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ABSTRACT 

MOTION COMPENSATION USING CORRELATION-FEEDBACK 

by 
Zebiba Shifa 

Motion compensation is widely used for exploiting temporal redundancies in 

the coding of image sequences. Accurate estimation of motion information in image 

sequences is important in motion-compensated coding. Different approaches have 

been used to estimate motion to obtain the motion-compensated frame 

difference signal. 

 

This work uses the correlation-feedback approach to estimate the velocity or 

the optic flow of the moving image pixel. After the motion of the pixel is estimated. 

the motion-compensated frame difference signal is found by subtracting the current. 

frame from the predicted frame. 

This correlation-feedback approach estimates the true motion vector of moving 

image accurately. Consequently, the reduced error in determining the optic flow of 

the moving image leads to a better motion-compensated frame difference signal. This 

work evaluates the performance of the correlation-feedback method by comparing it 

with the gradient-based approach and block method. 
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CHAPTER 1 

INTRODUCTION 

In recent years. motion estimation of moving images has received increasing attention 

in the areas of video conferencing and video phone, where the bit rate reduction is 

very important. The bit rate reduction translates into the compression. which can 

be evaluated by the amount. of data sent over the total information. A higher 

compression ratio is achieved by cutting out. overlapping information. termed 

redundancy, between one image frame and the next. 	Two types of redun- 

dancies, namely, temporal and spatial, have been studied extensively to achieve 

high compression ratios. This work addresses the field of motion compensation 

which studies the reduction of temporal pixel redundancies that exist in a sequence 

of image frames. 

Motion compensation targets temporal redundancies in the frames of moving 

image sequences by accounting for the presence of motion. The process of deter-

mining the movement. of objects within a sequence of image frames is called motion estimation. 

In this work, two approaches to motion estimation will be discussed: namely. 

block matching and optic flow. Block matching method [2] [1.5] [2:3] estimates the 

displacement vector by comparing the grey values of successive frames in block by 

block basis. Different methods have been proposed for computation of the optic flow 

of an image. Among these methods we will briefly introduce the gradient-based and 

correlation-based approaches [10], [21]. 

A new approach, which is correlation-based and linked to the concept of 

feedback [17]. will be used in motion estimation and compensation. 	Utilizing 

feedback reduces the error in determining the optic flow [17]. 	Therefore. the 

prediction error, i.e., the difference between the current frame and the predicted 
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frame, will be reduced. 	Consequently, the accuracy of motion compensation 

is improved significantly with the application of this optic-flow field estimator. 

Simulations in this study show that a correlation-feedback approach yields a 

prediction error lower than that of gradient-based and correlation-based approaches. 

The scope of this thesis is to investigate techniques that estimate motion 

as accurately as possible for applications to motion-compensated coding. 	Using 

correlation-feedback. the true image vector can be estimated accurately. 

Chapter 2 will discuss two region matching methods; namely. recursive and 

block matching. 	The recursive method implements an iterative procedure to 

estimate the displacement vectors. This method predicts the displacement of each 

pixel recursively. The block matching method estimates the displacement vector 

by comparing the gray values of successive frames on a block-by-block basis. The 

image is first segmented into blocks. Each block in the current frame is compared 

with all possible corresponding blocks within a search area in the previous frame. 

The best match is obtained by finding the minimum error. the displaced frame. 

Chapter 3. discusses the estimation of optic flow. Three different approaches to 

optic flow are analyzed: the gradient-based. correlation-based. and spatio-temporal 

energy based approaches. The gradient-based approach computes the velocity from 

the spatio-temporal derivatives of the intensities. The correlation-based approach 

uses a. matching technique, which compares each pixel in the first image with that 

in the second image. The difference forms the displacement, vector for each pixel in 

the first image. This search involves finding the best match, which is obtained by 

finding the minimum distance measure. 

Chapter 4 introduces past work correlation-feedback and also introduces the 

application of correlation-feedback to motion compensation. This technique incor-

porates both the correlation-based approach and the concept. of feedback to compute 

the optic flow. 	After computing the optic flow using correlation-feedback. the 
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prediction of the current frame is made, and the prediction error, which is the 

difference between the predicted frame and the current frame, is computed. The 

prediction error together with the optic flow is sent to a receiver to reconstruct the 

current frame. The current frame is reconstructed at the receiver end by adding the 

predicted frame to the prediction error. 

