New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Fall 2018

CE 351-101: Introduction to Transportation Systems

Kitae Kim

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Kim, Kitae, "CE 351-101: Introduction to Transportation Systems" (2018). *Civil and Environmental Engineering Syllabi*. 14. https://digitalcommons.njit.edu/ce-syllabi/14

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

CE 351 – Introduction to Transportation Systems, Section: 101

Fall 2018

INSTRUCTOR:

Kitae Kim, Ph.D. Office: Tiernan Hall 284 Telephone: 973-596-5259 E-mail: kitae.kim@njit.edu

Meeting Time and Location Monday 6-9:05 PM Central King Building (CKB) 114

OFFICE HOURS:

Friday 10:00 am ~ Noon or by appointment

COURSE DESCRIPTION:

Problems in modern transportation systems will be introduced. The course will cover transportation planning and traffic engineering issues on highways and urban streets, while traffic simulation and animation will be applied to help students identify the problems. The concepts of highway (e.g., freeways, arterials and urban streets) operations and capacity, speed-flow-density relationships, traffic flow theory, ramp and weaving sections will be introduced prior to computer simulation analysis. The concepts of bus transit capacity and service quality as well as bus transit scheduling problems will be introduced.

Prerequisites: CE 200, CE 200A, CE 350

TEXTBOOK:

• Fred L. Mannering, Scott S. Washburn, *"Principles of Highway Engineering and Traffic Analysis,"* 5th Edition, John Wiley & Sons, Incorporated, ISBN 978-1-1181-2014-9

RECOMMENDED READINGS:

- Nicholas J. Garber and Lester A. Hoel, "Traffic and Highway Engineering", Cengage Learning, 5th edition, January,2014
- Roger P. Roess, Elena S. Prassas, and William R McShane, "*Traffic Engineering*," 4th Edition, Englewood Cliffs, NJ., Prentice Hall, 2010 (ISBN-10: 0136135730 and ISBN-13: 978-0136135739)
- Transportation Research Board, "Highway Capacity Manual (2010)", National Research Council, 2010
- TSIS "CORSIM Manual", McTrans, University of Florida
- Transit Capacity and Quality of Service Manual, 3rd Edition, TCRP Report 165, TRB, 2013

STUDENT EVALUATION/GRADE DISTRIBUTION:

- 5% Class attendance and participation
- 25% Home works
- 20% Term Project
- 25% Midterm Exam
- 25% Final Exam

FINAL GRADE:

Score	90 - 100	84 -89	76 - 83	68 to 76	60 to 68	50 to 60	0 to 50
Grade	А	B+	В	C+	С	D	F

TENTATIVE COURSE OUTLINE (SUBJECT TO MODIFICATION)

Date	Turin	Description d'Desching	Home Work/Project	
Date	Торіс	Required Reading	Assigned	Due
9/6	Course Introduction			
9/13	Transportation Systems – An Overview: Characteristics Problems in Modern Transportation Systems	Supplementary Material	HW#1	
9/20	Transportation Systems – Components Infrastructure/Vehicles/Human	Chapter 1, 2/ Supplementary Material	HW#2	HW#1
9/27	Fundamentals of Traffic Flow Theory	Chapter 5	HW#3	HW#2
10/4	Freeway – as part of transportation systems Introduction of CORSIM – Basic Freeway Segment (lab-1)	Supplementary Material/ CORSIM Manual		
10/11	Freeway – as part of transportation systems Capacity Analysis and System Failure	Chapter 6	HW#4	HW#3
10/18	Midterm Exam			
10/25	Arterial - as part of transportation systems (Urban Street Systems and Traffic Control) Introduction of CORSIM – Urban Street Systems (lab-2)	Chapter 7/CORSIM Manual	HW#5	HW#4
11/1	Arterial - as part of transportation systems (Capacity Analysis and System Failure)	Chapter 7/ Supplementary Material	Project	
11/8	Transit – as part of transportation systems Introduction of CORSIM – Basic Transit Simulation (lab-3)	Supplementary Material /CORSIM Manual		HW#5
11/15	Transit – as part of transportation systems (Capacity Analysis and System Failure)	Supplementary Material	HW#6	
11/29	Project – System Failure – Scenario Analysis and Evaluation (Lab-4)	CORSIM Manual		HW#6
12/6	Project – System Failure - Scenario Analysis and Evaluation (Lab-5)	CORSIM Manual		
12/13	Project Presentation/Final Exam Review			
12/20	Final Exam			
12/23				Project Report

GENERAL RULES, REQUIREMENTS AND ANNOUNCEMENTS:

1) Class attendance is required (An attendance sheet will be passed around at the beginning of each class).

