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ABSTRACT 

Development and Evaluation 
of a NFWEAV Simulation Model for 

Weaving Areas under Non-freeway Conditions 

by 
Wen-min Pan 

The development of a microscopic digital computer simulation model 

representing vehicle interaction at a weaving area under non-freeway condition is 

presented. Weaving areas are classified into two categories: 1. Weaving caused by 

merging and diverging of a ramp with an arterial, 2. On/off ramps connecting an 

arterial with a highway. The principal characteristics of the simulation model are the 

following: 1) a car following and lane changing model were used to represent vehicle 

movements; 2) an anti-collision check algorithm was developed for all vehicle 

movements; 3) driver merging urgency and follower courtesy model were developed 

for weaving vehicles. The simulation model was validated through field observation 

using video taping and photogrammetry techniques Comparative analyses between 

field observations and model predictions are carried out for non-weaving and weaving 

speed, as well as non-weaving and weaving acceleration. The results indicate that there 

is no statistically significant difference between the field data and simulation output. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Problem Definition 

This study presents a microscopic computer simulation model representing vehicle 

interactions at a weaving area under non-freeway conditions. The principle 

characteristics of the simulation model are the following: 

• a car following and lane change model were used to represent vehicle 

movements; 

• an anti-collision check algorithm was developed for all vehicle movement; 

• driver merging urgency and follower courtesy model were developed for 

weaving vehicles. 

The combinations of facility types, configurations, disturbances, etc., which can 

exist in non-freeway weaving areas are practically impossible to enumerate. As a 

consequence, each facility needs to be studied as a separate case. Two different 

categories of weaving areas are defined as: (1) weaving caused by merging and 

diverging of a ramp with an arterial, and (2) on/off ramps connecting an arterial with a 

highway. 

This thesis is part of a research project whose scope was the analysis of weaving 

areas under non-freeway conditions. The project was undertaken by the Center for 

Transportation Studies and Research, and was funded by Region II Transportation 

Consortium and New Jersey Department of Transportation (NJDOT). The primary 

objective of Phase I was the development of an analytical model, and of phase II, the 

development of a simulation model for analyzing and designing weaving areas on 

multilane arterial highways (5). 
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This thesis presents the simulation model developed for analyzing traffic 

operations in weaving areas on multilane highways which was the primary objective of 

phase II of the project. Simulation encompasses a model building process as well as 

the design and implementation of an appropriate experiment involving that model on a 

computer. The purpose of simulation on a computer is the experiment determination of 

phenomena which are too complex to study analytically and which may not be 

conveniently studied empirically. Operation of traffic on weaving areas is a typical 

complex system. 

1.2 Motivation  

The operation of weaving area under freeway conditions was treated in many studies, 

including the 1985 Highway Capacity Manual (HCM) (1). However the 1985 HCM 

and its previous editions (2,3) contain no treatment of weaving area operations on non-

freeway facilities. The committee on Highway Capacity and Quality of Service of the 

Transportation Research Board, rated the "Effective of Arterial Weaving on Arterial 

Level Service" of high urgency priority (4). It indicated that although the 1985 HCM 

treats weaving areas, rural highway, and urban streets, it does not address the problem 

created on an arterial by ramps and closely spaced intersections which can result in 

significant lane changing across the arterial over relatively short distances. In addition, 

most of the studies represented traffic interactions through analytical models which are 

based on average conditions and fail to capture the true dynamic trajectory of vehicle 

movements. 

The motivation for conducting this study stems from the fact that no models 

exist to represent traffic flow characteristics for weaving areas on multilane highways. 

In addition, the development of a simulation model provides transportation engineers 

with a more powerful tool in analyzing the effect on weaving area operations under 

various traffic conditions. 
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1.3 Objectives  

The primary objective of this project was the development of a methodology using 

simulation to analyze operations in weaving areas on multilane and arterial highways. 

The objectives of this study are the following: 

• To develop a simulation model to represent the traffic flow characteristics of 

weaving areas under non-freeway conditions. 

• To validate the simulation model through the field observations 

• To compare the simulation model with a recently developed analytical model. 

1.4 Overview  

Chapter 2 presents the literature review which includes two parts. The first part is a 

review of weaving area's capacity analysis, including 1985 Highway Capacity Manual, 

(1) and Fazio's method (6), etc. The second part is a review of simulation model 

including INTRAS, FRESIM WEAVSIM models, etc. Chapter 3 presents a detailed 

description of the elements of the simulation model NFWEAV. Chapter 4 presents the 

traffic flow models which used in the simulation model. Chapter 5 presents the 

structure of the simulation model, including flow charts of the software package. 

Chapter 6 presents the verification and evaluation results for NFWEAV. A comparison 

between the analytical model and the simulation model, and comparison between field 

data and simulation result are conducted for evaluation purposes. Finally, Chapter 7 

presents summary of the thesis, conclusions and future research. 



CHAPTER TWO 

LITERATURE REVIEW  

This chapter presents a literature review on analytical model for freeway weaving 

sections and some principal simulation models for freeway conditions. Section 2.1 

presents the analytical models, and section 2.2 presents simulation models. 

2.1 Analytical Models  

The history of the development of different models for design and analysis of freeway 

weaving sections can be traced back to 1950 when the original HCM was published(2). 

The manual was meant to be a practical guide to the design and evaluation of street and 

highways in terms of their traffic-carrying capability. A major purpose of the manual 

was to ensure consistency of procedures in the national program of highway design and 

construction. These procedures were based on empirical analysis of data collected 

prior to 1948. In 1953, a major effort was initiated by the U.S. Bureau of Public Road 

(BPR) to collect additional data for updating the 1950 procedures. As a result, a new 

weaving design and analysis procedure was published in 1965 HCM (3). 

Polytechnic Institute of New York analyzed the 1963 data base collected by the 

BPR, and additional data collected from 1972 to 1973, A new analysis methodology 

was proposed and published in National Cooperative Highway Research Program 

(NCHRP) Report 159(7). The key feature of the methodology was based on the 

geometric configuration of the weaving area which was a major determinant of 

operating quality. The Transportation Research Board (TRB) Circular 212: Interim 

Materials on Highway Capacity was published in 1980 (8). It is a part of the "Freeway 

Capacity Analysis Procedures" study sponsored by Federal Highway Administration 

(FHWA). It reformatted and revised Polytechnic's weaving procedure for easier use 

and understanding. 

4 
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The JHK & Associates study proposed a simplified method which consisted of 

two equations; one for the prediction of the average of weaving speed, and the other 

for the prediction of average speed of non-weaving speed.(9) However this method 

does not consider any geometric configuration differences or the type of operation (e.g. 

constrained or unconstrained) In 1984, the NCHRP Project 3-28B team recalibrated 

the JHK-type equations for the prediction of weaving and non-weaving vehicle speeds 

in weaving areas for the three basic configurations types taking into account constrained 

and non-constrained operations. The study results in 12 calibrated equations which are 

included in the 1985 HCM (1). 

2.1.1 1985 HCM  

The methodology of the weaving study conducted by JHK & Associates is included in 

the 1985 HCM. Chapter 4 "Freeway Weaving" of the 1985 HCM discusses and 

illustrates the development of weaving diagrams and covers basic relationships, level-

of-service criteria, and step-by-step procedures for analysis (I). The 1985 HCM 

defines three weaving area configuration types (A, B, and C). These configurations are 

based on the minimum number of lane changes required by weaving vehicles as they 

travel through the section. 

• Type A configuration requires that each weaving vehicle performs one lane 

change in order to execute its desired movements. Ramp-weaving freeway 

sections are typically of this type. 

• Type B weaving areas require vehicles in one weaving traffic stream to execute 

one lane change, while vehicles in the other weaving traffic stream perform 

desired movements without changing lanes. 

• Type C weaving sections require vehicles in one weaving traffic stream to 

perform two or more lane changes, while vehicles in the other weaving traffic 

stream perform their desired maneuvers without changing lanes 
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Figure 2.1 shows the weaving movements a and b; Table 2.1 shows the 

configuration types versus number of required lane changes. 

Figure 2.1 Weaving Movements a and b 

Table 2.1 Configuration Types Versus Number of Required Lane Changes 

No. of required lane 
changes for weaving 

Movement b 

No. of 
for 

0 

required 
weaving 

I 

lane changes 
movement a 

> =2 
0 Type B Type B Type C 
1 Type B Type A 

>=2 Type C 

The equation for weaving and non-weaving speeds prediction are calculated from: 

where a, b, and c are calibrated constants based on operation and 

configuration.(1) Table 2.2 give the value of these constants.(1) 

Table 2.2 Calibration Constants for Speed Prediction  in Weaving Areas 

Type of 
configuration 

Calibration 
a 

constants 
b 

for weaving 
c 

speed 
d 

Calibration 
a 

constant for 
b 

nonweaving 
c 

speed 
d 

A unconstrained .226 2.2 1.(X) 0.90 0.020 4.0 1.30 1.00 
constrained .280 2.2 1.00 0.90 0.020 4.0 0.88 0.60 

B unconstrained .100 1.2 0.77 0.50 0.020 2.t) 1.42 0.95 
constrained .160 1.2 0.77 0.50 0.015 2.0 1.30 0.90 

C unconstrained .100 1.8 0.80 0.50 0.015 1.8 1.10 0.50 
constrained .100 2.0 0.85 0.50 0.013 1.6 1.00 0.50 
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Figure 2.2 Lane Shift for Fazio Model (1)  
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The level-of-service for weaving and non-weaving traffic is taking from table 2.3 based 

on the calculated average speed of weaving and non-weaving flow. 

Table 2.3 Level of Service Criteria for Weaving Section (I) 

2.1.2 Fazio's Lane-shift Model 

Joseph Fazio suggests a different approach to inclusion of lane configuration in 

weaving-area analysis methodology (6). The methodology is based on specifically 

accounting for the number of lane shifts that need to be made by weaving vehicles to 

successfully complete their desired maneuver. It is based on calibrated lane distribution 

of entering vehicles in weaving sections. Once the entering lane distribution of 

entering vehicle is established, the total number of required lane shifts (or lane 

changes) that have to be made is known, based on the configuration of the section. All 

volumes are then converted to the peak flow rate by applying appropriate adjustments. 

The Figure 2.2 illustrates a number of different configurations. Fazio's 

equation for prediction of weaving and non-weaving speeds are as follows: (6) 
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Variables are defined as follows: 

LS: total lane shifts required of weaving vehicles 

LS3: total lane shifts required of weaving vehicles 

v: total demand, expressed as a peak flow rate in pcph under equivalent 

idea conditions 

V: total demand, expressed as a full hour volume in prevailing vph 

MR: minor leg flow rate; (v3+v4)/v; 

VR: volume ration; vm/v; 

SR: small non-weaving flow ratio; v4/v 

S: average speed of weaving vehicle in weaving area (mph) 

S: average speed of non-weaving vehicle in weaving area (mph) 

Based on the calibrated average speed levels of service are determined from 

Table 2.3. 

2.2 Simulation Models  

2.2.1 System Simulation and Simulation Model  

Computer simulation is a technique that permits the study of complex system in the 

laboratory rather than in the field (10). Computer simulation is the process of 

designing a mathematical-logical model of a real system and experimenting with this 

model on a computer. Thus simulation encompasses a model building process as well 

as the design and implementation of an appropriate experiment involving that model. 

The experiments, or simulations, permit inferences to be drawn about systems (11-12) 

• Without building them, if they are only proposed system; 

• Without disturbing them, if they are operating systems that are costly or 

unsafe to experiment; 

• Without destroying them, if the object of an experiment is to determine 

their limit of stress 



9 

In this way, simulation models can be used for design, procedural analysis, and 

performance assessment. 

A. Discrete/Continuous  

Models of systems can be classified as either discrete changes or continuous changes. 

Discrete simulation occurs when the dependent variables change discretely at specified 

points in simulated time referred to as event times. In continuous simulation the 

dependent variables of the model may change continuously over simulation time. 

B. Macroscopic/Microscopic  

Simulation models can be classified as macroscopic or microscopic. Macroscopic 

models represent traffic in terms of overall parameters such as: traffic volume, average 

speed and density, or handle the vehicles in groups. This technique is less time 

consuming and more economical in every respect, however may be unable to describe a 

complex process adequately. Microscopic models are those which simulate movements 

of individual vehicles. Each vehicle is represented by a set of variables such as: 

vehicle type, coordinate, speed and acceleration, etc. When a model together with 

values specified for all parameters and a particular experiment to be performed on the 

model are given, dynamic trajectories of variables in the model can provide a detailed 

understanding of a traffic flow. 

C Deterministic/Stochastic  

Simulation models can also be distinguished between probabilistic and deterministic 

which is based on the model variables. If any random variables are present, the model 

is classified as a probabilistic model. Random variables must be defined by an 

appropriate probability function. 
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2.3 Traffic Simulation  

The earliest computer simulation work in highway transportation occurred in the 1950s. 

Intersection simulation was undertaken by the Road Research Laboratory in the United 

Kingdom in 1951. The first simulation work in the United States was published in 

1953 and reported on intersection and freeway models developed at University of 

California at Los Angeles. Then intersection simulation by University of Michigan, 

major arterial simulation at Philco, bus terminal and car-following simulation by Port 

Authority of New York , and freeway interchange and ramp merging simulation at 

Midwest Research Institute were developed (13). 