Chapter 5 contains the simulations using correlation-feedback and the block 

matching method. Lastly, Chapter 6 summarizes the obtained results and discusses 

the possible future work. 



CHAPTER 2 

MOTION ESTIMATION AND COMPENSATION 

A motion picture,  is a sequence of still frames displayed in rapid succession. There 

is a great deal of temporal as well as spatial redundancy among adjacent frames. 

Motion compensation along the temporal dimension helps to reduce the temporal 

redundancy. Most of the variation in intensities from one frame to the next is due 

to object motion. After motion is estimated, the predicted frame is obtained. All 

approaches to motion compensation estimate a motion field at the at receiver end 

relating object locations between previous and current frames. 	This estimate is 

computed based on the pixel intensities of the current and previous frames. All 

motion compensation methods [4] [11] [16] operate under the assumption that this 

motion field estimate must be reconstructed at. the decoder without the a-priori 

knowledge of the current frame pixel intensities. In the following will discuss motion 

estimation. 

The process of determining the movement of objects within the sequence of 

image frames is known as motion estimation [13]. By estimating motion parameters. 

we can create a new frame between two adjacent. existing frames. By predicting the 

intensity of the current frame from the previous frames, we can limit our coding to 

the difference in intensities between the actual and the predicted current frames. In 

this work, the motion estimation problem is only due to the translations of objects 

given by: 

where f(x.y,t-1) is the previous frame, f(x, y, to) is the current frame, and dx and 

dy are the horizontal and vertical displacement between 	and 	respectively. 

4 



Figure 2.1 Image Translated with Displacement of (dx, dy ) 

Figure 2.1 shows an example which satisfies equation 2.1. Motion estimation 

[7] [13] is broadly divided into two groups: namely. the region matching method [13] 

and the spatio-temporal method. This paper will focus on the region matching, 

method. 

2.1 Region Matching 

The region matching method considers a small region in an image frame and searches 

for the displacement which will produce the best match among possible regions in 

an adjacent. frame. The displacement vector (dx ,dy ) is estimated by minimizing the 

following: 

where R is the local spatial region used to estimate (dr, dv ). 

Minimization of the above equation is a non-linear problem. To simplify this 

non-linear equation, two different methods can be used: 
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1. iterative method 

2. block matching method. 

In this study, the iterative method will be briefly introduced. whereas the block 

matching method will be reviewed. 

2.1.1 Iterative Method 

With this method, an iterative procedure [13] [14] is used to improve the estimate in 

each iteration. Let (4(k), dy(k)) be the estimate of (4, dy ) after the kth iteration. 

In iterative methods. the estimate of (di. dy) after the (k + 1)th iteration. (dx 

(k + 1)). is obtained by: 

where ux(k) and u y(k) are the update of correlation terms. The update terms vary 

depending on the descent method used. 

Equation 2.4 becomes: 

If we use the steepest descent met hod. 

where a is the step size that can be adjusted and Error(dx, dy ) is the error in Equation 

2.2 as a. function of dx  and dy  for a given R. In the iterative methods, (dx,dy) is 

typically estimated at each pixel. Given (dx(k),dy(k)), we can use the recursion 

relation in Equation 2.4 only once for a pixel and then move on to the next pixel. 

We can also use the recursion relation more than once for a more accurate estimate 

of (dx , dy) before we move on to the next. pixel. 

2.1.2 Block matching 

In the block matching approach [2] [5] [13] [15], [1] an image is divided into many 

fixed or variable size blocks, each block translated with a displacement. vector (4. dy  ). 
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The problem of minimizing t he error in Equation 2.2 is to evaluate the error for every 

possible (dx . dy ). First image is segmented in to several blocks and (dr. dy) estimated 

for each block. (dx , dy ) is chosen such that. the error is minimized. A block of pixel 

intensities in the current frame is compared with all possible blocks within a certain 

predefined search region in the previous frame. The predefined search area is fixed 

and has a size of (b + 2d) x (b + 2d), where b is the block size and d is the maximum 

displacement. Even though we generally choose the block size to be the same as 

I? in Equation 2.2, it is not necessary to do so. It is assumed that the maximum 

displacement between two consecutive blocks is ±d. This method segments an image 

into fixed size blocks and assumes that each block is undergoing independent uniform 

translation given by displacement vector V = (dr, dy) as shown in figure 2.2 [23]. 

