
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 2019

Rare event sampling in applied stochastic
dynamical systems
YiMing Yu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Applied Mathematics Commons, Optics Commons, and the Other Physics
Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Yu, YiMing, "Rare event sampling in applied stochastic dynamical systems" (2019). Dissertations. 1408.
https://digitalcommons.njit.edu/dissertations/1408

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1408?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

RARE EVENT SAMPLING IN APPLIED STOCHASTIC
DYNAMICAL SYSTEMS

by
YiMing Yu

Predicting rare events is a challenging problem in many complex systems arising in

physics, chemistry, biology, and materials science. Simulating rare events is often

prohibitive in such systems due to their high dimensionality and the numerical

cost of their simulation, yet analytical expressions for rare event probabilities are

usually not available. This dissertation tackles the problem of approximation of

the probability of rare catastrophic events in optical communication systems and

spin-torque magnetic nanodevices. With the application of the geometric minimum

action method, the probability of pulse position shifts or other parameter changes in

a model of an actively mode-locked laser subject to noise from amplified spontaneous

emission can be quantified. Similarly, by applying importance sampling with biasing

functions motivated by optimal control, read and write soft error rates of macrospin

and coupled-spin systems of spin-torque magnetic nanodevices can be efficiently

estimated.
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Dr. Tobias Schäfer, Committee Member Date
Professor of Mathematics, City University of New York, New York



BIOGRAPHICAL SKETCH

Author: 

Degree:

Date:

YiMing Yu

Doctor of Philosophy

May 2019

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,

New Jersey Institute of Technology, Newark, NJ, 2019

• Bachelor of Science in Applied Mathematics,
New York City College of Technology, Brooklyn, NY, 2013

Major: Applied Mathematics

Presentations and Publications:

Y. Yu, C. B. Muratov, and R. O. Moore, “Importance sampling for thermally
induced switching and non-switching probabilities in spin-torque magnetic
nanodevices,” Magnetics, IEEE Transactions on. (to appear).

Y. Yu and R. O. Moore, “Quasi-stable dynamics of a mode-locked laser,” Proceedings
of 13th International Conference on Mathematical and Numerical Aspects of
Wave Propagation, Minneapolis, MN, May 2017.

Y. Yu and R. O. Moore, “Biased Monte Carlo simulations to compute phase slip
probabilities in a mode-locked laser model,” SIAM Conference on Nonlinear
Waves and Coherent Structures, Philadelphia, PA, August 2016.

Y. Yu and R. O. Moore, “Biased Monte Carlo simulations to compute phase slip
probabilities in a mode-locked laser model,” Gene Golub SIAM Summer
School, Philadelphia, PA, August 2016.

iv



This dissertation is dedicated to my wife and my family.

v



ACKNOWLEDGMENT

I want to thank my advisors Dr. Richard O. Moore and Dr. Cyrill B. Muratov for

teaching and mentoring. Dr. Moore has been very supportive and patient, allowing

me to explore different ideas in research and different options in my career, and Dr.

Muratov has been very encouraging and enthusiastic to pursue exciting ideas. Our

collaboration on our first paper has provided me a unique, invaluable experience

on thoughts and process of collaborative research throughout many discussions and

commitment. It would not have been possible to finish this dissertation without both

of their guidance, valuable feedback, and instruction.

I next thank Dr. David J. Horntrop, Dr. Roy H. Goodman, and Dr. Tobias
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CHAPTER 1

INTRODUCTION

Rare but important events arise due to the impact of noise on complex systems

in physics, chemistry, biology, materials science, optical devices, and networks.

Examples are thermal switching in micromagnetic devices, phase slips in coherent

optical systems, conformational changes of biomolecules, chemical reactions, and

dislocation dynamics in crystalline solids. Simulating these rare events is often

prohibitive due to computational cost since the physical system usually involves

high dimension, nonlinearity, and disparity of time scales. Thus, analysis and

computations must concentrate on the most critical noise-induced events. In many

cases, the noisy complex dynamical system can be modeled as a system of stochastic

ordinary differential equations, in which the noise is modeled by Brownian motion.

Many tools exist to assist in the computation of rare events in these cases, including

computational tool development arising from the application of large deviation theory.

The second chapter is devoted to reviewing these tools with emphasis on

large deviation theory and importance sampling. Large deviation theory is a tool

to analyze the maximum likelihood transition path from one configuration to another

configuration of these systems. Simulation with the guidance of large deviation theory

can be an efficient way to approximate the probability of rare events.

The third chapter is devoted to studying rare events in examples from nonlinear

optical communications, such as a fiber-based optical communication system and an

actively mode-locked laser. The primary source of noise is amplified spontaneous

emissions. To investigate the quasi-stability induced by the noise of an optical

system, the infinite-dimensional model is reduced to a finite-dimensional system of

stochastic ordinary differential equations and numerically verified for agreement. The

quasi-stable state is computed by evaluating the action functional via the geometric
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minimum action method (gMAM). This computation shows how and to what extent

noise effectively destabilizes the system, as demonstrated by depicting a region of

quasi-stability in its parameter space similar to a stability diagram for a deterministic

system.

The fourth chapter is devoted to studying rare events in spin-torque magnetic

nanodevices. Spin-transfer torque magnetoresistive random access memory is a

potentially transformative technology in the non-volatile memory market. Its viability

depends, in part, on one’s ability to predictably induce or prevent switching; however,

thermal fluctuations cause small but important errors in both the writing and reading

processes. Computing these small probabilities for magnetic nanodevices using

naive Monte Carlo simulations is virtually impossible due to their slow statistical

convergence, but variance reduction techniques can offer an effective way to improve

their efficiency. Here, we provide an illustration of how importance sampling can

be efficiently used to estimate low read and write soft error rates of macrospin and

coupled-spin systems.
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CHAPTER 2

TECHNIQUES FOR RARE EVENTS

The need to compute rare event probabilities is often driven by performance

requirement. For example, reliable operation for a working memory requires a write

error rate in a magnetic RAM less than 10−9 in the presence of an error correction code

in the chip or less than 10−18 without an error correction code. In other settings, the

importance of rare events stems from their potentially catastrophic impact. Examples

include major earthquakes, tsunamis, hurricanes, financial market crash [2], and

population collapses [3].

In many cases, the complex system can be modeled by stochastic differential

equations (SDEs) subject to random noise. It is the noise that induces transitions

between basins of attraction of stable fixed points in the deterministic dynamical

system. This often implies the presence of at least two time-scales in these perturbed

systems: the time-scale of the deterministic dynamics and the time-scales between

the transitions of rare events. The former is determined by eigenvalues of the system;

Jacobian evaluated at the fixed point, while the latter scales inverse exponentially

with the noise strength. This will be discussed more in section (2.2).

A traditional method to quantify the effect of random noise is direct simulation

of the stochastic dynamical system in Monte Carlo (MC) simulations [4, 5]. When

the amplitude of the random noise is small, naive or unbiased MC simulations require

a prohibitively large number of runs to obtain a sufficient number of the events of

interest to provide reasonable statistical accuracy. This can be addressed through

the use of importance sampling (IS) or biased MC simulation. As we mention before,

Freidlin-Wentzell large deviation theory provides a framework for understanding

the transitions of the rare events from one configuration to another configuration

3



of the underlying system [6–9], which provides useful information to construct an

appropriate biasing function.

2.1 Monte Carlo Simulation and Importance Sampling

Let us start with the basic concepts of the Monte Carlo simulation. Suppose we wish

to estimate the probability P = E0[I(ω)] of a system driven by random variable ω

producing an event with indicator function I(ω) of A, that is, I(ω) = 1 if ω ∈ A

and I(ω) = 0 otherwise. Here, E0[·] denotes the expected value with respect to the

density ρ0(ω), such that

P = E0[I(ω)] =

∫
I(ω)ρ0(ω) dω. (2.1)

The strong law of large numbers states that if ω1, ω2, ..., ωM are independent and

identically distributed (i.i.d.) draws from the probability density ρ0, then for any

function f(ω) with finite average, meaning that E0[f(ω)] < ∞, the sample average

1
M

∑M
i=1 f(ωi) converges to the true mean E0[f(ω)] as M → ∞ with probability

one [10]. Thus, a naive Monte Carlo method uses M independent draws ωi from

distribution ρ0 to approximate P according to

PMC =
1

M

M∑
i=1

I(ωi), (2.2)

which is an unbiased estimator of P with mean

E0[PMC] = E0

[
1

M

M∑
i=1

I(ωi)

]
=

1

M

M∑
i=1

E0[I(ωi)] = P, (2.3)

and variance

Var[PMC] = Var

[
1

M

M∑
i=1

I(ωi)

]
=

1

M2

M∑
i=1

Var[I(ωi)] =
1

M
P(1− P). (2.4)

4



According to the central limit theorem, the MC estimator PMC is distributed

approximately as a normal distribution with mean E0[PMC] and variance Var[PMC],

as M goes to infinity [10].

The coefficient of variation (CV), which measures the relative statistical error

of the estimator PMC, is given by

CV (PMC) =

√
Var(PMC)

E0[PMC]
=

1√
M

√
1

P
− 1 ≈ 1√

M

√
1

PMC

− 1. (2.5)

For PMC � 1, smallness of CV (PMC) requires M � 1/PMC � 1. In the present case,

this necessitates an impractically large number of simulations to produce a reasonable

estimate of the probability.

The idea behind IS is to sample ω from an alternative probability density

ρu(ω) that depends on a bias function u chosen to increase the likelihood of the event

of interest with the observation of changing the measure

P =

∫
I(ω)ρ0(ω) dω =

∫
I(ω)

ρ0(ω)

ρu(ω)
ρu(ω) dω = Eu[I(ω)L(ω)], (2.6)

where Eu[·] denotes the expected value with respect to the density ρu(ω), and L(ω) =

ρ0(ω)/ρu(ω) is called the likelihood ratio, provided that ρu(ω) > 0 whenever ρ0(ω) >

0. Similarly to the construction of naive MC estimator, the unbiased IS estimator is

then recovered by weighting each result according to

PIS =
1

M

M∑
i=1

I(ωi)L(ωi), (2.7)

with mean

Eu[PIS] = Eu
[

1

M

M∑
i=1

I(ωi)L(ωi)

]
=

1

M

M∑
i=1

Eu[I(ωi)L(ωi)] = P (2.8)

5



and variance

Var[PIS] = Var

[
1

M

M∑
i=1

I(ωi)L(ωi)

]

=
1

M2

M∑
i=1

Var[I(ωi)L(ωi)]

=
1

M
(Eu[I(ωi)L

2(ωi)]− P 2). (2.9)

The resulting CV is then given by

CV (PIS) =

√
Var(PIS)

Eu[PIS]
=

1√
M

√
Eu[I(ω)L2(ω)]

Eu[I(ω)L(ω)]2
− 1, (2.10)

where 1/P ≥ Eu[I(ω)L2(ω)]/P 2 ≥ 1.

Expression (2.10) suggests that a “good” bias to use in IS keeps Eu[I(ω)L2(ω)]

close to P 2. It is easy to show that the optimal choice for ρu(ω) is given by

ρu(ω) =
I(ω)ρ0(ω)

P
, (2.11)

which gives that Var[PIS] = 0. This indicates that there exists an optimal change of

measure that leads to a zero-variance estimator. In practice, this is impossible since

the equation (2.11) requires the knowledge of the probability of rare events P . The

result also indicates that we should choose ρu as close to equation (2.11) as possible.

2.2 Importance Sampling for Stochastic Differential Equations

In many cases of interest, the underlying physical model is described by an Itô

stochastic differential equation

dX(t) = b(X(t))dt+ εσ(X(t))dW (t), X(0) = x0, (2.12)

where X(t) ∈ RN , for some N ≥ 1, is a randomly evolving state variable, b(x) is

its deterministic drift, σ(x) is the diffusion coefficient matrix, dW is an infinitesimal

6



increment of an N -dimensional Brownian motion, and ε > 0 is noise strength. We

focus on system (2.12) above whose deterministic part is autonomous, i.e, it does

not explicitly, depend on time t. In many situations of interest the noise is weak:

ε� 1. If we wished to observe the state X(t) exhibiting a behavior that is very rare

for typical realizations of the Brownian motion W (t), we would have to simulate this

equation a very large number of times to obverse a single event of interest, even more

so to produce an accurate probability estimate from these empirical observations.

Likelihood ratio for SDEs. In the case of SDEs, the IS technique makes rare

events happen more often by introducing a bias to the mean of the noise increment

dW , such that the coefficient of variation of the estimate PIS is reduced at the same

time [8, 11]. This provides new paths X̃(t) that evolve according to

dX̃ =
(
b(X̃) + σ(X̃)u(X̃, t)

)
dt+ εσ(X̃)dW̃ , (2.13)

where we have chosen a form of bias term

dW = dW̃ + ε−1udt, (2.14)

suggestive of optimal control. By Girsanov’s theorem [6,7], for a time horizon T > 0,

the likelihood ratio is then given by

L = exp

(
− 1

2ε2

∫ T

0

|u(X̃, t)|2dt− 1

ε

∫ T

0

〈u(X̃, t), dW (t)〉
)
, (2.15)

where 〈·, ·〉 stands for the Euclidean inner product in RN , W (t) is the realization of

the noise that produced X̃(t), and the last integral is understood in the Itô sense.

This expression may then be incorporated into the IS estimator (2.7) to recover an

unbiased probability estimate.

Large deviation theory. The theory of large deviations has applications in many

fields, such as physics, chemistry, and biology. It provides a mathematically rigorous

7



framework to estimate the probability of rare events and the rate of occurrence of the

rare events, and to identify the maximum likelihood pathway of the rare events.

The large deviation theory gives a description of the behavior of a trajectory

solution of equation (2.12) to a function φ(t), which is given by

P

{
sup

0≤t≤T
|X(t)− φ(t)| ≤ δ|X(0) = x0

}
∼ exp(−ST (φ)/ε2), (2.16)

for ε and δ sufficiently small. The action functional is defined by

ST [φ] =

∫ T

0

L(φ(t), φ̇(t))dt, (2.17)

where φ̇(t) = dφ(t)/dt, over absolutely continuous paths φ : [0, T ] → RN satisfying

φ(0) = x and φ(T ) ∈ A [12]. This functional has a Lagrangian and associated

Hamiltonian are given by

L(x, y) =
1

2
|y − b(x)|2a(x), (2.18)

and

H(x, θ) = 〈b(x), θ〉+
1

2
〈θ, a(x)θ〉, (2.19)

where 〈u, v〉a(x) = 〈u, a−1(x)v〉, |u|a(x) = 〈u, u〉1/2a(x), and a(x) = σ(x)σT (x), for any

u, v, x ∈ RN [7].