The development of simulation grew rapidly during the 1960s and 1970s, and 

bibliographies were published devoted exclusively to computer simulation models 

developed for the highway system. Fox and Lehman published a state-of-art article in 

the Traffic Quarterly in 1967 (14). The University of California at Berkeley published 

a bibliography identifying selected references of applications of computer simulation to 

transportation systems (15). By 1981, a Traffic Simulation Conference was conducted 

by the Transportation Research Board and Sponsored by the U.S. Department of 

Transportation. Seventy-five persons representing researchers, developers and users 

attended this conference (16). 

Many computer simulation models are available today for analyzing various 

operating environments of the highway system. The operating environments include 

signalized intersections, arterial networks, freeway corridors and rural highways. Both 

microscopic and macroscopic computer simulation models have been developed for 

each of the operating environments identified above 

2.3.1. NETSIM Model 

NETSIM is a microscopic simulation model of an urban traffic network (17). It is 

designed to be applied by the traffic engineer and researcher as an operational tool for  
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the purpose of evaluating alternative network control and traffic management strategies. 

NETSIM is written in FORTRAN and consists of pre-processor, traffic simulator and 

post-processor (18). NETSIM's pre-processor is designed to simplify the process of 

preparing and checking data inputs. It includes a comprehensive set of automatic 

"diagnostic checks" which are performed on all data inputs. It also provides for the 

convenient packaging of successive runs based on sequential modification of input 

conditions. The preprocessor may be operated either independently or may be 

integrated directly with the main program. 

The NETSIM simulator contains the main simulation program. It consists of 60 

separate routines, which be linked together in a variety of optional configurations. The 

simulator requires input as coded descriptions of street networks, together with a pre-

specified control plan and a set of input volumes. Its output includes a set of measures 

of traffic performance, expressed as both link-specific and network-wide values. The 

NETSIM post-processor consists of a set of standard data manipulation and evaluation 

routine designed to operate on the outputs of main simulation program to compare the 

results of two or more simulation runs, construct a "historical" data file summarizing 

their results, and subject the resultant data set to a standard statistical analysis. 

2.3.2 Freeway Corridor Model 

There are several models available for freeway corridor. FREQ (19) and FRECON 

(20) are macroscopic model, the INTRAS is the only microscopic arterial network 

simulation model. 

A. The FREQ Model Family 

Since 1968 the FREQ family of freeway models has been developed at the University 

of California. FREQ is a macroscopic model and is intended to evaluate a directional 

freeway and its ramp on the basis of ramp origin-destination information (19). Some 
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diversion to parallel alternative is considered for vehicles queued at on-ramps. The 

strength of FREQ lies in the diversity of traffic impact measures, and the 

comprehensive range of responses that are included. FREQ uses a linear program to 

optimize ramp-metering rates. 

B. FRECON Model 

FRECON is a dynamic macroscopic freeway simulation model developed from Payne's 

FREFLO model. FRECON can simulate freeway performance under normal and 

incident conditions (20). The model was developed by Rouphail and written in GASP 

IV simulation language. The model can generate point detector information for 

calibration and validation. The model can generate a traffic responsive priority entry 

control strategy and evaluate its effectiveness. The traffic performance measures 

include travel times, queue characteristics, delay, fuel consumption and emissions. The 

input data includes subsection geometric influencing capacity and O-D information. 

C. INTRAS 

The INTRAS model was developed by KLD and Associates in the late 1970s, and 

refinements and enhancements have continued through the 1980s. INTRAS stands for 

INtegrated TRAffic Simulation. The INTRAS model is a microscopic, stochastic, 

vehicle-specific, time-stepping computer simulation model designed to predict traffic 

performance for a directional freeway and surrounding surface street environment 

based on user-specified design, demand and control (21-22). 

INTRAS has been developed for use in studying freeway incident detection and 

control strategies. It is based on knowledge of freeway operations and surveillance 

system and incorporates detailed traffic simulation logic. 1NTRAS model contains a 

realistic surveillance system simulation capability. The ability to visualize vehicle 

trajectories, and contours of measures of effectiveness (MOE's) in the time-space 
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plane, is included in INTRAS via a digital plotting model. INTRAS also contains a 

statistical analyses model which permits comparison of MOE's from different 

simulation runs or field data. 

INTRAS model is a highly complex system containing procedures for multi-

purpose input processing, diagnostic testing, microscopic traffic simulation, output 

reporting, statistical analysis, detector output processing and digital plotting. 

D. FRESIM Model 

The FRESIM model is a microscopic, interval scanning simulation model recently 

developed (23). This model, although very complex, is a very user-friendly model, 

which uses the same input/output conventions as the existing TRAF submodels. It is a 

considerably enhanced and reprogrammed version of its freeway simulation 

predecessor, the INTRAS model. The enhancement includes improvements, and in 

most cases, total revisions in areas such as geometric representation, vehicle 

processing, and operational capabilities of the INTRAS model. 

The FRESIM model is now able to simulate more complex geometric and 

provide a more realistic representation, more efficiently than its predecessor model. 

FRESIM is capable of simulating more prevailing freeway geometric, which include 

one to five through-lane freeway mainlines with one to three-lane ramps and one to 

three-lane freeway-freeway connectors; variations in grade, radius of curvature, super 

elevation on freeway; lane additions and lane drops anywhere on the freeway; 

representation of auxiliary lanes; representation of multiple destination lanes and origin-

destination trip generation based on off-ramp exit fractions. The FRES1M model also 

provides realistic simulation of operational features: comprehensive lane-changing 

model; ramp metering and differences in driving habits. The model generates 

comprehensive tables of measures  of effectiveness: travel time, speed, and traffic flow, 

which enable a meaningful evaluation of operational situations. 
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FRESIM has been calibrated and validated using several sets of comprehensive 

real-world data and has been extensively tested on several complexes and diverse 

scenarios. 

E. CARSIM Model  

A CAR-following SIMulation model was developed by Benekohal. It is developed to 

simulate not only normal but also stop-and-go traffic conditions on freeway (24). The 

main features of CARSIM are: 

• marginally safe spacing are provided for all vehicles 

• start-up delays of vehicles are taken into account 

• reaction times of drivers are randomly generated 

• shorter reaction time are assigned at higher densities 

• dual behavior of traffic in congested and non-congested conditions are 

taken into consideration in developing the car-following logic of model. 

The validation of CARSIM has been performed at microscopic and macroscopic 

levels. At the microscopic level, the speed change pattern and trajectories from 

CARSIM were compared with those from field data; at the macroscopic level, average 

speed, density and volume computed in CARSIM were compared with the value from 

real world traffic conditions. The results were satisfactory. 

2.3.3 Weaving Section Model  

WEAVSIM model was developed specially for the study of the dynamics of traffic flow 

at weaving sections by Zarean (25). WEAVSIM is written in SIMSCRIPT II.5 

simulation program language. In WEAVSIM, vehicles are generated randomly at the 

system entry points. Each vehicle behaves as an individual entity having a set of 

attributes which control its progress through the system. These attributes are assigned 

either stochastically or deterministically. 
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The model is based on a rational description of the behavior of vehicles as they 

proceed through weaving sections. At each one second of real time, all vehicles are 

processed through the system using a car-following algorithm, which governs 

longitudinal movements, and a lane-changing algorithm, which controls lateral 

movements. Results from various human factor studies have been utilized in the 

development of the logic. All vehicles are advanced through the system in accordance 

with their desired speed and destination as influenced by the immediate environment. 

The car following algorithm is a modified version of the so-called "fail-safe" 

approach developed for INTRAS (21). This approach is based on a combination of the 

following three concepts: 

• A following vehicle seeks a desired safe headway behind a lead vehicle, 

which is a function of vehicle speed, relative speed, type of vehicle/driver 

• A following vehicle is able to avoid collision even when a lead vehicle 

undergoes the most extreme deceleration. This constrain is relaxed during 

lane changing maneuvers. Vehicle may accept potentially unsafe positions 

for a short period of time when engaged in the weaving maneuvers. 

• 

The desired safe headway is inversely proportional to the driver's 

maximum speed. This means that a fast driver will maintain a small lead-

headway than a slow driver, assuming both are traveling at the same speed. 

The lane-changing algorithm moves vehicles from one lane to another by first 

establishing a desire or need for such a move and then searching for and accepting a 

suitable gap in the adjacent lane. The model assumes that as the ratio of the lane-

weaving volume to the total weaving volume increases and, as the weaving vehicles 

move closer to the exit gore, vehicles become more willing to accept higher risk when 

engaging in lane-changing maneuvers. The lane changing logic allows vehicles to look 

ahead of or behind the adjacent vehicle for appropriate gaps and, if needed, to adjust 

their speed to improve the position with respect to available gaps. The model performs 
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two types of lane changing: essential and non-essential. An essential lane changing is 

performed by all weaving vehicle as they must change lanes to reach their desired 

destinations. A non-essential one is performed if vehicles wish to pass slower vehicles. 

The input modeling of WEAVING includes interarrival headways of vehicles; 

free-flow speed; brake reaction time, maximum deceleration/acceleration and road 

geometric parameters. The output of the model includes an each report and statistics on 

measures of performance describing operational condition of weaving section. 

The following traffic descriptive parameters were targeted for comparison: 

• headway distributions, 

• distributions of accepted gaps 

• merging point distributions 

• weaving and non-weaving speed distributions 

• vehicle trajectories 

The Kolmogrov-Smirnov distribution free test was applied to compare the 

observed and simulated distributions. The paired t-test was conducted to compare 

mean values of the observed and simulated speed and headways. The F-distribution 

was applied for the comparison of variances. The test results indicate that the model 

reproduces behavior of the real-life system reasonable well. 



CHAPTER THREE 

ELEMENTS OF NFWEAV SIMULATION MODEL 

This chapter presents the newly developed traffic simulation model for weaving 

sections under non-freeway conditions. NFWEAV is an acronym for Non Freeway 

Weaving simulation model. This chapter presents the discussion of the methodology 

that is adopted for the development of the NFWEAV model and the selection of the 

suitable simulation programming language. 

Simulation modeling is a description or abstraction of a real system. Computer 

simulation is a process of designing mathematical-logical models of a real system and 

experimenting with these models on a computer. The main elements of a simulation 

model for weaving areas under non-freeway conditions are the following: geometry of 

weaving sections, behaviors of vehicles and drivers, and interaction of traffic flows. 

These elements are represented either in static form (geometry) or in dynamic form 

(vehicle/driver behavior, interaction of traffic flow). The elements of the weaving 

section operation are described below in detail. 

3.1 Description of Weaving Areas  

3.1.1. Categories 

The geometry of weaving sections has significant effects on the operation of traffic 

flow. The combinations of facility types, configurations, disturbances, etc., which can 

exist in non-freeway weaving areas are practically impossible to enumerate. As a 

consequence, they can not be studied or analyzed in detail. Two different categories of 

weaving areas are defined as follows: 

17 
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A. Category 1: weaving caused by merging and diverging of a ramp with an 

arterial 

Figure 3.1 shows a typical configuration under this category. Weaving starts where a 

ramp is merged in to the arterial and stops at the diverging point of another ramp from 

the arterial. The following factors are important under this category: 

• Existence of a crown line 

• Lane balance at the diverging point 

• Availability of shoulder on each side of the road 

• Length of weaving section 

Figure 3.1 Configuration of Category I 

B. Category II: on/off ramp connecting an arterial with a highway 

Weaving action takes place on a segment of highway between an on-ramp followed by 

an off-ramp connecting an arterial with the highway. A typical configuration for this 

category is also shown in Figure 3.2. The basic weaving maneuver takes place as a 

result of the on-ramp vehicles crossing the path of the off-ramp vehicles. The weaving 

distance between the on and off ramps is short. The main factors for this category are 

the following: 
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• Number of lanes on the arterial/highway 

• Existence of shoulder and auxiliary lane 

• Availability of sight distance on the-ramp 

• the length between the on off ramp gore areas. 

Figure 3.2 Configuration of Category II 

3.1.2. Parameters 

The parameters for describing geometric characteristics of weaving areas under non-

freeway conditions are presented as follows: 

A. Weaving length L (ft): 

The length of weaving section constrains the time and space in which the driver must 

make all required lane changes. Length is measured from the merge gore area at a 

point where the right edge of the freeway shoulder lane and the left edge of the 

merging lane are 2 ft apart to a point at the diverge gore area where the two edges are 

12 ft apart. The maximum length for non-freeway conditions is considered as 600 ft. 

B. Weaving width W (ft): 

The total width of weaving areas. It is a geometric characteristic with a significant 

impact on weaving area operations. 
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C. Number of Lanes N: 

The total number of lanes of a weaving area. The number of lane in the weaving 

section limits the number of potential lane changes that weaving and non-weaving 

vehicles may make, and therefore influences total lane-changing turbulence in the 

weaving area. The maximum number of lanes considered in this model is four. 

D. Approach angle f3 (°): 

The angle of approach for merging lane affects the speed of the entering traffic, the 

angle of weaving and the place of weaving. 

E. Grade: 

The grade for non-freeway weaving areas is limited to ±2% for this study. 

F. Friction factor: 

The coefficient of friction between pavement and tire surface. 

