the early 1960’s) the first

autonomous vehicles, or AVs, were constructed. While both AVs and floats serve

the same purpose of ocean sampling via direct and indirect measurements, they

differ in their capabilities. Floats simply advect with ocean currents, which limits

their ability to effectively sample a given domain. AVs, on the other hand, are

self-propelled waterborne drones, capable of steering against currents to obtain more

expansive data sets. The feedback capabilities of AVs allow them to avoid issues such

as clustering, which results in redundant measurements and inefficient sampling [31].

Unfortunately, the first AVs created were typically large, inefficient and expensive,

which led many organizations to prefer remotely operated vehicles (ROVs) [53]. It

was not until the early 1990’s when an economical AV, called Odyssey, was developed

at the MIT Sea Grant College Program Autonomous Underwater Vehicle (AUV)

Laboratory [1]. The success of Odyssey led to an increase of funding for autonomous

vehicle research, which to this day remains a very vital field of interest for a variety

of organizations and institutions [8].

Two widely deployed types of AUVs, or gliders [4], are the Spray and Slocum

gliders [5], which achieve propulsion by changing their buoyancy using an internal

system of bladders. As they ascend and descend through the water, their fixed

hydrofoils produce a horizontal thrust, slowly driving the vehicle forward. This

energy-efficient method of propulsion allows for gliders to remain deployed for weeks,

2

if not months, at a time. It is exactly this reason that makes gliders so appealing for

oceanographic studies, and that has motivated the work presented here.

Despite the extensive history of oceanic data assimilation, a plethora of different

experiments, and various forms of ocean monitoring (which include satellites, boats,

buoys, tide stations, etc.), ocean currents still remain largely unknown due to their

complexity and high-dimensionality, combined with the sparsity of measurements.

It is exactly this reason which motivates the investigation of more efficient ocean

sampling methods, and has ultimately resulted in considerable research focused on

optimal control for autonomous vehicles. This field of study is incredibly extensive,

and includes topics such as optimal control for single AVs [26] [35] [38] [43],

coordinated control of multiple vehicles [11] [15] [29] [30] [32] and multi-objective

Pareto-optimal control [27] [36] [40], to name a few.

While optimal control theory dates back to the brachistochrone problem and the

early development of the calculus of variations, its use in ocean navigation is somewhat

more recent. In 1931, Ernst Zermelo proposed his well-known navigation problem,

and derived a general solution for the time-minimizing path between any two points

in a known velocity field. The advent of computers has greatly expanded the ability to

perform path planning in complex flows and with complex objective functions. Many

new methods to do this have been developed, including, but not limited to, level set

methods [35] [41] [44] [55], graph-based search techniques (Dijkstra’s algorithm, A*,

fast marching method, etc.) [10] [12] [26] [44] [52], relaxation methods [38], rapidly-

exploring random trees (RRTs) [28] [50], and extremal field algorithms [21] [43].

While each of these methods have certain advantages, they also come with

drawbacks. The level set method is a front-tracking algorithm capable of finding

globally optimal paths, but is subject to CFL conditions. This can result in a

high computational cost, depending on the desired refinement of the spatial and

temporal discretization. Both graph-based search techniques and RRTs are well

3

suited for problems which contain obstacles or forbidden regions, however graph-based

methods perform poorly for complicated or time-dependent velocities [34], and RRTs

typically converge to non-optimal solutions [25]. The relaxation method of [38]

used an iterative scheme derived from the Euler-Lagrange equations in order to find

locally optimal controls for simple flows. However, this method could potentially

run into nonexistence issues for more complex velocities. The extremal field

approach essentially solves a Hamilton-Jacobi-Bellman equation using the method

of characteristics [21]. Although this method is easy to parallelize [43], it requires

calculating an entire family of optimal paths, known as a field of extremals. This

requires a large amount of storage, and can be wasteful if only interested in a single

optimal path [21].

The research described here focuses on using a level set methodology in

combination with data assimilation techniques in order to quantify uncertain ocean

currents. The level set method was developed by Sethian and Osher in 1988 [42].

Although this initial paper focused on tracking flame propagation, there has since

been an abundance of work investigating the applications of this method. Sethian

explores the optimal control applications of his fast marching method in [44], where

he discusses first arrival times and shortest paths on manifolds with weighted metrics.

Although the problem of first arrival is of most interest to us at the moment, there are

a variety of other interesting applications for the level set method in regards to path

planning. Some of these include aircraft collision avoidance [51], risk minimization in

static environments [54], and determining controls to avoid unsafe states [39].

Most relevant to our current research, however, is the work introduced by Lolla

in [34], and briefly described in Sections 2.1.2 and 2.1.3 for finding time-minimizing

paths of autonomous vehicles in known velocity fields. This work has been used

for a variety of scenarios and applications including flows with forbidden regions,

coordinated control of multiple AVs [34], time-optimal path planning in stochastic

4

flows [32], and finding energy-optimal paths using a stochastic dynamically-orthogonal

(DO) level set method [47].

Apart from these highly specialized examples, there has been little work

employing the level set method of [34] to find AV controls which optimize more general

objective functions. The work described here addresses this gap for autonomous

surface vehicles (ASVs) navigating in two-dimensional flows, where the objective

function quantifies uncertainty in the flow itself. Similar to [47], the optimal paths

we seek will be selected from a set of time-minimizing trajectories, as determined by

the level set method.

In Chapter 2, we present an introduction to the level set method that we use to

generate optimal AV trajectories, as well as the Kalman filtering methods that we use

for state estimation and uncertainty quantification. Chapter 3 makes use of the level

set method and Kalman filter to describe an algorithm for determining the optimal

path for a single AV in an uncertain ocean flow. Chapter 4 extends the methodology

of Chapter 3 to multiple vehicles, and introduces an iterative procedure for finding

the optimal controls for all vehicles collectively. Chapter 5 describes a method for

modeling more realistic ocean dynamics, making use of the shallow water equations

(SWE). Finally, in Chapter 6 we conclude and discuss potential future work.

5

CHAPTER 2

BACKGROUND

2.1 Level Set Method

2.1.1 Level Set Equation

Consider an autonomous surface vehicle (ASV) initially located at the point xs ∈ R2

at time t0, within a body of water that has known surface current v(x, t). Now

consider the problem of finding the path from this starting location xs, to some other

point ξ, which minimizes the objective functional

J [x(t), û(t)] =

∫ T
t0

κ
(
x(s; û(s))

)
ds, (2.1)

where the motion of the AV is dictated by

ẋ = v(x, t) + F (x)û(t) (2.2)

with terminal condition x(T) = ξ. Here, ẋ represents the lab frame velocity of the

AV, v is the velocity field in the medium, F is the speed of the AV which can be

spatially-dependent, and û is the unit vector defining the AV’s heading.

Assume that each pair (ξ, T) uniquely determines an optimal path x(t; ξ, T)

and optimal control û(t; ξ, T). If (ξ1, T1) sits on this optimal path, then

x(t; ξ1, T1) = x(t; ξ, T), (2.3)

û(t; ξ1, T1) = û(t; ξ, T). (2.4)

Thus, we can define the feedback control

Û(ξ, T) = û(T ; ξ, T). (2.5)

6

Plugging these controls and their corresponding paths into augmented objective

functional

J [x(t), û(t)] =

∫ T
t0

[
κ(x) + λT (s)

(
v(x, s) + F (x)û(s)− ẋ(s)

)]
ds, (2.6)

identifies a value function

W (ξ, T) = min
û
J [x(t), û(t)] = J [xÛ(t), Û(t)], (2.7)

where xÛ is the path corresponding to control Û .

Consider replacing the last bit of control Û on (T − ∆T , T) with some sub-

optimal control ν̂ in Equation (2.7). This gives

W (ξ, T) ≤ W (ξ −∆x, T −∆T) +

∫ T
T −∆T

κ(x)ds. (2.8)

If we assume that W is differentiable, we can Taylor-expand to yield

∂W

∂T
∆T +

∂W

∂ξ
∆x ≤

∫ T
T −∆T

κ(x)ds ≈ κ(ξ)∆T . (2.9)

Dividing across by ∆T and using Equation (2.2) we have that

∂W

∂T
≤ −∂W

∂ξ

(
v(ξ, T) + F (ξ)ν̂

)
+ κ(ξ). (2.10)

It is important to note that when ν̂ is replaced by Û , this inequality becomes an

equality

∂W

∂T
= κ(ξ)− ∂W

∂ξ

(
v(ξ, T) + F (ξ)Û

)
= κ(ξ) + min

ν̂

[
− ∂W

∂ξ

(
v(ξ, T) + F (ξ)ν̂

)]
,

(2.11)

which suggests that

Û =

(
∂W

∂ξ

)T∣∣∣∣∂W
∂ξ

∣∣∣∣ , (2.12)

7

and simplifies Equation (2.11) to a Hamilton-Jacobi-Bellman equation of the form

∂W

∂T
+
∂W

∂ξ
v(ξ, T) + F (ξ)

∣∣∣∣∣∣∣∣∂W∂ξ
∣∣∣∣∣∣∣∣ = κ(ξ). (2.13)

If we are interested in minimizing the “time-to-go” from xs to ξ, we define our

running cost to be κ(x) = 1. To solve Equation (2.13) in this case, we embed W into

a smooth, higher dimensional function φ(ξ, T) such that φ(ξ, T) = 0 identifies the

curve with a minimum time-to-go value of W (ξ, T) = T . Stated more simply, the

zero-level set of φ at some time T represents the set of all points ξ that our AV can

reach at that time, assuming an optimal trajectory is followed. By setting

φ(ξ, T) = W (ξ, T)− T , (2.14)

and plugging this into Equation (2.13) with κ(x) = 1, we get

∂φ

∂T
+ 1 +∇φ · v + F ||∇φ|| = 1, (2.15)

which can be rewritten as

∂φ

∂T
+∇φ · v + F ||∇φ|| = 0. (2.16)

Equation (2.16) is known as the level set equation, which is an initial value problem

that is typically initialized with a signed distance function [41]

φ(ξ, t0) = |ξ − xs|. (2.17)

Although we could choose to initialize with any function having the correct zero-level

set, a signed distance function has the advantage of having a smooth gradient almost

everywhere.

Note that while the level set equation here has been formulated through an

optimal path-planning perspective, this equation has a multitude of other applications

8

including, but not limited to: image enhancement, shape and boundary detection,

combustion, fluid mechanics, etching and deposition in microchip fabrication, etc.