Equation (2.16) indicates that the probability density distribution of X(t) is

concentrated in the neighborhood of φ(t) and that the probabilities of paths that

are not in the neighborhood of φ(t) are exponentially small. It provides an estimate

of the probability of a given solution of equation (2.12). Moreover, minimizing the

functional under endpoint constraints provides an estimate of the probability that is

associated with transition from one state to the another state. For instance, if A is a

8



Borel subset of RN , we have

lim
ε→0

ε2 logP {X(T ) ∈ A|X(0) = x0} ∼ − inf
φ(0)=x,
φ(T )=A

ST [φ], (2.20)

whose minimizer gives us the most probable path for the transition of the trajectory

starting from X(0) = x0 and ending at X(T ) ∈ A [7, 13].

Another important concept in large deviation theory is the quasi-potential,

which is defined by

V (x0, xT ) = inf
T>0

inf
φ(0)=x0,
φ(T )=xT

ST [φ]. (2.21)

The quasi-potential allows us to understand the stochastic dynamical system over

an exponentially long or infinite time interval. For example, consider O to be an

asymptotically stable fixed point of system (2.12) with its domain of attraction D ∈

RN having a smooth boundary ∂D. Then the mean first exit time E[τ ] is given by

lim
ε→0

ε2 lnE[τ ] ∼ min
y∈∂D

V (O, y). (2.22)

Minimization of variance. To minimize the error of the estimator (2.10), we need

to control the ratio

R(PIS) =
Eu[I(ω)L2(ω)]

Eu[I(ω)L(ω)]2

=
Eu[I(ω)L2(ω)]

E0[I(ω)]2
. (2.23)

Numerical and theoretical evidence show that equation (2.10) has asymptotically

bounded relative error in the limit as ε goes to zero, provided that the boundary of

A is smooth [7].

Jensen’s inequality implies that R(PIS) ≥ 1, and in the context of SDEs with

vanishing noise, we have

lim
ε→0

ε2 logEu[I(ω)L2(ω)] ≥ 2 lim
ε→0

ε2 logE0[I(ω)]. (2.24)
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In our interest of rare events for SDEs, the mean E0[I(ω)] denotes the

probability P (X(T ) ∈ A|X(0) = x0), where the X(t) are solutions of equation (2.12)

with initial point at X(0) = x0.

To find the density of X, let us look at a discrete version of equation (2.12)

given by

X i+1 = X i + b(X i)∆t+ εσ(X i)∆W i, X0 = x0, (2.25)

for i = 0, 1, ..., K and ∆t = T/K. Here X i = X(i∆t) and the ∆W is are i.i.d Gaussian

random variables with mean 0 and variance ∆t. The conditional density of X i+1 given

X i is normal with mean X i + b(X i)∆t and variance ε2σT (X i)σ(X i)∆t, meaning that

p(X i+1|X i) =
exp(− 1

2ε2∆t
(X i+1 −X i − b(X i)∆t)Ta−1(X i)(X i+1 −X i − b(X i)∆t))√

(2π)Nε2|a(X i)|∆t

=
exp(− 1

2ε2
|σ−1(X i)(X

i+1−Xi

∆t
− b(X i))|2∆t)√

(2π)Nε2|a(X i)|∆t
, (2.26)

where a(X) = σT (X)σ(X) and |a(X)| is the determinant of a(X). Thus the density

for a discrete path {Xi}i=0,1,...K is given by

p(XN |X0) =
K−1∏
i=0

p(X i+1|X i)

=
exp(− 1

2ε2

∑K−1
i=0 |σ−1(X i)(X

i+1−Xi

∆t
− b(X i))|2∆t)∏K−1

i=0

√
(2π)Nε2|a(X i)|∆t

. (2.27)

The exponential term in equation (2.27) converges to integral

∆t

2ε2

K−1∑
i=0

∣∣∣∣σ−1(X i)

(
X i+1 −X i

∆t
− b(X i)

)∣∣∣∣2 → 1

2ε2

∫ T

0

∣∣∣σ−1(X(t))
(
Ẋ(t)− b(X(t))

)∣∣∣2 dt,
(2.28)

as ∆t→ 0. Therefore, the density for a continuous path X(t) is given by

p0(X(T )|X(0) = x0) = C exp

(
− 1

ε2
ST [X]

)
, (2.29)
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where C is a normalizing constant. As a result, the probability for X(T ) ∈ A given

X(0) = x0 is

P (X(T ) ∈ A|X(0) = x0) = C

∫
X(t):X(T )∈A

exp

(
− 1

ε2
ST [X]

)
dX(t). (2.30)

Recall that to calculate the asymptotic approximation for integrals of the form∫ b

a

f(t) exp(−g(t)/ε)dt, (2.31)

one uses Laplace’s method as ε→ 0. If there is a unique minimum g(t0) in the interval

a ≤ t0 ≤ b and f(t) is continuous and positive, then the major contribution to this

integral is given by the neighborhood of t0. In analogy with the Laplace’s method,

if a minimum of ST [X] connected with the process X(t) starting at X(0) = x0 and

terminal at X(T ) ∈ A exists, then we have

P (X(T ) ∈ A|X(0) = x0) ∼ Cexp

− 1

ε2
inf

φ(0)=x0,
φ(T )∈A

ST [φ]

, (2.32)

as ε→ 0. Applying Laplace’s principle to equation (2.29) [14], we have

lim
ε→0

ε2 logE0[I(ω)] ∼ − inf
φ(0)=x0,
φ(T )∈A

ST [φ]. (2.33)

Meanwhile, applying Varadhan’s lemma [14], we have

lim
ε→0

ε2 logEu[I(ω)L2(ω)] ∼ − inf
φ(0)=x0,
φ(T )∈A

(
S̃T [φ] +

∫ T

0

|u(φ, s)|2ds
)

(2.34)

where the Freidlin-Wentzell large deviation action is defined by

S̃T [φ] =

∫ T

0

1

2
|σ−1(φ(s))(φ̇(s)− b(φ(s)))− u(φ, s)|2ds, (2.35)
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By choosing u = φ(s)(φ̇(s)− b(φ(s))), equations (2.34) becomes

lim
ε→0

ε2 logEu[I(ω)L2(ω)] ∼ − inf
φ(0)=x0,
φ(T )=A

(
S̃T [φ] +

∫ T

0

|u(φ, s)|2ds
)

= −2 inf
φ(0)=x0,
φ(T )=A

ST [φ]. (2.36)

Over finite-time horizons, an effective bias u = u∗ can be obtained by

minimizing the Freidlin-Wentzell large deviation action. Namely, for a given time

horizon T > 0, current time t < T , current state x and the set of targeted outcomes

A one looks for the minimizer φTt,x(s) of the functional

ST [φ] =

∫ T

t

1

2
|σ−1(φ(s))(φ̇(s)− b(φ(s)))|2ds, (2.37)

where φ̇(s) = dφ(s)/ds, over absolutely continuous paths φ : [t, T ] → RN satisfying

φ(t) = x and φ(T ) ∈ A [12]. The finite-time bias function u∗ = u∗T is then given

by [7,9, 11]

u∗T (x, t) = σ−1(x)(φ̇Tt,x(t)− b(x)). (2.38)

Over infinite-time horizons, i.e., when T →∞, a convenient reparametrization allows

the action in equation (2.37) to be minimized with respect to arclength rather than

time. In this case, one can choose u∗ = u∗∞, where u∗∞(x) is obtained from the

minimizer φx(α) of the functional [12,13]

S∞[φ] =

∫ 1

0

(
|σ−1(φ(α))φ′(α)| |σ−1(φ(α))b(φ(α))|

−〈σ−1(φ(α))φ′(α), σ−1(φ(α))b(φ(α))〉
)
dα, (2.39)

among all absolutely continuous paths φ : [0, 1] → RN satisfying φ(0) = x and

φ(1) ∈ A. Here φ′(α) = dφ(α)/dα. The infinite-time bias is then given by [11]

u∗∞(x) = σ−1(x)

(
|σ−1(x)b(x)|
|σ−1(x)φ′x(0)|

φ′x(0)− b(x)

)
. (2.40)
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One of the strategies discussed below is the use of IS with infinite-time bias

functions to obtain switching probabilities over finite time horizons. This strategy

is based on the observation that, when the characteristic speed obtained by dividing

the domain radius by the time horizon is small relative to the maximum speed of the

infinite-time minimizing path, the finite-time and infinite-time minimizing paths are

nearly identical outside of small neighborhoods around the dynamic fixed points. As

will be seen in Chapter 4 Section 4.3, this strategy is effective for intermediate times

but does not correctly recover the long periods spent near the stable fixed point in

the true dynamics. This manifests in reduced efficiency of the IS strategy in these

cases. To address this phenomenon, we turn off the biasing for values of x within a

diffusion length of the stable fixed point, which leads to a significant improvement of

sampling efficiency.

2.3 Minimization of Action

2.3.1 Minimization of action with fixed endpoints

The calculation of the minimizer of the action functional (2.17) and the quasi-potential

(2.21) is critical to the application of large deviation theory. Here I will describe the

minimization problems for each case and their solutions in terms of a Euler-Lagrange

equation with suitable boundary conditions.

Finite-time horizons. The minimization problem of the action functional over

finite-time horizons is given by

inf
φ
ST [φ], (2.41)
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subject to φ(0) = x0 and φ(T ) = xT . The minimizer satisfies the Euler-Lagrange

equations yielding the Hamiltonian system of ODEs,

φ̇ = Hθ(φ, θ)

θ̇ = −Hx(φ, θ), (2.42)

subject to boundary conditions φ(0) = x0 and φ(T ) = xT . The simplest way

to minimize the action functional perhaps is the shooting method. In practice,

this method become inefficient when the dimension of the system increases. Other

methods such as the minimum action method (MAM) [13] and the improved adaptive

minimum action method (aMAM) [15] are introduced to solve the equivalent system

obtained by differentiating φ twice, ie,

φ̈ = Hθx(φ, θ)φ̇+Hθθθ̇

= Hθxφ̇−HθθHx. (2.43)

Infinite-time horizons. Minimizers of the action functional over infinite-time

horizons are given by

V (x0, xT ) = inf
T>0

inf
φ
ST [φ], (2.44)

subject to φ(0) = x0 and φ(T ) = xT .

The shooting method, MAM, and improved aMAM are often not suitable

for this double minimization problem (2.44) over T and φ, since they discretize the

time interval [0, T ]. If the prescribed starting point x0 and terminal point xT are

fixed points of the deterministic system (2.12), the minimizer takes infinite time, i.e

T → ∞. The geometric minimum action method overcomes this problem of infinite

time interval through a geometric reformation of the quasi-potential (2.44).
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Using equations (2.17) and (2.18), the minimization problem (2.44) reduces to

V (x0, xT ) = inf
T>0

inf
φ(0)=x0,
φ(T )=xT

1

2

∫ T

0

|φ̇(t)− b(φ(t))|2a(φ)dt. (2.45)

Expanding the inner product inside the integral and applying the inequality |u|2a(x) +

|v|2a(x) ≥ 2|u|a(x)|v|a(x), equation (2.45) can be reduced to

V (x0, xT ) ≥ inf
T>0

inf
φ(0)=x0,
φ(T )=xT

∫ T

0

|φ̇(t)|a(φ)|b(φ(t))|a(x) − 〈φ̇(t), b(φ(t))〉dt (2.46)

= 2 inf
T>0

inf
φ(0)=x0,
φ(T )=xT

∫ T

0

|φ̇(t)|a(φ)|b(φ(t))|a(x) sin2(
1

2
η(t))dt, (2.47)

where η(t) is the angle between φ̇(t) and b(φ(t)) in the inner product induced by

〈·, ·〉a(φ). The equality between equations (2.45) and (2.46) can be achieved when

|φ̇(t)|a(φ) = |b(φ(t))|a(x). As a result, the minimization problem (2.44) has a geometric

expression as

V (x0, xT ) = 2 inf
γ

∫
γ

|b|a sin2(
1

2
η)ds, (2.48)

where the ds is the arclength element along the curve γ, η is the angle between γ and

b at location s along the curve, and the infimum is taken in the space of curves that

starting at point x0 and ending at point xT .

Thus, we can introduce a parametrization of the curve γ = {φ(α) : α ∈ [0, 1]},

with |φ′(α)| = constant, where φ′(α) is the derivative with respect to α such that

φ̇ = λφ′, (2.49)

φ̈ = λ2φ′′ + λλ′φ′, (2.50)

and the action functional becomes

S∞[φ] =

∫ 1

0

1

λ
L(φ(α), λφ′(α))dα, (2.51)
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or

S∞[φ] =

∫ 1

0

〈φ′, θ(φ, φ′)〉dα, (2.52)

where λ = λ(φ, φ′) [13] .

In the case of SDEs, one can show that θ is given by

θ(x, y) = a−1(x)
(
λy − b(x)

)
, (2.53)

and

λ(x, y) =
|b(x)|a
|y|a

. (2.54)

Using equations (2.49) and (2.50), equation (2.43) can be rewritten as

λ2φ′′ − λHθxφ
′ +HθθHx + λλ′φ′ = 0 (2.55)

with boundary conditions φ(0) = x0, φ(1) = xT and subject to the constraint |φ′(α)|

is constant. Equation (2.55) can be solved by a relaxation method with artificial time

τ , i.e, the PDE

φ̇ = λ2φ′′ − λHθxφ
′ +HθθHx + λλ′φ′ + µφ′, (2.56)

where φ(τ, 0) = x0, φ(τ, 1) = xT , and φ(0, α) = φ0(α). Here τ ≥ 0, φ̇ = ∂φ/∂τ ,

and φ(0, α) = φ0(α) is the initial condition, which must satisfy the constraint that

|φ′(τ, ·)| is constant.

Our implementation of the gMAM uses the relaxation method with discretiza-

tion of the Euler-Lagrange equation and uses an interpolation re-parametrization step

to enforce the constraint on the parametrization of φ. We discretized φ(τ, α) in τ and

α and denote φki = φ(k∆τ, i∆α), k ∈ N0, i = 0, 1, ..., N where ∆τ is the artificial

time step and ∆α = 1/N if the curve is discretized into N + 1 points.
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Algorithm 1 GMAM

1: At the kth iteration, given {φki }i=0,...,N , compute φ
′k
i = (φki+1−φki−1)/(2/N), θki =

θki (φ
k
i , φ

′k
i ) using equation (2.53), λki = λki (φ

k
i , φ

′k
i ) using equation (2.54), and

λ
′k
i = (λki+1 − λki−1)/(2/N) for i = 1, ..., N − 1, where λk0 = 3(λk1 − λk2) + λk3 and

λkN = 3(λN−1
1 − λN−2

2 ) + λkN−3.