G. Auxiliary lane: 

The code indicating a weaving area of category II with or without an auxiliary lane. 

An eight-dimensional array RD used to store the geometric parameters is shown 

in Table 3.1. 

Table 3.1 Geometric Characteristics of a Weaving Area 

RD(1) RD(2) RD(3) D(4) RD(5) RD(6) RD(7) RD(8) 
Code of Categories 
RD(1)= 1,2; 	Cat.I, II 

Length 
(ft) 

Width 
(ti) 

No.of 
Lane 

Approach 
Angle (0) 

Grade 
( %) 

Friction 
Factor 

Auxilia 
ry Lane 

3.2 Vehicle and Driver Description 

To describe the dynamic characteristics of weaving areas, a system state description is a 

key concept. If it can be characterized by a set of variables, with each combination of 

variable values representing a unique state of the system, then manipulation of the 

variable values simulates the movement of the system from state to state. 
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The behavior of each vehicle/driver is represented by a set of attributes that are 

stored in a 25-dimensional array ATRIB shown in Table 3.2. The state of an 

individual vehicle/driver at weaving areas is described by these attributes. 

Table 3.2 Attributes of Vehicles  

Attributes Description 

Atrib(1) arrival time 
Atrib(2) origin 

Atrib(3) current lane 
Atrib(4) destination 

Atrib(5) vehicle index 

Atrib(6) vehicle length 

Atrib(7) driver reaction time 

Atrib(8) vehicle weaving status 

Atrib(9) vehicle type 
Atrib(10) speed at the beginning of the scanning interval 

Atrib(11) speed at the end of the scanning interval 

Atrib(12) position at the beginning of the scanning interval 

Atrib(13) position at the end of the scanning interval 

Atrib(14) acceleration 

Atrib(15) animation code 

Atrib(16) travel time 

Atrib(17) weaving vehicle lane changing flag 

Atrib(18) unused 

Atrib(19) gap acceptance 
Atrib(20) flag of vehicle's position in upstream of weaving area 

Atrib(21) driver courtesy factor 

Two types of attributes are assigned to the vehicles and drivers: (1) permanent, 

and (2) temporary. Permanent attributes are those that remain constant throughout the 

presence of the vehicle in the system. Temporary attributes are updated periodically 

based on the scan interval. The scan interval used was one second. Following, the 

permanent and temporary attributes used are presented. 
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3.2.1 Permanent Attributes 

The following attributes are permanent. 

• ATRIB(1): a mean time between two vehicles arriving to the system 

• ATRIB(2): origin (entry lane) of the vehicle 

• ATRIB(4): destination (exit lane) of the vehicle 

• ATRIB(5): integer vehicle index assigned sequentially to each arriving vehicle 

• ATRIB(6): length of the vehicle 

• ATRIB(7): a mean time of driver's break reaction time 

• ATRIB(8): status of the vehicle (weaving / non-weaving) 

• ATRIB(9): type of the vehicle (passenger car, single unit, combined truck) 

• ATRIB(21): a factor to show driver's courtesy for cooperation with a follower 

3.2.2 Temporary Attributes 

The following attributes are temporary. 

• ATRIB(3): the current lane of the vehicle 

• ATRIB(8)-(9): current coordinate of the vehicle at the beginning or the end of 

the scanning period 

• ATRIB(10)-(11): current speed of the vehicle at the beginning or the end of the 

scanning period 

• ATRIB(14): current acceleration of the vehicle at the end of the scanning period 

Attributes are generated either stochasticly or deterministicly when a vehicle 

arrives at 100 feet before the upstream gore point of a weaving area. 
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3.3 Traffic Flow Description 

This section presents the principle characteristics that are needed to represent the traffic 

flow at weaving sections. These characteristics are the following: (1) arrival flow 

pattern, (2) traffic flow description. The arrival flow pattern and interaction behavior 

of vehicles in weaving areas under non-freeway conditions are modeled as follows. 

3.3.1. Arrival Flow Pattern 

The principle components that identify the arrival flow pattern at weaving areas are the 

following: Arrival headway and speed, traffic composition, and proportion of weaving 

vehicles in a traffic stream. 

A. Arrival headway 

The distribution of vehicle headway has been the subject of research for a number of 

years (10). Negative exponential, Pearson type III, lognormal distribution are used for 

headway distribution. The research conducted by Minjie Mie indicated that lognormal 

distribution is suitable for heavy traffic or the traffic in a car following state. 

The arrival headway distribution Ha(t) in NFWEAV is considered to be a log-

normal (5), and it is shown in Equation 3-1. 

µh , σh: mean and standard deviation (STD) of arrival headway t. 

For simulation purposes, Arrival Headway Statistics (AHS) in the model is 

described as a matrix AHS(4,5); in which four (4) represents the maximum number of 

lanes, and five (5) represents the statistical values, that is, minimum, maximum, mean, 

mode and standard deviation of arrival headway for each lane. The minimum headway 

is 0.6 sec, and the maximum, 12 sec. The mean value changes according to the specific 

condition. 
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B. Arrival speed 

Numerous investigators have used normal distributions to represent speeds (10,13). 

The arrival speed Sa(v) in the NFWEAV model has a normal distribution shown in 

Equation 3-2. 

µv, σv: mean and STD of arrival speed v. 

The Arriving Speed Statistics (ASS) for the two approaching legs are stored in a 

2x5 matrix ASS. Two (2) reflects the two entrances A and B of a weaving area, and 

five (5) indicates the same meaning mentioned in the arrival headway. According to 

surveys conducted in this research (8), the default value are the following: the mean of 

arrival speed is 35 mph, a minimum of 15 mph, and a maximum of 50 mph. 

C. Traffic composition 

Vehicles in the model are classified into three types: Passenger Car, Single Unit and 

Combined Truck. A three-dimension array VT is one that describes the composition of 

a traffic flow in weaving areas. Default values VT(1), VT(2) and VT(3) for this model 

are 0.92, 0.05, 0.03 for passenger car, single unit and combination truck, respectively. 

The length for different types of vehicles are 19, 39 and 59 ft, respectively (26). 

D. Weaving volume ratio 

Proportions of weaving vehicles in a weaving area vary from 0 to 100% according to 

different operation conditions. A Weaving Division (WD) matrix WD(2,2) describes 

the proportion of non-weaving and weaving vehicles for each leg. 

WD(i,j): i = 1,2 denote entering approach A or B, and 

j = 1, 2 denote proportion of weaving or non-weaving vehicles in 

approach. 
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3.3.2 Traffic Flow Description  

Traffic flow description is required for governing the movement of vehicles in the 

model. Vehicles operating in weaving areas are designated as entities which have 

multi-attributes, and engage in different type of activities such as moving maneuver or 

merging action. The aim of a simulation model is to reproduce the activities that the 

entities engage in, by different traffic flow models, such as, car-following model or 

lane changing model. The next chapter presents the traffic flow models which are used 

for the NFWEAV model. 



CHAPTER FOUR 

TRAFFIC FLOW MODELS  

This chapter presents the newly developed traffic simulation model for weaving 

sections under non-freeway conditions. Traffic flow models are the core of the 

NFWEAV models. Two traffic flow models are required for governing the movement 

of vehicles at weaving areas. Longitudinal movements of the vehicles are determined 

by a leading vehicle movement or a car following algorithm, and lateral movements of 

the vehicles are determined by a lane changing model. 

4.1 Longitudinal Movement Model 

4.1.1 Leading Vehicle Movement 

A leading vehicle is the first vehicle in a platoon. The behavior of leading vehicles 

affects the operation in a weaving area because of a much shorter length (less than 600 

ft) existing under non-freeway weaving areas. According to the survey conducted in 

this study (8), the number of vehicles in a platoon usually varies from 3 to 8, whereas 

the portion of the platoon occupied by the leading vehicles varies from 33% to 12%. 

The leading vehicle usually attempts to increase its acceleration at the maximum 

possible rate which depends on the type and speed of vehicles as shown in Table 4.1 

(26). 

Table 4.1. Maximum Acceleration Rate (m/h/s) of Vehicles 

Vehicle 

Type 

Speed 	Ch: iii e 

0-15 mph 15-30 in ph 30-40 mph 40-50 inph 50-60 mph 

0% 2% 6% 0% 2% 6% 0% 2% 6% 0% 2% 6% 0% 2% 6% 

Pas.car 4.7 4.6 4.2 4.2 4.0 3.7 3.8 3.5 3.4 2.8 2.7 2.5 1.9 1.7 1.5 

2.0 1.6 0.7 1.0 0.6 0 0.6 0.6 0 0.2 0.2 0 0 0 0 

C. T. 2.0 1.6 0.7 0.8 0.6 0 0.4 0.3 0 0 0 0 

0 0 0 

26 
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However the increasing in a vehicle's acceleration in the NFWEAV model is 

subject to the different non-freeway operation situations. The operating acceleration of 

leading vehicles adopted in NFWEAV model is calibrated in Chapter 6. 

4.1.2 Car Following Model 

Car following behavior is a very important aspect in the study of traffic flow 

characteristics. The interaction of vehicles within a single stream of traffic is based on car 

following behavior. The car following models are in the forms of stimulus-response 

equations, where the response is the reaction of a driver to the motion of the vehicle 

immediately preceding him/her in the traffic stream. The response of successive drivers is 

to accelerate or decelerate in proportion to the magnitude of the stimulus at time t which 

is begun after a time lag T. The basic principle of this model is of the form (10): 

Response (t +T) = Sensitivity * Stimulus (t) 

For convenience, the symbols used in car-following models study in this project 

are the following: 

• Af(t+T): acceleration of the follower at the end of this interval; 

• Vl(t+T): velocity of leader at the end of this interval; 

• Vl(t+T): location of leader at the end of this interval; 

• Vf(t): velocity of follower at the beginning of this interval; 

• Xf(t): location of follower at the beginning of this interval; 

• L 	length of leading vehicle 

• T scanning time 

• α, k, b, w, m: constants 

Following, some commonly used car-following model are presented:  
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A. Linear model: 

The basic car-following model is a linear model shown in Equation 4-1(10)  

The linear model is useful because of its simplicity and its susceptibility to stability 

analyses. This model has one shortcoming: the reaction of the follower is a function only 

of the relative speed of the two vehicles and is independent of the spacing of the vehicles. 

B. General model  

Gazis proposed a more general expression for the car-following model which is given in 

Equation 4-2 (10).  

This model indicates that the spacing, related speed of the two vehicles and the 

speed of the follower all reflect the stimulus for a response. For applications, there are 

several car-following models used in different situations such as TEXAS (27), 

NETSIM (17), PITT (21) shown in the following equations: 

C. TEXAS model  (27):  

The acceleration in TEXAS is not only related to the difference of the speed of 

the leader and follower, but also affected by the difference of gap between the leader 

and follower. This car following model is used in the intersections of urban roads.  
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D. NETSIM model:  

This model consists of a spacing algorithm which provides for collision avoidance when 

the leading vehicle decelerates suddenly to a stop. The algorithm is given by Equation 

4-4 (17). 

E. PITT model:  

The PITT car following relationship is that a following vehicle will attempt to maintain 

a space headway and sensitive to the operation conditions. The algorithm is shown in 

Equation 4-5 (26): 

k is a sensitivity factor. 

The term 2[(Xl(t+T)-Xf(t)-L-10-Vf(t)(k+T)-bk[Vl(t+T)-Vf(t)]2)] reflects a 

desired safe space headway, and k is a sensitivity factor which is a function of driver 

type, regulates maximum lane capacity since it determines the average headway at high 

volume. 

The PITT car following algorithm is adopted by INTRAS and FREESIM 

models. The modified PITT model is also adopted by WEAVSIM simulation model. 
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F. NJIT Model  

The TEXAS and NETSIM models have been successfully applied in urban street 

intersections or networks. The PITT model is good for freeway conditions. However, 

none of those model can be used for weaving areas under non-freeway conditions. 

The main feature of operation at weaving areas under non-freeway conditions is 

that the speed of vehicles is lower than that at freeway situation. Figure 4.1 shows that 

the followers in PITT model keep decelerating when the leading vehicle is slightly 

faster, this will forces the follower to stop easily at non-freeway weaving areas. The 

horizontal axis DV in Figure 4.1 presents the difference of speeds between the leader 

and follower, and DV is greater than zero if the leader is faster. 

DV= Vl-Vf (f/s) 

Figure 4.1 Comparison of PITT and NJIT Model 

To avoid the problem, the NJIT car-following model shown in Equation 4-6 is 

specially developed for weaving areas under non-freeway conditions. It is also a 

modification of the PITT model. 

here b and k will be calibrated 
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Here the desired space headway HA of the follower in the NJIT model is given 

assures that Hd  should be larger when the following vehicle is faster, 

and vice versa. Figure 4.1 shows the difference of acceleration between PITT and 

NJIT models. Acceleration increases in the NJIT model when leader is faster 

(DV:0-10 mph). 

4.2 Lateral Movement Model  

Interaction of two separate traffic streams constitute one of the most important aspect of 

traffic operation. This interaction, in case of weaving area operation, takes place when 

a driver changes lane, merges into a traffic stream (on ramp merge), or two traffic 

streams merge (lane balance at weaving sections). Merging movements of vehicles in 

weaving areas are governed by lane changing models. Lane changing maneuvers 

associated with weaving areas under non-freeway conditions are much more aggressive 

because of restrictions due to relatively short lengths of weaving sections. 