To maintain the validity of the assumption. relatively small square block pixels (e.g.. 

8 x 8 or 16 x 16) are used in practice. 

Block matching estimators rely on dividing the original image plane into blocks 

in which only the translation of motion is assumed. The algorithm's task is to find a 

translation vector for each block such that the error is minimized. Often the sum of 

the square differences or the sum of the absolute mean differences is adopted as the 

cost function, and minimization is made wit h respect to the rest ricted search area 

for the translation vector. 

After the image is divided into several blocks, motion is detected for each block. 

The motion detector compares each pixel of a block at t0  with the corresponding pixel 

in the block at t-1. If the difference in intensities of a particular pixel in the current 

and in the previous frames is less than the threshold T0, then the pixel in question 

is considered unchanged [1]. If the number of altered pixels within the block is 

greater than or equal to a certain threshold T1 , then the block is considered to be 

in motion. If motion is detected within the block, then motion is estimated. The 

block matching algorithm tries to find the best match for a block in motion in the 



8 

Figure 2.2 Block Matching Motion Estimation 

current frame from the h x b blocks in a predefined search region in the previous 

frame. 

The best match is found by minimizing the error in Equation 2.2. This process 

is repeated for all blocks, resulting in the prediction of the current. frame. The 

difference between the original frame and the predicted frame is the prediction error, 

and it. is termed the motion compensated frame difference (MCFD) signal. The 

prediction error is transmitted to the receiver along with the motion information 

to reconstruct the current frame. The MCFD signal and the motion information 

reconstruct. the current frame. The above process can be equated as: 



CHAPTER 3 

OPTIC FLOW ESTIMATION 

Several techniques which are highly relevant to motion-compensated image coding 

have addressed the problem of motion estimation. Accuracy in motion information 

in image sequences is essential in video signal processing and computer vision appli-

cations. Two major approaches to motion estimation are block matching and the 

optic flow [12] [24 Chapter 2 introduced the block matching approach. This 

chapter will address the optic flow approach. 

Optic flow is the 2-D distribution of apparent velocities [6) [9] [14] that can be 

associated with the variation of brightness patterns on the image. The scene does 

not have to be in motion relative to the image for the optic flow to be non-zero. 

The image intensity is the power per unit area at a point (x,y) in the image. In 

Figure 3.1 the incident radiance arriving at the point p = (x, y, ) on the surface is 

the power per unit area per unit solid angle reflected by a point in the scene, in a 

given direction. The direction of the incident radiance is given by the unit vector 1. 

The direction (of the surface normal) at. the point p is given by the unit vector 

A change in the scene illumination [3] [8] [22] is one of the main effects that 

gives rise to an optic flow. Figure 3.2 shows that image of successive frames and the 

velocity field between two consecutive frames computed by an estimator. 

Different, approaches [12] [19] [22] optic flow estimation have been used in past 

works. Two of these approaches, listed below, will be briefly introduced in this work: 

1. gradient-based approach. 

2. correlation-based approach, 

9 
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3.1 Gradient-Based Approach 

Techniques based on the gradient-based approach conserve information about image. 

intensity. These approaches assume that for 	scene point, the intensity I 

at. the corresponding image point remains constant over 	other words, if a 

scene point p. depicted in Figure 3.1, projects onto the image point (x, y) at time 

and onto the image point (x + kr, y + δy) at time (t + 60, we can write 

Expanding the right-hand side in a Taylor series about (x, y, t) and ignoring the 

second higher order terms. we obtain: 

Combining Equations 3.1 and 3.2 results in the following: 

Dividing by δt and denoting the partial derivatives by Ix,Iy. and It  and denoting the 

local velocity by (ii, v), we obtain: 