[41] [44] [48] [49]

2.1.2 Level Set Method

The level set method, developed by James Sethian and Stanley Osher in [42], is

a technique used to numerically solve Equation (2.16). The implicit function φ,

introduced in Section 2.1.1, is initialized as any suitable function with the required

zero-level set, and evolved in such a way as to propagate the zero-level set as correctly

as possible in time. In addition to countless applications to various contexts where an

interface must be tracked numerically, this idea was used by Lolla et al. in [34] [35]

for the purpose of finding the minimum time-to-travel in time-varying ocean currents.

In that work, the authors develop the following finite difference algorithm for the

propagation and advection of the implicit function

φ(x, t+ ∆t)− φ(x, t)

∆t
= −F |∇φ(x, t)|+ |∇φ(x, t)∗∗|

2

−v

(
x, t+

∆t

2

)
· ∇φ(x, t)∗.

(2.18)

This is a multi-step method which is solved using a first-order Godunov

scheme for the propagation terms and a second-order Total Variation Diminishing

advection scheme for the advective term. Note that the propagation terms are those

corresponding to the vehicle’s self-propulsion (first term on the right hand side of

Equation (2.18)), whereas the advection term corresponds to the vehicle’s motion

from the underlying current (second term on the right hand side of Equation (2.18)).

Using a level set methodology has a number of benefits. The algorithm can

easily be extended into higher spatial dimensions, since calculations in each dimension

are independent of one another. The method easily handles topological changes

to the zero-level set (i.e., intersections and splitting), which is an advantage over

9

many particle-tracking algorithms. There are additionally well known adaptations

for reducing computational time, including the narrow-band level set method [9] and

fast-marching methods [44].

2.1.3 Backtracking Algorithm

The level set algorithm discussed in Section 2.1.2 calculates a reachable set S(t) for the

AV at discrete time steps m∆t for m ∈ N. Conditions to terminate the algorithm take

two typical forms: one either prescribes an end location xf for the AV, or prescribes

a maximum amount of time tf that the AV can be deployed for. In the case where

an endpoint is determined beforehand, the algorithm is run until the zero-level set of

φ passes over xf . In the latter scenario, the algorithm is simply run until m∆t ≥ tf .

In the latter case, an additional criterion is applied to determine which extremal the

AV should follow, i.e., pick xf ∈ S(t).

To find the time-minimizing trajectory, we follow the backtracking method

discussed by Lolla et al. in [35]. We consider the AV to be a particle lying on

the zero-level set of φ(x, t) and use a particle-tracking method backwards in time

to find the optimal trajectory xopt. More specifically, starting from the end point

xopt(tf) = xf , we use the following first-order finite difference scheme to calculate

xopt(t−∆t) until we ultimately reach xopt(t0) = xs

xopt(t−∆t)− xopt(t)

∆t
= −v(x, t)− F (x) · n̂, (2.19)

where n̂ is the outward facing normal-vector to the zero-level set of φ at time t, equal

to

n̂ =
∇φ(x, t)

|∇φ(x, t)|
. (2.20)

It is important to realize that Equation (2.19) calculates the optimal path, and

not the optimal control. The optimal control is obtained subsequently from Equation

10

(2.20). Since we are interested in a control represented by the vehicle’s heading, we

can assume without loss of generality that û has the form

û =

cos
(
θ(t)

)
sin
(
θ(t)

)
 , (2.21)

and define our optimal control to be

θ(t) = atan2(n̂y, n̂x)

= atan2

(
∂φ

∂y
,
∂φ

∂x

)
.

(2.22)

2.1.4 Example

To demonstrate the level set method, we will consider the following example from [26].

Assume we have an autonomous surface vehicle in an oceanic domain with surface

current modeled by

v =

−πA sin(πx
s

) cos(πy
s

)

πA cos(πx
s

) sin(πy
s

)

 , (2.23)

where A = 0.02 and s = 1. Furthermore, assume our ASV is initially at point

xs = (−1,−1) at t0 = 0, and would like to find the quickest path from xs to xf = (1, 1)

given a control speed of F = 0.05. We compute the solution using the level set

methodology described earlier, and compare our solution to the analytical solution

given by Zermelo’s navigation problem [21].

More explicitly, we use Zermelo’s approach to find the following system of ODEs

governing the time-optimal solution:

θ̇ = −π
2A

s

[
sin
(πx
s

)
sin
(πy
s

)
+ cos

(πx
s

)
cos
(πy
s

)
sin
(
2θ
)]
, (2.24)

ẋ = v + F û, (2.25)

11

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time Optimal ASV Path

Surface Velocity
Level Set Solution
True Solution
Starting Location
Final Location

10-3 10-2 10-1

"x

10-3

10-2

10-1

100

E
rr

or

Error Convergence

Average l2 Error
y = "x

Figure 2.1 Left: Comparison of the level set solution to the true solution. Right: Error

convergence plot. The error is computed by finding the Euclidean distance between the

numerical path and true path at each time step, and averaging over all of these deviations.

where v and û are defined in Equations (2.23) and (2.21), respectively. We then solve

this system using an explicit adaptive-step Runge-Kutta (4,5) method in MATLAB

combined with a shooting method. We refer to this as the true solution for comparison

purposes. Our results are shown in Figure 2.1 for ∆x = 1
400

and ∆t = 1
1000

, along

with an error convergence plot for 1
400
≤ ∆x ≤ 1

25
. We can see that the two solutions

(left panel of Figure 2.1) are in good agreement with each other and act as expected

(that is, the ASV makes use of favorable currents while avoiding opposing currents).

Additionally, we see first order convergence in space (right panel of Figure 2.1), which

is what we expect for this numerical scheme.

2.2 Kalman Filter

2.2.1 Sequential Kalman Filter

The Kalman filter (KF) provides the optimal (in the sense of mean-squared

error) estimate of a linearly evolving Gaussian-distributed state observed through

12

measurements with Gaussian-distributed error [23]. It can be regarded as a

predictor-corrector method involving a forecast (predictor) step in which the state’s

distribution evolves to the next observation time, followed by an analysis (corrector)

step in which noisy observations are optimally incorporated into the state estimate.

Following prediction steps (i.e., before observation), variables will be denoted

with a “-” subscript, whereas following correction steps (i.e., post-observation) they

will be denoted with a “+” subscript. Observations are assumed to be taken

sequentially in time and are indexed by subscript m.

The equations governing the prediction step of the sequential Kalman filter are

given by

x̂m+1,− = F x̂m,+, (2.26)

Pm+1,− = FPm,+FT + Q, (2.27)

where x̂ ∈ RN is the mean value of our state-vector, F is the N ×N system operator

matrix, Pm+1 is the covariance matrix of our mean state-vector at observation step

m+ 1, and Q is the covariance matrix of the system noise.

We assume a vector of L linear observations zm+1 ∈ RL, of the true signal given

by

zm+1 = Hm+1x̂m+1 + σ0
m+1, (2.28)

where the observation operator Hm+1 maps RN to RL, and σ0
m+1 ∈ RL is the zero-

mean Gaussian distributed observational noise with covariance matrix R0.

Using these observations, we can update our predicted values of x̂m+1,− and

Pm+1,−, in the following way

x̂m+1,+ = x̂m+1,− + Km+1(zm+1 −Hm+1x̂m+1,−), (2.29)

Pm+1,+ = (I−Km+1Hm+1)Pm+1,−, (2.30)

13

where Km+1 is the Kalman gain matrix at step m + 1, which weighs the relative

importance of our predicted value against our observations, and is defined by

Km+1 = Pm+1,−HT
m+1(Hm+1Pm+1,−HT

m+1 + R0)−1. (2.31)

The Kalman gain matrix is optimally chosen to minimize the trace of the posterior

covariance matrix. We minimize with respect to tr[Pm+1,+] because the diagonal

elements of Pm+1,+ are the variances of the state components. Since we wish to

minimize the uncertainty of the state, we want the variance of each state component

to be as small as possible. Thus, the trace of Pm+1,+ is an appropriate metric to use

to quantify the state uncertainty.

2.2.2 Kalman-Bucy Filter

The Kalman filter described above is appropriate to discrete observations in time.

Adapting the filter to continuous observations in time is straightforward and is

referred to as the Kalman-Bucy filter [24]. By letting the time-increment in the

sequential Kalman filter approach zero, we find the following ODEs which describe

the evolution of the state estimate and covariance estimate, respectively

˙̂x(t) = F(t)x̂(t) + K(t)
(
z(t)−H(t)x̂(t)

)
, (2.32)

Ṗ(t) = F(t)P(t) + P(t)F(t)T + Q(t)−K(t)R0(t)K(t)T . (2.33)

Note here that the continuous-time Kalman gain matrix now takes the form

K(t) = P(t)H(t)TR0(t)
−1
. (2.34)

2.2.3 Extended Kalman Filter

While the sequential Kalman filter and Kalman-Bucy filter described in Sections 2.2.1

and 2.2.2 are optimal for linear problems, they fail in the presence of nonlinearities,

even when adapted in obvious ways. This is due to the fact that a Gaussian

14

distribution evolving under a nonlinear system will not remain Gaussian [46]. In

cases where the nonlinearity is weak, the evolving distribution can often still be

approximated as a Gaussian and we can use what is known as the Extended Kalman

filter (EKF). The EKF is formulated by linearizing about the mean state, at both

the forecast step and the analysis step, as necessary. For example, replacing F x̂

and Hx̂ by nonlinear operators f(x̂) and h(x̂), respectively, requires that F and H

in Equations (2.27), (2.30), (2.31), (2.33), and (2.34) be replaced by the Jacobian

matrices ∂f
∂x̂

∣∣∣
x̂

and ∂h
∂x̂

∣∣∣
x̂
.

2.2.4 Alternative Methods

While this work relies mainly on the Extended Kalman filter described above, it is

important to note that a variety of other data assimilation methods exists, and could

also be used. The purpose of this section is to briefly explain some of these alternative

methods.

Unscented Kalman Filter The Unscented Kalman filter, or UKF, is another

variant of Kalman filtering which often yields superior results to the EKF, particularly

for highly-nonlinear systems. The idea behind this method is to evolve a specifically

chosen set of points (known as sigma points) according to their nonlinear model,

which yields a “cloud” of transformed points. These transformed points can in turn

be used to determine the evolved statistics of the problem [22]. It is important to note

that while the UKF provides better results in general, it still relies on the Gaussian

assumption that underlies all Kalman filtering methods.