Inherent in the traffic interaction associated with these basic maneuvers is the 

concept of gap acceptance. Figure 4.2 shows that certain terms related to the concept 

of gap acceptance are defined below (10): 

Gap: it is defined as a major stream headway that is scanned by a minor stream 

driver waiting to complete a certain maneuver. 

Lag: it is the time interval between the arrival of a minor stream vehicle and the 

arrival of a major stream vehicle at a reference point where the two streams either cross 

or merge. 

Critical gap: it is an acceptance threshold and defined as the minimum size of an 

acceptable headway in the main stream traffic which is considered to be sufficiently 

large to allow a driver in the minor stream of traffic to merge or cross. 
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Figure 4.2 Vehicle Lane Changing Diagram  

In general, the merging process is influenced by the following variables: 

headway, gaps, lags, the speed of the major stream vehicles, speed of the merging 

vehicles, relative speed, major-stream flow, and minor stream flow. In addition to 

that, the gap acceptance phenomenon is influenced by the critical gap, percent of ramp 

vehicles delayed, mean duration of static delay accepting gap, mean length of queue, 

and total waiting time on the ramp. The merging mechanism is as follows: A merging 

action is initiated if a safe gap is available. When a merging vehicle fails to merge, it 

stays in its original lane until there is a larger safe gap available. Models are distinct 

for the two different weaving section categories: Category I is a normal crossing of 

traffic streams without traffic control devices. Category II is a normal gap acceptance 

operation of ramp traffic with the main stream. Four modules were developed to 

present the merging movements in the NFWEAV model which are presented below. 

4.2.1 Lane change logic  

In order for vehicles to perform lane changing movements in Category I, an acceptable 

leading and lagging gap shown in Figure 4.2 must be available in the target lane. An 

acceptable leading gap must assure avoidance of collision occurring during the merging 

maneuver when the leader in the target lane is assumed to immediately decelerate with 

the maximum deceleration. The condition also applies to the lagging acceptable gap. 
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4.2.2 Gap acceptance  

There is a different scenario of vehicle merging movements in Category II. It is 

assumed that each driver has a consistent behavior. he/she has a fixed threshold and 

accepts any gap greater than the threshold whilst rejecting all gaps which are smaller. 

Different thresholds apply to different drivers in the model. Motorists in weaving 

areas under non-freeway conditions usually tend to accept much smaller gaps than 

driver traveling on freeways. The following gap acceptance formula was used (28). 

here gapacp  is an accepted gap in feet, and r is a pseudo random number 

uniformly distributed between 0 and 1 

In Category II, most of merging activity occurs near the entrance of weaving 

areas. Drivers have to wait on the on-ramp until an acceptable gap for merging is 

available. Therefore, there is often a queue in the on-ramp approach in weaving areas, 

and the operation speed is also lower than the one in Category I. 

4.2.3 Follower courtesy 

A follower courtesy sub-model was developed for lane changing which provides for 

some of the drivers in the target stream to cooperate by allowing a vehicle to merge in 

front of them. Figure 4.2 shows that the vehicle #3 tries to merge to the target lane, 

and two successive vehicles #1 and #4 are in the target lane. Suppose that the first 

merging attempt was unsuccessful because of lack of an acceptable lag gap. Then the 

follower (vehicle #4) might decrease its acceleration (ACC) to a smaller acceleration 

(ACCCO) to provide a bigger lagging gap for the merging vehicle #3, that can again try 

a lane changing maneuver. The follower courtesy sub-model offers an opportunity for 

a subsequent attempt to merge if an acceptable lag gap is available at that time. 
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A two-dimensional array FC is used to describe the behavior of drivers. The 

follower courtesy code is generated by a random number generator that is uniform 

distribution. The default values FC(1) and FC(2) in the model are 0.4 and 0.6. These 

two values represent the percentages of drivers willing to cooperate or not. 

0.25, i=1, for those followers willing to cooperate; 

0,       i=2, otherwise,  

when ACC is greater or less than 0, respectively. 

4.2.4 Driver merging urgency 

A driver merging urgency sub-model was developed for lane changing maneuvers. A 

weaving section in Category I is divided into three sections as shown in Figure 4.3. 

The urgency codes are different for the drivers depending upon the location of the 

vehicles. Drivers continue to move, according to the leading vehicle or car-following 

algorithm, when they fail to merge in the first section. They have to decelerate in 

order to attempt a merge to the target lane when they are in the second section of a 

weaving area. The deceleration rates for the vehicles failing to merge in section 2 are 

calibrated later. They would be forced to decelerate with the maximum deceleration 

rate, and to wait for completing a merge activity in the last section of a weaving areas. 

Otherwise, they will be unable to reach their destinations. 
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The drivers in Category II are more urgent to take merging activity. They 

decelerate the speed when they fail to merging even at the beginning. A queue is often 

accumulated at the on-ramp entrance when the lead-vehicle fails to merge.. 

4.3 Non-Collision Constraints 

All vehicle movements must adhere to certain restraints in order to avoid collision. 

Following vehicles can stop safely behind the leader under the following basic 

conditions: 

• Leading vehicle decelerates to a stop at the maximum emergency deceleration. 

• Following vehicle starts at a reaction time Rt later and decelerates to a stop 

behind the leader at a deceleration rate within the maximum emergency 

deceleration limit.  

Three rules used to guarantee the non-collision constraints are the following:  

A. Case I 

This case presents a scenario in which the follower's speed is less than or equal to the 

speed of the leading vehicle (Eq. 4-11). The drivers in a platoon must maintain a space 

of at least equal to their reaction distance plus the length of the leader (Eq. 4-12), 

The following Equation is from Eq. 4-12 according to Newton's law, 



if 
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For case I, the constraint is 

B. Case II 

This case presents a scenario in which the follower's speed is higher than or equal to 

the speed of the leading vehicle (Eq. 4-16). 

Drivers have to increase the space between vehicles in a platoon when their 

speed are higher then the speed of the leaders. The space is the reaction distance plus 

the length of the leader and plus the deceleration distance (Eq. 4-17). 

where DCCmax  is a maximum deceleration rate of vehicles. According to 

Newton's law, the following Equation is found from Eq. 4-17 



if 
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For case II, the constraint is 

C. Case III  

This case presents a scenario in which both follower and leader are stopped. (Eq.4-24). 

Drivers should keep a space greater than or equal to the length of the leading vehicle 

in the case when both vehicles are stopped. 

Then, 

For case III, the constraint is : 
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Overriding a car following model, Expression 4-13, 4-19 and 4-27 are the constraints 

which determine the maximal acceleration of the follower to prevent collisions when 

vehicles are undertaking maximum emergency deceleration. 

4.4 Level Of Service at Weaving Areas under Non-Freeway Conditions  

The primary criteria of the Level of Service (LOS) for weaving areas under non- 

freeway conditions are weaving and non-weaving speeds shown in Table 4.2 (8). 

Table 4.2 Criteria of LOS for Weaving Areas 
under Non-freeway Condition  

LOS CATEGORY I 
SW 	 SNW  

CATEGORY 11 

SW 	 SNW  
A 
B 
C 
D 
E 
F  

42 mph 
38mph 
33mph 
30mph 
25mph 
<25mph 

45mph 
40mph 
35mph 
30mph 
25mph 
<25mph 

>38mph 
33mph 
30mph 
25mph 
20mph 
<20mph 

>50mph 45mph 

40mph 
35mph 
25mph 
<25mph 

The LOS criteria are developed in the analytical model in the first phase of the 

project (8) and established for basic and ramp weaves, separately. The criteria are 

embedded in the NFWEAV model, and the Level of Service can be directly determined 

according to the simulation results. 

The criteria of LOS for weaving areas under non-freeway conditions were 

calibrated according to the data collected from fourteen sites. To let this result being 

universal for all type of weaving sections under non-freeway conditions, more data 

collection are needed. The next chapter presents the structure of the NFWEAV 

simulation model. 



CHAPTER FIVE 

NFWEAV SIMULATION STRUCTURE 

Simulation encompasses a model building process as well as the design and 

implementation of an appropriate experiment involving that model on a computer. The 

purpose of simulation on an electronic computer is the experiment determination of 

phenomena which are too complex to study analytically and which may not be 

conveniently studied empirically in the real-life situation. Operation of traffic on 

weaving areas is a typical complex system. Intense lane-changing maneuvers at 

weaving sections create turbulence that often lead to congestion. 

Simulation models can be classified as either discrete events or continuous, 

depending upon whether variables change discretely at specified points or continuously 

over simulation time. Simulation models can also be classified as either macroscopic 

or microscopic ones. To analyze weaving areas in more detail, the model considers 

individual vehicles rather than the traffic stream at specified time point, e.g. every 

second. Therefore, a stochastic, microscopic, and discrete event simulation technology 

is chosen for this purpose. 

The selection of a simulation language is a decision that has a major impact 

upon the ultimate success of a simulation analysis. To make a proper selection, one 

needs to understand how the simulation language seeks to facilitate the process of 

transforming a logical model into acceptable computer code, and the specific language 

features available to support model development and experimentation. In addition, 

there are many pragmatic considerations in the selection of a language such as ease of 

learning, the ability to run on many different computers, and the scope of problem 

addressed. 
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5.1 SLAM II Simulation Language 

Although a simulation model can be programmed using a general purpose language, 

such as BASIC, FORTRAN, C language, the SLAM II (Simulation Language for 

Alternative Modeling) simulation language was chosen. 

SLAM is an advanced FORTRAN based simulation language developed by A. 

Alan B. Pritsker. SLAM II provides the user with a set of subroutines for performing 

all file manipulations which are commonly encountered in discrete event simulation. 

Statistic collection of the variables of interest is readily available in SLAM 

subprograms. SLAM also provides functions for graphics and animation (10). 

5.2 Event Orientation Technique 

In simulation terminology, vehicles operating in weaving areas are designated as 

entities which have 25 attributes shown in Table 2, and engage in different types of 

activities such as moving maneuver or merging action in a discrete event system. The 

aim of a discrete simulation model is to reproduce the activities that the entities engage 

in. The state of a system is defined in terms of the numeric values assigned to the 

attributes of the entities. Therefore, the simulation is a dynamic portrayal of the states 

of a system over time. 

An isolated point in time when the state of the system may change its state is 

called an event time. In discrete simulation, the state of the system can be changed 

only at event times. Three different world views are available in SLAM II: event 

orientation, activity scanning orientation and process orientation. An event orientation 

technique is used in the NFWEAV model development. 

A vehicle as an entity, arriving in a weaving area is an event. To scan a 

weaving area second by second for monitoring the change of the state of the system, 

"scanning at every second" is chosen as another event. The objective of the model is 

to determine the event that can change the state of the system and tend to develop the 



facing 41 

Figure 5.1 The Module Structure of NFWEAV  
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logic associated with each event type. An event calendar NCLNR in SLAM II is used 

for maintaining the time-ordered sequence of entity (vehicle) arrival events. Storage 

arrays NSET and QSET are employed by the SLAM 11 for storing both events and 

entities with their attributes. 

5.3 NFWEAV Simulation Model Structure 

To simulate weaving areas under non-freeway conditions using SLAM II, user input 

FORTRAN subroutines should be coded for each discrete event. However, SLAM II 

provides a set of FORTRAN programs for performing all commonly encountered 

functions such as event scheduling, SCHDL; file manipulation: FILEM, RMOVE, 

COPY; and statistic collection: COLCT and random number generation. The SLAM II 

processor completely relieves the user of the responsibility for chronologically ordering 

the events on an event calendar. The user simply schedules events such as arrival and 

scanning to occur, and SLAM II causes each event to be processed at the appropriate 

time in the simulation. A module structure of user input subroutines as shown in 

Figure 5.1 is used for programming of the simulation model. Following, a description 

of the NFWEAV program written in SLAM II is presented.  

5.3.1 Main Program 

The main program is used to access all SLAM II executive subroutines, to dimension 

the storage array NSET/QSET the length of which is 24000 in this model, and to 

denote the unit numbers for the periphery devices of the computer as the following:  

• NCRDR: 5 input reader unit 

• NPRNT: 6 line printer unit 

• NTAPE: 7 temporary scratch file unit 
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5.3.2 Subroutines INTLC 

At the beginning of each simulation run, the SLAM II processor calls subroutine 

INTLC to set initial conditions and schedule initial events. 