Equation 3.4 is referred to as the motion constraint. The local constraint. provides 

one linear equation in the variables u and v. Thus, the velocity vector (u, v) cannot 

be determined locally without applying additional constraints. The above equation 

can compute the optic flow with out applying additional constraint. To determine 

the velocity, the smoothness constraint as an auxiliary equation is added. Horn and 

Schunck [10] assumed conservation of intensity and smoothness of flow-field. The 

error comes from two major sources, the rate of change of image brightness and the 
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departure from smoothness in the image velocity, therefore Equation 3.4. not exactly 

zero. It. is expressed as follows: 

where cb is the error for the rate of change of image brightness, and ϵc is the error 

from smoothness of the velocity flow. The problem of optic-flow estimation is to 

minimize the sum of the errors of the above equations, i.e., minimizing 	  

where a is the weighting factor. 

By using calculus of variation, we get: 

where 

Using the approximation to the Laplacian [101, 

equation 3.8 becomes 
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). The determinant of he coefficient. matrix equals α2(α2  + I2x + ) Solving for ii and 

r. we get . 

We have a. pair of equations for each point in the image. We can compute a new set 

of the velocity estimates (u(n+1),v(n+1) by 

where ft and D are the neighborhood average of image velocity. 

3.2 Correlation-Based Approach 

This approach uses two successive images of a time-varying scene. Singh's approach 

[21] uses region-based matching citeglazer [24]. This technique involves finding the 

best match for the pixel in the first frame from a group of pixels in the second frame. 

Singh [21] splits the match technique into two steps 

1. conservation information 

2. neighborhood information. 

Conservation information is the information that. can be recovered by local measurements 

alone, by assuming conservation of some image property over time. The procedure 

of extracting the conservation information can be outlined as follows: 

1. A correlation window wc  of size (2m + 1) x (2m + 1) is formed around the (x. y) 

pixel in the first image. 

2. A search window ws of size (2n + I) x (2n + 1) is formed around the same 

location of (a', y) in the second image. 



3. The match measure is computed by matching the correlation window wc  against 

a similar window around the candidate pixel that lies in the search window ws . 

4. The match measure ϵc(dx, dy) between wc and a similar (2n + 	x (2n+1 ) 

window around each pixel in ws, is displaced from (x, y) by an amount (dx , 

dy and computed as the sum of the square of the differences as follows: 

where I1  (x, y) and /2(x, y) refer to the pixel intensities at the location (x, y) in 

the first and second images, respectively, and w denotes a 2-D window function. 

5. The best match is found by minimizing the match measure or by minimizing the 

sum square difference (SSD). The pixel in w8 with the lowest match measure 

is selected as the best match. 

The response distribution is given in terms of the exponential error-distribution as 

follows 

Each point in a search area is a candidate for the true match. Based in the weighted- 

least squares estimation, the estimate of of image velocity, denoted by 	= (ucc, vcc). 

can be computed as follows: 

Neighborhood information is used to improve computation of image velocities. 

Neighborhood information is used to propagate velocity. Forming the neighborhood 

window of size (2w+1) x (2u,  + 1), the velocities of these (2w+1)2  pixels are mapped 

to the points (ui, vi) in uv space (where 1 ≤ i ≤ (2w + 1)2 ), with the weight to the 
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point (u,. v,) as Rn(ui, ui ). Based on the weighted least square estimation, the image 

velocity of the central pixel denoted by U  = (ū, v), is given by: 
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Figure 3.1 The Imaging Geometry 
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Figure 3.2 A Description of Optic Flow Estimation 



CHAPTER 4 

MOTION-COMPENSATION USING CORRELATION-FEEDBACK 

4.1 Correlation-Feedback Approach 

This is a new technique developed by IN. Pan and Y.Q. Shi [17], which is based on 

the correlation-based approach and the concept of feedback. In this study. a virtual 

continuous image is obtained via a bilinear interpolation applied to a digital image. 

The concept. of feedback is used to reduce error in calculating optical flow. It has 

been proved that this approach is more accurate than the gradient-based and the 

correlation-based approaches. 