Markov chain Monte Carlo Methods Unlike the Kalman filter, Markov

chain Monte Carlo (MCMC) methods do not make any prior assumptions on the

distribution of the state. Rather, these methods generate a sequence of samples by

simulating a Markov chain, which are then used to approximate the distribution, as

15

well as the sample mean [18]. While MCMC methods can provide more detailed

information regarding the state compared to KF methods, they require a large set

of samples to do so. This can therefore result in a high degree of computational

complexity to run these types of methods.

16

CHAPTER 3

COVARIANCE-TRACKING

The focus of this section is to use the level set method, outlined in Section 2.1, in

conjunction with the Extended Kalman filter, described in Section 2.2, to reduce

a measure of the uncertainty of an unknown velocity field v(x, t) using a single

autonomous vehicle.

3.1 Problem Statement

Consider an autonomous surface vehicle, initially located at the point xs ∈ D ⊆ R2

at time t0. Assume that D represents a sufficiently large oceanic domain (i.e., large

enough to approximate the vehicle as a point source), and has an uncertain flow

modeled by v(x, t), which is assumed to be C1. It is further assumed that the model

v(x, t) is robust enough that any model mismatch can be attributed to a noise term.

This vehicle travels with a constant speed of F with respect to v and is

constrained by a finite deployment time, t0 ≤ t ≤ tf . As this vehicle travels, it

continuously takes direct and noisy measurements of the ocean currents, and uses

this information to update its estimate of v(x, t).

It is assumed here that F > 0, and without loss of generality, it is expected

that there will be regions where |v| ≥ F . With this in mind, we seek controls which

will exploit the underlying ocean dynamics, and allow the vehicle to traverse as much

of the domain as possible. To accomplish this goal, we restrict the vehicle to follow

trajectories which satisfy an objective of time-minimization. Therefore, the optimal

control we seek is the time-minimizing path which steers this autonomous vehicle to

a point of minimum uncertainty at time tf .

17

3.2 Covariance-Tracking Algorithm

Since it is assumed here that observations are being made continually in time, the

Kalman-Bucy filter (see Section 2.2.2), or the Extended Kalman-Bucy filter, is used

for state estimation and uncertainty quantification. Specifically, the trace of the

expected covariance matrix, which evolves according to Equation (2.33), will be used

here as our metric of uncertainty.

Conceptually, the idea behind this section is to determine a family of controls

for the vehicle via the level set method, and evolve the expected covariance matrix

along each of these controls from time t0 until time tf . Upon reaching the final

time, we calculate the trace of each of these expected covariance matrices, providing

an approximate measure of the uncertainty at the end of deployment. Having this

knowledge, we have the vehicle follow the control which culminates in the lowest

expected uncertainty. By picking the covariance-minimizing time-optimal path, our

hope is to find a good approximation for a true-covariance minimizing path which

will not get caught in ineffective local minima

While under ideal circumstances, the optimal control would be updated

continuously as new observations are made, this would be computationally impractical

for any sort of real-time application. As such, we will assume that there will beM path

updates at equally spaced time intervals t = t0 + (m−1)
M

(
tf − t0

)
, for m = 1, 2, . . . ,M .

These updates will allow us to use the newly-gathered information from the AV to

revise our understanding of v(x, t) and improve the heading for our vehicle, while

remaining computationally tractable.

Finally, before explaining the algorithm, we require a parametric representation

of v, which in general will depend on x, t, and x̂ (position, time, and our state-vector).

Since determining an accurate inference model is not a straightforward procedure (see

Chapter 5), for the purposes of this section we will assume that the exact functional

form for v(x, t; x̂) is known beforehand.

18

Once a representation for v(x, t; x̂) is chosen, the first step of the algorithm is

to formulate an initial estimate v0(x, t) for the velocity subject to the initial estimate

of the state x̂0 (i.e., v0(x, t) = v(x, t; x̂0)). Then, starting from the initial position

xs at t = t0, we run the level set algorithm out until time tf . A set of points along

the final reachable set S(tf) is then chosen, and the backtracking algorithm discussed

in Section 2.1.3 is utilized to determine a family of possible controls for the vehicle.

Note here that the points along S(tf) are chosen to be equidistant, and to provide a

thorough sampling of the contour.

Having a family of controls for the AV, the covariance matrix is evolved

along each of the extremal trajectories from t0 until time tf using Equation (2.33).

From here, the trace of each expected covariance matrix is found, providing an

approximation for the uncertainty at time tf . We can now determine which control

results in the lowest expected value for the tr[P(tf)], and choose that to be the optimal

control for our AV, which we will call θopt(t). Note that is necessary to have an initial

estimate for the covariance matrix P(t0), as well as for the matrices Q(t) and R0(t).

Having our optimal control θopt(t), we allow our vehicle to run subject to the

dynamics given by Equation (2.2). The AV will follow the heading dictated by this

control (although not necessarily the desired course given uncertainty in the velocity

field), taking noisy measurements, z(t), of the true velocity. As new measurements

are taken, we update x̂(t) using Equation (2.32), giving us a more accurate estimate

of the velocity v(x, t; x̂).

The vehicle will continue to follow along θopt(t), until it reaches a pre-determined

path update time at t = t0 + (m−1)
M

(
tf − t0

)
, for m = 2, 3 . . . ,M . At these points we

will repeat the algorithm as follows:

1. Starting from the current position of the vehicle, run the level set method from
time t = t0 + (m−1)

M

(
tf − t0

)
, until time tf , making use of the current estimate

of the velocity v(x, t; x̂).

19

2. Determine a set of points along the final reachable set, S(tf), and use the
backtracking algorithm to determine a family of possible controls for the vehicle.

3. Evolve the covariance matrix along each of the extremal trajectories from time
t0 + (m−1)

M

(
tf − t0

)
until time tf .

4. Determine which control culminates in the smallest expected value for tr[P(tf)],
and set this as the new optimal control, θopt(t).

5. Allow the AV to move with control θopt(t) subject to the dynamics of Equation
(2.2). As new measurements are taken, update x̂(t) with Equation (2.32), as
well the estimate of the velocity v(x, t; x̂).

6. Repeat at the next path update time.

While the aforementioned algorithm is used throughout this work, it is

important to note that many of the choices made while defining this algorithm come

down to a matter of preference. For instance, there is no requirement to run the

algorithm out until time tf . While we have chosen to do this, all that is truly required

is that the algorithm is run until at least the next path update. Additionally, while

we have chosen to have path updates which are equally spaced in time, this is not

required either. Path updates can be made at any desired time, so long as the vehicle

has a control defined for all t0 ≤ t ≤ tf .

3.3 Time-Independent Systems

For state models which are independent of time, and as such assume no system noise,

Equation (2.33) simplifies to

d

dt
P(t) = −P(t)H(t)TR0(t)

−1
H(t)P(t). (3.1)

20

Equation (3.1) is a matrix Bernoulli equation, and can be simplified further by looking

at the inverse matrix P(t)−1. Differentiating with respect to time yields

d

dt

(
P(t)−1

)
= −P(t)−1

(
d

dt
P(t)

)
P(t)−1,

= H(t)TR0(t)
−1

H(t).

(3.2)

Integrating and inverting gives us

P(t) =

(
P(t0)−1 +

∫ t

t0

H(s)TR0(s)
−1

H(s)ds

)−1

. (3.3)

Since H(t) is known, and we assume knowledge of R0(t) and P(t0), we can solve for

tr[P(t)] using Equation (3.3). For this work, we assume that P(t0) = I and R0(t) is

positive definite, and thus we can use Equation (3.3) and the Woodbury formula [16]

to show that

tr[P(t)] =
N∑
i=1

1

1 + λi
, (3.4)

where N is the number of state components, and λi is the ith eigenvalue of∫ t
t0

H(s)TR0(s)
−1

H(s)ds.

3.3.1 Example 1

As a first example, consider a linear center of the form

v =

 α(y − y0)

−α(x− x0)

 , (3.5)

where we are interested in reducing the uncertainty of

x̂ =

α

x0

y0

 . (3.6)

21

The equations of motion for our AV are

ẋ =

 α(y − y0) + F cos(θ)

−α(x− x0) + F sin (θ)

 , (3.7)

which, for t0 = 0, has solution

x(t) = x0 + Ft cos(θ0 − αt) + (ys − y0) sin(αt) + (xs − x0) cos(αt), (3.8)

y(t) = y0 + Ft sin(θ0 − αt)− (xs − x0) sin(αt) + (ys − y0) cos(αt). (3.9)

Since v is non-linear with respect to the state components, we must use the Extended

version of the Kalman-Bucy filter, giving a linearized observation operator of

H(t) =
∂h(x̂)

∂x̂
=

 y − y0 0 −α

−x+ x0 α 0

 . (3.10)

For this problem, we will assume that

R0 = σ2I and P(0) = I.

Plugging into Equation (3.1), we find that

dP

dt
= − 1

σ2
P

(y − y0)2 + (x− x0)2 −α(x− x0) −α(y − y0)

−α(x− x0) α2 0

−α(y − y0) 0 α2

P. (3.11)

Using Equation (3.3), we find that

P(t) = P̃(t)−1, (3.12)

where

P̃(t) = I +
1

σ2

∫ t

0

H(s)TH(s)ds, (3.13)

22

which has components

P̃11 =
F 2t3

3σ2
+
Ft2

σ2

[
(xs − x0) cos(θ0) + (ys − y0) sin(θ0)

]
+

t

σ2

[
(xs − x0)2 + (ys − y0)2

]
+ 1,

P̃12 = P̃21 =
Ft sin(θ0−αt)

σ2
−
F
(
cos(θ0−αt)−cos(θ0)

)
ασ2

+

(
ys−y0

)(
cos(αt)−1

)
σ2

−
(
xs−x0

)
sin(αt)

σ2
,

P̃13 = P̃31 =
−Ft cos(θ0−αt)

σ2
−
F
(
sin(θ0−αt)−sin(θ0)

)
ασ2

−
(
xs−x0

)(
cos(αt)−1

)
σ2

−
(
ys−y0

)
sin(αt)

σ2
,

P̃22 = P̃33 =
α2t

σ2
+ 1,

P̃23 = P̃32 = 0.