2: Let {φ̃i}i=0,...,N be the solution of the linear system, for i = 1, ..., N − 1

φ̃i − φki
∆τ

= (λki )
2 φ̃i+1 − 2φ̃i + φ̃i−1

1/N2
− λkiHθxφ

′k
i +HθθHx + λki λ

′k
i φ

′k
i (2.57)

with boundary conditions φ̃0 = x0 and φ̃N = xT . Note that Hθθ, Hθx, and Hx are

evaluated at (φki , θ
k
i ).

3: Given {φ̃i}i=0,...,N , find {φk+1
i }i=0,...,N that satisfies the prescribed constraint

|φ′(τ, ·)| = cst.

4: Repeat step 1-4 until stoping criterion is satisfied.

5: Action is given by

S =
1

2N

N∑
i

(
〈φ′k

i , θ
′k
i 〉+ 〈φ′k

i−1, θ
′k
i−1〉
)
. (2.58)
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2.3.2 Minimization of action with variable endpoints

The gMAM with fixed endpoints gives the most likely path for a transition between

two defined points, in many cases of interest, e.g, exit problem, the right end criterion

is a set with dimension higher than zero, i.e, φ(T ) ∈ A where A is a Borel subset

of RN . Define a function g such that g(x) = 0 for all x ∈ A. The equation (2.45)

becomes

inf V (x0, y) = inf
y∈A

inf
T>0

inf
φ(0)=x0,
φ(T )=y

1

2

∫ T

0

|φ̇(t)− b(φ(t))|2a(φ)dt

= inf
y∈A

inf
φ(0)=x0,
φ(1)=y

∫ 1

0

〈φ′, θ(φ, φ′)〉dα (2.59)

= inf
φ(0)=x0
g(φ(1))=0

∫ 1

0

L̃(φ, φ′)dα + νg(φ(1)), (2.60)

where L̃ = 〈φ′, θ(φ, φ′)〉. In the equation (2.60), the endpoint constraint g(φ(1)) = 0

is enforced by a Lagrange multiplier term νg(φ(1)) for ν ≥ 0. One can show that the

minimizer of equation (2.60) satisfies the following equation [16]:

φ̇ = λ2φ′′ − λHθxφ
′ +HθθHx + λλ′φ′ (2.61)

φ̇(τ, 1) = −θ(φ(τ, 1), φ′(τ, 1)) + ν∇g(φ(τ, 1)), (2.62)

φ(τ, 0) = x0, φ(0, α) = φ0(α), (2.63)

where τ ≥ 0 and ν is given by

ν =
〈∇g(φ(τ, 1)), θ(φ(τ, 1), φ′(τ, 1))〉

|∇g(φ(τ, 1))|2
. (2.64)

As a result, we can modify the gMAM algorithm by updating

φ̃N = φN −∆τ(θkN + νk∇g(φN)). (2.65)

Notice that a simple modification of equation (2.57) in Step 3 of the gMAM

algorithm can set some of the variables at the endpoint φN free by updating them
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with

φ̃Nj − φkNj
∆τ

= bj(φ
k
i ), (2.66)

for some j ∈ [0, 1, ..., N ].

For example, here we consider a two-dimensional system

ẋ1 = c sin(x2 − x1) + (IJ − cos(x1)) sin(x1) +

√
2

∆
Ẇ1, (2.67)

ẋ2 = c sin(x1 − x2) + (IJ − cos(x2)) sin(x2) +

√
2

∆
Ẇ2, (2.68)

where c, IJ and ∆ are constant, and W1 and W2 are Wiener processes. The starting

point of the system is (0.01, 0.01) and we define a rare event to have occurred if

max(|x1(t)|, |x2(t)|) = π/2 for any t > 0. Let the drift vector be

b(x1, x2) =

 c sin(x2 − x1) + (IJ − cos(x1)) sin(x1)

c sin(x1 − x2) + (IJ − cos(x2)) sin(x2)

 (2.69)

Now let us apply the gMAM to this system. Since the diffusion matrix is the

identity, we have

θ = λφ′ − b(φ) and λ =
|b(φ)|
|φ′|

. (2.70)

We also have

Hx = (∇b)T (λφ′ − b(φ)), Hθθ = I, and Hxθ = ∇b. (2.71)

Since the exit criterion is max(|x1(t)|, |x2(t)|) = π/2 for any t > 0, we have

g(x1, x2) = max(|x1|, |x2|)− π/2. (2.72)

In particular, if we consider that an exit will occur at x1 = π/2, we have g(x1, x2) =

x1 − π/2 and ν = θ1 = (λφ′ − b(φ))1. Thus equation (2.61) can be written explicitly
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as

φ̇ = λ2φ′′ −∇bT b+ λλ′φ′ (2.73)

φ̇2(τ, 1) = −(λφ′ − b(φ))2, (2.74)

φ(τ, 0) = x0, φ(0, α) = φ0(α), (2.75)

where x0 = (0.01, 0.01).
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Figure 2.1 The minimum action path starting from (0.01,0.01) with variable
endpoint along the line x1 = π/2 (left). The red curves are intermediate action
paths generated by equation (2.73), while the black curves is minimum action paths
starting at (0.01,0.01) and ending at (π/2, 0.228). Convergence of endpoint x2 over
iterations(right).

Figure 2.1 shows the action path generated by gMAM and the convergence of

the endpoint variable x2. The red curves on the left are intermediate action paths

generated by gMAM algorithm, while the black curve is final minimum action path

staring from (0.01, 0.01) and ending at (π/2, 0.0228). The graph on the right of Figure

2.1 shows that the endpoint variable x2 converges to 0.228 after τ ≥ 80.
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CHAPTER 3

PARAMETER EXCURSIONS IN MODE-LOCKED LASERS

3.1 Introduction

3.1.1 Optical fiber communication systems

A rapidly increasing demand for bandwidth delivered to internet services (e.g.

streaming video) has led to the widespread deployment of optical fiber communication

systems [17]. Optical fiber is a cylindrical tube of fused silica, which confines light

to its interior using a latent gradient in the refractive index or a more complex

microstructure with advantageous waveguide properties.

Modern optical fiber communication involves sending pulses of light through

an optical fiber to transfer information. Optical fibers are multi-mode optical fibers or

single-mode optical fibers. Basic multi-mode optical fiber has a core greater than 50

micrometers in diameter and admits many simultaneously propagating optical modes.

Single-mode optical fiber has an inner core less than 10 micrometers in diameter and

only admits one propagating spatial mode. Most optical fiber deployed is single-mode.

Optical fiber communication systems consist of an optical transmitter to convert

electrical signals to optical signals, a cable made of bundles of optical fibers, optical

amplifiers to compensate for attenuation of pulses of light during transmission, and

an optical receiver to convert optical signals into electrical signals that can be read.

3.1.2 Mode-locked laser basics

The most common type of laser consists of a gain medium to amplify light and an

optical cavity to provide feedback. A gain medium is a material with excited atoms

that amplify light through the process of stimulated emission. The optical cavity is

a pair of mirrors on the ends of the gain medium. One of the mirrors is an output

coupler and is partially transparent. Light can bounce back and forth between the
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two mirrors, with a small fraction of the incident light passing through the output

coupler. Depending on the design of the cavity, the light experience signification

diffraction upon each round trip. The laser device is also called a laser oscillator.

Mode-locking is a technique by which a laser can generate coherent pulses

of light. In a simple laser, each of the standing waves, known as longitudinal

modes of the cavity, oscillates independently. In a mode-locked laser, each mode

operates with a fixed phase between it and the other modes. The modes of the

laser periodically interfere with each other to produce a short intense pulse of light.

The periodic interference is produced by the presence of an element in the cavity

that distinguishes mode-lock laser from other lasers. Active mode-locking uses an

externally driven modulation while passive mode-locking uses passive element such

as a saturable absorber.

A mode-locked laser can generate ultra-short optical pulses on the order of tens

of picoseconds to femtoseconds. The pulse circulating in the cavity of a mode-locked

laser can be thought of as a dissipative soliton, where the dissipation is due to loss

of energy through interaction with cavity elements. The loss is compensated by

gain. The mode-locked laser is an excellent system for experimental studies of soliton

dynamics. The evolution of a pulse can be monitored since the pulse is emitted once

per round trip.

In the context of a periodically amplified pulse of light either propagating

through an optical fiber or circulating in the cavity of the laser, a primary noise source

is amplified spontaneous emission (ASE) noise, which always accompanies stimulated

emission. The ASE perturbs the pulses of light in ways that we will characterize using

parametrized representation of the pulses. The noise is often modeled as effectively

white in both space and time solitons with the fact that the pulse has a substantially

smaller bandwidth than the noise source.

22



3.2 Model Including Loss and Filtering

In the cavity of an optical fiber laser with an amplifier, the average round-trip

propagation of optical pulse is governed by a perturbed NLS equation:

iuz + dutt + c|u|2u = −αiu+ iκutt + iεη(z, t) , (3.1)

where the first two terms on the right hand side are fiber loss and filtering. Here

u(t, z) is the complex electromagnetic field envelope, z is the dimensionless distance

obtained from the number of round trips, and t is the normalized time, which

is a spacelike variable in this formulation. The second and third terms on the

left reflect dispersion and self-phase modulation, respectively. The scalar complex

random variable η(z, t) has identically independently distributed real and imaginary

components each distributed as mean-zero Gaussian white noise, delta-correlated in

z and t such that

〈η(z, t), η∗(z′, t′)〉 = 2δ(z − z′)δ(t− t′), (3.2)

and

〈η(z, t), η(z′, t′)〉 = 0. (3.3)

As alluded to above, equation (3.2) is a mathematical idealization, using the

fact that the noise bandwidth is very large relative to the bandwidth of optical pulses

in practice [18, 19]. Although only the noise with same spectral range as the soliton

itself can impact the soliton directly, the idealization can lead to error in important

physical cases.

The simple finite-dimensional reduction is given by

ũ(z, t) = a(z)f(t/T (z)) eiφ(z)+iµ(z)t2 , (3.4)
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where f is chosen to be Gaussian to recover an exact soliton in the linear case. This

pulse is characterized by its amplitude a, width T , phase φ, and “chirp” (a quadratic

variation in phase) µ.

Equation (3.1) includes terms that are in the form of a variational gradient

and terms that are not variational. We now use a variational technique to reduce

the dynamics (3.1) to the approximate 4-dimensional manifold suggested by the

parameters in equation (3.4). The Lagrangian density L(u, u∗) is given by

L(u, u∗) = Im(uu∗z)− d|ut|2 +
c

2
|u|4 (3.5)

Integrating the Lagrangian evaluated with equation (3.4) yields average Lagrangian

L(a, T, µ, λ) =

∫ ∞
−∞
L(ũ, ũ∗) dt. (3.6)

To include non-variational terms, we match the non-variational terms by taking

variational derivative of L with these terms project onto the tangent manifold of

equation (3.4), which is given by

∂L

∂pj
− d

dz

∂L

∂ṗj
= 2Re

∫ ∞
−∞
Li (−αũ+ κũtt + εη(z, t))

∂ũ∗

∂pj
dt. (3.7)

3.2.1 Derivation of the SDEs

With unit L2 norm, we choose for f a Gaussian of the form

f(x) = c̃ e−x
2/2, c̃2 = 1/

√
π. (3.8)

After some algebra, we obtain the averaged Lagrangian

L = −φ̇ a2 T − 1

2
µ̇ a2 T 3 − 1

2
d a2

(
1

T
+ 4µ2T 3

)
+

c a4

2
√

2π
T. (3.9)

As an aside, we note that the Euler-Lagrange equations associated with equation (3.9)

provide a system that has been well-studied in the context of dispersion-compensated
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solitons [20];

Ṫ = 4dµT ,

µ̇ =
d

T 4
− 4dµ2 − c

2
√

2π

N2

T 3
and,

φ̇ = − d

T 2
+

5c

4
√

2π

N2

T

supplemented by the conservation law a2T = N2. These reflect the integral nonlinear

Schrödinger equation, albeit with a Gaussian pulse form rather than a classic NLS

soliton.

