brought to you by 🕹 CORE

New Jersey Institute of Technology Digital Commons @ NJIT

Computer Science Syllabi

NJIT Syllabi

Fall 2019

CS 644-101: Introduction to Big Data

Chase Wu

Follow this and additional works at: https://digitalcommons.njit.edu/cs-syllabi

Recommended Citation

Wu, Chase, "CS 644-101: Introduction to Big Data" (2019). Computer Science Syllabi. 5. https://digital commons.njit.edu/cs-syllabi/5

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Computer Science Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

CS 644: Introduction to Big Data

General Information

Instructor: Chase Wu Department office: GITC 4100 Office/Lab: Department phone: 973-596-3366

E-mail: <u>chase.wu@njit.edu</u> Phone: 973-642-4579

Course Description

This course provides an in-depth coverage of various topics in big data from data generation, storage, management, transfer, to analytics, with focus on the state-of-the-art technologies, tools, architectures, and systems that constitute big-data computing solutions in high-performance networks. Real-life big-data applications and workflows in various domains (particularly in the sciences) are introduced as use cases to illustrate the development, deployment, and execution of a wide spectrum of emerging big-data solutions.

Required Background

Programming Skills

• Java, Python, or C/C++ in Linux

Prerequisite Courses

- CS 610: Data Structures and Algorithms
- Or permission of instructor

Textbook

• Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph. By David Loshin, Elsevier, August 23, 2013.

Resources

Additional reading materials including reference books and online resources will be assigned for some advanced topics as the course proceeds.

Evaluation

Grading components:

Attendance	10%
Homework	10%
Project	20%
Midterm	30%
Final	30%

Grading scale*:

Grade	Score
A	90 - 100
B, B+	80 - 84, 85 - 89
C, C+	70 – 74, 75 – 79
F	Below 70

^{*}Final grades will not be curved unless necessary.

Late Policy

Students are expected to complete work on schedule. Late work is not accepted unless prior arrangements are made with the instructor.

Academic Integrity and Student Conduct:

"Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at:

http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu"

Course Syllabus

Week	Торіс	
1	Introduction	
2	 In-class Presentation on 4 V's of Big Data Applications 	
3	 Trends of Computing for Big Data High-performance Computing (Supercomputers and Clusters) Grid Computing Cloud Computing Mobile Computing 	
4, 5	 Big Data Overview Drivers of Big Data Big Data Attributes Data Structures Big Data Ecosystem Examples of Data Analytics 	
6, 7	 Big Data Tools, Techniques, and Systems Exascale Computing HDFS, HBase, and NoSQL (Document Store, Graph DB, etc.) MapReduce, Spark, Oozie, Tez, Hive, Pig, etc. Hadoop 1 and Hadoop 2 (YARN) 	
8, 9	Review and Midterm Exam	
10, 11	 Advanced Analytical Theory and Methods Hadoop/Mahout Recommendation Clustering Classification Regression 	
12, 13, 14	 Advanced Topics Big Data Volume and Information Visualization High-performance Networking for Big Data Movement Big Data Scientific Workflow Management and Optimization Review 	