Inverting P̃(t) and simplifying, we find that

tr[P(t)] =
1

P̃22

+
P̃11 + P̃22

P̃11P̃22 − P̃ 2
12 − P̃ 2

13

. (3.14)

In order to find the optimal solution for this problem, the following parameters are

chosen

F = 1,

σ2 = 0.1,

(xs, ys) = (0, 0),

tf = 3,

and

x̂0 = x̂true =

1

1

1

 .
By symbolically differentiating Equation (3.14) with respect to θ0 in MATLAB,

and numerically solving d
dθ0

(tr[P(tf)]) = 0, we find that a minimum of the expected

covariance trace occurs with an initial control angle of θ0 ≈ 2.01426. Figure 3.1

shows a comparison of the true evolution of tr[P(t)], to the numerical approximation.

Note that while it is only necessary to find the expected covariance trace at time tf ,

23

Figure 3.1 Evolution of the true covariance trace (left) and the numerical approximation
(right) for Example 1.

we calculated it at each time step in order to show the accuracy of our numerical

approximation.

Figure 3.2 shows a comparison of the true optimal trajectory to that found using

our covariance-tracking algorithm. We can see that this algorithm very accurately

reproduces the optimal solution, and moreover, we find first-order convergence in

space, as we expect with the level set method.

3.3.2 Example 2

As a second example, consider a velocity of the form

v =
4∑
i=1

Aβ

ri
e−βri

(x− xci)− (−1)iB(y − yci)

(y − yci) + (−1)iB(x− xci)

 , (3.15)

confined to the domain [0, 3]× [0, 3], with

(xc1 , yc1) = (1, 1),

(xc2 , yc2) = (1, 2),

(xc3 , yc3) = (2, 2),

(xc4 , yc4) = (2, 1),

24

Figure 3.2 Left: Reachable set and comparison of optimal paths. Right: Convergence of
numerical solution to exact solution.

and

ri =
√

(x− xci)2 + (y − yci)2.

For this problem, we are interested in reducing the uncertainty of

x̂ =

A

β

B

 , (3.16)

where

x̂true =

0.0244

3

0.6

 , (3.17)

25

subject to the following parameters

P(t0) = I,

R0 = σ2I,

σ2 = 0.01,

F = 0.04,

(xs, ys) = (1.5, 0.5),

t0 = 0,

tf = 90,

and

x̂0 =

0.05

2.5

1

 .
We have chosen 18 path updates (i.e., M = 18), which means the control

is updated every 5 time-units. Furthermore, the trajectory found using the

covariance-tracking methodology is compared to a gradient-defined control. Note

that neither control is capable of using new information until the next path update.

The trajectories corresponding to each control are shown in Figure 3.3, whereas the

error reductions for the two controls can be found in Figure 3.4.

From Figure 3.3, we see that both controls lead the AV to the same gyre.

However, using the covariance-tracking methodology, the AV is brought to the gyre

faster, and as such, reduces the uncertainty faster. This is reflected in both the RMS

error, as well as the covariance trace (see Figure 3.4). Although the RMS errors for

both controls are ultimately about the same, the better rate of convergence for the

level set control is exactly what we would expect, and verifies that this method works

as intended.

26

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Comparison of Paths

1.4 1.6 1.8 2 2.2 2.4

0.5

1

1.5True Velocity
Level Set Control
Gradient Control
Starting Location

Figure 3.3 Comparison of level set control to gradient-defined control.

0 20 40 60 80

Time

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

E
rr

or

RMS Error

Level Set Control
Gradient Control

0 20 40 60 80

Time

0.5

1

1.5

2

2.5

3
C

ov
ar

ia
nc

e
T

ra
ce

Covariance Trace

Level Set Control
Gradient Control

Figure 3.4 Left: Convergence of the RMS errors. Right: Convergence of the covariance
trace.

3.4 Time-Dependent Systems

For problems with time-dependent states, and problems where system noise is present,

it becomes more computationally expensive to calculate the expected covariance trace

within the reachable set. This is due to the fact that Equation (2.33) is no longer

separable, and cannot be simplified or solved explicitly. It is, therefore, necessary to

27

compute each component of P(t) at each time step using a finite-difference scheme,

which subjects the solution to CFL conditions and corresponding stability issues.

28

CHAPTER 4

COORDINATED CONTROL OF MULTIPLE VEHICLES

In this chapter, we extend the covariance-tracking methodology of Chapter 3 to find

optimal paths for fleets of autonomous vehicles. To do this, we make use of an iterative

procedure which perturbs the optimal trajectory of each AV into a minimum of the

expected covariance trace.

4.1 Problem Statement

Consider a fleet of K autonomous surface vehicles initially located at the points

xks ∈ D ⊆ R2, k = 1, 2, . . . , K, at time t0. Assume that these AVs are within a body

of water with surface current of the form v(x, t; x̂), where x̂ is a vector of uncertain

parameters which define v. These vehicles travel with constant speeds of F k with

respect to v and are constrained by a finite deployment time, t0 ≤ t ≤ tf . As in

Chapter 3, we assume that each vehicle is continually taking noisy measurements of

the current, and therefore make use of the Kalman-Bucy filter for state estimation

and uncertainty quantification. We are seeking optimal controls θkopt(t), t0 ≤ t ≤ tf ,

for each member of the fleet such that the uncertainty of x̂ is minimized at the end

of deployment tf .

For multiple vehicles, we can no longer minimize the uncertainty of x̂ by looking

at each vehicle independently. This is due to the fact that the trajectory of each AV

is now coupled through the observation operator, H(t), and as such, is also coupled

through the expected covariance, P(t), as well. Thus, our optimal solutions will be

time-minimizing paths which collectively minimize tr[P(tf)].

29

4.2 Finding Optimal Trajectories

As explained in Chapter 3, we begin by finding the reachable set Sk(t) for each of

the K autonomous vehicles, as well as a set of paths for each AV which adequately

samples Sk(tf). Having this information, the initial trajectories, xk0, are chosen for

2 ≤ k ≤ K. The algorithm then proceeds as follows for AVs 1 ≤ k ≤ K, and iteration

number 1 ≤ n ≤ N :

• For k = 1, set x2
n−1,x

3
n−1, . . . ,x

K
n−1 to be fixed, and find the path ξ which minimizes

tr[P
(
ξ,x2

n−1,x
3
n−1, . . . ,x

K
n−1, tf

)
]. Set x1

n = ξ.

• For 2 ≤ k ≤ K − 1, set x1
n, . . . ,x

k−1
n ,xk+1

n−1, . . . ,x
K
n−1 to be fixed, and find the path ξ

which minimizes tr[P
(
x1
n, . . . ,x

k−1
n , ξ,xk+1

n−1, . . . ,x
K
n−1, tf

)
]. Set xkn = ξ.

• For k = K, set x1
n, . . . ,x

K−1
n to be fixed, and find the path ξ which minimizes

tr[P
(
x1
n, . . . ,x

K−1
n , ξ, tf

)
]. Set xKn = ξ.

• If n = N , stop algorithm. Otherwise, n→ n+ 1, repeat steps.

4.3 Convergence of Optimal Trajectories

To prove this iterative technique works, we assume that we have already found a

minimizing set of controls, and perturb them away from that minimum. We show

that as we iterate through the optimal paths of the AVs, this perturbation becomes

smaller and ultimately tends to zero.

We first note that for time-minimizing trajectories, it can be shown from the

solution of Zermelo’s navigation problem, that for v(x, t) ∈ C1, xkopt is defined

uniquely by it’s initial control heading θk0 . Thus, perturbations made to an entire

optimizing trajectory can be thought of as a perturbation to the control’s initial

heading.

Now, consider K autonomous vehicles and their corresponding optimal trajec-

tories, xkopt(t; θ
k
0), k = 1, 2, . . . , K. By our definition of optimal, these trajectories are

30

such that tr[P(tf)] = f(θ0) is minimized, where

θ0 =

θ1
0

θ2
0

...

θK0

, (4.1)

are the initial headings for each AV. As these trajectories correspond to a minimum,

we know that

fθ0 = 0, and (4.2)

fθ0θ0 > 0, (4.3)

where fθ0 and fθ0θ0 are the gradient and Hessian of f with respect to θ0, respectively.

We perturb our optimal control vector θ0 by vector δ0, and aim to show that as we

iterate through the vehicles, as was explained in Section 4.2, this perturbation term

will tend to zero, forcing our controls back into the minimum.

Following the algorithm in Section 4.2, we begin by initializing the paths for

vehicles 2 ≤ k ≤ K, which are defined here by the initial headings θk0 + δk0 . Beginning

the first iteration, we search for the optimal control for vehicle 1, defined by the initial

heading θ1
0 + δ1

1. Since θ1
0 is fixed, and θ1

0 + δ1
1 is a local minimizer, we seek the value

δ1
1 such that

fθ10+δ11
= 0. (4.4)

To accomplish this, we first assume that each δk0 � 1. Under this assumption

we can linearize each component of our gradient fθ0+δ0 to yield

fθk0+δk0
≈ fθk0 +

K∑
j=1

fθk0θ
j
0
δj0 =

K∑
j=1

fθk0θ
j
0
δj0. (4.5)

Combining Equations (4.4) and (4.5), we find that the optimal value for δ1
1 is given

by the equation

fθ10θ10δ
1
1 = −

K∑
j=2

fθ10θ
j
0
δj0. (4.6)

31

Moving onto vehicle 2, we now seek the value for δ2
1 such that

fθ20+δ21
= 0. (4.7)

Again making use of Equations (4.4) and (4.5), we have that the optimal value for δ2
1

is given by the equation

fθ20θ10δ
1
1 + fθ20θ20δ

2
1 = −

K∑
j=3

fθ20θ
j
0
δj0. (4.8)

Continuing this for all vehicles 1 ≤ k ≤ K, we see that, in general, the optimal value

for δk1 is given by the formula

k−1∑
j=1

fθk0θ
j
0
δj1 + fθk0θk0 δ

k
1 = −

K∑
j=k+1

fθk0θ
j
0
δj0. (4.9)

Using the fact that fθi0θ
j
0

= fθj0θi0
, we can write this in matrix form as

(
D + L

)
δ1 = −LTδ0, (4.10)

or

δ1 = −
(
D + L

)−1
LTδ0, (4.11)

where

D =

fθ10θ10 0 0 . . . 0

0 fθ20θ20 0 . . . 0

0 0 fθ30θ30 . . . 0

...
...

...
. . .

...

0 0 0 . . . fθK0 θK0

, (4.12)

and

L =

0 0 . . . 0 0

fθ10θ20 0 . . . 0 0

fθ10θ30 fθ20θ30 . . . 0 0

...
...