Turning to the non-variational terms, we note that the noise contributions

take the form

∂L

∂pj
− d

dz

∂L

∂ṗj
= 2εRe

∫
iη(z, t)

∂ũ∗

∂pj
dt, (3.10)

= −2εIm

∫
η(z, t)

∂ũ∗

∂pj
dt, (3.11)

= 2εγi(z). (3.12)

The covariance of γi(z) is given by

〈γi(z), γi(z
′)〉 = 〈Im

∫
η(z, t)

∂ũ∗

∂pj
dt, Im

∫
η(z′, t′)

∂ũ

∂pj
dt′〉, (3.13)

=

∫
∂ũ∗

∂pj

∂ũ

∂pj
dtδ(z − z′). (3.14)

From equation (3.4), we have

∂ũ∗

∂a
= f(t/T (z)) e−iφ(z)−iµ(z)t2 , (3.15)

∂ũ∗

∂T
= a(z)

t2

T 3
f(t/T (z)) e−iφ(z)−iµ(z)t2 , (3.16)

∂ũ∗

∂φ
= −ia(z)f(t/T (z)) e−iφ(z)−iµ(z)t2 , (3.17)

∂ũ∗

∂µ
= −it2a(z)f(t/T (z)) e−iφ(z)−iµ(z)t2 . (3.18)
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Thus the covariances among the γi(z), for i = a, T, µ, φ are given by

〈γa(z), γa(z
′)〉 =

∫
f 2(t/T ) dtδ(z − z′) = Tδ(z − z′), (3.19)

〈γT (z), γT (z′)〉 =

∫
a2(z)

t4

T 6
f 2(t/T ) dtδ(z − z′) =

3a2

4T
δ(z − z′), (3.20)

〈γµ(z), γµ(z′)〉 =

∫
a2(z)t4f 2(t/T ) dtδ(z − z′) =

3

4
a2T 5δ(z − z′), (3.21)

〈γφ(z), γφ(z′)〉 =

∫
a2(z)f 2(t/T ) dtδ(z − z′) = a2Tδ(z − z′), (3.22)

〈γa(z), γT (z′)〉 =
a

2
δ(z − z′), (3.23)

〈γµ(z), γφ(z′)〉 =
a2T 3

2
δ(z − z′). (3.24)

Combining all the equations from equation (3.10) to equation (3.24), the ODEs for

(a, T, µ, φ) are given by

− 2φ̇ a T − µ̇ a T 3 − d a
(

1

T
+ 4µ2T 3

)
+

2√
2π
c a3T = 2εγa(z) (3.25)

− φ̇ a2 − 3

2
µ̇ a2T 2 − 1

2
d a2

(
− 1

T 2
+ 12µ2T 2

)
+

c a4

2
√

2π
= 4κ a2µ+ 2εγT (z) (3.26)

− 4d a2 µT 3 +
1

2

d

dz

(
a2T 3

)
= −αa2T 3 + 2κa2(

T

4
− 3µ2T 5) + 2εγµ(z) (3.27)

d

dz

(
a2T

)
= −κa2 1

T
− 4κµ2T 3a2 − 2αa2T + 2εγφ(z), (3.28)

which can be simplified to

ȧ = −2adµ− αa− κa

T 2
− ε

aT 3
γµ(z) +

3ε

2aT
γφ(z), (3.29)

Ṫ = 4dµT +
κ

T
− 4κµ2T 3 +

2ε

a2T 2
γµ(z)− ε

a2
γφ(z), (3.30)

µ̇ =
d

T 4
− 4dµ2 − ca2

2
√

2πT 2
− 4κµ

T 2
− 2ε

a2T 2
γT (z) +

ε

aT 3
γa(z), (3.31)

φ̇ = − d

T 2
+

5ca2

4
√

2π
+ 2κµ− 3ε

2aT
γa(z) +

ε

a2
γT (z), (3.32)
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where the covariance for each γi(z), i = a, T, µ, φ is given by

〈γa(z), γa(z
′)〉 =

∫
f 2(t/T ) dtδ(z − z′) = Tδ(z − z′), (3.33)

〈γT (z), γT (z′)〉 =

∫
a2(z)

t4

T 6
f 2(t/T ) dtδ(z − z′) =

3a2

4T
δ(z − z′), (3.34)

〈γµ(z), γµ(z′)〉 =

∫
a2(z)t4f 2(t/T ) dtδ(z − z′) =

3

4
a2T 5δ(z − z′), (3.35)

〈γφ(z), γφ(z′)〉 =

∫
a2(z)f 2(t/T ) dtδ(z − z′) = a2Tδ(z − z′), (3.36)

〈γa(z), γT (z′)〉 =
a

2
δ(z − z′), (3.37)

〈γµ(z), γφ(z′)〉 =
a2T 3

2
δ(z − z′). (3.38)

Thus the covariance matrix, Σ = σσT , is given by

Σ =



3
2T

− 1
a

0 0

− 1
a

2T
a2

0 0

0 0 2
a2T 5 − 1

a2T 3

0 0 − 1
a2T 3

3
2a2T


. (3.39)

Using Cholesky factorization, we obtain

σ =



√
3

2T
0 0 0

− 1
a

√
2T
3

√
4T
3a2

0 0

0 0
√

2
a2T 5 0

0 0 − 1
a
√

2T

√
1
a2T


. (3.40)

Thus the reduced ODEs of x = (a, T, µ, φ) are given by

ẋ = F (x) + εσ(x)ẇ (3.41)

where
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F (x) =



−2adµ− αa− κa
T 2

4dµT + κ
T
− 4κµ2T 3

d
T 4 − 4dµ2 − ca2

2
√

2πT 2 − 4κµ
T 2

− d
T 2 + 5ca2

4
√

2π
+ 2κµ


(3.42)

and σ(x) is defined as matrix (3.40) with w = [Wµ,Wφ,Wa,WT ].

3.2.2 Verification of reduced system

In this section, we compare the PDE system (3.1) and its reduced ODE system

(3.40)-(3.42) numerically for different values of parameters. The ODE system is solved

using a fourth order Runge-Kutta method with ∆z = 0.01 and the PDE system is

solved using a pseudospectral method in t with N Fourier modes and a fourth-order

Runge-Kutta method with ∆z = 0.01.

We will first compare the pathwise solutions of the PDE system and the ODE

system without noise. Then we will compare their solutions with noise both pathwise

and in the sense of distribution.

Pathwise comparison of the deterministic PDE and ODEs. In order to

compare the solutions between the deterministic PDE and ODEs, we extract the

parameters (a, T, µ, φ) from the numerical solutions of the deterministic PDE using

the following identities

a2T =

∫ ∞
−∞
|u|2dt, (3.43)

a2T
3

2
=

∫ ∞
−∞

t2|u|2dt, (3.44)

a2(
1

2T
+ 2µ2T 3) =

∫ ∞
−∞
|ut|2dt, (3.45)

a2Tφ =

∫ ∞
−∞

arctan(
=(u exp(−iµt2))

<(u exp(−iµt2)))
|u|2dt. (3.46)
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In practice, the lower limit and the upper limit of the integrals are replaced by −L/2

and L/2 and the integrals are approximated by the composite trapezoidal rule.
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Figure 3.1 Pathwise comparison of the deterministic PDE and ODEs. The dashed
lines denote the PDE solution and the solid lines denote the ODE solutions.

Figure 3.1 shows the pathwise comparison of the deterministic PDE solution

and the ODE solution. The initial point of the path starts at (1, 2, 0.1, 0.1) with

parameters α = κ = 0.1, d = 1/2 and c = 1. We see good agreement between the two

solutions. The evolutions of the parameters for amplitude a, phase φ, and chirp µ for

both systems are almost the same. There is a small difference between the evolutions

of the width T .

To have a better understanding for which parameters loss α and filtering κ

the two models agree well, we compare their solutions for different values of α and κ

with fixed d = 1/2 and c = 1.

Figure 3.2 shows the pathwise comparison of the deterministic PDE solution

and the ODE solution. The initial point of the path starts at (1, 2, 0.1, 0.1) with

parameter κ = 0.1 and different values of α, ranging from 0 to 0.1. The results

indicate that the two models agree better with stronger fiber loss.
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Figure 3.2 Effect of fiber loss on agreement between the PDE and ODE models.
Dashed lines denote the PDE solution, and solids lines denote the ODE solution.
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Figure 3.3 Effect of filtering on agreement between the PDE and ODE models.
Dashed lines denote the PDE solution, and solids lines denote the ODE solution.

Figure 3.3 shows the pathwise comparison of the deterministic PDE solution

and the ODE solution. The initial point of the path starts at (1, 2, 0.1, 0.1) with

parameters α = 0 and different values of κ, ranging from 0.1 to 5. The results

indicate that the two models agree better with stronger filtering.
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Figure 3.1 and Figure 3.3 show that the agreement for the evolution of

amplitude between the deterministic PDE system and the deterministic ODE system

improves as α and κ increases.

Pathwise comparison of the stochastic PDE and ODEs. In order to compare

the stochastic PDE and ODEs, we first generate a random process for the PDE system

then project the noise η(z, t) onto the corresponding derivative of the ansatz using

equations (3.10). The data below is generated with α = 0.1, κ = 1, d = 1/2, L = 100

and c = 1, with initial point (0.2675, 2.8915, 0.0218, 0.2648). The discretization in t

of the PDE uses N = 412. The L2 error is defined by

L2(up, uo) =

∫ L/2

−L/2
|up − uo|2dt, (3.47)

where up is the solution of the PDE system and uo is the solution of the ODE system.

Figure 3.4 compares the deterministic PDE and ODE systems. The parameters

and initial point are chosen to have a small L2 error, which is our starting point to

include the effect of noise of both systems. The results in Figure 3.5 are generated

using the same parameters and initial point as Figure 3.4, except including the noise

with strength ε = 10−5. Figure 3.5 shows that the evolutions of all the characteristic

parameters of both systems agree well, except for the phase of φ. After z = 30, the

phase of the solution from the PDE model decreases to 0 very fast while the phase of

the ODE remains between 0.25 and 0.3. A similar trend also appears in the evolution

of the graph of L2, where the error stops decreasing. Interestingly, even though the

difference in the evolution of T becomes larger after z = 40, their fluctuations are

very similar. Despite the difference between the frequencies of both models, their

solitons at the end of the simulation when z = 50 stay the same shape and at the

same center.
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Dash lines denote PDE solution and solid lines denote the ODE solution.
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Figure 3.6 Pairwise comparison between stochastic PDE and its reduced stochastic
ODEs with ε = 10−4, N = 103, and ∆z = 0.0013.

Figure 3.6 compares the two models with a larger initial value of a(0) = 1.3

As a result, the two systems experience a stronger nonlinear effect. The results in

this figure are generated with α = 0.1, κ = 1, d = 1/2, L = 100 and c = 1 with initial

point (1.3, 1/1.32, 0.01, 0.1). The discretization in t of the PDE uses N = 412.

Simulations of stochastic PDE and stochastic ODEs for comparison in the

sense of distributions. To compare the stochastic PDE and stochastic ODEs, we

study the time evolution of the variances of the four parameters. The simulation

results are generated with α = 0.1, κ = 1, d = 1/2, L = 100, and c = 1, and with

initial point (0.2675, 2.8915, 0.0218, 0.2648) and ε = 10−6. The discretization in t of

the PDE uses N = 412.
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Figure 3.7 Evolution of the variances for each characteristic parameter.

Figure 3.7 shows the time evolution of the variances for each parameter of

the stochastic PDE model and the stochastic ODE model. The variances of the

parameters for both models stay close over time, but there is a significant difference

between the variance of the width T for the PDE model and that of the ODE model.

The evolution of the width T for the stochastic model has a larger variance than that

of the stochastic ODE model. We can observe a similar pattern for the variance of

µ.

3.2.3 Application of the gMAM with variable endpoint

Before applying the gMAM to compute optimal trajectories in our reduced stochastic

ODE system, we first run a test to ensure that the path computed by gMAM recovers

a deterministic trajectory when one exists in the admissible set corresponding to

the applied boundary conditions. The trajectory is first obtained numerically with
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starting point (1.3, 1/1.32, 0.01, 0.1) at z = 0, and the computed end point at z = 20

found to be (0.0161, 7.0721, 0.0047, 0.1462). The parameters for the ODE system are

given by α = 0.1, κ = 1, d = 1/2, L = 100,and c = 1. A fixed initial point and a varied

terminal point for the gMAM are (1.3, 1/1.32, 0.01, 0.1) and (0.0161, T, 0.0047, 0.1462),

where T = 2 in used as an initial value. The value for T from the gMAM path is

7.0739, agreeing well with the precomputed action (See Figure 3.8) .
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Figure 3.8 Comparison of gMAM path and deterministic ODE path.

Figure 3.8 compares the gMAM path with the deterministic ODE path. Black

lines denote the deterministic trajectory of the ODEs. Red dashed lines denotes the

gMAM path. The figures show that the gMAM path is indistinguishable from the

deterministic trajectory of the ODEs.
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Figure 3.9 The computed starting point is (0.4, 6.25,−0.1499,−0.003) and the
ending point is (1, 1,−0.03,−0.1954). The action is 0.443.

In Figure 3.9, we consider a situation where the amplitude of the soliton is

below 0.5 such as a = 0.4, and we are interested in the transition of the amplitude

from a = 0.4 to a = 1. As the amplitude transits from a = 0.4 to a = 1, the width

T decreases but system does not follow the conservation law a2T = constant (See

Figure 3.10).
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Figure 3.10 The system does not follow the conservation law.
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3.3 A Mode-Locked Laser with Active Feedback

We now study the quasi-stable dynamics of a mode-locked laser with active feedback

and noise due to amplified spontaneous emission. We show that, in a distinguished

small-noise limit, an effective boundary can be drawn in parameter space for quasi-

stability that is distinct from the deterministic stability boundary. We consider the

probability that a mode-locked laser with active feedback will experience a transition

between stable equilibria in a potential well when subjected to amplified spontaneous

emission noise generated by the gain medium. To investigate the influence of noise

on quasi-stability, we reduce the infinite-dimensional model to a finite-dimensional

system of stochastic ordinary differential equations and compute the quasi-stable

state by evaluating the action functional via the geometric minimum action method.

This computation shows how and to what extent noise effectively destabilizes the

system, producing a region of quasi-stability in its parameter space that is smaller

than that of the deterministic system. We also estimate the probability of pulse

position shifts using importance sampling.

We consider a mode-locked fiber laser with a nonlinear gain element that

controls the pulse amplitude and active phase modulation that controls the pulse

position. It is also natural to consider the dynamical system evolving in time, so we

write in in a form commonly used by mathematicians,

iut +
1

2
uxx + |u|2u = −b cos(ωx)u− ic1u

+ ic2uxx + id1|u|2u− id2|u|4u+ iεη(x, t), (3.48)

where u(x, t) is the electric field envelope, uxx represents filtering, cos(ωx)u is the

active phase modulation, and −ic1u + id1|u|2u − id2|u|4u represents linear loss and

saturable gain. The noise process η(x, t) is assumed to derive from spontaneous

emission noise and assumed to be mean-zero Gaussian white noise, delta-correlated

in x and t [1, 21]. Equation (3.48) with trivial right-hand side has a soliton solution
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of the following form:

us(x, t) = A(t) sech[A(t)(x−X(t))] exp[iφ], (3.49)

where φ(x, t) = ϕ(t) + (x − X(t))Ω(t). The parameters A,X, ϕ, and Ω represent

amplitude, position, phase and frequency, respectively.