A. Read all non-SLAM data: 

Read VT(3), VEH(3,3), RD(8), WD(2,2), IDS(8), AHS(4,5), ASS(2,5), RTS(1,5), 

ACS(3,5), DCS(3,5) which description are in Table 5.1; 

Table 5.1 Input Parameters 

Array/Matrix Description 
VT(3) Vehicle Type: Pas.; S.U.; C. T. 
VEH(3,3) Length, width & hight of 3 type of vehicles 
RD(8) Road Characteristics _ 
WD(2,2) % of weaving, non-weaving veh. for 2 entries 
IDS(8) Code for random number generators 
AHS(4,5) Arrival headway for at last 4 lanes 
ASS(2,5) Arrival speed for two entrance 
RTS(1,5) Driver reaction time 
ACS(3,5) Leading vehicle's Acceleration  
DCS(3,5) Deceleration of vehicles failed to merge 

B. Set initial vehicles into a weaving area: 

The attributes of the initial vehicles are stored in the file #1; 

C. Schedule initial events for arrivals and scan 

5.3.3 Subroutine EVENT(IX) 

The SLAM II processor chronologically orders the events on an event calendar 

NCLDR. Events are scheduled by calling subroutine SCHDL(KEVNT,DTIME,A), 

• KEVNT: the event code of the event being scheduled; 

• DTIME: the time unit from the current time that the event is to occur; 

• Matrix A: the buffer array that passes the attributes of the event. 
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Figure 5.2 The Flow Chart of Subroutine ARV  
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Main events are arrivals in different lanes and scanning in the NFWEAV model. 

This is called by the time-keeping mechanism in the SLAM II routine which controls 

the scheduling of the following events: 

• IX=1, 2, 3, 4: Arrivals of vehicles in lane 1, 2, 3, 4, respectively, 

• IX =5 Scan event to update the state of all vehicles in a weaving area. 

5.3.4 Subroutine ARV(IX,KK) 

All vehicles arriving in the system from upstream are processed in the subroutine. IX 

reflects the lane in which a vehicle arrives, KK is an index for arriving vehicles. Figure 

5.2 shows a flow chart of ARV(IX,KK). The main function is as follows: 

A. Generate two attributes: speed and reaction time, and check safe arrival. 

At first, generate only two attributes: speed and reaction time that are created by 

random number generator based on the field data distribution. The speed is stored at a 

2X5 matrix ASS, and The reaction time, a five-dimensional array RTS. Then check if 

the vehicle can have a safe arrival with its assigned speed at the approach to the 

weaving area. If the safe arrival check can be met, go to step B. Otherwise, this entry 

is aborted, and the vehicle arrival time should be delayed by a scan unit of time. 

B. Generate all other 23 attributes for a arriving vehicles. 

All attributes of a vehicle as shown in Table 3.2 are generated stochastically or 

deterministically after it enters an approach of a weaving area. Then the attributes of 

the arrival vehicle will be filed into the file #2. 

C. Generate next arrival event. 

The next arrival event is scheduled by calling subroutine SCHDL(IX,ET,A), where IX 

is the event code for the lane, and ET is an arrival headway generated by a random 

number also based on field data distribution which is stored in a arrival headway AHS. 
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Figure 5.3 The Flow Chart of Subroutine SCAN  
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5.3.5 Subroutine SCAN 

A SCAN module is the core of the simulation programming, and the scanning period 

is set as 1 second. Each entity is processed through the weaving section by defining the 

changes that occur, and by updating its attributes at the scan time. 

The flow chart for SCAN is shown in Figure 5.3. There are four functions in 

the SCAN subroutine: 

A. Scan and update the state of the system. 

During each scanning time, all vehicles are processed by calling subroutine VML 

which will change the state of the system according to the logic associated with the 

events. The rank of the entities in file #2 are based on the positions of vehicles. The 

processing will start with the vehicle closest to the exit point of a weaving area. Then 

the attributes of all vehicles in the weaving area are updated, and two of those 

attributes: speed and acceleration are collected by calling SLAM II subroutine 

COLCT(speed, K1) and COLCT(acc, K2). K1 and K2 are the codes for speed and 

acceleration collection. 

B. Check and remove vehicles that have passed the weaving area. 

Check if any entity has already passed the weaving area. If it does, remove it by 

calling SLAM II subroutine RMOVE(1, 2, A), where the numbers 1 and 2 represent 

the first vehicle in file #2. The first vehicle will be moved out if it has passed the 

weaving area. Then the travel time and delay will be collected. This judgment also 

applies to the next vehicle, which now becomes the first one after its leader left. 

Travel time and delay will be collected by calling the SLAM II subroutine 

COLCT(Time, K3) and COLCT(Delay, K4). K3 and K4 are the codes for time and 

delay collection. 
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Figure 5.4 The Flow Chart of Subroutine VML  
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C. Record trajectory if needed.  

Test if trajectories of vehicles should be stored; call subroutine VTR if it is needed 

E. Generate next event SCAN 

The next event SCAN is scheduled by calling SLAM 11 subroutine SCHDL(5,1,A), 

where 5 denotes the code of the scan event, and 1 means one second scanning time gap. 

5.3.6 Subroutine VML 

This subroutine is called from SCAN. A vehicle movement logic VML Module is the 

main logic associated with all movements. It governs the non-weaving and weaving 

vehicle movements to the different routines by calling subroutine NWV or WEAV. 

The movement of weaving vehicles which have not merged to the target lane are 

controlled by subroutine WEAV, which is controlled by a lane change logic. 

Otherwise movements are controlled by subroutine NWV, car-following logic, or by 

subroutine ACLD, a leading vehicle movement role. Figure 5.4 shows the logic for 

subroutine VML. 

A. Test the weaving status ATRIB(8), then a logic decision is made: 

• Call subroutine NWV, if ATRIB(8) = 0 

• Do further logic decision making, if ATRIB(8) = 1  

B. Test if a weaving vehicle has already finished a merging maneuver 

ATRIB(17) is a flag for weaving vehicle lane changing activity. 

• Call subroutine WEAV, if a vehicle does not change the lane; ATRIB(17) =0 

• Call subroutine CARF if a vehicle has changed a lane already; ATRIB(17) =1  
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5.3.7 Subroutine NWV  

This is the main subroutine to determine which logic should be used to process changes 

in state for all non-weaving vehicle movements. It is called from subroutine VML. 

A. Call subroutine CARFL  

Call car-following model CARFL, if the vehicle is a follower. 

B. Call subroutine ACLD  

Call a leading vehicle logic ACLD, if the vehicle is a leader. 

States of vehicles such as speeds and positions for non-weaving movement are changed 

according to Newton's law after accelerations are determined by different logic. 

V(t+T) = V(t) + A(t) DT 

X(t+T) = X(t) + V(T) DT + 1/2 A(t) DT2  

X(t), X(t+T) are coordinates, V(t) V(t+T); speeds; A(t) are acceleration, and 

T is the scanning time period. 

All updated attributes are filed into the file #2 again. 

5.3.8 Subroutine CARFL(ILD, ACM)  

This subroutine consists of three car-following algorithms for the NFWEAV model. 

The BASIC, PITT and NJIT car-following models are selected when code NCAF is set 

as 1, 2 or 3, respectively. Non-collision constraints have to be satisfied. 

5.3.9 Subroutine ACLD(Vf, ACCM)  

Accelerations of leading vehicles are determined in this subroutine according to the 

leading vehicle movement logic. 
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Figure 5.5 The Flow Chart of Subroutine WEAV  
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5.3.10 Subroutine WEAV 

This  is a main subroutine to process a change in states for weaving vehicle movements 

by lane changing logic. The flow chart of subroutine WEAV is shown in Figure 5.5. 

A. Check which category the weaving area is. 

If this is in category I of a weaving area, then go to step B. For category II, check if 

an acceptable gap is available. If yes, go to step B. Otherwise, a vehicle in category II 

failed to merge, and go to step F. 

B. Check if a leading gap acceptance is available. 

Check if there is an acceptable leading gap for vehicles which are in the category I. If 

yes, go to step C, otherwise, they fail to merge, and go to step F. 

C. Check if a lag gap acceptance is available. 

Check if there is an acceptable lag gap available for vehicles which passed the leading 

gap check. If not, go to step D. Otherwise, a merging maneuver can be initiated, and 

go to step G. 

D. Check if the follower cooperates. 

When an acceptable lag gap is not available, check if the follower cooperates. If yes, 

go to step E. Otherwise, the vehicle fails to merge, go to step F. 

E. Check if a new lag gap is acceptable for a safe merge. 

The follower who is willing to cooperate will decrease his/her acceleration. If the new 

gap is acceptable, a merging maneuver is initiated, and go to step G. Otherwise go to 

step F. 

F. Vehicles which fail to merge moves according to different urgency codes. 
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G. All attributes of vehicle for weaving movement are renewed and filed to file #2. 

5.3.11. Subroutine MTEST 

Check if a safe leading or lagging gap is available. 

5.3.12 Subroutine LOS 

This is a subroutine to determine the Level of Service of the operation condition. A 

criteria which developed according to the analytical model in the phase I is used. 

5.3.13 Subroutine of OTPUT 

This subroutine is a user developed output file to analyze the simulation results. Input 

echo report, Measures of Effectiveness, and Level of Service are the contents of the 

report. Measures of effectiveness are the output of the simulation results. Statistical 

analyses for non-weaving and weaving speed, delay, and travel time are displayed in 

tables and graphical forms in intermediate or summary report. 

5.3.14 Function SF 

The function FS generates random numbers based on seven distribution functions 

available in the model. The distributions are the follows: Normal, Log normal, Erlang, 

Poisson, Uniform, Exponential and Beta which are coded from 1 to 7. An eight 

dimensional array IDS is used for storing the statistic code for different purposes. The 

detail information is: four for arrival headway, which is lognormal distributed; two for 

arrival speed, normal distributed; one for driver reaction time, beta distributed; three 

for leading vehicle accelerations, normal distributed; and three for deceleration of 

vehicles which fail to merge in section #2 of a weaving area, normal distributed, 

respectively. The input data consists of five parameters in the following order: 

minimum, maximum, mean, mode and standard deviation for each distribution. 



Callable 

Subroutine 

Calling 	 Sub 	routine 

INTLC EVENT(IX) ARV(IX,KK) SCAN VML NMW WEAV VTR 

SCHDL(No,Time,Atrb) 
X X X 

COPY(Nrank,Ifile,A) X X X X 

COLCT(Z,ICLCT) 
X X X 

RMOVE(Nrank,Ifile,A) X X X 

FILEM(Ifile,A) X X X 

ARV(IX,KK) X 

SCAN X 

VMS X 

NM V X 

CARFL. X X 

ACLD(Vf,Accm) X X 

DC(Vf,Accm) X 

WEAV V X 

MTEST X 

Table 5.2 Subroutine Call Cross Reference Chart 
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5.3.15 Common Block  

There are two types of variables: SLAM II variables and user-defined variables 

available in the SLAM II. The values of SLAM II variables are transferred between 

the SLAM II processor and user-written subroutine through the COMMON block 

named SCOM1. The user-written common blocks are USER I, USER2, USER3, 

USER4, and USERS. 

The subroutines call cross reference chart is shown in Tables 5.2. 

The animation module offers additional options to enhance the function of the 

software package. A dynamic characterization of the state changes can be presented 

visually as a form of animation. To obtain an animation, it is necessary to diagram a 

weaving area which represents the system and icons which represent the vehicles in the 

weaving area. The SLAM H provides the tool for users to convert either system data 

or simulation data into a form which portrays the state change on a facility diagram. 

5.4 Animation Model 

Simulation is a dynamic portrayal of states of a system. The state changes of a system 

that occur over time can be traced during simulation running period. A dynamic 

characterization of the state changes can be also presented visually as a form of 

animation in which icons move, and are added or deleted from the picture. In fact, an 

animation is a dynamic presentation of the changes in state of the system over time. 

To obtain an animation in the model, a weaving area is diagrammed by creating 

background screen. A symbol table is built to present the vehicle running in the 

weaving area. The style, shape and color of a vehicle can be designed arbitrarily. 

Location reference point (LRP) is a number identifying a specified pixel location in the 

background. Then the coordination's of these points are recorded. 
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Coordinates of vehicles are updated in each scanning time period. Place or 

move the symbols in the desired location reference point LRP, a dynamic portrays of 

states of the system is displaying visually as a form of animation. 

5.5 NFWEAV Input Module  

To ensure that the application software package NFWEAV is really user friendly. 

There is a menu for the user to choose one of the following three functions: to create a 

user input data file; modify a user input data file, or running SLAM. An input module 

was specially developed for data input. The geometric and traffic data are input item 

by item from the screen. The program is written in PASCAL. The input screen is 

shown in Figure 5.6 

Figure 5.6 Data Input Diagram  



CHAPTER SIX 

MODEL VERIFICATION AND VALIDATION 

Model verification and calibration are two important tasks in developing a traffic 

simulation model NFWEAV. Verification is usually defined as ensuring that the model 

behaves as intended, and validation is usually defined as determining that an adequate 

agreement exists between the entity being modeled and the model for its intended use 

(30). Traffic simulation models have unique characteristics because of the interaction 

among the drivers, vehicles and roadway. The effects of interaction on traffic flow 

should be considered in detail in verification and validation of the model. To provide 

some degree of consistency and ensure the reliability of the model, an approach for 

verification and validation of traffic simulation model is developed in this paper. 

In order to obtain a high model-confidence, it is necessary to compare the 

behavior of the model and the behavior of the system under different experimental 

conditions. If the input-output pairs of the model and the system are in sufficient 

agreement for various experimental frames, the model is considered valid for those 

experimental frames. Sargent (30) suggests that model verification and validation 

should consist of conceptual validation, computerized validation, operational validation 

and data validation. 