Correlation-feedback is characterized by a correlation step and a propagation 

step, depicted in Figure 4.1 . Before correlation step, a continuous 2-D image function 

f(i. j) is estimated from the first- digital image ./(x, y) by using the bilinear interpo-

lation technique [18]. In the bilinear interpolation technique, gray levels are assigned 

to the pixel (x. y) in the new image, given as follows: 

Let the integer part. of (x", y") be (x, y), so that the point (x", y") is surrounded by 

the four integer coordinate points: 

Let the fractional part of x" and y" be a = x" — x and Q = y" — y. respectively, 

where 0 ≤ a, 3 < 1. Then the gray level that. we assign to (x", y") is  given by using 

bilinear interpolation [18] as follows: 

Initially, image 1 is defined as follows: 

17 
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where i1  and j1  are indexes of 11 . Then, using the above technique. image 2 is 

defined as follows: 

where 

The correlation window wc  of size (2n + 1) x (2n. + 1) is formed around the 

pixel at the location (x,y) in the first image 

A search window ws of size (2N + 1) x (2N + 1) is formed around the pixel at. 

the location in the second image I2. The error distribution is computed from the 

sum of the square of the difference as follows: 

Response distribution is computed as follows: 

where k is an appropriately chosen parameter. 

Based on the weighted-least squares estimation: 

The propagation step is achieved by using neighborhood window of size (2w + 1) x 

(2w + 1). By mapping the velocity of this window (2w + 1) x (2w + 1) pixels to the 
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point (u,. vi) in the uv space and by choosing the weight w(x,y) as a Gaussian mask. 

we get: 

Figure 4.1 Block Diagram for Correlation-Feedback Approach 

4.2 Analysis of Convergence 

Correlation-feedback is convergent, if the normalized response distribution 

is symmetric and has only one peak which is assumed by the true image velocity 

and the image intensity is a linear function of coordinates. When lu(n+1) -un  and 



satisfy the following equation. 

20 

Iv(n+1 -vn)| are greater than predefined threshold, we update 12 in the observer 

stage according to u( n+1)(i.j) and v(n+1)(i,j.) and I1. 

convergent. [17]. It is shown below that. the (tin, vn) converges to the true optic-flow. 

vector. If the propagation stage is neglected. Equation 4.8 can be written as 

Let. the normalized response distribution be denoted by g(uni yr): then. 

Consider the case where (uni,vnj) is in the vicinity of true image vector (ua, va). 

Assume g (uni,vnj) is a sample of a surface of revolution having only one extreme 

point (uni,vnj). 

Let 

where h(uni) is a sample of an asymmetrical curve about axis 	= ua with only one 

extreme value at u = 

Pan [17] used the following Lemmas for the convergence proof: 

have the following relationships, 
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Lemma 1 is apparent and its proof is therefore omitted. The proof of Lemma 2 is 

given below. From Equations 4.13 and 4.15. the proof of the first part of Lemma 2 

is given as follows: 

Similarly, the second part of Lemma 2 follows from Equations 4.13, 4.14. 4.16. 

With Equations 4.13. 4.14. 4.16. and some algebraic manipulations, the third part 

of Lemma 2 can proved as follows: 

Pan [171 gives proof of convergence of the algorithm: 

The gradient-based, correlation-based. and correlation-feedback have been used 

to estimate motion. 

Motion compensation has been traditionally resolved using block matching 

methods. Pan's [17] correlation-feedback proved to converge faster. This work 

will apply correlation-feedback for motion compensation because the algorithm 

is convergent. (un, vn ) tends to the true optical-flow, and the concept of feedback 

reduces the error in determining the optic-flow in the iterative procedure. Therefore. 
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this true optical-flow creates a better  predicted frame and because of this the 

difference between the predicted frame and the current. frame which is motion 

compensated difference (MCFD) signal is ::reduced. 	In general, the smaller the 

difference, the smaller the prediction error. 

Motion is compensated using the following algorithm: 

After the optical flow vector 0" = (0,v") is obtained, we can define the prediction 

or estimate of the current. frames as follows: 

where 12(i2 , j2 ) is an estimate of I2(i2. j2 ). 	The prediction error, which is the 

difference between the original frame and the predicted frame, is calculated. and 

it is termed the motion-compensated frame difference signal. i.e., 

Both the prediction error MCFD and the optic flow are transmitted to the receiver 

in order to reconstruct the current frame. 