3.3.1 A variational approach for model reduction

After application of the same variational technique discussed in section 3.2 , we obtain

a set of four stochastic ordinary differential equations(SODE) for the four soliton

parameters:

dU = F (U)dt+ εσ(U)dW, (3.50)

where U = (A,Ω, X)T ,

F (U) =


−2c1u1 + (4

3
d1 − 2

3
c2)u3

1 − 16
15
d2u

5
1 − 2c2u1u

2
2

−4
3
c2u

2
1u2 − πbw2

2u31
csch( πw

2u1
) sin(wu3)

u2

 , (3.51)

and

σ(U) =


√
u1 0 0

− u2√
u1

√
u1
3

+
u22
u1

0

0 0 π√
12u31

 . (3.52)

The phase evolution is not included in the above dynamical system since it

does not affect the dynamics. It is governed by
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dϕ =
1

2
(u2

1 + u2
2)dt− πωb

u3
1

cos(ωu3) csch(
πω

2u1

)dt

+
π2ω2b

4u4
1

cos(ωu3) csch(
πω

2u1

) coth(
πω

2u1

)dt

− ε

√
12 + π2

36u1

dW4 + ε
πu2

u1

√
12u1

dW3. (3.53)

3.3.2 Linearization and stability

Considering ε = 0, the fixed points of F (U) are

Un = (A0±, 0, nπ/ω),

n ∈ Z and

A2
0± =

5

16d2

[
2d1 − c2 ±

√
(2d1 − c2)2 − 96

5
c2d2

]
,

provided (2d1−c2)2− 96
5
c2d2 > 0. Recalling that all the physical parameters of equation

(3.48) are positive, the fixed points with A0+ are stable if n is even, otherwise they are

unstable. The fixed points with A0− are always saddles. The stable fixed points are

nodes if (4
3
c2A

2
0+)2 > 2πbω3

A3
0+

csch( πω
2A0+

); otherwise, they are spirals. The eigenvalues of

the fixed points are given by

λU1 = 8c1 −
4

3
(2d1 − c2)A2

0+,

λU2 =
1

2
(M22 −

√
M2

22 + 4M23),

λU3 =
1

2
(M22 +

√
M2

22 + 4M23),

where M22 = −4/3c2A
2
0+ and

M23 = (−1)n+1πbω3/(2A3
0+) csch(πω/(2A0+)).
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3.3.3 Paths for amplitude drop-outs and pulse position shifts

Although equation (3.48) has a nonlinear gain element to control the pulse amplitude

and an active phase modulation to control the pulse position, it suffers from amplitude

drop-outs and pulse position shifts due to ASE noise.

The parameters defined in Table 3.1 are used to compute actions and minimum

action paths in Figure 3.11, and are used for MC simulation in Figure 3.12.

Table 3.1 Parameters for an Actively Mode-locked Fiber Laser Model

Parameter ω c1 c2 d1 d2 b

Value 4 1 1 5 1.5 4.45
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5.59

Figure 3.11 Transition paths with different starting points and different endpoints
and their corresponding actions.

Figure 3.11 shows different transition paths with their corresponding action.

For any trajectory starting at stable fixed point (A0+, 0, 0), the most likely transition

is the minimum action path connecting (A0+, 0, 0) and (A0+, 0,±π/ω). In other

words, an error occurs mostly likely due to pulse position shifts rather than amplitude

drop-outs.
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Figure 3.12 MC simulation of stochastic ODEs using parameters defined in Table
3.1.

Figure 3.12 shows that the system suffers from position shifts more often than

amplitude drop-outs. The figures on the left are the time evaluations of amplitude

and position. The figures on the right are the histograms of amplitude and position

over all time steps. The MC simulation uses the parameters defined in Table 3.1

with noise strength ε = 0.65, which is chosen to be large so that the rare events

occur more often. During the simulation, the amplitude stays close to A+
0 , while the

position spends most of its time near a stable equilibrium with brief transits between

them.

3.3.4 Quasi-stability and large deviation theory

To examine the effect of noise on quasi-stability of the mode-locked laser we focus

on the active feedback parameters (ω, b) and we fix the other parameters. The

fixed points with even n are stable in the first quadrant of parameter plane (ω,b).

Notice that when b → 0 we have λU2 = λU3 → 0. Meanwhile as ω → ∞, Un =
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(A0+, 0, nπ/ω)→ (A0+, 0, 0). These limits confirm the intuition that the susceptibility

of the state to undergo a transition is affected by b and ω.

In presence of noise ε > 0, any trajectory that starts at stable fixed point

(A0+, 0, 0), will almost surely exit the basin of attraction and enter the basin of

attraction of (A0+, 0,±2π/ω). Large deviation theory [12] states that the probability

of exiting the basin of attraction G from a stable fixed point before finite T is given

by

lim
ε→0

ε2 lnP (t ≤ T ) ∼ − inf
φ(T )/∈G

ST (φ) (3.54)

and that the mean first exit time τ is given by

lim
ε→0

ε2 lnEτ ∼ inf
φ(τ)/∈G

S∞(φ) (3.55)

where

ST (φ) =
1

2

∫ T

0

|σ−1(φ)(φ̇− F (φ))|2dt. (3.56)
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Figure 3.13 Three different optimal paths corresponding to three different values
of ω (left). There is a unique ω that minimizes the transition rate, i.e., maximizes
the mean exit time (right).

Equations (3.54) and (3.55) suggest that as T → ∞, P (t ≤ T ) → 1 almost

surely. Meanwhile, for any T and ε = 0, the transition event does not occur. By

42



choosing Tε = exp(A/ε2)(B + O(ε)), where A,B > 0 and τ ∼ ν exp(S/ε2), the

probability of an exit before Tε is given by

P ∼ 1− exp(−Tε/τ)

= 1− exp(− exp((A− S)/ε2)
B

ν
).

If A = S, we have that P remains bounded away from 0 and 1 as ε→ 0. If A > S,

we have P → 1 as ε → 0.If A < S, we have P → 0 as ε → 0. Thus, in a manner

related to the finite-temperature astroids studied for magnetic materials in [22], this

distinguished limit of vanishing noise strength provides a quasi-stable region with a

boundary inside the deterministic stability boundary.

The physical parameters defined in Table 3.2 are used to compute the action

in Figure 3.14, as well as the probability for pulse position shifts in section (3.3.5).

Table 3.2 Typical Parameters for an Actively Mode-locked Fiber Laser Model [1]

Parameter Value Units

ω 2π/25 ps−1

b 0.01 km−1

c1 0.01 km−1

c2 0.002 ps2/km

d1 0.034 (W/km)−1

d2 0.02 (W 2/km)−1
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Figure 3.14 Contours of the action functional in the active feedback parameter
space of (b, ω).

Figure 3.14 shows contours of the minimum action along paths connecting

starting point (A0+, 0, 0) and ending point at (A0+, 0, π/ω) for various values of

amplitude and frequency of the active modulation. The larger the value of the

action, the more difficult it is for the system to undergo a transition from the

basin of attraction of (A0+, 0, 0) to the basin of attraction of (A0+, 0, 2π/ω) or

(A0+, 0,−2π/ω).
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Figure 3.15 Quasi-stable region of exit probability before Tε with A = 0.010316.
For small ε, the transition region shrinks to a narrow band, which converges to one
of contours in Figure 3.14.

Figure 3.15 shows the quasi-stable region in the parameter space of (b, ω).

The parameter space can be divided into two major regions and a narrow region
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in terms of the probability of exit before Tε. The blue region indicates vanishingly

small probability of exit before Tε, while the red region indicates overwhelmingly large

probability of exit before Tε. The probability of exit before Tε in the exponentially

narrow region connecting the red region and the blue region is between 0 and 1. By

choosing Tε to be the order of the mean first exit time of the system as ε goes to zero,

the narrow region becomes one of the contours in Figure 3.14.

3.3.5 Importance sampling for probability of pulse position shifts

Here we demonstrate the application of importance sampling to compute the

probability P (t ≤ T ) of pulse position shifts before time T . In our simulation, all

the trajectories start at an stable fixed point (A0+, 0, 0) and errors occur due to pulse

position shifts whenever a trajectory exits the basin of attraction of the stable fixed

point (A0+, 0, 0) and enters the basin attraction of (A0+, 0,±2π/ω) before time T .

The exit criterion is determined by two planes, which are spanned by the two stable

directions of the two different saddle points (A0+, 0,±π/ω) (See figure (3.16)).
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Figure 3.16 The blue curves are trajectories with random initial points. The red
dots are fixed points of the system. The two tangent planes are spanned by two stable
directions of two different saddle points.
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Figure 3.17 Mean exit paths from importance sampling.

Figure (3.17) shows the mean exit paths from importance sampling. The red

curve and the green curve are the mean exit paths from IS with ε = 10−3 and ε = 10−4,

respectively. The blue curve is the minimum action path connecting the stable fixed

point (A0+, 0, 0) and the saddle point (A0+, 0, π/ω).

Table 3.3 Probability of Pulse Position Shifts before T = 180 Generated by IS with
Sample Size of 105

ε PIS(t ≤ 180) CV

0.05 9.50× 10−1 1.61× 10−3

0.02 2.79× 10−1 2.44× 10−2

0.01 1.46× 10−3 2.68× 10−2

0.008 4.95× 10−5 1.96× 10−2

0.006 3.95× 10−8 3.07× 10−2

0.004 6.56× 10−17 2.30× 10−2

0.002 1.75× 10−63 1.03× 10−1

Table 3.3 shows the finite probability of pulse position shifts before T = 180 for

differential values of ε. With a sample size of 105, IS allows us to sample probability
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as low as 10−63 for ε = 0.002. For ε between 0.02 and 0.04, the coefficient of variations

are around 10−2, which imply the estimators achieve relatively high accuracy.

Table 3.4 Probability of Pulse Position Shifts before T = 180 Generated by MC
with ε = 0.1 and Sample Size of 105

ε PMC(t ≤ 180) CV

0.05 9.52× 10−1 7.13× 10−4

0.02 2.77× 10−1 5.10× 10−3

0.01 2.83× 10−3 5.94× 10−2

0.008 1.85× 10−4 2.35× 10−1

Table 3.4 shows the exit probability PMC(t ≤ 180) estimated by MC simulation

for different values of ε. For ε = 0.05 and ε = 0.02, the results estimated by IS agree

well with the results estimated by MC simulations. For small values of ε such as 0.01

and 0.008, their agreement becomes less satisfactory.
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CHAPTER 4

IMPORTANCE SAMPLING FOR MAGNETIC NANODEVICES

4.1 Introduction

Spin-transfer torque magnetoresistive random access memory (STT-MRAM) has

been proposed as a replacement for random access memory that offers high speed,

low power consumption, non-volatility and unlimited endurance [23–27]. One of

the primary obstacles to its widespread deployment is physical scaling, due to an

increased error rate that accompanies smaller volumes of storage cells. A memory

device should switch quickly and reliably when switching is intended and otherwise

maintain its current state. But thermal fluctuations in the magnetization orientation

can sometimes induce unwanted switching during either storage or an attempted read

event, or failure to switch during an attempted write event. These contribute to the

write soft error rate (WSER), read soft error rate (RSER), and retention failure rate

[28]. The expected values of WSER and RSER in STT-MRAM should not exceed the

order of 10−18 without error correction [24]. Due to the importance of these extremely

small rates in quantifying the viability of experimental STT-MRAM configurations,

analytical and computational techniques that facilitate their calculation are critically

important.

One approach makes use of the Fokker-Planck equation (FPE) describing the

time evolution of the switching probability [29–31]. In the macrospin approximation,

treating each STT-MRAM bit as a single magnetic domain, the FPE can be solved

directly or can be further approximated by the Brown-Kramers formula, which

overestimates the RSER for short read times [28]. Both the effects of spatial variations

in the magnetization across a single memory cell and interactions between adjacent

cells obviously cannot be captured in the macrospin approximation. These effects

increase in importance as the size of each cell exceeds the scale of above 50 nm
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in lateral size and must therefore be taken into account to support development

of magnetic nanodevices at this scale [32]. Direct numerical simulations of the FPE

increase exponentially in computational cost as the dimension of the coupled system of

macrospins is increased, and this high cost is exacerbated by the presence of boundary

layers associated with the small size of thermal fluctuations. Efficient computational

methods are therefore needed to provide a means of determining these small switching

probabilities and rates.

Although the most common approach to computing switching probabilities

uses sampling to provide an empirical estimate of the quantity of interest, the

extremely low switching probabilities and rates relevant to micromagnetic devices

make naive Monte Carlo studies essentially impossible. A common approach to

recover the tails of the probability distribution from Monte Carlo simulations is via

extrapolation (see, e.g., [33–35]). However, this may introduce large uncontrolled

inaccuracies due to the failure of the fitting form to capture the asymptotic behavior

of the probability distribution in the small noise limit [36,37]. Alternatively, variance

reduction techniques such as importance splitting attempt to concentrate the samples

generated on those with a higher likelihood of registering a rare event of interest

[5, 38–41].

Here, we demonstrate that accurate switching probabilities and error rates

of STT-MRAM devices can be computed efficiently using importance sampling in an

ensemble of biased Monte Carlo simulations (See Section 2.1). We intentionally choose

a particularly simple micromagnetic setting to clearly illustrate the IS methodology

in the context of STT-MRAM modeling. The main point of this chapter is to

demonstrate that with the help of IS the events with extremely low probability

of occurrence can be accessed via direct Monte Carlo sampling with an additional

post-processing step. This, together with the simplicity of its implementation could
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make the IS based approach a powerful tool in assisting the design of the next

generation of spintronic nanodevices.

This chapter is organized as follows. In Section 4.2 we formulate the stochastic

micromagnetic model for a single macrospin or a system of exchange coupled

macrospins, and then show how to apply IS to sample switching probabilities in

the macrospin approximation. In Section 4.3, we carry out IS simulations for a single

macrospin and a coupled system of two indentical macrospins with different choices

of biases to demonstrate the power and efficiency of IS in the context of STT-MRAM

applications. Finally, in Section 4.4 we briefly summarize our findings.