6.1 Model Verification 

Verification ensures that the model behaves as the experimenter expects. Conceptual 

model validation and face validity are the main tasks for model verification. They are 

used to ensure that assumption of models is right, logic of model flowchart is correct, 

and the input-output relationship is reasonable. For computerized model verification, 

behaviors of different types of specific entities are traced through the computerized 

model to ensure that logic of the model and computer program are correct. 
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6.1.1 Face Validity  

Face validity is asking people knowledgeable about the system whether the model is 

reasonable. Six questionnaire sheets of "Investigation of Vehicle Behaviors in Weaving 

Area" was distributed to transportation engineering's professionals for this purpose. 

The questionnaires are presented as follows: 

A. How do weaving vehicles make their way into their respective target lanes in 

non-freeway conditions? 

(a) reaction: 

• acceleration • deceleration • uniform speed 

(b) lane change time 

• one second • two seconds • three seconds 

(2) What is the response of weaving vehicle driver to try to reach the respective 

target lane when an adequate gaps is not available? 

(3) What percentage of drivers in the main stream "cooperates" to allow a 

vehicle to merge in front of them? 

(4) What is the difference of driver behaviors in a merging gore area for 

weaving areas of Category I and Category II? 

(5) What is the difference of behaviors for vehicles in Category II with and 

without an auxiliary lane? 

(6) What is the influence of the width of lane in weaving areas to the operation 

of drivers? 

(7) What is the most important MOE for traffic operation in weaving areas 

under non-freeway conditions? 

The returning investigation sheets are very helpful in verifying the traffic model 

to ensure that the assumptions and logic of model are reasonable. 
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6.1.2 Conceptual Model Validation 

Conceptual model is developed through an analysis and modeling phase. It is used to 

ensure that the logic of model flowchart is correct, and the input-output relationship is 

reasonable. There are two basic approaches to be used: static and dynamic testing. 

The program is debugged to eliminate any coding errors and programming problems. 

The behavior of different types of specific entities in the model are traced. The logic 

of different components of the model, such as car following and lane changing models, 

is carefully reviewed. Acceleration and deceleration patterns have been examined. 

A. Leading vehicle acceleration pattern 

Typical vehicle acceleration rates vary by grade of facilities, type and speed of 

vehicles. The acceleration rates of vehicles in weaving areas under non-freeway 

conditions are subject to different operating situations. 	The model calibration is 

performed using field data for fine tuning of variables in the model. The operating 

acceleration rate for the leading vehicle adopted in NFWEAV model was calibrated as 

an uniform distribution whose maximum and minimum values are shown in Table 6.1. 

Table 6.1. Operation Acceleration Rate at Weaving 
Areas under Non-freeway Conditions 

Vehicle 

'Type 

Speed Range 

< 20 mph 20-50 mph > 50 mph 

0% 2% 0% 2% () % 2 % 

max min max min max min max min max min max min 

Pas.ear 4.7 3.5 4.5 3.0 3.7 2.0 3.5 2.0 2.0 1.0 0.8 0.3 

S. U. 2.0 0.5 1.6 0.5 1.5 0.5 1.2 0.5 1.0 0. 0.5 0. 

C. T. 2.0 0.5 1.6 0.5 1.5 0.5 1.2 0.5 1.0 0. 0.5 0. 

B. Dynamic test of car-following model 

The NJIT car following model was dynamically tested by simulating traffic flow in a 

single lane. The SLAM[13] continuous simulation language was used for this purpose. 

It was assumed that a platoon of vehicles was initially traveling within a lane at a 
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constant speed of 60 fps. Then the leading vehicle was disturbed by applying an 

acceleration of -8 fpsps for 5 seconds, a zero acceleration for 2 seconds, and an 

acceleration of 8 fpsps for 5 seconds. 

Figure 6.1 shows the responses of the first three vehicles in the platoon. The 

followers have good oscillatory characteristics, and their movements are stable.  

Time (sec.) 

Figure 6.1 Dynamic Test of NJIT model 

C. Lane Change Pattern 

Lane changing behavior is a principal characteristic for weaving area analysis. As 

mentioned before, lane changing maneuver in weaving areas of Category I is a normal 

crossing of traffic without traffic control devices. Acceptable leading and lagging gap 

patterns are verified by the merging point distribution. Figure 6.2 shows the 

comparison of merging point distribution patterns of field data and simulation results 

for the site at Long Island Expressway Exit 30N at 8:10 a.m..  

Merging Point (ft) 

Fig. 6.2 Comparison of Merging Point Distribution between 
Field Observation and Simulation Result for Category 1 
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Lane changing maneuver in category II is a normal gap acceptance operation of 

ramp traffic with the main stream. The lane changing patterns heavily depend on the 

geometric character. A site in Category II with or without auxiliary lane reflects 

different behaviors. The weaving operation in Category II  without an auxiliary lane is 

in more critical situation. There is a long queue to wait for merging. Figure 6.3 

shows the merging point distribution of Category II, where most of the weaving 

vehicles have to merge at the entrance gore area. The distributions in Figure 6.2 and 

6.3 are different, where more vehicles in category II tend to merge earlier. 

Fig. 6.3 Comparison of Merging Point Distribution between 
Field Observation and Simulation Result for Category II 

D. Deceleration rate pattern for weaving vehicles failed to merge 

Lane changing maneuvers associated with weaving areas under non-freeway conditions 

are much more aggressive because of restrictions on the relatively short length of 

weaving sections. A driver merging urgency sub-model developed in NFWEAV is also 

calibrated. The deceleration rates for weaving vehicles which fail to merge in section 

II and section III of a weaving area are calibrated, and shown in Table 6.2. 
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Table 6.2. Deceleration Rate (m/h/s) of Vehicles in 
A Weaving Area under Non-freeway Conditions 

6.1.3 Sensitivity Study of Parameter K and Constant b 

Sensitivity analysis is made of changing the input and internal parameters of a model to 

determine the effect upon the model and its output. Sensitivity factor k is sensitive and 

causes significant changes in the behavior of the model. It should be made sufficiently 

accurate prior to using the model. A set of values of K is taken for different types of 

vehicles. The default values of K under normal conditions used in this model are 2.0, 

2.15, 2.3 for Passenger Car, Single Unit and Combined Truck, respectively. It varies 

according to different geometric and traffic conditions. The sensitivity study of the 

simulation model to the sensitivity factor K has been conducted by a regression analysis 

between weaving speed of field observation and simulation results. To reduce the 

effect of the random number seed in the simulations each series is repeated six times 

with different random seeds. The results of these NFWEAV runs are measured by the 

slopes a of the fitted straight lines and r values of the speed, and shown in Figure 6.4. 

here, a is equal to 0.892, and r, 0.83. The constant b is calibrated as 0.1. 

Weaving Speed (mph) 

Figure 6.4. Regression Analysis of Sensitivity Study 
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6.1.4 Analytical Model Comparisons  

A comparison is conducted between the simulation model and the analytical one which 

was developed in Phase I. The analytical models which shown in Equation 6-1, 6-2, 6-

3 and 6-4 were calibrated by using the Statistical Analysis Software package SAS on a 

mainframe computer. Multiple regression models were developed for predicting non-

weaving and weaving speeds. The non-weaving and weaving speed prediction models 

have R-square value of .84 and .71, respectively (8). 

The analytical models for Category II are the follows: 

The comparison between analytical model and simulation model result is shown 

in Figure 6.5. A Z-test was used at 1-percent level of significance to test the equality of 

two population variances, the result is satisfied. 
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Figure 6.5 The Comparison of Analytical and Simulation Model 

6.2 Model Validation 

6.2.1 Data Collection 

The field data for NFWEAV model was collected during the peak traffic hour in Fall 

of 1992. Four sites located in New Jersey and New York regions are chosen for the 

pilot study. Video taping and photogrammetry techniques are used for data collection 

and reduction [19]. Video taping was performed using two camera platforms mounted 

on the roof of a research van, which provided up to 18 feet of elevation from the 

ground. A video image processing board and an image processing function library is 

installed in a PC-based microcomputer to perform the photogrammetric measurement 

that produces coordinates (x, y) of vehicles which were processed by digitizing vehicles 

one by one for each image frame of the video tapes. A current lane placement of a 

vehicle can be determined by x, and a longitudinal position of vehicle can be obtained 

directly from y. Speed and acceleration can be calculated by differentiating of the 

coordinates. The field data provided a complete record of spacing, longitudinal 

positions, velocities, travel times and merging points for individual vehicles. 

6.2.2 Field Data Test.  

For the model validation, there are two different types of field data test conducted. 

One set of data are processed by Imaging Processing technique, and other one, directly 
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from video tape reading. For operational validity, statistical hypothesis testing is made 

to determine if the pertinent characteristics of the model adequately represent the 

problem entity for the intended use of the model.  

A. Comparison with the field data from image processing technique.  

The data are taken for 60-90 seconds per five minutes. The sampling size is large 

enough to be considered as normally distributed. The sites which can offer imaging 

processing data are listed in Table 6.3.  

Table 6.3 Sites for Data Collection  

Date Name of Sited 

12/31/91 *.Long Island Expressway Exit 30N, Long Island, New York 
9/15/92 * Entrance weaving area of Newark International Airport 
10/24/92 * 17 Route 4 W & Route 
2/27/92 * NCV 

To generate the simulation data base, six runs were performed for each 

experiment using different random seeds. The following statistical distributions were 

formed per experiment by aggregating the results of the six simulation replicates: 

• Weaving and non-weaving speed; Six distributions were formed, each 

representing one five minutes time period. 

• Weaving and non-weaving acceleration; A single distribution was created per 

experiment. 

The following statistical tests were used for model validation. 

• Z-test for differences between field and simulation population means 

For large samples of speed and acceleration in one 5-minute interval , the Z- 

test, normal approximation method, was used to test for the differences between field 

observations and simulation results. Basic assumptions are both populations are 

normally distributed, and the values of both population variances σ12  and σ22  are 

known. The null hypothesis H0  is  
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Table 6.4 Statistic Analysis for Weaving Speed 

Anova: Single-Factor 
Groups Count Sum Average Variance 
Field 273 9470 34.69 35.07 
Sim. 380 12929 34.02 63.42 

Source of Variation SS df MS F 	P-value 	F criteria 
Between Groups 70.83 1 70.83 1.374 	0.242 	6.674 
Within Groups 33578 651 51.58 
Total 33648 652 

z-Test: Two-Sample for Means 
Field Sim. 

Mean 34.69 34.0 
Known Variance 35 63 
Observations 273 380 
Hypothesized 0 
Mean Difference 
z 1.231 
P(Z < =z) one-tail 0.055 
z Critical one-tail 2.576 
P(Z < =z) two-tail 0.109 
z Critical two-tail 2.326 

F-Test: Two-Sample for Variances 

Mean 
Field 
34.69 

Sim. 
34.02 

Variance 35.08 63.42 
Observations 273 380 
df 272 379 

F 1.808 
P(F < =f) one-tail 1E-07 
F Critical one-tail 1.157 

Table 6.5 Statistic Analysis for Non-Weaving Speed 

Anova: Single-Factor 
Groups Count Sum Average Variance 
Field 107 3504 32.75 85.4 
Sim. 79 2452 31.04 24.6 

Source of Variation SS df MS F P-value F criteria 
Between Groups 133 1 133 2.23 0.137 6.775 
Within Groups 10975 184 59.55 
Total 11108 185 

z-Test: Two-Sample for Means F-Test: Two-Sample for Variances 
Field Sim. Field Sim. 

Mean 32.75 31.04 Mean 32.75 31.04 
Known Variance 85 24.7 Variance 85 24.7 
Observations 107 79 Observations 107 78 
Hypothesized 0 df 106 77 
Mean Difference 
z 1.626 F 3.437 
P(Z < =z) one-tail 0.026 P(F < =1) one-tail 2E-08 
z Critical one-tail 2.576 F Critical one-tail 1.1427 
P(Z < =z) two-tail 0.052 
z Critical two-tail 2.326 
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A 5-percent level of significance was chosen in designing the hypotheses test. 

• F-test for differences between the field and simulation population variances. 

To test the equality of two population variances (or standard deviations), The F 

test was used. The assumptions are that the both populations are normally distributed 

as N(µ1, σ12) and N(µ2, σ22), with sample sizes n1  and n2, respectively. The 

hypothesis H0  and test statistic is as the follows: A two-side F-test at 5-percent level 

with (n 1 -1, n2-1) degree of freedom was used. 

• ANOVA and F-test for differences between the field and simulation population 

variances 

To test the equality of two population variances (or standard deviations), 

ANOVA and F test were used. The assumptions are that the both populations are 

normally distributed as N(µ1, σ12) and N(µ 2, σ22), with sample sizes n1  and n2, 

respectively. A level of significant of one percent was used with (n 1 -1, n2-1) degree of 

freedom for each population, respectively. 