CHAPTER 5 

EXPERIMENTAL.  RESULTS 

5.1 Implementation of Block Matching 

The procedure of block matching method is given by: 

1. The current. frame is divided into (B x B) blocks. 

2. A search array as shown in figure 5.1 is generated from the previous frame of 

size (B + 2d) x (B + 2d) where B is the block size and d = (dx, d y ) is the 

displacement vector. It is assumed that the maximum displacement between 

two consecutive (B x B) blocks in image frames is ±d pixels and there are 

(2d + 1)2  locations to search for the best match for the present block. 

3. Each block in the current frame is compared with all possible blocks of the 

search area in the previous frame. 

4. A pixel is considered a moving pixel if the difference between two pixels of 

consecutive blocks is greater than the given threshold (in this experiment, the 

threshold is equal to three). 

5. A block is considered a moving block, if the moving pixels in a block is greater 

than certain threshold (in this experiment the threshold is equal to 10). 

6. The block matching algorithm tries to find the best match of (B x B) size 

blocks of the current frame. 

7. The relative position of the two blocks define a motion vector associated with 

the current block. 

8. The closest block is then used as a predictor for the current. block. 

23 
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Figure 5.1 Search Area 

9. The collection of all the motion vectors define a. motion field and is sent to 

receiver. 

0. The process is repeated for all blocks and the prediction of the current frame 

is obtained. 

1. The prediction error is transmitted to the receiver together with the motion 

information to reconstruct the the current frame. The prediction error is called 

the motion compensated frame difference (MCFD). 
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5.2 Implementation of Correlation-Feedback 

Three images I1,I2,I3  are used. I1, I2, and I3  are the first, second and third frames 

of the image sequences. The time interval between 1, and 2 is assumed to be the 

same as the time interval between I2 and 13. It is also assumed that uniform motion 

occurs during these two intervals. The technique used for computing the optic flow flow 

using correlation-feedback is as follows: 

1. The initial values (u(o)(i,j), v(0)(i,j)) are made available by using the Horn and 

Schunck's algorithm [10]. 

(u(0))(i, 	, j)v(0)(i,j)) 2. From 	 and I1  by using bilinear interpolation 118] the inter- 

polated image I2 was found. 

3. The search area is obtained from the interpolated image. 

4. for each pixel in 2,  a correlation window Wc  of size (2m + 1) x (2m + 1) is 

formed. 

5. A correlation measure is selected to search for the best match for a given pixel 

of 2 in a search-area. In this work the sum-of-square-differences (SSD) [21]43] 

is used. 

6. Response distribution Rc(uN, v(n))  can be calculated using Equations 4.6 and 

4.7. 

7. (uN(i,j), vN(i,j)) is obtained by using Equation 4.8. 

8. The idea of feedback is used to update the estimate of 2.  The estimate of the 

second image 2 is only updated when |u(n+1)  — un I and |v(n+ 1) - vn | is greater 

than the predefined threshold. 

9. The MCFD and the optic flow field send to receiver end to reconstruct the 

current image or frame. 
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Figure 5.2 The Optic-Flow Field Calculated by the Gradient-Based Approach 
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Figure 5.3 The Optic-Flow Field Calculated by the Correlation-Feedback Approach 



Figure 5.4 The Prediction Error Calculated by the Gradient-Based Approach 
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Figure 5.5 The Prediction Error Calculated by the Correlation-Feedback 
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5.3 Experimental Results 

This section will cover the application of the gradient-based and correlation-feedback 

approaches on moving image sequences: Four different images, which have varying 

amounts of detail, will he used to evaluate the performance of these two methods. 

The optic-flow obtained by correlation-feedback is smoother than the gradient-based 

approach as evidenced in Figures 5.3 and 5.2, respectively. The plot of the prediction 

error of the above two approaches is shown in Figures 5.4 and 5.5. Less error is 

produced using correlation-feedback. Therefore, the correlation-feedback approach 

performs better than the gradient-based approach. 



5.3.1 Experiment I 

In this experiment 64 x 64 image sequences, depicted in Figure 5.G, 5.7. and 5.8 

are used. The correlation-feedback yields MSE which is significantly smaller than 

that produced by the gradient-based approach, as illustrated in Figures 5.10 and 

5.9, respectively. Table 5.1 gives the numerical results for the MSE of the MCFD. 