4.2 Micromagnetic Framework and Thermally Induced Switching

We consider a region Ω ⊂ R3 occupied by a ferromagnetic film with in-plane

shape D ⊂ R2 and thickness d, i.e., Ω = D × (0, d), characterized by saturation

magnetization Ms. To model the free layer of an in-plane STT-MRAM cell, we use

the stochastic Landau-Lifshitz-Gilbert equation [42, 43] for the unit magnetization

vector m = (mx,my,mz),

∂m

∂t
= −γµ0m×Heff + αm× ∂m

∂t
+ τ STT, (4.1)

where γ is the gyromagnetic ratio, Heff is the (dimensional) effective magnetic field,

α is the Gilbert damping parameter, and τ STT is the contribution from spin-transfer

torque. The effective field Heff is defined as the negative gradient of an energy

functional plus a stochastic term,

Heff = − 1

µ0Ms

δE

δm
+
√
ση, (4.2)

50



where for now we consider only the exchange (i.e., spatial coupling) and crystalline

anisotropy contributions given by

E[m] =

∫
Ω

d3r
[
A|∇m|2 +KuΦ(m)

]
, (4.3)

and

Φ(m) = m2
y, (4.4)

where A is the exchange stiffness constant, Ku is a in-plane uniaxial anisotropy

constant, µ0 is the permeability of the vacuum, and σ is determined by the

fluctuation-dissipation theorem:

σ =
2αkBT

γµ2
0Ms

. (4.5)

The parameter kB is the Boltzmann constant (kB = 1.38054 × 10−23 Joules/degree)

and T is the absolute temperature. The random term in Heff is assumed to be

space-time white noise, with independent components and

〈η†(x, t),η(x′, t′)〉 = δ(x− x′)δ(t− t′),

= δ(r− r′)δ(x3 − x′3)δ(t− t′), (4.6)

where r ∈ D and x3 ∈ (0, d). The spin-transfer torque τ STT is given by

τ STT = −η~
2

j

de

γ

Ms

m× (m×mp)− βη
~
2

j

de

γ

Ms

m×mp, (4.7)

where j is the density of current passing perpendicularly through the film, e is the

elementary charge (positive), η ∈ (0, 1] is the spin polarization efficiency, β is the

relative strength of the field-like spin torque, and mp is the spin-polarization direction.
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To obtain the Landau-Lifshitz form of the LLGS equation, we resubstitute

∂m/∂t and note that

m×
(

m× ∂m

∂t

)
=

(
m · ∂m

∂t

)
m− |m|2∂m

∂t
= −∂m

∂t
, (4.8)

giving

∂m

∂t
= −γµ0m×Heff + αm× (−γµ0m×Heff + τ STT) + τ STT + α2m× (m× ∂m

∂t
),

which can be simplified to

(1 + α2)
∂m

∂t
= −γµ0m×Heff − γµ0αm× (m×Heff) + αm× τ STT + τ STT. (4.9)

Nondimensionalization: To nondimensionalize the system (4.9), we first

define the following characteristic scales:

lex =

√
2A

µ0M2
s

and ts =
1 + α2

γµ0Ms

. (4.10)

We also define dimensionless variables r̃ = r/lex, x̃3 = x3/d, t̃ = t/ts, H̃eff = Heff/Ms,

Ẽ = E/(µ0M
2
s dl

2
ex), and τ̃ STT = τ STT/(γµ0Ms) to obtain,

∂m

∂t̃
=

1 + α2

γµ0Ms

∂m

∂t

= −m× Heff

Ms

− αm× (m× Heff

Ms

) + αm× τ STT

γµ0Ms

+
τ STT

γµ0Ms

= −m× H̃eff − αm× (m× H̃eff) + αm× τ̃ STT + τ̃ STT (4.11)

where

H̃eff = − δẼ
δm

+

√
σ

Ms

η(x, t). (4.12)

with

σ =
2αkBT

γµ2
0Ms

. (4.13)
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Since we are interested in thin films [44–46], we assume that m is independent of the

film thickness, we have

Ẽ ' E

(µ0M2
s dl

2
ex)

=
d

(M2
sµ0dl2ex)

∫
D̃

l2exd
2r̃

[
A

l2ex
|∇̃m|2 +KuΦ(m)

]
=

∫
D̃

d2r̃

[
A

µ0M2
s l

2
ex

|∇̃m|2 +
Ku

µ0M2
s

Φ(m)

]
=

1

2

∫
D̃

d2r̃
[
|∇̃m|2 +QΦ(m)

]
, (4.14)

where Q = 2Ku/(µ0M
2
s ).

Notice that

〈η†(x, t),η(x′, t′)〉 = δ(x− x′)δ(t− t′)

= δ(r− r′)δ(x3 − x′3)δ(t− t′)

= δ(lex(r̃− r̃′))δ(d(x̃3 − x̃′3))δ(ts(t̃− t̃′))

=
µ0γMs

dl2ex(1 + α2)
δ(x̃− x̃′)δ(t̃− t̃′)

=
µ0γMs

dl2ex(1 + α2)
〈η̃†(x̃, t̃), η̃(x̃′, t̃′)〉. (4.15)

Thus we have

H̃eff = − δẼ
δm

+
√
σ̃η̃, (4.16)

and η̃ is delta-correlated in dimensionless space in 3D and time with

σ̃ =
2αkBT

µ0M2
s dl

2
ex(1 + α2)

=
αkBT

Ad(1 + α2)
. (4.17)

Considering that m is independent of the film thickness, the noise along the thickness

of the film is projected by

η̃(r̃, t̃) =

∫ 1

0

η̃(r̃, x̃3, t̃)dx̃3, (4.18)
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where now η̃(r, t) is delta-correlated in 2-D space and time.

After dropping tildes and redefining h = Heff ,

∂m

∂t
= −m× h− αm× (m× h) + αm× τ STT + τ STT, (4.19)

where

h = − δE
δm

+
√
ση, (4.20)

with

E =
1

2

∫
D

d2r
[
|∇m|2 +QΦ(m)

]
. (4.21)

Now, η(r, t) is delta-correlated in dimensionless 2-D space and time and

σ =
2αkBT

µ0M2
s dl

2
ex(1 + α2)

=
αkBT

Ad(1 + α2)
. (4.22)

The spin-transfer torque τ STT is given by

τ STT = aJm× (m×mp) + bJm×mp. (4.23)

where aJ = −ηj~/(2deµ0M
2
s ) and bJ = βaJ are dimensionless Slonczewski and

field-like torque strengths [43]. Here j is the density of electric current passing

perpendicularly through the film, e is the elementary charge, η ∈ (0, 1] is the spin

polarization efficiency, β is the relative strength of the field-like spin torque, and mp

is the spin-polarization direction. In this Chapter 4, we consider mp = (1, 0, 0)T , i.e.,

when the spin current is polarized along the easy axis in the film plane, as is the case

in the basic in-plane spin valve [24,47,48].

Micromagnetic with stray field. A ferromagnetic thin film also generates a

magnetic field, called stray field. In the limit d→ 0, it can be showed that the limiting
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energy is completely local, where the magnetostatics equation disappears [49]. The

resulting dimensionless energy given by

E[m] =
1

2

∫
D

(
|∇m|2 +Qm2

y +m2
z

)
d2r (4.24)

is the leading order thin film micromagnetic energy measured in the units of 2Ad.

The macrospin approximation assumes spatial uniformity across the ferro-

magnet, such that the first term in equation (4.24) is zero and equation (4.19) is an

ordinary differential equation. In this case E(m) = 1
2
(Qm2

y + m2
z)S, where S is the

area of D in the units of l2ex, and the effective field is given by

h = −S−1∇mE +

√
2αε

1 + α2
Ẇ (t), (4.25)

where ε = kBT/(2AdS), and W (t) is a three-dimensional Brownian motion. The

noise coefficient
√

2αε/(1 + α2) is consistent with the Gibbs distribution, in which ε

plays the role of the dimensionless temperature.

When the dimensionless parameters satisfy

α ∼ 1 and aJ ∼ bJ ∼ Q� 1, (4.26)

i.e., in soft materials with relatively high damping and low spin torques, the

magnetization is always constrained to lie almost entirely in the film plane [44–46].

In this case the system (1) may be simplified to an equation for the angle θ such that

m ' (cos θ, sin θ, 0) (see Appendix):

θ̇ = b(θ) +
1√
∆
Ẇ , (4.27)

where

b(θ) = (IJ − cos(θ)) sin(θ), (4.28)

55



IJ = bJ/Q, 1/∆ = 2ε/Q, and the unit of time is now τQ = α/(γµ0MsQ). We point

out that even though equation (4.27) was obtained for an in-plane STT-MRAM cell,

exactly the same equation arises in the modeling of perpendicular cells [28]. Therefore,

a direct comparison with the results obtained by Butler et al. [28], who used the

analysis of the Fokker-Planck equation is also possible.

Equation (4.27) with 0 ≤ IJ < 1 will be used as the simplest example

of a stochastic micromagnetic model with bistability, for which several IS biasing

strategies will be illustrated. A more realistic model of an STT-MRAM cell would

need to incorporate spatial heterogeneity within the cell, which may be captured

by considering a system of N exchange-coupled macrospins associated with the

magnetization in each of the polycrystalline grains. If each grain has a dimensionless

area Si, 1/∆i = kBT/(AdSiQ), and θi are such that the magnetization in each grain

is mi ' (cos θi, sin θi, 0), then equation (4.27) may be generalized to [50–52]

θ̇i = b(θi) +
N∑
j=1

aijS
−1
i sin(θj − θi) +

1√
∆i

Ẇi, (4.29)

using Heisenberg exchange with dimensionless strengths aij = aji ≥ 0 for the

interactions between the grains, with Wi being N uncorrelated Brownian motions.

Note that this equation is a stochastic version of a gradient system governed by an

effective potential

VN(θ1, . . . , θN) =
N∑
i=1

Si
(
IJ cos θi + 1

2
sin2 θi

)
−

N−1∑
i=1

N∑
j=i+1

aij cos(θi − θj), (4.30)

and obeying detailed balance. The coupling coefficients aij are non-zero only for

the nearest neighbors and may in principle be determined from the geometric

characteristics of the individual grains. For simplicity, in this chapter we will limit

ourselves to the consideration of the case of two identical macrospins only, which may

correspond, e.g., to exchange-coupled synthetic bilayers [53].
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The single macrospin drift term defined in equation (4.28) has stable fixed

points θ = 0 and θ = ±π, separated by unstable fixed points θ = ±θJ , where

θJ = arccos(IJ) ≤ π/2. Therefore, for a trajectory starting close to θ = 0 at t = 0

a switching event for the time horizon T > 0 would be defined as one in which |θ| is

close to π at t = T . For the purposes of this chapter , we consider a switching event to

have occurred if |θ(Tsw)| = π/2 for some 0 < Tsw ≤ T , starting with θ(0) = 0, i.e., the

macrospin changes its direction along the easy axis. Similarly, for the system of two

coupled macrospins governed by equation (4.29) and starting with θ1(0) = θ2(0) = 0,

we define a switching event to have occurred if max(|θ1(Tsw)|, |θ2(Tsw)|) = π/2 for

some 0 < Tsw ≤ T , i.e., at least one macrospin changes its direction along the easy

axis.

The exact finite time switching probability for a single macrospin exhibited by

equation (4.27) can be computed by solving the backward Fokker-Planck equation for

the probability Psw(θ, t) that a trajectory starting at a given value of θ ∈ (−π/2, π/2)

reached the value of θ = ±π/2 by time t [54]. This probability satisfies

∂Psw

∂t
= b(θ)

∂Psw

∂θ
+

1

2∆

∂2Psw

∂θ2
, (4.31)

for (θ, t) ∈ (−π/2, π/2)× (0, T ), with initial and boundary conditions

Psw(θ, 0) = 0, Psw(±π/2, t) = 1, (4.32)

respectively. In particular, the probability of having switched by time T , given the

initial state θ(0) = 0 is equal to Psw(0, T ).

As an alternative to solving equation (4.31), we incorporate IS in the

estimation of Psw by sampling controlled dynamics

˙̃θ = b(θ̃) + u∗ +
1√
∆
Ẇ , θ̃(0) = 0, (4.33)
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for t ∈ (0, T ). For finite-time bias we have u∗ = u∗T , where u∗T (θ̃, t) = θ̇T
θ̃,t

(t) − b(θ̃)

is the bias function obtained through equation (2.38) by interpreting equation (4.33)

as an instance of equation (2.13) with ε = 1/
√

∆, using the minimizer θT
θ̃,t

(s) of the

finite-time action

ST [θ] =

∫ T

t

1

2
|θ̇(s)− b(θ(s))|2ds, (4.34)

among all θ(s) with θ(t) = θ̃ and |θ(T )| = π/2. For sufficiently large time horizons, we

set instead u∗ = u∗∞, where the ininfite-time bias u∗∞ is obtained from the minimizer

of the infinite-time action S∞. In the single macrospin case, the latter is simply given

by a straight line segment, resulting in a particularly simple explicit form of the bias:

u∗∞(θ̃) =


−2b(θ̃), −θJ 6 θ̃ 6 θJ ,

0, otherwise.

(4.35)

To account for switching events, we stop the trajectory at time t = Tsw as

soon as the switching criterion |θ̃(t)| = π/2 is satisfied, or otherwise set Tsw = T .

The likelihood ratio is recovered from equation (2.15), which in this case is

L = exp

(
−∆

2

∫ Tsw

0

|u∗(t)|2dt−
√

∆

∫ Tsw

0

u∗(t) dW (t)

)
,

where either u∗(t) = u∗T (θ̃(t), t) or u∗(t) = u∗∞(θ̃(t)), depending on whether we use the

finite- or infinite-time bias function, respectively, and θ̃(t) is the solution of equation

(4.33) with a particular realization W (t) of the noise.

4.3 Simulations

The following sections describe results obtained from IS simulations of macrospin

and coupled-spin systems using physical parameters drawn from reference [28] for the

purpose of comparison. All simulations use the Euler-Maruyama method with a fixed

time step τ = 0.1.
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The IS results presented below are obtained using bias functions based on

either finite- or infinite-time minimizers of the action given by equation (2.37).

Infinite-time bias functions are based on equation (4.35) in the macrospin case, and

therefore do not require additional computation. Infinite-time bias functions for the

coupled-spin system are obtained by minimizing the action in equation (2.37) through

the geometric minimum action method (GMAM) with 50 gridpoints [13]. Finite-time

bias functions are obtained by minimizing the action in equation (2.37) through a

combination of Newton’s method for the associated Euler-Lagrange equation and the

improved adaptive minimum action method [15], with 500 gridpoints in the macrospin

case and 100 in the coupled-spin case.
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Figure 4.1 IS estimate for switching probability (RSER) and CV of the RSER with
sample size M = 103. (a) RSER vs. reading pulse duration T and reading current
IJ with thermal stability factor ∆ = 60. Solid lines denote numerical solutions of
FPE (4.31). Open circles and open diamonds denote estimates generated by IS with
finite-time bias functions and infinite-time bias functions, respectively, color coded
by current amplitude. For T ≥ 5 infinite-time bias functions are used, while for IS
and for T ≤ 6 finite-time bias functions are used. IS results at T = 5 and T = 6
obtained using infinite- and finite-time bias functions are indistinguishable. (b) CV
of the RSER.
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Figure 4.2 Similar to Figure 4.1, but with ∆ = 30. For T ≥ 4 infinite-time bias
functions are used, and for T ≤ 5 finite-time bias functions are used. IS estimates
at T = 4 and T = 5 obtained using infinite- and finite-time bias functions are
indistinguishable.