. . .
...

...

fθ10θK0 fθ20θK0 . . . fθK−1
0 θK0

0

. (4.13)

32

From Equation (4.11), it is easy to see that extending this process over multiple

iterations will give optimal controls defined by θ0 + δn, where

δn =
[
−
(
D + L

)−1
LT
]n
δ0, (4.14)

and n is the iteration number.

For this approach to converge back to the minimum, it must be the case that

Equation (4.14) is a convergent operator. That is,

lim
n→∞

δn → 0. (4.15)

This can be shown by first noting that Equations (4.12) and (4.13) consist only of

the components of the Hessian matrix of f(θ0). That is,

fθ0θ0 = L + D + LT . (4.16)

With this in mind, it is clear to see that Equation (4.14) is the Gauss-Seidel iteration

for solving fθ0θ0δ = 0. Since fθ0θ0 is symmetric positive-definite, it is a known

result [13] that the Gauss-Seidel iteration is convergent, and as such, so is this iterative

technique. It has therefore been demonstrated that the algorithm explained in Section

4.2 will yield optimal controls which minimize tr[P(tf)], assuming such a minimum

exists.

4.4 Examples

4.4.1 Example 1

Consider the case of two autonomous vehicles within a body of water with a surface

current of the form

v =

 α(y − β)

−α(x− β)

 . (4.17)

Here, we wish to minimize the uncertainty of

x̂ =

α
β

 (4.18)

33

using noisy observations taken by the two AVs. Since v is non-linear with respect to

the state components, we must use the Extended version of the Kalman-Bucy filter,

giving a linearized observation operator of

H(t) =
∂h(x̂)

∂x̂
=

y1 − β −α

−(x1 − β) α

y2 − β −α

−(x2 − β) α

, (4.19)

where yi and xi define the trajectory of the ith vehicle. These trajectories are found

from the equations of motion

ẋi =

 α(yi − β) + F i cos(θi)

−α(xi − β) + F i sin(θi)

 , (4.20)

which, for t0 = 0, has solution

xi = F it cos(θi0 − αt) + (yis − β) sin(αt) + (xis − β) cos(αt) + β, (4.21)

yi = F it sin(θi0 − αt)− (xis − β) sin(αt) + (yis − β) cos(αt) + β. (4.22)

Note that (xis, y
i
s) is the initial position of the ith AV, and θi0 is the initial heading.

Assuming that

R0 = σ2I and P(t0) = I,

plugging into Equation (3.3) and solving, we find the expected covariance trace as a

function of θ1
0 and θ2

0

tr[P(t)] =
σ2
(
G(θ1

0) +G(θ2
0) + C

)
C
(
G(θ1

0) +G(θ2
0)
)
−
(
H(θ1

0) +H(θ2
0)
)2 , (4.23)

where

C = 4α2t+ σ2,

G(θi0) =
(F i)2t3

3
+ F it2

(
(xis − β) cos(θi0) + (yis − β) sin(θi0)

)
+
(

(xis − β)2 + (yis − β)2
)
t+

σ2

2
,

H(θi0) =− F i

α

(
(1− αt) sin(θi0 − αt) + (1 + αt) cos(θi0 − αt)− sin(θi0)− cos(θi0)

)
− xis

(
sin(αt) + cos(αt)

)
− yis

(
sin(αt)− cos(αt)

)
+ 2β sin(αt) + xis − yis.

34

In order to find the optimal trajectories for this problem, the following

parameters are chosen

(x1
s, y

1
s) = (0, 1),

(x2
s, y

2
s) = (1, 0),

F 1 = F 2 = 1,

σ2 = 0.1,

t0 = 0,

tf = 5,

and

x̂0 = x̂true =

1
2

1

 .
After running the algorithm for 100 iterations, we find that the optimal initial

headings for the two AVs are θ1
0 ≈ π and θ2

0 ≈ 3π
2

. Therefore, the optimal trajectories

are given approximately by

x1
opt(t) = −(1 + t) cos

(t
2

)
+ 1,

y1
opt(t) = (1 + t) sin

(t
2

)
+ 1,

x2
opt(t) = −(1 + t) sin

(t
2

)
+ 1,

y2
opt(t) = −(1 + t) cos

(t
2

)
+ 1.

To further demonstrate that these initial headings correspond to a minimum,

Figure 4.1 shows the expected covariance trace at tf = 5 for all initial headings.

Again, we find that θ1
0 ≈ π and θ2

0 ≈ 3π
2

corresponds to the minimum of the expected

covariance trace. Figure 4.2 shows a comparison of the numerical solutions obtained

using the covariance-tracking algorithm, to the exact solutions x1
opt and x2

opt. The

right panel of Figure 4.2 shows the RMS error convergence for the two AV trajectories

35

Figure 4.1 Expected covariance trace at tf = 5 for all initial headings.

against the iteration number, as well as

δn =

(tr[P]2
θ10θ

2
0

tr[P]θ10θ10 tr[P]θ20θ20

)n
, (4.24)

which is the nth power of the largest eigenvalue, evaluated at θ1
0 = π and θ2

0 = 3π
2

.

We see from this figure that the numerical and exact errors correspond fairly

well for n < 40, after which, the numerical error plateaus due to the resolution of

∆x in the level set method. Furthermore, we find that the rate of convergence is of

the same order as δn, as expected. This is due to the fact that the iterative method

should converge with a rate corresponding to the largest (i.e., slowest) eigenvalue.

4.4.2 Example 2

As a second example, consider a velocity field of the form

v =
4∑
i=1

Aβ

ri
e−βri

(x− xci)− (−1)iB(y − yci)

(y − yci) + (−1)iB(x− xci)

 , (4.25)

36

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8
Optimal Solutions

AV 1 - Numerical Solution
AV 2 - Numerical Solution
AV 1 - Exact Solution
AV 2 - Exact Solution
AV 1 - Starting Location
AV 2 - Starting Location
AV 1 - Optimal End Point
AV 2 - Optimal End Point

10 20 30 40 50

iteration (n)

10-4

10-3

10-2

10-1

100

101

R
M

S
 E

rr
or

Convergence of Optimal Paths

AV 1 Error (Numerical)
AV 2 Error (Numerical)
AV 1 Error (Exact)
AV 2 Error (Exact)

n

Figure 4.2 Left: Comparison of optimal trajectories. Right: Convergence of solutions to
optimal trajectories against the number of iterations.

confined to the domain [0, 3]× [0, 3], with

A = 0.0244,

β = 3,

B = 0.6,

and

ri =
√

(x− xci)2 + (y − yci)2. (4.26)

For this problem, we are interested in reducing the uncertainty of

x̂ =

[
xc1 xc2 xc3 xc4 yc1 yc2 yc3 yc4

]T
, (4.27)

where

x̂true =

[
1 1 2 2 1 2 2 1

]T
, (4.28)

37

subject to the following parameters

P(t0) = I,

R0 = σ2I,

σ2 = 0.01,

F 1 = F 2 = F 3 = 0.03,

(x1
s, y

1
s) = (2.7, 0.35),

(x2
s, y

2
s) = (2.75, 0.35),

(x3
s, y

3
s) = (2.75, 0.4),

t0 = 0,

tf = 120,

and initial condition

x̂0 =

[
0.5 1.5 1.5 2.8 0.5 2.5 1.8 1.5

]T
.

For this problem, 12 path updates (i.e., M = 12) are chosen. As a comparison,

the covariance-tracking methodology is tested against a gradient-defined control. Note

that neither control is capable of using new information regarding the flow until the

next path update. The trajectories corresponding to each control are shown in Figure

4.3, whereas the error reductions for the two controls can be found in Figure 4.4.

Figure 4.5 shows a comparison of the true velocity field, the initial guess, and the

inferred velocity fields for both controls at time tf .

From Figure 4.3 it can be seen that the three AVs following the coordinated

level set control divide to sample different gyres, whereas the three gradient-controlled

AVs fall into the same minimum, and as such travel along the same trajectory. We

see in Figure 4.4 that this level set control ultimately outperforms the gradient-

defined control in reducing both the RMS error and the covariance trace. These

results demonstrate the advantages of the covariance-tracking algorithm over the less

computationally intensive gradient-following methods.

38

Figure 4.3 Comparison of level set control to gradient-defined control.

0 20 40 60 80 100 120

Time

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
rr

or

RMS Error

Level Set Control
Gradient Control

0 20 40 60 80 100 120

Time

0

1

2

3

4

5

6

7

8

C
ov

ar
ia

nc
e

T
ra

ce

Covariance Trace

Level Set Control
Gradient Control

Figure 4.4 Left: Convergence of the RMS error. Right: Convergence of the covariance
trace.

39

0 1 2 3
0

0.5

1

1.5

2

2.5

3
Truth

0 1 2 3
0

0.5

1

1.5

2

2.5

3
Initial Guess

0 1 2 3
0

0.5

1

1.5

2

2.5

3
Level Set Control at t

f

0 1 2 3
0

0.5

1

1.5

2

2.5

3
Gradient Control at t

f

Figure 4.5 A comparison of the true velocity field (top left), the initial guess of the velocity
field (top right), and the inferred velocity fields at time tf using the level set control (bottom
left) and the gradient control (bottom right).

40

CHAPTER 5

TIME-EVOLVING FLOWS

In Chapter 3, it is mentioned that determining accurate ocean models is not a

straightforward procedure. This is due to the fact that ocean currents are massively

high-dimensional, and can vary greatly on a number of different spatial and temporal

scales, particularly for the meso- to macro-scale oceanic dynamics that this work

focuses on. As such, we seek a model that is robust enough to capture these variations

in both space and time, and simple enough that it can be implemented within the

current framework of our methodology. Due to the relatively large scale of our domain,

an appropriate approximation for these types of ocean dynamics can be found by using

the shallow water equations.

5.1 The Shallow Water Equations

The shallow water equations (SWE) are given by the following set of coupled PDEs

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0, (5.1)

∂(hu)

∂t
+

∂

∂x

(
hu2 +

gh2

2

)
+
∂(huv)

∂y
= 0, (5.2)

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

gh2

2

)
= 0, (5.3)

where h = h(x, t) is the (strictly-positive) height of the water, u = u(x, t) is the water

velocity in the x-direction, and v = v(x, t) is the water velocity in the y-direction.