It shows that correlation-feedback produces 92% less error than the gradient-based 

approach for this image. 

Table 5.1 The Comparison of Experiment 

Gradient-Based 
Approach 

Correlation-Feedback 
Approach 

iteration. = 120 
alpha = 5 

iteration = 15 
horn — iteration. = 30 
sw = 5 x 5 cw

 = 3 x 3 
MSE 140.1 10.9 

where 
sw 	= search window 

cw 	= correlation window 

alpha = smoothing factor 
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Figure 5.6 Image I Used for Experiment. I 
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Figure 5.7 Image II Used for Experiment I 
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Figure 5.8 Image III Used for Experiment I 
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Figure 5.9 Error Squared of Experiment I Calculated by the Gradient-Based 
Approach 
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Figure 5.10 Error Squared of Experiment I Calculated by the Correlation-Feedback 
Approach 
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5.3.2 Experiment II 

In this experiment, more detailed 75 x 75 image sequences as shown in Figurs .5.11, 

5.12, and 5.13 are used. The MSE of the MCFD shows that the correlation-feedback 

produces 74.5% less error than the gradient-based approach for this image. 

Table 5.2 The Comparison of Experiment II 

Gradient-Based 
Approach 

Correlation-Feedback 
Approach 

iteration = 120 
alpha = 5 

iteration = 15 
horn — iteration = 30 
sw = 5 :x 5 
cw = 3 x 3 

MSE  211.527 	 53.883 

where 
sw 	= search window 

cw 	= correlation window 

alpha = smoothing factor 
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Figure 5.11 Image I Used for Experiment II 
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Figure 5.12 Image II Used for Experiment II 
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Figure 5.13 Image III Used for Experiment II 
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Figure 5.14 Error Squared of Experiment II Calculated by the Gradient-Based 
Approach 
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Figure 5.15 Error Squared of Experiment II Calculated by the Correlation-Feedback 
Approach 
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5.3.3 Experiment III 

In this experiment, 128 x  128 image sequences as shown in Figures 5.16. 5.17, and 

5.18 are used. These image sequences have less detail than the image sequences in 

experiment II and more detail than the images sequences in experiment 1. The  MSE 

of the MCFD shows that the correlation-feedback produces 58.1% less error than the 

gradient-based approach. 

Table 5.3 The Comparison of Experiment III 

Gradient-Based 
Approach 

Correlation-Feedback 
Approach 

iteration = 120 
alpha = 5 

iteration = 15 	 
horn — iteration = 30 
sw = 5 x 5 
cw = 3 x 3 

MSE 917.74 384.13 

where 
SW 	= search window 

cw 	= correlation window 

alpha = smoothing factor 
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Figure 5.16 Image 1 Used for Experiment III 
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Figure 5.17 Image II Used for Experiment III 
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Figure 5.18 Image III Used for Experiment III 
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Figure 5.19 Error Squared of Experiment III Calculated by the Gradient-Based 
Approach 
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Figure 5.20 Error Squared of Experiment III Calculated by the Correlation-
Feedback Approach 
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5.3.4 Experiment IV 

In this experiment, 128 x 128 image sequences as shown in Figures 5.21, 5.22, and 

5.23 are used. These image sequences have less detail than the image sequences in 

experiment. II and more detail than the image sequences in experiment 1. The MSE 

of the MCFD shows that the correlation-feedback produces 86% less error than the 

gradient-based approach. 

Table 5.4 The Comparison of  

Gradient-Based 
Approach 

Correlation-Feedback 
Approach 	  

iteration = 120 
alpha = 5 

iteration = 15 
horn — iteration = 30  
sw = 5..x 5 
cw = 3 x 3 

MSE 333.0 46.34 

where 
sw 	= search window 

cw 	= correlation window 

alpha = smoothing factor 
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Figure 5.21 Image I Used for Experiment IV 
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Figure 5.22 Image II Used for Experiment IV 
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Figure 5.23 Image III Used for Experiment IV 
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Figure 5.24 Error Squared for Experiment IV Calculated by the Gradient-Based 
Approach 
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Figure 5.25 Error Squared for Experiment IV Calculated by the Correlation-
Feedback Approach 
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5.3.5 Performance of the Correlation-Feedback 

Image sequences varying amounts of detail and different sizes were used to evaluate 

the performance of the correlation-feedback in the mean square error (MSE). 