4.3.1 Single macrospin

The discretized version of equation (4.33) reads explicitly

θ̃k+1 = θ̃k + (b(θ̃k) + u∗(θ̃k, tk))τ +

√
τ√
∆
ξk, θ̃0 = 0, (4.36)

where θ̃k = θ̃(tk), tk = kτ for k = 0, 1, . . . , K, and ξk are independent and drawn from

the standard normal distribution. The value of K is chosen so that either |θ̃k| < π/2
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for all k < K < bT/τc and |θ̃K | ≥ π/2, or K = bT/τc, i.e., we stop the simulation

if a switching event occurs at time tk < T . The likelihood ratio corresponding to

equation (4.36) is then given explicitly by

L = exp

(
−τ∆

2

K∑
k=0

|u∗(θ̃k, tk)|2 −
√
τ∆

K∑
k=0

u∗(θ̃k, tk) ξk

)
. (4.37)

The figures below are generated using switching probabilities and their coefficients of

variation computed by applying formulas (2.7) and (2.10), respectively, to ensembles

of M runs, where I(ωi) = 1 for runs that generate a switching event and I(ωi) = 0

otherwise.

Figures 4.1 and 4.2 show the RSER as a function of time for seven values of

IJ between 0 and 0.6 with thermal stability factors ∆ = 60 and ∆ = 30, respectively.

Runs at both temperatures are included here to facilitate comparison with the results

presented in reference [28]. Both show a comparison between numerical solutions of

backward FPE (4.31) and IS simulations for the macrospin model. For T ≥ 5 in

Figure 4.1 and T ≥ 4 in Figure 4.2, infinite-time bias functions are used for IS while

for T ≤ 6 in Figure 4.1 and T ≤ 5 in Figure 4.2, finite-time bias functions are used.

On the logarithmic scale, the agreement between the FPE and IS results is excellent

throughout the range of times and currents, as can be seen from Figures 4.1(a)

and 4.2(a). In relative terms, for M = 103 the values of Psw obtained using IS

typically agree with the FPE results to within 10%− 20%, while capturing correctly

the magnitudes of Psw that vary by many orders. Note that in this case the IS

sampling error dominates the discretization error of the Euler-Maruyama scheme,

with the values of CV giving a good idea of the relative error for Psw. We verified

that increasing the sample size M decreases both the value of the CV and the relative

error. For example, the relative error goes down to a few per cent forM = 105 for most

of the data points in Figures 4.1 and 4.2. However, this unnecessary improvement in

accuracy comes at the expense of a hundred-fold increase in the runtime. Finally, one
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can see that the IS results are internally consistent between the finite- and infinite-time

bias functions used at T = 5 and T = 6 in Figure 4.1, and used at T = 4 in Figure 4.2.

Figure 4.1 (b) shows the CV for the IS estimates in Figure 4.1 (a), and

Figure 4.2 (b) shows those for the estimates shown in Figure 4.2 (a). The CV values

for the IS estimates range from approximately 0.05 to 0.5. We note that with an

inappropriate choice of bias the CV can be an imperfect measure of accuracy for

Monte Carlo estimates using variance reduction [55]. However, this is precluded by

our choice of an asymptotically optimal bias function that is based on large deviation

theory [7, 56], as can also be seen from the excellent agreement with the solutions to

FPE (4.31). The low CV values obtained for such extremely small probabilities with

moderate sample size of M = 103 are therefore a clear demonstration of the efficiency

of the bias functions used here.

In both figures the CVs are observed to increase when T is decreased from

T = 10 to T = 5, indicating that the infinite-time bias function used for these

runs becomes progressively less efficient at capturing the switching events as the

time horizon shrinks. The application of finite-time bias functions for smaller times

lowers the CVs as expected. Furthermore, Figures 4.1 (b) and 4.2 (b) show a similar

pattern in the CVs generated by IS with infinite-time bias functions, where the CVs

also increase for large times T , leading to a deterioration of the sampling accuracy.

Figure 4.3 illustrates this sudden increase in CV in the context of longer times, as

well as a histogram of switching times, and the time evolution of the spread in values

of likelihood ratio.

This decrease in efficiency of the infinite-time bias function for large but finite

time horizons is due to the fact that there exists a natural finite time scale dictated

by diffusion near the fixed points with the action minimizer bridging the gap between

them. When the time horizon of the simulation is large relative to this time scale,

it allows for exit events that hover near the stable fixed point before exiting just
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prior to the horizon time. These events occur with considerably higher likelihood

under the unbiased dynamics than under the biased dynamics, leading to a very

large likelihood ratio that causes them to dominate the CV computation. Since the

diffusion time grows as the noise strength decreases, this phenomenon can be regarded

as a finite-noise effect, and it indeed vanishes as ∆ → ∞. We address this issue for

finite noise by turning off the biasing near the stable fixed point, i.e., for |θ| < θ0,

with the results plotted for different values of θ0 in Figure 4.4. It is clearly seen that

as θ0 increases, the anomalous behavior for large horizon time is mitigated, at the

expense of sampling efficiency for small horizon times.

Figure 4.3 CVs of IS estimators for IJ = 0.3 with infinite-time bias functions and
sample size 105. Inset (a) is a histogram of exit times for the biased system. Inset
(b) is the estimated likelihood ratio vs. time. Inset (c) is the probability of switching
before time T . The sample size here is M = 105.
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Figure 4.4 Switching probabilities and CVs of IS estimators for IJ = 0.6 with
infinite-time bias functions active outside of a region containing the stable fixed point,
defined by θ0 < |θ| < θJ , for different values of θ0. The sample size is 105.

4.3.2 Two coupled identical macrospins: model

To demonstrate that the IS method can also be effective in coupled systems, we

simulate two spins with identical volume and dynamics given by equation (4.29),

which in this case is explicitly

θ̇1 = c sin(θ2 − θ1) + b(θ1) +

√
2

∆
Ẇ1, (4.38)

θ̇2 = c sin(θ1 − θ2) + b(θ2) +

√
2

∆
Ẇ2, (4.39)

where c > 0 is the ferromagnetic exchange coupling strength favoring parallel

alignment of the two spins. The initial conditions are θ1(0) = θ2(0) = 0. Recall

that as a switching criterion we adopt that at least one of the angles reaches π/2 in

absolute value.

At finite temperature, the rare events of switching for the coupled spin system

occur along the maximum likelihood paths, which are also the minimum energy paths

of the system. When the system undergoes a transition, it switches by coherent

rotation for strongly coupled spins, asymmetric coherent rotation for weakly coupled
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spins, or single particle reversal for extremely weakly coupled spin [57]. More precisely,

in the limit of infinite coupling strength c, the coupled spin system collapses to

the macrospin model with θ1 = θ2, and the most probable path terminating at

max(|θ1|, |θ2|) = π/2 is identical to that of a single macrospin. As the coupling

strength decreases, the dynamics of the coupled spin system changes significantly,

ultimately leading to spins that evolve independently. Note that in N -dimensional

coupled spin systems, the sequence of bifurcations from single macrospin dynamics

to N -fold macrospin dynamics as c decreases from infinity [58] further exacerbates

the challenge in finding appropriate bias functions.

4.3.3 Two coupled identical macrospins: biased dynamics

The biased dynamics associated with equation (4.38) and equation (4.39) reads

˙̃θ1 = c sin(θ̃2 − θ̃1) + b(θ̃1) +
√

2u∗1 +

√
2

∆
Ẇ1, (4.40)

˙̃θ2 = c sin(θ̃1 − θ̃2) + b(θ̃2) +
√

2u∗2 +

√
2

∆
Ẇ2. (4.41)

In contrast to the single macrospin case, for two coupled macrospins an exact

analytical bias function is no longer available even for infinite-time biasing. Therefore,

it is necessary to obtain numerical bias functions by minimizing the Freidlin-Wentzell

action (2.37) with terminal condition max(|θ1(Tsw)|, |θ2(Tsw)|) = π/2 for some

0 < Tsw ≤ T ≤ ∞.

For finite-time bias the action functional ST is given explicitly by

ST [θ1, θ2] =
1

4

∫ T

t

(
θ̇1 − c sin(θ2 − θ1)− b(θ1)

)2

ds

+
1

4

∫ T

t

(
θ̇2 − c sin(θ1 − θ2)− b(θ2)

)2

ds, (4.42)
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and the corresponding finite-time bias (u∗1, u
∗
2) = (u∗T,1, u

∗
T,2) is

u∗T,1(θ̃1, θ̃2, t) =
1√
2

(θ̇T
θ̃1,θ̃2,t,1

(t)− c sin(θ̃1 − θ̃2)− b(θ̃1)), (4.43)

u∗T,2(θ̃1, θ̃2, t) =
1√
2

(θ̇T
θ̃1,θ̃2,t,2

(t)− c sin(θ̃2 − θ̃1)− b(θ̃2)), (4.44)

where θT
θ̃1,θ̃2,t

(s) = (θT
θ̃1,θ̃2,t,1

(s), θT
θ̃1,θ̃2,t,2

(s)) is the minimizer of ST satisfying θT
θ̃1,θ̃2,t

(t) =

(θ̃1, θ̃2) and max(|θT
θ̃1,θ̃2,t,1

(T )|, |θT
θ̃1,θ̃2,t,2

(T ))| = π/2.

For infinite-time bias, we minimize

S∞[θ1, θ2] =
1

2

∫ 1

0

(
λ(θ1, θ2)

√
|θ′1|2 + |θ′2|2

− (c sin(θ2 − θ1) + b(θ1))θ′1 − (c sin(θ1 − θ2) + b(θ2))θ′2

)
ds, (4.45)

where

λ(θ1, θ2) =
[
(c sin(θ2 − θ1) + b(θ1))2 + (c sin(θ1 − θ2) + b(θ2))2

]1/2

, (4.46)

and express the bias as

u∗∞,1(θ̃1, θ̃2) =
1√
2

 λ(θ̃1, θ̃2)θ′
θ̃1,θ̃2,1

(0)√
|θ′
θ̃1,θ̃2,1

|2 + |θ′
θ̃1,θ̃2,2

|2
− c sin(θ̃2 − θ̃1)− b(θ̃1)

 , (4.47)

u∗∞,2(θ̃1, θ̃2) =
1√
2

 λ(θ̃1, θ̃2)θ′
θ̃1,θ̃2,2

(0)√
|θ′
θ̃1,θ̃2,1

|2 + |θ′
θ̃1,θ̃2,2

|2
− c sin(θ̃1 − θ̃2)− b(θ̃2)

 , (4.48)

where θθ̃1,θ̃2 = (θθ̃1,θ̃2,1, θθ̃1,θ̃2,2) is the minimizer of S∞ with θθ̃1,θ̃2,t(0) = (θ̃1, θ̃2) and

max(|θθ̃1,θ̃2,t,1(1)|, |θθ̃1,θ̃2,t,2(1))| = π/2. Finally, the discretized version of the biased

equations and the likelihood ratio are straightforward generalizations of equation

(4.36) and equation (4.37).
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Figure 4.5 IS estimate for switching probability (RSER) and CV of the RSER with
sample size M = 103 for a strongly coupled two-spin system. (a) RSER with applied
currents ranging from 0 to 0.6 versus time T with thermal stability factor ∆ = 60
and coupling strength c = 0.8. (b) CVs of IS estimates in (a). In both panels, open
circles and open diamonds denote estimates generated by IS using infinite-time and
finite-time bias functions, respectively. The colors correspond to different current
amplitudes indicated in (a).
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Figure 4.6 IS estimate for switching probability (RSER) and CV of the RSER with
sample size M = 103 for a weakly coupled two-spin system. (a) RSER with applied
currents ranging from 0 to 0.6 versus time T with thermal stability factor ∆ = 60
and coupling strength c = 0.2. (b) CVs of IS estimates in (a). In both panels, open
circles and open diamonds denote estimates generated by IS using infinite-time and
finite-time bias functions, respectively, and black dots denote estimates generated by
naive MC simulations for IJ = 0.6 with sample size M = 105. The colors correspond
to different current amplitudes indicated in (a).
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Figure 4.7 Sample paths from IS for two-spin systems with current IJ = 0.1 and
thermal stability factor ∆ = 60: strongly coupled spins with c = 0.8 (a), weakly
coupled spins with c = 0.2 (b). False color corresponds to the effective potential
in (4.30).

Figure 4.5 (a) shows IS estimates of switching probabilities obtained using

finite-time bias functions and infinite-time bias functions with a suitable cutoff near

the origin applied to the coupled system with non-dimensional temperature ∆ = 60
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and coupling strength c = 0.8. The coupling strength c = 0.8 is an example of strong

coupling, for which the spins rotate coherently along optimal switching paths. The

open circles and open diamonds denote estimates generated by IS using infinite-time

and finite-time bias functions, respectively. With sampling size of M = 103, the

infinite-time bias functions allow us to sample switching probabilities for T ≥ 5 with

IJ ranging from 0 to 0.6. For T ≤ 4, finite-time bias functions are used with IS. For

infinite-time biasing the bias is switched off, i.e., u∗∞ is set to zero, when the effective

potential from equation (4.30) of a configuration (θ̃1, θ̃2) falls below that of (θ0, θ0)

with θ0 ∈ [0, 0.3] chosen to minimize the CV. The accuracy of the obtained values of

Psw is expected to be similar to that obtained for the macrospin model.

Figure 4.5 (b) shows the CVs becoming larger as time T decreases, indicating

that the infinite-time bias functions become less efficient. The effectiveness of using

finite-time bias functions is evident in the CV values in Figure 4.5 (b), where the CV

values with open diamonds at time T = 4 are much smaller than the CV values with

open circles at times T = 4 and T = 5. This improved effectiveness comes with a

cost of computing updated finite-time bias functions at each time step.

Similar results for a weakly coupled system are shown in Figure 4.6. Figure 4.6 (a)

shows the switching probabilities as a function of time for different read currents

with non-dimensional temperature ∆ = 60 and coupling strength c = 0.2. The

coupling strength c = 0.2 is an example of weak coupling, for which the spins rotate

incoherently along optimal switching paths. With a sampling size of M = 103, IS

using infinite-time bias functions allows us to sample switching probabilities for T ≥ 4

with IJ ranging from 0 to 0.6. As in Figure 4.5, Figure 4.6 (b) shows a decrease in

efficiency of IS using infinite-time bias functions as T decreases.

Figure 4.6 (a) also shows switching probabilities generated using naive MC

simulations with a sample size of M = 105 for read current IJ = 0.6 at various

pulse durations. Naive MC simulations at this sample size fail to accurately capture
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probabilities less than 10−5 while IS is able to estimate probabilities as low as 10−28.

This is reflected in Figure 4.6 (b) where the CV is seen to diverge as the probability

estimate decreases. Finally, a few representative switching trajectories corresponding

to the results in Figures 4.5 and 4.6 are shown in Figure 4.7.

Figure 4.7 (a) shows the sample paths generated by IS for a strongly coupled

spins. Since the two spins are strongly coupled, the spins switch by coherent rotation.