Sampling of speed and acceleration in live minute intervals were used for the 

hypothesis test. For large samples, it was hypothesized that there was no difference 

between field observation and simulation results. Tables 6.4 and 6.5 show the statistics 

of results for weaving and non-weaving speed. 
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Table 6.6 Statistic Analysis for Weaving Acceleration 

Anova: Single-Factor 
Groups 	 Count Sum Average Variance 

Sim. 	 223 98.5 0.442 26.5 
Field 	 223 62.98 0.282 31.19 

Source of 	SS df MS F P-value F crit 
Variation 
Between Groups 	2.832 1 2.832 0.098 0.754 6.692 
Within Groups 	12806 444 28.84 
Total 	 12809 445 

z-Test: Two-Sample for Means F-Test: Two-Sample for Variance 

Mean 

Sim 

0.442 

Field 

0.28 Mean 

Sim 

0.44 

Field 
0.28 

Known Variance 26.5 31.2 Variance 26.5 31.2 
Observations 223 223 Observations 223 223 
Hypothesized 0 df 222 222 
Mean Difference 
z 0.313 F 1.177 
P(Z < =z) one-tail 0.189 P(F < =0 one-tail 0.113 
z Critical one-tail 2.576 F Critical one-tail 1.188 
P(Z < =z) two-tail 0.377 
z Critical two-tail 2.326 

Table 6.7 Statistic Analysis for Non-Weaving Acceleration 

Anova: Single-Factor 
Groups Count Sum Average Variance 

Sim. 107 108.6 1.01 23.95 
Field 61 -32.98 -0.54 20.37 

Source of SS df MS F P-value F crit 
Variation 
Between Groups 93.98 I 93.98 4.147 0.04 6.79 
Within Groups 3762 166 22.7 
Total 3856 167 

z-Test: Two-Sample for Means 

Mean 

Sim 
1.015 

Field 

-0.54 
Known Variance 23.95 20.4 
Observations 107 61 
Hypothesized 0 
Mean Difference 
z 2.082 
P(Z < =z) one-tail 0.009 
z Critical one-tail 2.576 
P(Z < =z) two-tail 0.019 
z Critical two-tail 2.326 

F-Test: Two-Sample for Variances 

Mean 

Sim 
1.015 

Field 
-0.54 

Variance 23.95 20.4 
Observations 107 61 
df 106 60 

F 1.176 
P(F < =f) one-tail 0.248 
F Critical one-tail 1.477 
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Table 6.6 and 6.7 show the statistical results for weaving and non-weaving 

accelerations. The level of significant is one percentage. Tables 6.8 shows the test of 

differences of non-weaving and weaving acceleration of field observations and 

simulation predictions. The ANOVA test tests the differences of population variances 

between the field observations and simulation results. The Z test tests the difference of 

population mean between field and simulation. "F" indicates that the hypothesis was 

rejected, whereas "P" indicates that the hypothesis was not rejected. 

Table 6.8 Evaluation for Weaving and Non-weaving Speed at LIE Exit 30N 

Weaving Speed Non- weaving Speed 
Time Field Sim. ANOVA Z-test Field Sim. ANOVA Z-test 
7:50 29.1 32.74 F F 30.3 32.8 F F 
8:00 33.6 33.3 P P 32 32.6 P P 
8:10 34.7 33.8 P P 31 31.8 P P 
8:20 34 33.4 P P 33 32.8 P P 
8:30 33.1 32.9 P P 29.4 31.1 F F 
8:40 34.2 33.9 P P 33.4 32.7 P P 
8:45 35.4 33.5 F F 33 32.6 P P 
8:55 35.1 33.3 P F 34.2 33.7 P P 

The results are very favorable as in most cases the null hypotheses was not 

rejected. The Z-test shows that only three weaving speed and two non-weaving speed's 

means have significant difference for each eight five-minutes interval. The ANOVA 

test shows that only two weaving speeds and one non-weaving speeds variance have 

significant differences for each eight five-minutes interval. 

B. Comparison with Field Data Directly Read from Video Tape 

Ten sites such as Exit 30 of Long Island Expressway, entrance of the Newark Airport, 

Route 20 and 80, Exit 10 of Great Central Parkway, Route 17 North and Route 4; and 

Route 4 East and Route 17, etc. were used to collect data specifically for this 

comparison. Four sites are category I, basic weaving occur in the 2-lane weaving 
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areas. The longest weaving section is 436 ft, which is in Exit 10 of Great Central 

Parkway. The shortest weaving section for this test is just 210 ft, which is in Market 

Street, Route 1-80 and 1-20. For Category 11, sometimes there are 3 or 4 lanes in 

weaving areas. One or two lanes are just for non-weaving vehicles. The lengths are 

shorter and the minor approach angle are wider. The maneuver of weaving and non-

weaving vehicles in this category are more complicated. 

The sample size is much smaller for this test, so one factor t-test is used for the 

statistic analysis. A five percent level of significance was chosen in designing the test 

of hypothesis. Appendix A shows the detail of results of the hypothesis testing for each 

test site. A summary of the six test sites is shown in Table 6.9 are the  

Table 6.9 Test of Hypothesis for NFWEAV 

Site Category 
Validated 
Variable 

T - Test 
No.of reject/total 

Exit 30N of Long Island Expressway. I WV Speed 3 / 22 

7:05-8:50 AM NW Speed 5 / 22 

Newark International Airport Entry I WV Speed 5 / 24 

4:00-5:55 PM NW Speed 6 / 24 

Route Marker, 1-80 & 1-20 I WV Speed 8 / 21 

8:15-9:55 AM NW Speed 4 / 21 

Exit 10 of Great Central Parkway N. I WV Speed 5 / 24 

6:40-8:35 AM NW Speed 

Route 17 South & Route 4 II WV Speed 7 / 24 

2:30-4:35 PM NW Speed I I / 24 

Route 4 East. & Route 17 II NW Speed 9 / 23 

7:05-8:55 Am WV Speed 9 / 23 
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There are three sites for category I, two for category 11. About one hour was 

taken for evaluation purpose for each site. The result is presented by the ratio of 

number of test rejected and total number of test. For example, three of weaving speed 

hypothesis testing were rejected from total twenty two tests for Long Island Expressway 

Exit 30N site, and five of non-weaving speed were rejected from total twenty two tests. 

The evaluation shows that the model is acceptable in most Category I cases, the 

null hypotheses could not be rejected. The results for Category II are also satisfactory, 

although not as good as that in Category I. 



CHAPTER SEVEN 

SUMMARY AND CONCLUSIONS 

7.1 Summary  

The operation of weaving areas under freeway conditions has been treated in many 

studies, including the 1985 Highway Capacity Manual, however the 1985 HCM and 

others contain no treatment for weaving areas under non-freeway conditions. This 

study presents a microscopic computer simulation model NFWEAV representing 

vehicle interactions on weaving areas under non-freeway conditions. The simulation 

model NFWEAV is found to be a useful tool for the study of a weaving area under 

non-freeway conditions. It has been implemented in a microcomputer IBM/PC 386. 

Weaving operation under non-freeway conditions is characterized by lower 

speed and much more aggressive merging maneuvers because of restrictions due to the 

relatively shorter length of weaving section. The traffic models developed in 

NFWEAV includes NJIT car following, lane changing, follower courtesy, driver 

merging urgency model and anti-collision check algorithms, which reflect a different 

scenario of driver behaviors and traffic operation situations from those on freeway 

conditions. 

A SLAM II simulation language was chosen for the simulation purpose. An 

event orientation technique was used in the NFWEAV model development. The 

simulation approach makes it possible to study in detail the dynamic traffic 

responsiveness of weaving operations under non-freeway conditions. A graphic and 

animation output visually present the dynamic characterization of the weaving section 

operation under non-freeway conditions. The Level of Service criteria developed in 

phase I of the project were stored in the library of the NFWEAV, and the simulation 

result predicted the LOS for user's weaving area capacity analysis. 
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Extensive testing was conducted in order to verify and validate the NFWEAV 

model. Data collection and reduction were conducted by video taping and 

photogrammetry techniques from fourteen sites in the New York and New Jersey 

region. Comparative analyses between analytical and simulation model, as well as 

analysis between field observation and model predictions were conducted. 

7.2 Conclusions  

The principal contribution of this thesis was the development of a microscopic 

computer simulation model NFWEAV for analyzing traffic operations on weaving 

areas under non-freeway conditions. The principal components that characterize 

NFWEAV are the following: 

• NJIT car following model was developed for the particular scenario of weaving 

operations under non-freeway conditions with relatively shorter length and more 

aggressive merging maneuvers. It is a modification of PITT model which 

sometimes forces the followers to stop easily at non-freeway weaving areas. 

The desired safe headway space in NJIT model is larger when the follower is 

faster, and vice versa to avoid the problem caused by PITT model. 

• A lane changing model was also developed for weaving maneuvers. A follower 

courtesy model was conducted to describe the different behavior at much 

heavier weaving maneuver situation. A driver merging urgency model described 

the forced merging behaviors at the relatively shorter weaving sections. 

• An animation model was conducted in NFWEAV model to visualize the 

dynamic portray of the system simulation of weaving operation under non-

freeway conditions. 

The NFWEAV model underwent through extensive testing. The principal 

results of the verification and validation are the following: 



66 

• The NJIT car following model was dynamically verified: the result shows that 

the followers have good oscillatory characteristics; their movements are stable. 

• The lane changing model was verified by merging pattern which described by 

the merging point distribution along the weaving section for both Category I and 

Category II in weaving areas under non-freeway conditions. 

• A comparison between the analytical model and simulation model was 

conducted, showed no significant difference. 

• A comparison between the simulation results and field observations was 

conducted. The evaluation shows that the model is satisfactory, and in most 

Category I cases, the null hypotheses could not be rejected. The results for 

Category II are also acceptable, although not as good as that in Category I. 

More than 14 sites were video taped for model verification and validation 

purpose, however only the data from six sites could be used. The main deficiencies of 

the digitizing procedure are the following: 

• The geometry factor, such as shorter length, larger approach angle of weaving 

sections; and traffic factor such as heavy traffic flow or huge combined truck, 

form obstacles to choose a accurate digitizing target. 

• Clear and accurate reference points for digitizing are not available in some sites. 

• Human behavior, such as fatigue and/or carelessness also cause deficiency. 

7.3 Future Research  

The model calibration and evaluation were conducted under limited conditions. 

Most of the sites are located in the New Jersey and New York state. The configuration 

of facilities, traffic operation conditions are limited. The method of the data collection, 

especially the reliability and accuracy of the imaging processing method needs to be 

improved. The model will be widely used if robust statistical testing of more sites can 

be conducted to validate the model under a wider spectrum of facility types. 



APPENDIX A 

Table A-1 Test at Exit 30N on Long Island Expressway 

Weaving Speed Non-Wearing Speed 

Time Field Simulation T Field Simulation T 

test test Mean Sid Akan Std Mean 
Std 

Mean Std 

7:05 40.01 4.25 40.04 7.57 45.05 2.54 39.54 9.54 f 

7:10 39.01 6.64 40.66 8.06 38.44 5.30 41.00 9.53 

7:15 37.80 5.31 36.55 7.31 35.30 4.34 35.27 9.31 

7:20 40.00 6.68 40.97 7.43 38.28 4.41 41.93 8.53 

7:25 35.50 7.38 40.19 7.68 1 36.06 5.29 39.30 9.48 

7:30 37.52 6.75 38.00 8.5.1 37.13 5.49 34.14 11.42 

7:35 39.80 5.88 39.14 7.84 39.27 4.87 37.84 10.21 

7:40 37.54 6.93 38.76 7.80 39.13 8.00 39.02 9.97 

7:45 35.11 6.82 31.58 9.05 1 33.63 6.15 25.31 10.38 1 

7:50 37.09 8.03 39.36 7.98 34.56 6.50 38.33 9.38 

7:55 36.07 6.78 37.17 7.97 36.26 3.88 35.42 9.56 

8:00 38.33 5.93 38.48 7.47 36.83 4.27 37.9% 10.59 

8:05 34.38 7.04 36.23 7.76 31.89 6.06 33.14 9.41 

8:10 38.65 6.31 39.60 7.95 37.24 7.38 37.55 9.39 

8:15 36.20 6.5X 32.81 8.34 1 34.00 6.65 27.17 10.04 I 

8:20 35.21 7.84 36.73 8.19 40.10 2.51 34.61 10.46 f 

8:25 36.29 6.59 37.73 8.38 38.50 3.58 34.10 10.69 1 

8:30 33.97 8.13 33.65 8.10 31.64 8.56 28.76 10.36 

8:35 37.13 7.28 37.06 8.11 34.89 6.30 34.12 10.26 

8:40 40.85 7.33 40.85 7.42 40.29 5.27 41.00 9.41 

8:45 38.62 7.05 39.45 7.69 36.04 8.40 38.86 9.64 

8:50 43.57 7.13 42.95 7.56 40.01 5.18 43.45 8.38 

•length: 302 ft 	 width: 30 ft 
• Nu. of lanes: 2 	 minor approach angle: 20 

Note: f means the t-test is failed in this 5-minute period. 
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Table A-2. Test at Newark International Airport (Category I) 