The following table contains the MSE for the correlation-feedback given varying 

parameters. 

Table 5.5 The MSE of Correlation-Feedback 

64 x 64 128 x 128 200 x 200 
Less detailed 6.9 46.4 129 
More detailed 387.62 1784.35 1904.82 

The table shows that the performance of the correlation-feedback for less detail 

and more detail. The ratio of the MSE of the less detailed images of size 128 x 128 

over 64 x 64 is 6.7. The ratio of the MSE of the less detailed images of size 200 x 200 

over 128 x 128 is 2.8. The ratio of the MSE of the more detailed images of size 

128 x 128 over 64 x 64 is 4.6. The ratio of the MSE of the more detailed images of 

size 200 x 200 over 128 x 128 is 1.1. From the above, we can conclude t hat given 

an image with more detail, correlation-feedback performs well and it is not sensitive 

to an increase in the size of the image. 
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5.3.6 Comparison of Correlation-Feedback and Gradient-Based Approaches 

To compare the correlation-feedback and gradient-based approaches different varying 

image sequences with different. sizes were used. The following table evaluates the 

performances of the correlation-feedback and gradient-based approaches. It shows 

the reduced MSE in percentage produced by the correlation-feedback over the MSE 

produced by the gradient-based approach. 

Table 5.6 Reduced MSE (%) 

64 x 64 128 x 128 200 x 200  
Less detailed 98% 86% 70% 
More detailed 82%  67.9%  58% 

We previously noted that the correlation-feedback performs better given 

images with less detail and more detail. The difference in performance between 

the correlation-feedback and gradient-based approaches nearly similar over a variety 

of image sizes and detail. 	The above table shows that the correlation-feedback 

offers significantly superior performance ranging from 70% — 98% less  NNE than 

the gradient-based approach given images with less detail. While images with more 

detail exihibited slightly less performance, 58% — 82%, the correlation-feedback and 

the gradient-based approach is greatly reduced to a range of 58%-82%, given images 

of varying sizes with more detail. Nonetheless, the correlation-feedback consistently 

delivers superior performance in terms of reduced MSE over the gradient-based 

approach in a variety of image sizes and details. 

5.3.7 Performance Analysis 

In this section we compared block matching with correlation-feedback and gradient-

based approaches. A less detailed 512x 512 Cindy was used in this experiment.. The 

following table shows the performance of the block matching, correlation-feedback. 

and gradient-based approaches. 
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Table 5.7 The MSE 

Block  
Matching 

Gradient-Based 
Approach 

Correlation-Feedback 
Approach 

Cindy 15636.3 1351.16 995.19 

From the above table we can see that correlation-feedback performs better than  

the block matching and gradient based approaches given images with less detail image 

in general. 



CHAPTER 6 

CONCLUSIONS 

In this work we introduced a new method in motion compensation termed correlation-

feedback. Correlation-feedback a technique originally developed for motion estimation 

in computer vision. It proved to yield a better performance demonstrated by reduced 

mean squared error (RISE) when compared against the gradient-based approach. 

We therefore introduced this technique in motion compensation because it estimates 

optic flow more accurately. 	Thus, the prediction error. which is the difference 

between the original frame and the predicted frame, is reduced. 

When the concept of feedback is used, not only is the effect of noise reduced. 

but the boundary information is conserved as well. Our computer simulations show 

that correlation-feedback approach performs well for both less detailed as well as 

more detailed image sequences. Our approach yields less MSE when compared to 

the gradient-based approach in motion compensation. We compared the correlation-

feedback approach to a traditional motion compensation method, block matching. 

and proved through simulations that our approach produces a lower MSE. 

The correlation-feedback approach introduces less error. Therefore. for future 

work, we anticipate the further development of correlation-feedback in coding. 

Feedback technique can make systems robust against noise and improve performance 

drastically. The concept of feedback can also be applied to block matching for 

accurate prediction of the frames in motion. 
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