2) No late home-work and project report will be accepted unless there is a valid (e.g. medical) reason for late submittal. Home-works and project report are due at the beginning of the class on the designated dates. Carelessly written and disorganized homework and project will not be graded.

3) In addition to textbook chapters, lecture notes/supplementary materials/web-documents (web-links) provided electronically or in class are required readings

Strategies and	Student	Student	Prog.	Assessment	
Actions	Learning	Outcomes (a-	Educational	Methods/Metrics	
	Objectives	k)	Object		
Course Objective 1: Understand the components of transportation infrastructure,					
	ow theory, and m				
	•	leasures or effecti	veness utilizeu it	n evaluating	
system performa		1 4 7	1.0	TT	
Introduce	Understand the	1, 4, 7	1,2	Homework, exam	
transportation facilities in	facilities and their				
freeways and	functions in different				
urban streets.	transportation				
urban streets.	systems.				
Introduce planning	Understand the	1, 2, 4, 7	2,3	Homework, exam	
and operation	factors affecting	1, 2, 7, /	2,5		
issues for	public				
designing a public	transportation				
transportation	system planning.				
system.	Jan Par Or				
Introduce	Learn methods to	2,7	1,2	Homework, exam	
problems in	investigate the	,	,		
modern	causes of				
transportation	transportation				
systems and ways	problems				
to quantify the					
impact.					
Introduce traffic	Learn traffic flow	1,7	1	Homework, exam	
flow theory and	theory and				
measures for	methods to				
analysing	measure system				
transportation	performance				
system					
performance.		 			
		and simulation skills	to approximate traf	fic measures based on	
simulated, real-wor Introduce the need	Utilize simulation	1.2	1.2	Homowork anom	
for traffic		1, 2	1,2	Homework, exam	
simulation and	and analytical approaches to				
analytical	study				
methods.	transportation				
methous.	problems.				
Introduce concepts	Learn concept to	1,2	1,2	Homework, exam	
in traffic	interpret	-, -	-,-	Tome work, exum	
simulation and	simulation results				
	and use statistic				

Course Objectives Matrix - CE 351 - Introduction to Transportation Systems

matheda ta analwaa	methods to			
methods to analyse simulation results.	estimate traffic			
simulation results.				
Desta	measures.	1.0.0	1.0	TT
Develop	Learn computer,	1, 2, 6	1,2	Homework, exam
microscopic traffic	software to			
simulation models	develop models for			
for impact	traffic simulation.			
analysis.				
Visualize	Analyze traffic	1, 6	1,2	Homework, exam,
simulated traffic	problems using			term project
operations and	traffic simulation,			
impacts under	animation, and			
specific network.	statistic outputs.			
	: Stimulate interest a	nd enhance capabili	ty in solving transpor	
Discuss "what if"	Learn potential	3, 6, 7	1,2	Homework,
scenarios, for	soutions from			discussions, term
mitigating the	reference books			project
traffic impact of	and technical			
studied problems.	papers/reports.			
Test and evaluate	Use simulation and	1,6	1,2	Homework, exam,
"what if" scenarios	analytical			term project.
and verify the	approaches to			1 5
results.	animate and			
	evaluate all			
	scenarios			
Develop a term	Ability to conduct	2, 4, 6	1,2	Term project
project and	an independent	, ,	,	1 5
analyse designated	study, to research a			
transportation	transportation			
problems.	problem, and to			
r	investigate its			
	causes			
Host presentations	Ability to present	3, 6	1,2	Term project
for discussing the	the work progress	2,0	-,-	1 on project
progress and	and interpret			
findings of term	results.			
project.	1000110.			
	l	l		l

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1 -Engineering Practice: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 - Professional Growth: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional

registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 - Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

- 1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18