Weaving Speed Non-Weaving 

Time Field Simulation T-test Field Simulation T-t est 

Mean Std Mean Std 
Mean Sid 

Mean 
Sid 

4:00 37.81 5.60 35.18 6.65 f 43.04 5.07 36.34 7.37 f 

4:05 36.40 4.16 35.41 6.76 36.81 5.23 37.22 8.72 

4:10 34.68 5.04 34.82 7.09 36.26 3.75 36.37 8.34 

4:15 36.15 6.13 34.44 6.73 37.44 4.56 35.10 8.62 

4:20 34.36 5.45 35.80 6.19 35.09 5 50 35.43 8. 1 14 

4:25 34.90 5.04 33.93 7.35 36.4% 3.56 33.63 10.31 

4:30 33.81 3.6X 34.77 7.33 34.32 5.46 35.69 9.66 

4:35 33.80 5.76 33.35 6.78 36.20 3.94 34.41 9.56 

4:40 34.48 5.29 33.02 6.76 38.25 4.56 34.67 8.99 f 

4:45 33.11 5.86 34.19 7.41 32.58 2.98 35.52 9.25 f 

4:50 34.30 4.54 32.42 7.35 1 33.99 5.46 33.28 9.52 

4:55 34.23 4.84 34.86 7.40 34.18 5.87 34.91 1(1.32 

5:00 35.02 5.45 33.64 6.97 34.94 4.35 35.13 9.20 

5:05 34.10 5.03 33.03 7.05 36.10 4.12 35.25 9.01 

5:10 32.55 4.72 32.34 7.41 34.49 4.53 32.14 9.97 

5:15 33.12 4.06 34.30 6.56 33.72 4.67 32.63 9.11 

5:20 32.72 5.57 34.32 6.64 35.33 3.75 36.74 8.45 

5:25 33.48 3.98 37.37 6.00 f 34.85 2.14 37.26 7.04 1 

5:30 32.93 4.68 34.98 6.84 I 33.82 1.11 35.41 8.55 

5:35 33.37 3.75 33.60 7.06 34.46 4.53 34.71 9.22 

5:40 33.93 5.45 34.10 7.17 35.31 5.87 35.31 9.08 

5:45 33.06 3.46 33.66 6.83 35.28 186 34.32 9.47 

5:50 33.37 3.72 34.11 6.64 36.59 2.45 34.24 8.99 f 

5:55 33.38 5.68 36.54 6.22 1 35.89 2.74 
38.18 

7.5 f 

length: 310 ft 
No. of lanes: 2 

Note: f means the t-test is failed in this 5-minute period. 
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Table A-3. Test at Market St. 1-80 and 1-20 (Category I) 

Weaving Speed Non-Weaving 

Time Field Simulation t test Field Simulation t test 

Mean Std Mean Sid Mean Sid Mean Sid 

8:15 28.15 5.65 38.42 6.57 f 31.97 1.80 30.59 9.34 

8:20 33.12 8.84 30.76 6.64 35.84 5.34 32.14 7.95 

8:25 32.34 7.45 32.98 6.67 31.46 4.54 32.61 6.68 

8:30 32.49 6.12 31.95 6.63 35.59 6.19 33.33 6.95 

8:35 33.30 6.23 32.58 6.23 33.62 4.65 33.97 7.05 

8:40 31.54 6.41 32.90 6.61 34.02 6.36 33.49  7.71 

8:45 30.50 8.22 29.72 6.73 28.86 9.49 30.49 8.52 

8:50 34.27 7.77 34.07 6.08 36.13 8.12 35.27 7.63 

8:55 34.20 8.24 29.85 6.83 f 33.25 7.84 32.00 7.90 

9:00 31.74 6.64 29.32 6.90 f 36.42 4.90 30.17 8.54 f 

9:05 30.54 6.96 32.60 6.76 29.85 8.30 31.07 8.62 

9:10 33.89 6.51 31.36 6.62 f 32.29 6.28 31.08 7.87 

9:15 32.18 5.61 32.71 6.88 31.50 4.86 31.90 8.79 

9:20 32.32 7.76 33.95 6.14 30.27 5.48 34.61 6.92 f 

9:25 32.99 4.42 27.10 6.96 f 31.08 4.85 27.06 9.06 

9:30 34.69 5.46 33.36 6.15 31.61 6.18 33.85 7.67 

9:35 28.63 6.21 27.98 7.33 36.19 2.44 29.04 8.53 f 

9:40 32.83 6.97 32.92 5.77 29.75 7.09 30.25 8.72 

9:45 35.36 5.81 26.99 7.27 f 36.29 4.37 29.29 8.53 f 

9:50 32.31 7.59 27.57 7.33 f 33.31 7.50 29.53 8.10 

9:55 34.25 7.07 30.85 7.03 f 35.32 7.35 34.66 7.60 

Length: 210 ft 	 Width: 31 ft 

No. of lanes: 2 	 Minor approach Angle: 15 

Note: f means the t-test is railed in this 5-minute period. 
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Table A-4. Test at Exit 10 of 

Great Central Parkway (Category I) 

Weaving Speed 

Time held Simulation T-test 

Mean Sid Mean Std 

6:40 36.81 5.50 37.44 7.58 

6:45 35.62 2.80 35.77 8.06 

6:50 35.96 4.28 35.84 7.32 

6:55 35.96 4.86 37.61 6.46 

7:00 36.93 4.93 36.07 6.36 

7:05 36.42 3.56 34.99 6.87 f 

7:10 37.74 4.32 38.62 7.18 

7:15 39.01 5.08 38.52 6.92 

7:20 36.68 5.78 36.51 7.04 

7:25 36.48 7.84 35.85 7.68 

7:30 40.00 4.32 41.28 6.23 

7:35 37.03 3.75 38.94 7.13 f 
7:40 39.46 6.43 38.30 7.26 

7:45 38.34 4.49 37.93 7.35 

7:50 30.63 6.57 36.06 7.41 f 

7:55 34.10 4.57 36.06 7.46 

8:00 38.33 5.11 37.94 6.56 

8:05 35.85 5.04 37.37 6.00 

8:10 36.16 3.64 38.55 7.40 f 

8:15 36.93 3.55 37.48 7.60 

8:20 36.46 4.63 37.62 7.94 

8:25 36.34 5.94 33.66 6.83 f 

8:30 37.27 4.63 36.09 7.42 

8:35 37.81 6.26 35.99 7.15 

Length: 436 ft 	 Width : 34 ft 

NI) of lanes: 2 	 Minor Approach Angle: 30 

Note: f means the t-test is failed in this 5-minute period. 
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Table A-5. Test at Route 17 South and Route 4 (Category II)  

Time 

Weaving Speed Non-Weaving 

Field Simulation T-test Field Simulation T-test 

Mean Sid Mean Sid Mean Sid Mean Sid 

2:30 20.27 4.64 20.12 7.17 23.30 5.67 21.54 6.77 

2:35 20.30 4.93 20.00 7.72 23.34 5.34 19.60 711 

2:40 21.46 4.41 20.04 6.58 22.03 5.21 23.35 5.86 

2:45 19.17 3.81 19.87 7.76 19.48 4.71 18.51 6.21 

2:50 18.40 4.54 19.71 7.22 17.45 5.05 17.18 6.88 

2:55 18.92 4.63 20.85 7.68 f 21.53 6.01 19.56 5.97 

3:00 20.50 4.88 19.11 7.69 21.03 5.34 17.79 6.68 f 

3:05 21.72 4.44 21.56 7.16 28.07 5.43 21.54 6.23 

3:10 22.34 5.09 19.51 7.57 f 30.04 6.01 31.03 6.56 

3:15 22.44 7.03 20.24 7.47 29.51 5.76 30.51 6.12 

3:20 21.50 5.53 20.96 7.33 29.14 5.88 30.27 5.55 

3:25 23.20 3.45 21.73 8.38 27.40 6.05 25.70 6.38 

3:30 21.27 4.87 21.34 8.28 26.29 5.87 25.37 7.15 

3:35 24.00 6.01 22.29 7.58 f 23.82 6.53 26.43 6.43 

3:40 22.39 4.76 20.99 7.51 22.64 4.12 25.51 6.52 

3:45 23.51 4.92 21.47 7.83 f 23.73 4.06 25.61 6.96 

3:50 22.45 4.46 20.49 6.66 f 25.88 5.05 29.63 7.03 

3:55 23.14 4.39 22.37 7.08 33.33 4.32 34.56 6.50 

4:00 24.61 4.96 19.89 8.47 f 31.41 5.04 29.99 6.78 

4:05 22.38 5.08 20.35 7.27 28.50 4.33 33.43 6.26 

4:10 22.01 6.35 22.08 8.59 24.82 4.76 24.31 6.66 

4:15 22.23 4.77 22.55 7.79 26.16 3.78 28.29 7.15 

4:20 21.19 5.56 19.67 7.66 24.78 4.37 29.86 6.74 

4:25 23.33 4.97 20.50 7.60 f 23.90 4.98 26.85 
7.51 

f 

length: 246 ft 	 width: 22 ft 

No. of lanes: 3 	 minor approach angle: 40 

Note: f means the t-test is failed in this 5-minute period.  
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Table A-6. Test at Route 4 East and Route 17 (Category II)  

Time 

Weaving Speed Non-Weaving 

Field Simulation T-test Field Simulation 

T-test 

Mean Sid Mean Sid Mean Sid Mean Std 

7:05 31.72 4.30 31.05 7.13 46.66 5.96 45.14 6.89 

7:10 32.36 3.74 32.05 6.87 46.49 5.97 45.14 6.95 

7:15 33.06 4.08 31.90 7,50 47.20 5.10 46.48 7.23 

7:20 32.04 4.24 28.36 7.98 f 46.33 4.17 44.93 7.48 

7:25 31.78 4.68 30.99 7.34 44.94 4.63 42.86 7.58 f 

7:30 30.54 4.86 27.59 7.20 f 43.12 5.54 41.86 5.45 

7:35 29.55 6.57 27.81 7.18 41.80 5.25 39.89 5.37 

7:40 30.74 3.90 27.57 7.82 f 40.91 5.28 39.38 5.56 

7:45 29.30 4.37 28.52 8.05 40.81 5.88 35.52 4.95 

7:50 29.66 3.66 24.14 7.18 f 39.30 6.12 34.18 5.41 

7:55 29.14 5.03 29.23 7.88 39.05 6.46 33.19 5.78 

8:00 29.05 3.70 29.02 7.22 36.68 8.89 34.19 5.24 
f 

8:05 29.03 4.23 27.83 7.52 36.52 6.72 33.14 5.81 

8:10 28.95 3.83 26.11 7.23 f 34.23 7.93 32.43 5.09 

8:15 27.10 4.73 27.03 8.41 27.93 3.19 31.51 5.21 f 

8:20 30.32 4.10 29.66 8.13 30.78 3.95 29.61 5.91 

8:25 26.45 7.04 21.45 7.38 f 29.49 3.78 29.54 6.81 

8:30 28.03 4.19 23.63 7.48 f 28.15 4.81 29.05 5.49 

8:35 29.91 4.39 25.27 7.11 f 34.79 6.07 30.97 5.44 

8:40 26.85 5.08 26.90 7.54 29.63 3.28 27.93 6.52 f 

8:45 27.70 3.99 25.68 8.21 f 30.22 5.05 29.17 5.58 

8:50 27.68 5.56 26.56 8.35 29.89 4.71 30.90 6.25 

8:55 27.75 4.97 26.91 6.75 27.30 5.61 28.43 5.93 

length: 259 ft 	 width: 23 ft 
No. of lanes: 4 	 minor approach angle: 30 

Note: f means the t-test is failed in this 5-minute period.  



REFERENCE  

1. Highway Capacity Manual. Washington D.C.: Transportation Research Board, 
1985. 

2. Highway Capacity Manual: Special Report 209. Washington D.C.: Bureau of 
Public Roads, 1950. 

3. Highway Capacity Manual: Special Report 87. Washington D.C.: Transportation 
Research Board, 1965. 

4. Reilly, W. R., et al, "Weaving Study Memorandum." JHK & Associates, 
November (1984). 

5. Sadegh, Ahmad and Pignataro, Louis J. "Operation of Weaving Area Under Non-
freeway Conditions." Phase I Interim Report, (1991). 

6. Fazio, "Development and Testing of Weaving Operational Analysis and Design 
Procedures." Master of Science Thesis, University of Illinois at Chicago , 
Chicago (1985). 

7. Pignataro, J., et al. "Weaving Area Operation Study." Final Report, NCHRP 
Project 3-15 (1973). 

8. Transportation Research Circular 212: Interim Materials for Highway Capacity. 
Washington D.C.: TRB, National Research Council, 1980 

9. Reilly, R., et al. "Weaving analysis Procedures for the New Highway Capacity 
Manual." Technical Report, JHK & Associates, Tucson, Arizona (1984). 

10. Drew, Donald R. Traffic Flow Theory and Control. New York: McGraw-Hill Book 
Company, 1968. 

11. Prisker, A Alan B. Introduction to Simulation and SLAM II. A Halsted Press Book, 
John Wiley & Sons, 1986. 

12. Hoover, Stewart V. and Perry, Ronald F. Simulation A Problem-Solving Approach. 
Addison-Wesley Publishing Company, 1989. 

13. May, Adolf D. Traffic Flow Fundamentals. Printice Hall, 1990. 

73 


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Winter 1994

	Development and evaluation of a NFWEAV simulation model for weaving areas under non-freeway condition
	Wen-min Pan
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Elements of NFWEAV Simulation Model
	Chapter 4: Traffic Flow Models
	Chapter 5: NFWEAV Simulation Structure
	Chapter 6: Model Verification and Validation
	Chapter 7: Summary and Conclusions
	Appendix A: Table A-1 Test at Exit 30N on Long Island Expressway
	References

	List of Tables
	List of Figures