Note here that the Coriolis terms that sometimes appear on the right hand side

of these equations are neglected for simplicity. Since it is our goal to use this model

within the scope of the Kalman-Bucy filter, we rewrite these equations more concisely

41

as

∂h

∂t
= A(h, u, v; t), (5.4)

∂(hu)

∂t
= B(h, u, v; t), (5.5)

∂(hv)

∂t
= C(h, u, v; t). (5.6)

For this inference problem, we are interested in finding the horizontal components

of the ocean flow, u(x, t) and v(x, t), from the above equations. To accomplish this

numerically, we choose to discretize our oceanic domain of interest onto an I × J

inference grid, where we seek u(t)i,j = u(xi,j, t) and v(t)i,j = v(xi,j, t) at each of these

inference points. While we are strictly interested in u and v, it is important to note

that these variables are strongly coupled to the water height, h. As such, it is also

necessary to try to infer h(t)i,j = h(xi,j, t), despite the fact that no observations of

the water height are being made by the vehicles. Thus, to formulate this problem in

terms of the Kalman-Bucy filter, we define a 3IJ state-vector of the form

x̂(t) =

[
u(t) v(t) h(t)

]T
, (5.7)

where

u(t) =

[
u(t)1,1 . . . u(t)I,1 u(t)1,2 . . . u(t)I,2 . . . u(t)I,J

]T
, (5.8)

v(t) =

[
v(t)1,1 . . . v(t)I,1 v(t)1,2 . . . v(t)I,2 . . . v(t)I,J

]T
, (5.9)

h(t) =

[
h(t)1,1 . . . h(t)I,1 h(t)1,2 . . . h(t)I,2 . . . h(t)I,J

]T
. (5.10)

Since the shallow water equations are nonlinear, the Extended version of the

Kalman-Bucy filter must be used. The evolution of the expected state-vector and

covariance matrix are therefore given by the nonlinear versions of Equations (2.32) and

(2.33), respectively. To determine the system-model, which describes the evolution

42

of our state-vector, we make use of Equations (5.4) - (5.6), as well as the chain rule,

to find that

∂ui,j
∂t

=
1

hi,j

[
∂(hu)i,j
∂t

− ui,j
∂hi,j
∂t

]
=

1

hi,j

[
Bi,j − ui,jAi,j

]
, (5.11)

∂vi,j
∂t

=
1

hi,j

[
∂(hv)i,j
∂t

− vi,j
∂hi,j
∂t

]
=

1

hi,j

[
Ci,j − vi,jAi,j

]
, (5.12)

∂hi,j
∂t

= Ai,j. (5.13)

Utilizing Equations (2.32), (5.11), (5.12), and (5.13), we find that our state-vector

evolves as follows

˙̂x =

[
B1,1

h1,1
. . .

BI,J

hI,J

C1,1

h1,1
. . .

CI,J

hI,J
A1,1 . . . AI,J

]T
−
[
u1,1A1,1

h1,1
. . .

uI,JAI,J

hI,J

v1,1A1,1

h1,1
. . .

vI,JAI,J

hI,J
0 . . . 0

]T
+ P(t)H(t)TR0(t)−1

(
z(t)−H(t)x̂(t)

)
.

(5.14)

Since Equation (5.14) cannot be solved explicitly, we will discretize in time

and solve this equation numerically. Of course, to do this will require numerical

approximations of Ai,j, Bi,j and Ci,j. These are found using the high-resolution,

finite-volume scheme developed by Leveque in [33] for the shallow water equations

(Equations (5.1) - (5.3)). Thus, we have an approximation for the evolution of our

state-vector given by

x̂n+1 − x̂n

∆t
=

[
Bn

1,1

hn1,1
. . .

Bn
I,J

hnI,J

Cn
1,1

hn1,1
. . .

Cn
I,J

hnI,J
An1,1 . . . AnI,J

]T
−
[
un1,1A

n
1,1

hn1,1
. . .

unI,JA
n
I,J

hnI,J

vn1,1A
n
1,1

hn1,1
. . .

vnI,JA
n
I,J

hnI,J
0 . . . 0

]T
+ Pn(Hn)T

(
R0n

)−1
(
zn −Hnx̂n

)
,

(5.15)

where the superscript n denotes the nth time-step.

Determining the evolution of the covariance matrix requires finding the Jacobian

of the system-model with respect to the state-vector. In terms of Equation (2.33),

43

this means replacing F with ∂f
∂x̂

∣∣∣
x̂
, where

f(x̂) =

[
B1,1

h1,1
. . .

BI,J

hI,J

C1,1

h1,1
. . .

CI,J

hI,J
A1,1 . . . AI,J

]T
−
[
u1,1A1,1

h1,1
. . .

uI,JAI,J

hI,J

v1,1A1,1

h1,1
. . .

vI,JAI,J

hI,J
0 . . . 0

]T
.

(5.16)

Again, discretizing in time and solving numerically, we find an approximation for the

evolution of our covariance matrix, given by

Pn+1 −Pn

∆t
=

(
∂f

∂x̂n

∣∣∣∣
x̂n

)
Pn+Pn

(
∂f

∂x̂n

∣∣∣∣
x̂n

)T
+Qn−Pn(Hn)T (R0n)−1HnPn. (5.17)

Thus, Equations (5.15) and (5.17) represent the Extended Kalman-Bucy filter when

the shallow water equations are used as a system-model.

Finally, we must determine our observation operator H in order to make use

of Equations (5.15) and (5.17). Since our state-vector is just the components of the

underlying flow at the inference points, our observation operator will simply be a

sparse matrix which picks out the corresponding state components, depending on the

vehicle location within the given domain. Since it is expected that most of the time

our vehicle’s location will be between inference grid points, we have chosen to make

H a weighted average of the closest ` inference points, where 1 ≤ ` ≤ IJ .

To demonstrate this, suppose we are interested in using a 4-point weighted

average (i.e., ` = 4) to define H. Referring to Figure 5.1 as an example, we

determine the four closest inference points to our vehicle (the red star), as well as

their corresponding distances (labeled d1, d2, d3 and d4). In this example, each of

those four points would be weighted as

wi =
1

Cdi
, (5.18)

where 1 ≤ i ≤ 4, and C is a normalizing constant, defined as

C =
4∑
j=1

1

dj
. (5.19)

44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vehicle Location
Inference Points

d3

d2

d4

d1

Figure 5.1 Demonstration using a 4-point weighted average for the observation operator.
The red star is the vehicle’s current location, the black dots are the inference points, and
the arrows represent the distances between the vehicle and the four closest inference points.

It is important to note here that in the circumstance that the vehicle’s location lies

exactly on one of the inference-grid points, then the weight for that point would

simply be set to 1, and all others set to 0.

Having all necessary information, we find that for this example with a 3 × 3

inference grid and only a single vehicle, H is a 2× 27 sparse matrix with 8 non-zero

terms defined by

H1,4 = H2,13 = w2,

H1,5 = H2,14 = w1,

H1,7 = H2,16 = w4,

H1,8 = H2,17 = w3.

Note that this method for defining H easily extends to utilize any number

of points in our weighted average, so long as 1 ≤ ` ≤ IJ . For the remainder of

this chapter, however, we use a 4-point weighted average to define our observation

operator.

45

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Inference Grid

True Velocity
Inference Points

Figure 5.2 The 7× 13 inference grid used for this example, overlaying the true velocity.

5.2 Example

Consider four autonomous surface vehicles confined to an oceanic domain (arbitrarily

chosen to have size [−0.25, 4.25]× [−0.125, 2.125]), which has a noisy surface current

representing a double-gyre system, and evolves according to Equations (5.1) - (5.3).

For this problem, we are interested in determining the values of u, v, and h on a

7 × 13 inference grid, which is shown in Figure 5.2, overlaying the domain and true

velocity. Thus, our state-vector for this problem has 273 components, and takes the

form of Equation (5.7).

In initializing this problem, we assume no prior information regarding u or

v, and as such, set these values to zero at each inference point. Since the height

components must be greater than zero, we initialize these to be the arbitrarily chosen

value of 1.5. Thus, our initial state-vector is given by

x̂(t0) =

[
0 0 1.5

]T
, (5.20)

where 0 is the zero-vector with 91 components, and 1.5 is a vector whose 91

components are all 1.5. The rest of the parameters for this problem are chosen

as follows

46

P(t0) = I,

R0 = σ2I,

Q = ω2I,

σ = ω = 0.001,

F 1 = F 2 = F 3 = F 4 = 0.1,

(x1
s, y

1
s) = (0, 0),

(x2
s, y

2
s) = (0, 2),

(x3
s, y

3
s) = (4, 0),

(x4
s, y

4
s) = (4, 2),

t0 = 0,

tf = 20,

and finally, there will be four path updates (i.e., M = 4), which will occur at times

t = 4, 8, 12, and 16. As a comparison, the covariance-tracking methodology is tested

against a gradient-defined control. Note that neither control is capable of using

new information regarding the flow until the next path update. The trajectories for

each vehicle, corresponding to both control methods, are shown in Figure 5.3. As

anticipated, we see here that using the paths defined by the level set methodology

allow the vehicles to explore more of their given domain compared to the vehicles

following a gradient-based approach.

Figure 5.4 shows how our estimated (using the covariance-tracking method) and

true velocity field evolve at each of the update times, as well as at the final time. We

note here that periodic boundary conditions are employed for this problem, which

appears to have given the true velocity field a fairly steady flow (see the right-side

of Figure 5.4). Additionally, we note that the true value of h(x, t) is approximately

equal to 1 for the entirety of this simulation, at least up to a noise term. With this

47

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Level Set Control

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Gradient Control

True Velocity
AV 1
AV 2
AV 3
AV 4
AV 1 - Starting Location
AV 2 - Starting Location
AV 3 - Starting Location
AV 4 - Starting Location

Figure 5.3 Comparison of level set control (top) to gradient-defined control (bottom).

knowledge of the true flow and water height, we can calculate the RMS error between

our estimates and the truth at each time-step. This information is plotted in Figure

5.5, along with the evolution of the covariance-trace (i.e., tr[P(t)]), for both control

methods.

By comparing the level set trajectories in Figure 5.3 with the evolution of

the estimate in Figure 5.4, we can see that the accuracy of the estimate is highly

dependent on the location of the vehicles. More specifically, the regions of the flow

with the least deviation from the truth are those which have been sampled by one of

the four vehicles. Indeed, this is expected given our definition of the state-vector and

observation operator.

From Figure 5.5 we find that the trace of the covariance matrices for both

methods are comparable, and not much deviation is found between the two. Looking

at the RMS error though, we do find that the level set control does in fact out-perform

the gradient-control. Interestingly, however, the RMS error ultimately increases,

48

0 1 2 3 4

0

1

2

Estimate at t = 4

0 1 2 3 4

0

1

2

Truth at t = 4

0 1 2 3 4

0

1

2

Estimate at t = 8

0 1 2 3 4

0

1

2

Truth at t = 8

0 1 2 3 4

0

1

2

Estimate at t = 12

0 1 2 3 4

0

1

2

Truth at t = 12

0 1 2 3 4

0

1

2

Estimate at t = 16

0 1 2 3 4

0

1

2

Truth at t = 16

0 1 2 3 4

0

1

2

Estimate at t = 20

0 1 2 3 4

0

1

2

Truth at t = 20

Figure 5.4 Left: The estimate of the velocity field at each update time using the level
set control. Right: The true velocity field at each update time.

49

0 5 10 15 20

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or

RMS Error (h, u and v)

Level Set Control
Gradient Control

0 5 10 15 20

Time

0

50

100

150

200

250

300

C
ov

ar
ia

nc
e

T
ra

ce

Covariance Trace

Level Set Control
Gradient Control

Figure 5.5 Left: Convergence of the RMS errors. Right: Convergence of the covariance
trace.

rather than decreases. Careful analysis of this situation determined that the RMS

error in Figure 5.5, which takes into account the errors in h, u, and v, is actually

dominated by the error in h. This can be seen in Figure 5.6, which looks at the error

in h independently of the errors in u and v.

The right panel of Figure 5.6 shows the RMS convergence for the simulation in

only u and v. As desired, we find that the level set control ultimately out-performs

the gradient-control in learning the flow. This is further demonstrated in Figure

5.7, which plots the inferred velocity fields at time tf for both the level set control

(top) and the gradient-control (bottom), as well as the true velocity field at that time

(middle).

In the left panel of Figure 5.6, we find that for both controls, the RMS error

for h drops to zero before spiking upwards. This is due to the fact that the EKF

being implemented here is driving the values of h at each inference point to zero.

Thus, since we initialize with h(x, t0) = 1.5, the RMS error decreases as h approaches

one, and increases thereafter. The EKF forcing h to zero may be due to the fact

that we are attempting to infer an approximately constant value of h using a system

50

0 5 10 15 20

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or

RMS Error (h)

Level Set Control
Gradient Control

0 5 10 15 20

Time

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
rr

or

RMS Error (u and v)

Level Set Control
Gradient Control

Figure 5.6 Left: RMS error in h. Right: RMS error in u and v.

of PDEs. While the system successfully determines that h is essentially a constant

function, it seems unable to determine the value of that constant without having any

direct information regarding the true water height. As such, since the Kalman filter

is designed to minimize the covariance trace, it would appear that without having

more observational data, smaller values of h are optimal for minimizing tr[P(t)].

The results found from this example not only further demonstrate the capabilities

of the covariance-tracking algorithms discussed in Chapters 3 and 4, but also

demonstrates the capabilities of using the shallow water equations as a model within

the Extended Kalman-Bucy filter. Although this system was unable to reliably

estimate the water height, it is again noted that we are only truly interested in

estimating u(x, t) and v(x, t), and that the values of h(x, t) were only included in the

state-vector due to its strong coupling with u and v.

5.3 Convergence

This work has thus far demonstrated the convergence of the level set method, as

well as the convergence of the iterative scheme used in the covariance-tracking

algorithm. Additionally, it is shown in [33] that the high-resolution, finite-volume

51

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5
Estimate at t

f
 - Level Set Control

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5
Truth at t

f

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5
Estimate at t

f
 - Gradient Control

Figure 5.7 Top: The inferred velocity field at time tf using the level set control. Middle:
The true velocity field at time tf . Bottom: The inferred velocity field at time tf using the
gradient control.

52

method employed to solve the shallow water equations is also convergent. While each

of these components may converge individually, we ultimately desire to demonstrate

the convergence of this method as a whole (i.e., show that the estimated velocities at

tf converge as ∆x and ∆t approach 0). Unfortunately, this is not currently possible

due to computational constraints. More specifically, the memory required to run a

simple example to the necessary resolution in order to find convergence is outside of

our current capabilities.

53

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Our approach uses a level set method for time-optimal path planning in order to find

a family of candidate trajectories for the autonomous vehicles. We then use a variant

of the Kalman filter to evolve a metric of the uncertainty (i.e., tr[P(t)]) along each of

these trajectories to determine which will culminate in the lowest expected uncertainty

at the end of deployment. While implementation of this method is straightforward for

the single-vehicle problem, a modification must be made for multi-vehicle problems

in order to find controls which will collectively minimize the expected uncertainty. As

such, an iterative procedure is introduced, which is shown to converge to a minimum

where one exists.

This methodology is demonstrated for static and time-evolving flow models.

Chapters 1-4 focus on low-dimensional, explicit equations for static flows to more

clearly show the utility of this method. Chapter 5 then generalizes our approach to

the shallow water equations (SWE) as a model for velocity fields more relevant to

the ocean. We show that while our algorithm is capable of accurately estimating the

horizontal components of the underlying flow, it struggles to accurately determine

the water height when using this SWE model. This is due to that fact that there is

no information regarding water height in our observations, leading to difficulties in

determining the appropriate amplitude scaling for inferred height.

Many of the examples in this work compare the results obtained using the

proposed methodology to those found using a gradient-based approach. These

examples truly demonstrate the efficacy of the proposed algorithm and, in particular,

show that by optimizing over long-duration, continuous trajectories, superior results

54

can be obtained. Specifically, we find that our method allows for these vehicles to

avoid ineffective local minima, which is where their gradient-following counterparts

typically get caught. However, it is noted that these results come with a higher

computational cost than many alternative methods. As such, this algorithm would

be better suited for oceanographic studies with deployment times on the order of

days, weeks, or months.

6.2 Future Work

6.2.1 Expanding to Three Dimensions

Thus far, we have only considered the two-dimensional optimal control problem.

Specifically, we have been considering autonomous vehicles constrained to the surface

of an oceanic domain. In truth, AUVs such as Spray and Slocum gliders dive to

depths of approximately a kilometer as they travel, extending below the surface layer

or “sunlight zone”. This requires consideration of either three-dimensional or coupled

two-dimensional velocity field models, which is planned for future work.

We can also use a functional form for the motion of the gliders in this additional

spatial dimension. Specifically, we can assume that they trace out sinusoidal or

sawtooth paths as they travel. Such an assumption would allow us to somewhat

reduce the dimensionality of the optimization problem, while still retaining some of

the more complex structures of ocean currents beyond the surface model. Clearly, the

computational expense of data assimilation in this case would increase with increased

complexity of the velocity model.

While the level set method can easily be extended to take into account additional

dimensions, it comes at the price of increased computational complexity. A partial

fix to this problem is the implementation of a narrow-band method for our level set

algorithm. First introduced by Chopp [9], this method constrains calculations of

φ(x, t) to only a narrow-band around the zero-level set, as opposed to performing

55

calculations over the entire domain. For a three-dimensional problem this drops the

total number of calculations from O(N3) to O(kN2), where N is the number of grid

points along one side, and k is the number of cells within the band [44]. It is noted that

this narrow-band methodology has already been implemented in the two-dimensional

problem.

6.2.2 Efficiently Modeling Velocity Fields

As discussed in Chapter 5, realistic oceanic currents require sophisticated techniques

in order to be accurately modeled. However, these models can result in very high-

dimensional systems, leaving the problem computationally intractable for real-time

applications. This is indeed the case in Chapter 5, where we have taken the naive

approach of discretizing the entire domain, and assumed a simple velocity within each

grid box (e.g., a constant flow). Note, however, that for an I × J discretization of

a two-dimensional domain, this results in a state-vector with 3IJ components. This

implies considerable computational expense, and is unnecessary in highly structured

flows.

An alternative method to help determine ocean dynamics is to look for transport

barriers, or Lagrangian Coherent Structures (LCS), within our domain. It is

known that LCSs contain extensive amounts of information regarding large scale

ocean currents, and it was demonstrated in [37] that these structures heavily affect

posterior information. Thus, we can use LCSs for both determining an approximate

functional form of the ocean currents, as well as reducing the overall uncertainty of

it. Additionally, there already exists methodologies for tracking coherent structures

using groups of coordinated robots [19], as well as using LCSs to quickly determine

near-optimal vehicle trajectories [20]. Both of these methods may be of interest

moving forward.

56

In [45], Shadden et al. define LCSs as ridges of finite-time Lyapunov exponent

(FTLE) fields, and use this definition to numerically extract LCSs from existing

data sets. In [17], Haller and Yuan provide a method for finding coherent structure

boundaries by searching for stable and unstable material lines where “hyperbolicity

times” are locally maximized or minimized. These numerical techniques can be

implemented in conjunction with our current methodology in an attempt to limit

the dimensionality of the state-vector, and thus make the algorithm computationally

feasible.

6.2.3 Experimental Verification

While our numerical simulations have shown promising results so far, we ultimately

wish to see how they would work for actual AVs in real currents. This leads

us to pursue experimental verification of our methodology. Specifically, we would

like to know if the uncertainty reduction seen numerically matches the uncertainty

reduction we would see in practice. Fortunately, this can be done with collaborators

at the University of Pennsylvania who are in possession of the Multi-Robot Coherent

Structure Testbed (mCoSTe).

The mCoSte is an experimental test-bed capable of producing controllable

currents, and supports the deployment of multiple micro-autonomous surface vehicles

(mASVs). The currents are created using a grid of motorized flow-driving cylinders,

which can simulate a variety of different time-independent and time-varying flow

fields. The information regarding these flows can be determined using either particle

imaging velocimetry (PIV) and/or particle tracking velocimetry (PTV). This will

provide us with real velocity data and a corresponding uncertainty to test our

proposed methods.

57

Figure 6.1 Left: The mCoSTe experimental testbed simulating a double gyre flow. Right:
micro-autonomous surface vehicles (mASVs).

Figure 6.1, which is taken from [26], shows the mCoSTe experimental test-bed

(left) as well as the mASVs (right) that we wish to use in order to demonstrate the

capabilities of our algorithm.

58

BIBLIOGRAPHY

[1] History of the Odyssey-Class of Autonomous Underwater Vehicles. https://auvlab.mit.
edu/history.html. (accessed on 7/3/2019), AUV Laboratory, MIT, Cambridge,
MA.

[2] National Aeronautics and Space Administration Earth Science website: Currents. https://
science.nasa.gov/earth-science/oceanography/physical-ocean/currents.
(accessed on 7/3/2019), Washington, D.C.

[3] National Oceanic and Atmospheric Administration Marine Debris Program. 2016 Report
on Modeling Oceanic Transport of Floating Marine Debris. Silver Spring, MD.

[4] National Oceanic and Atmospheric Administration website: What is an ocean glider?
https://oceanservice.noaa.gov/facts/ocean-gliders.html. (accessed on
7/3/2019), Silver Spring, MD.

[5] Woods Hole Oceanographic Institution website: AUVs. https://www.whoi.edu/

what-we-do/explore/underwater-vehicles/auvs/. (accessed on 7/3/2019),
Woods Hole, MA.

[6] National Oceanic and Atmospheric Administration website: Ocean currents. http:

//www.noaa.gov/resource-collections/ocean-currents, 2011. (accessed on
7/3/2019), Silver Spring, MD.

[7] National Oceanic and Atmospheric Administration Website: Gulf oil spill. http:

//www.noaa.gov/resource-collections/gulf-oil-spill, 2013. (accessed on
7/3/2019), Silver Spring, MD.

[8] James G. Bellingham. New Oceanographic Uses of Autonomous Underwater Vehicles.
Marine Technology Society Journal, 31(3):34–47, 1997.

[9] David L. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow. Journal of
Computational Physics, 106:77–91, 1993.

[10] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[11] Edward Fiorelli, Naomi E. Leonard, Pradeep Bhatta, Derek A. Paley, Ralf Bachmayer, and
David M. Fratantoni. Multi-AUV Control and Adaptive Sampling in Monterey Bay.
IEEE Journal of Oceanic Engineering, 31(4):935–948, 2006.

[12] Bartolome Garau, Alberto Alvarez, and Gabriel Oliver. Path Planning of Autonomous
Underwater Vehicles in Current Fields with Complex Spatial Variability: an A∗
Approach. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2005.

[13] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Baltimore, MD: Johns
Hopkins University Press, 1996.

59

[14] Annalisa Griffa, A. D. Jr. Kirwan, Arthur J. Mariano, Tamay Ozgokmen, and H. Thomas
Rossby, editors. Lagrangian Analysis and Prediction of Coastal and Ocean
Dynamics. Cambridge, UK: Cambridge University Press, 2007.

[15] Axel Hackbarth, Edwin Kreuzer, and Thorben Schröder. CFD in the Loop: Ensemble
Kalman Filtering With Underwater Mobile Sensor Networks. In Proceedings of the
ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering,
volume 2: CFD and VIV, 2014.

[16] William W. Hager. Updating the Inverse of a Matrix. SIAM Review, 31(2):221–239, 1989.

[17] George Haller and Guocheng Yuan. Lagrangian Coherent Structures and Mixing in Two-
Dimensional Turbulence. Physica D: Nonlinear Phenomena, 147:352–370, 2000.

[18] Wilfred K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika, 57(1):97–109, 1970.

[19] M. Ani Hsieh, Eric Forgoston, T. William Mather, and Ira B. Schwartz. Robotic Manifold
Tracking of Coherent Structures in Flows. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2012.

[20] Tamer Inanc, Shawn C. Shadden, and Jerrold E. Marsden. Optimal Trajectory Generation
in Ocean Flows. In Proceedings of the IEEE American Control Conference, 2005.

[21] Arthur E. Bryson Jr. and Yu-Chi Ho. Applied Optimal Control: Optimization, Estimation,
and Control. New York, NY: Taylor & Francis Group, 1975.

[22] Simon J. Julier and Jeffrey K. Uhlmann. A New Extension of the Kalman Filter to Nonlinear
Systems. In Proceedings of the Society of Photo-Optical Instrumentation Engineers:
Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.

[23] Rudolf E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(1):35–45, 1960.

[24] Rudolf E. Kalman and Richard S. Bucy. New Results in Linear Filtering and Prediction
Theory. Journal of Basic Engineering, 83(1):95–108, 1961.

[25] Sertac Karaman and Emilio Frazzoli. Sampling-Based Algorithms for Optimal Motion
Planning. The Internation Journal of Robotics Research, 30:846–894, 2011.

[26] Dhanushka Kularatne, Subhrajit Bhattacharya, and M. Ani Hsieh. Time and Energy
Optimal Path Planning in General Flows. In Proceedings of the Robotics: Science
and Systems Conference, 2016.

[27] Ajeet Kumar and Alexander Vladimirsky. An Efficient Method for Multiobjective
Optimal Control and Optimal Control Subject to Integral Constraints. Journal
of Computational Mathematics, 28(4):517–551, 2010.

[28] Steven M. LaValle. Planning Algorithms. Cambridge, UK: Cambridge University Press,
2006.

[29] Naomi E. Leonard and Edward Fiorelli. Virtual Leaders, Artificial Potentials and
Coordinated Control of Groups. In Proceedings of the 40th IEEE International
Conference on Decision and Control, 2001.

60

[30] Naomi E. Leonard, Derek A. Paley, Russ E. Davis, David M. Fratantoni, Francois Lekien,
and Fuming Zhang. Coordinated Control of an Underwater Glider Fleet in an
Adaptive Ocean Sampling Field Experiment in Monterey Bay. Journal of Field
Robotics, 27:718–740, 2010.

[31] Naomi E. Leonard, Derek A. Paley, Francois Lekien, Rodolphe Sepulchre, David M.
Fratantoni, and Russ E. Davis. Collective Motion, Sensor Networks, and Ocean
Sampling. Proceedings of the IEEE, 95(1):48–74, 2007.

[32] Pierre F.J. Lermusiaux, Sri Venkata Tapovan Lolla, Patrick J. Haley Jr., Konuralp Yigit,
Mattheus P. Ueckermann, Thomas Sondergaard, and Wayne G. Leslie. Science of
Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of
Ocean Vehicles, pages 481–498. New York, NY: Springer, 2016.

[33] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge, UK:
Cambridge University Press, 2002.

[34] Sri Venkata Tapovan Lolla. Path Planning in Time Dependent Flows using Level Set
Methods. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
2012.

[35] Sri Venkata Tapovan Lolla, Mattheus P. Ueckermann, Konuralp Yigit, Patrick J. Haley
Jr., and Pierre F.J. Lermusiaux. Path Planning in Time Dependent Flow Fields
using Level Set Methods. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2012.

[36] R. Timothy Marler and Jasbir Singh Arora. Survey of Multi-Objective Optimization
Methods for Engineering. Structural and Multidisciplinary Optimization, 26(6):369–
395, 2004.

[37] Damon McDougall and Chris K. R. T. Jones. Decreasing Flow Uncertainty in Bayesian
Inverse Problems Through Lagrangian Drifter Control, pages 215–228. New York,
NY: Springer, 2016.

[38] Damon McDougall and Richard O. Moore. Optimal Strategies for the Control of
Autonomous Vehicles in Data Assimilation. Physica D: Nonlinear Phenomena,
351-352:42–52, 2017.

[39] Ian M. Mitchell. Application of Level Set Methods to Control and Reachability Problems in
Continuous and Hybrid Systems. PhD thesis, Stanford University, Stanford, CA,
2002.

[40] Ian M. Mitchell and Shankar Sastry. Continuous Path Planning with Multiple Constraints.
In Proceedings of the 42nd IEEE International Conference on Decision and Control,
2003.

[41] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. New
York, NY: Springer, 2003.

[42] Stanley Osher and James A. Sethian. Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational
Physics, 79:12–49, 1988.

61

[43] Blane Rhoads, Igor Mezic, and Andrew Poje. Minimum Time Feedback Control of
Autonomous Underwater Vehicles. In Proceedings of the 49th IEEE International
Conference on Decision and Control, 2010.

[44] James A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge, UK:
Cambridge University Press, 1999.

[45] Shawn C. Shadden, Francois Lekien, and Jerrold E. Marsden. Definition and Properties
of Lagrangian Coherent Structures from Finite-Time Lyapunov Exponents in Two-
Dimensional Aperiodic Flows. Physica D: Nonlinear Phenomena, 212:271–304, 2005.

[46] Robert F. Stengel. Optimal Control and Estimation. Mineola, NY: Dover Publications,
1994.

[47] Deepak N. Subramani and Pierre F.J. Lermusiaux. Energy-Optimal Path Planning by
Stochastic Dynamically Orthogonal Level-Set Optimization. Ocean Modelling,
100:57–77, 2016.

[48] Mark Sussman and Emad Fatemi. An Efficient, Interface-Preserving Level Set Redistancing
Algorithm and Its Application to Interfacial Incompressible Fluid Flow. SIAM
Journal on Scientific Computing, 20(4):1165–1191, 1999.

[49] Mark Sussman, Peter Smereka, and Stanley Osher. A Level Set Approach for Computing
Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics,
114(1):146–159, 1994.

[50] Chiew Seon Tan, Robert Sutton, and John Chudley. An Incremental Stochastic Motion
Planning Technique for Autonomous Underwater Vehicles. Interational Federation
of Automatic Control Proceedings Volumes, 37(10):483–488, 2004.

[51] Claire J. Tomlin. Hybrid Control of Air Traffic Management Systems. PhD thesis, University
of California, Berkeley, CA, 1998.

[52] John N. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, 1995.

[53] Robert L. Wernli. AUV’s – The Maturity of the Technology. In Proceedings of the
MTS/IEEE Oceans ’99 Conference: Riding the Crest into the 21st Century, 2000.

[54] Bin Xu, Daniel J. Stilwell, and Andrew Kurdila. Efficient Computation of Level Sets
for Path Planning. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2009.

[55] Konuralp Yigit. Path Planning Methods for Autonomous Underwater Vehicles. Master’s
thesis, Massachusetts Intistitute of Technology, Cambridge, MA, 2011.

62

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Summer 2019

	Optimal sampling paths for autonomous vehicles in uncertain ocean flows
	Andrew J. de Stefan
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1
	Table of Contents (2
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Covariance-Tracking
	Chapter 4: Coordinated Control of Multiple Vehicles
	Chapter 5: Time-Evolving Flows
	Chapter 6: Conclusions and Future Work
	Bibliography

	List of Figures