In Figure 4.7 (b), the sample paths generated by IS for a weakly coupled spins and

the spins switch by asymmetric coherent rotation.
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Figure 4.8 CVs of estimates generated by IS (brown open circles) and naive MC
(black dots) in Figure 4.6.

Figure 4.8 shows a comparison between the CV for IS with sample size of 103

and the CV for naive MC with sample size of 105 for IJ = 0.6. For time 6 ≤ T ≤ 15

the CVs for naive MC exceed the CVs for IS, by a factor ranging from 1 to 6 as the

value of T is decreased. This means that the number of IS samples required to achieve

an estimate with the same or better accuracy than an estimate generated by naive

MC is smaller by several orders of magnitude. For example, for switching probability

by time T = 6, where the CV ratio is about 6.2, al least 3.8× 106 naive MC samples

are required to achieve the same accuracy of an IS estimate generated using only
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M = 103. This contrast is even more stark for smaller applied currents with much

lower associated switching probabilities, where the computational effort required by

naive MC simulations is prohibitive. Sampling-based probability estimates are only

available using IS at these parameter values.

4.3.4 Failure to switch (WSER)

In this section, we estimate the WSER using MC and IS for both the macrospin

model and two coupled-spin system, where the current is set sufficiently high as to

drive the origin unstable, such that a switching event is expected to occur in the

majority of random realizations. The two-spin state is considered to have switched

when max(|θ1(Tsw)|, |θ2(Tsw)|) = π/2 for some 0 < Tsw ≤ T.
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Figure 4.9 Non-switching probability as a function of time horizon for several
values of the writing current, using thermal stability factor ∆ = 60. The current IJ is
identified by color and ranges from 3 to 6. Solid lines denote numerical solutions of the
backward Fokker-Planck equation for single macrospin, while dashed lines are simply
visual guides. Filled circles denote IS estimates of the non-switching probabilities for
a single macrospin. Open circles denote IS estimates of non-switching probabilities
for two coupled spins with c = 0.2.

Figure 4.9 shows a comparison between the numerical solution of the FPE

and simulation results using IS for a single macrospin. Independent realizations of

73



the macrospin evolution were computed with the same initial conditions, currents

IJ = 3, 4, 5, and 6, and independent thermal noise with ∆ = 60. The estimates

obtained using M = 104 IS samples show good agreement with the numerical solution

of the backward FPE for moderate and long times. For the two-spin system, 103 IS

samples are used to estimate non-switching probabilities.

4.4 Summary

In conclusion, we have applied IS to estimate error rates in reading and writing

spin-torque memory devices in the macrospin limit and for the case of two coupled

spins, using a variety of applied currents and thermal stability factors. We have

demonstrated how IS is able to compute probabilities well below those computable

using naive MC simulations, while producing accurate estimates with improved

efficiency in cases where the probability is computable using naive MC but still

very small. Depending on the time horizon of the read or write event relative to

the drift dynamics of the spin system, IS simulations using infinite- or finite-time

bias functions are appropriate. Infinite-time bias functions require only moderate

computational cost; however, the increased cost can be significant in computing

finite-time bias functions. Further improvement of the infinite-time biasing can be

achieved by introducing a threshold, that turns on the bias only some distance away

from the metastable equilibrium whose thermal stability is investigated.

While in this chapter we intentionally restricted our attention to the particu-

larly simple modeling setups involving either a single macrospin or two ferromagneti-

cally coupled identical macrospins to make a clear illustration of the IS technique, we

believe that IS can be used equally well for systems of many interacting macrospins of

spatially non-uniform switching described by the stochastic Landau-Lifshitz-Gilbert

equation. As we already noted, spatial nonuniformity starts to play an important

role for noise-assisted magnetization reversal or failure for ferromagnetic elements
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exceeding a critical size of a few tens of nanometers. Here the only limitation of

the IS technique is the amount of computational resources that may be needed to

compute the action minimizers for a good bias and to sample the biased trajectories

sufficiently well.
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CHAPTER 5

CONCLUSIONS

This work is devoted to quantifying the probabilities of rare events in stochastic

system. In particular, we estimate the probabilities of parameter excursions in optical

communication systems and the probabilities of read error rates and write error

rates for a spin-transfer torque nano-devices. In both settings, the first step is to

reduce infinite-dimensional stochastic PDEs to finite-dimensional stochastic ODEs.

In the case of the laser model, this is accomplished using a variational reduction. In

the case of the Landau-Lifshitz equation, this is accomplished using the macrospin

approximation.

Using the numerical computation tool gMAM, the Freidlin-Wentzell minimum

action was obtained for amplitude drop-outs and position shifts in the finite-

dimensional optical systems we considered, providing estimates for the probability of

these events occurring. By analogy with the concept of finite-temperature single-pulse

astroids in micromagnetics, we explored the quasi-stability of the system in its

parameter space and identified for which parameters the system was most stable.

Furthermore, the application of IS with bias functions computed by gMAM with

fixed endpoints allowed a numerical estimation of the probabilities above.

We extended the application of gMAM and IS to the estimation of read

error rates and write error rates for macrospin spin systems modeling STT-MRAM

devices. Throughout this dissertation, we have intentionally selected simple models

to focus on the feasibility of using IS to estimate switching probabilities. One of the

strategies to obtain switching probabilities over finite time horizons is the use of IS

with infinite-time bias functions. This strategy is useful for intermediate times but

does not correctly promote the long periods spent near the stable fixed point in the

actual dynamics. This phenomenon can be addressed by turning off the biasing while
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the current state is within a diffusion length of the stable fixed point, which leads

to significant improvement of the sampling efficiency. Another strategy to obtain

switching probabilities for short times is the use of IS with finite-time bias functions.

We also extended these strategies to estimate switching probabilities using IS applied

to a two coupled-spin system. The infinite-time bias functions are computed by

gMAM with variable endpoints, while the finite-time bias functions are computed by

MAM with variable endpoints. The switching probability is underestimated if the

bias function is based on gMAM or MAM with fixed endpoint at the saddle point.

The critical component of these IS strategies is the approximation of the bias

functions. As we have presented, these importance sampling strategies are readily

adaptable to more complex ODE systems, such as a system with many interacting

macrospins. The only limitation of these strategies is the amount of computational

effort needed to obtain the bias function. The IS strategies can also be extended to

stochastic PDEs such as the nonlinear Schrödinger equations and the Landau-Lifshitz

equation. Ongoing work includes the implementation of gMAM or MAM for these

systems with variable terminal conditions and the investigation of effective numerical

schemes to obtain bias functions.
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APPENDIX

DERIVATION OF MACROSPIN AND COUPLED SPINS

This appendix presents the derivation of the macrospin approximation for the

stochastic Landau-Lifshitz equation with the spin-transfer torque and the derivation

of the coupled spin system for the coupled stochastic Landau-Lifshitz equation with

the spin-transfer torque.

The macrospin model assumes that the magnetic element is so small that the

exchange energy dominates and the magnetization is almost uniform throughout the

element. The standard stochastic Landau-Lifshitz equation with the spin-transfer

torque is a stochastic ODE :

∂m

∂t
= −m× h− αm× (m× h) + αm× τ STT + τ STT, (1)

where m(t) = (mx(t),my(t),mz(t)) is a unit vector whose direction is parallel to the

magnetization of a magnetic system with constant length Ms. The effective field is

given by

h = − 1

S

δE

δm
+

√
2αε

1 + α2
Ẇ (t), (2)

where Ẇ (t) is homogenized by

Ẇ (t) =
1√
S

∫
D

η(r, t)d2r, (3)

with S stands for the area of D in the units of l2ex. The dimensionless energy density

is given by

E

S
=
Q

2
m2
y +

1

2
m2
z. (4)
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Ẇ (t) is uncorrelated, independent, Gaussian white noise. The noise coefficient,√
2αε/(1 + α2), is consistent with the Gibbs distribution and

ε = kBT/(µ0M
2
s dl

2
exS) = kBT/(2AdS)

is the dimensionless temperature. The unit of time is (1 + α2)/(γµ0MS). Equation

(1) is to be interpreted in the Stratonovich sense so that this equation preserve the

norm constraint, |m| = 1. Here we consider mp = (1, 0, 0)T . aJ and bJ are constant.

Rewriting the stochastic Landau-Lifshitz equation. To convert equation (1)

into cylindrical coordinates, we first rewrite it as following

dm

dt
= b(m) +

√
2αε

1 + α2
G(m) ◦ Ẇ, (5)

where the drift term is

b(m) =−m× h− αm× (m× h) + aJm× (m×mp)− aJαm×mp (6)

+ bJm×mp + αbJm× (m×mp)

=−m× h− αm× (m× h) + (aJ + αbJ)m× (m×mp)

+ (bJ − αaJ)m×mp (7)

=


h2mz − h3my

h3mx − h1mz

h1my − h2mx

+ α


h1(m2

y +m2
z)− h2mxmy − h3mxmz

h2(m2
x +m2

z)− h1mxmy,−h3mymz

h3(m2
x +m2

y)− h1mxmz − h2mymz



+ (aJ + αbJ)


−m2

z −m2
y

mxmy

mxmz

+ (bJ − αaJ)


0

mz

−my

 ,
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and the diffusion matrix is

G(m) =


α(m2

y +m2
z) mz − αmxmy −my − αmxmz

−mz − αmxmy α(m2
x +m2

z) mx − αmymz

my − αmxmz −mx − αmymz α(m2
x +m2

y),


where h = −∇mE.

Cylindrical coordinates. We will show that under the transformation

m = (cos(θ)
√

1− z2, sin(θ)
√

1− z2, z) (8)

equation (5) can be written as the Itô stochastic differential differential equation

θ̇ =− ∂E

∂z
− α

1− z2

∂E

∂θ
+

√
2εα√

1− z2
Ẇ1 (9)

+ (aJ + αbJ)
sin(θ)√
1− z2

+ (bJ − αaJ)
z cos(θ)√

1− z2
,

ż =
∂E

∂θ
− α(1− z2)

∂E

∂z
− 2εαz +

√
2εα
√

1− z2Ẇ2

+ (aJ + αbJ)(z cos(θ)
√

1− z2)− (bJ − αaJ)sin(θ)
√

1− z2 (10)

where

∂E

∂z
= z −Q sin(θ)2z, (11)

∂E

∂θ
= Q sin(θ) cos(θ)(1− z2). (12)

Transformation. Let us define

θ = tan−1(
my

mx

) (13)

z = mz. (14)
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Since equation(5) is interpreted in the Strotonovich sense, ordinary chain rule applies

to Stratonovich calculus. We have

θ̇ =
ṁymx − ṁxmy

m2
x +m2

y

=
1

m2
x +m2

y

(b2mx − b1my)

+
1

m2
x +m2

y

√
2αε

1 + α2
((mxG2,1 −myG1,1) ◦ Ẇ1 + (mxG2,2 −myG1,2) ◦ Ẇ2

+ (mxG2,3 −myG1,3) ◦ Ẇ3)

=
1

m2
x +m2

y

(b2mx − b1my)

+
1

m2
x +m2

y

√
2αε

1 + α2
((−mxmz − αmy) ◦ Ẇ1 + (−mymz + αmx) ◦ Ẇ2

+ (m2
x +m2

y) ◦ Ẇ3)

=
1

m2
x +m2

y

(b2mx − b1my)

+
1√

1− z2

√
2αε

1 + α2
((−z cos(θ)− α sin(θ)) ◦ Ẇ1 + (−z sin(θ) + α cos(θ)) ◦ Ẇ2)

+

√
2αε

1 + α2
Ẇ3 (15)

To simply the deterministic part, we need to use the following equations:

∂E

∂θ
=

∂E

∂mx

∂mx

∂θ
+

∂E

∂my

∂my

∂θ
+

∂E

∂mz

∂mz

∂θ

= − ∂E

∂mx

my +
∂E

∂my

mx

= h1my − h2mx, (16)

∂E

∂z
=

∂E

∂mx

∂mx

∂z
+

∂E

∂my

∂my

∂z
+

∂E

∂mz

∂mz

∂z

=
∂E

∂mx

−z cos(θ)√
1− z2

+
∂E

∂my

−z sin(θ)√
1− z2

+
∂E

∂mz

= h1
mzmx

m2
x +m2

y

+ h2
mzmy

m2
x +m2

y

− h3. (17)
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Thus the deterministic part of θ dynamic can be simplified as following:

1

m2
x +m2

y

(b2mx − b1my) =

1

m2
x +m2

y

(h3(m2
x +m2

y)− h1mxmz − h2mzmy + α(h2mx − h1my)

+ (aJ + αbJ)my + (bJ − aJα)mxmz)

= −∂E
∂z
− α

(1− z2)

∂E

∂θ
+ (aJ + αbJ)

sin(θ)√
1− z2

+ (bJ − αaJ)
z cos(θ)√

1− z2
(18)

As a result, the dynamic for θ is given by

θ̇ = −∂E
∂z
− α

(1− z2)

∂E

∂θ
+ (aJ + αbJ)

sin(θ)√
1− z2

+ (bJ − αaJ)
z cos(θ)√

1− z2

+
1√

1− z2

√
2αε

1 + α2
((−z cos(θ)− α sin(θ)) ◦ Ẇ1

+ (−z sin(θ) + α cos(θ)) ◦ Ẇ2) +

√
2αε

1 + α2
Ẇ3

We have

ż = ṁz

= b3 + G3,1 ◦ Ẇ1 + G3,2 ◦ Ẇ2 + G3,3 ◦ Ẇ3

= h1my − h2mx − α(h1mxmz + h2mymz − h3(m2
x +m2

y)))

+ (aJ + αbJ)mxmz − (bJ − αaJ)my

+

√
2αε

1 + α2
((my − αmxmz) ◦ Ẇ1 + (−mx − αmymz) ◦ Ẇ2 + (α(m2

x +m2
y)) ◦ Ẇ3)

=
∂E

∂θ
− α(1− z2)

∂E

∂z

+ (aJ + αbJ)z cos(θ)
√

1− z2 − (bJ − αaJ)sin(θ)
√

1− z2

+
√

1− z2

√
2αε

1 + α2
(sin(θ)− α cos(θ)z) ◦ Ẇ1

+
√

1− z2

√
2αε

1 + α2
(− cos(θ)− α sin(θ)z) ◦ Ẇ2 +

√
2αε

1 + α2
(α(1− z2)) ◦ Ẇ3
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The diffusion matrix is given by

σ =

(−z cos(θ)− α sin(θ))/
√

1− z2 (−z sin(θ) + α cos(θ))/
√

1− z2 1
√

1− z2(sin(θ)− α cos(θ)z)
√

1− z2(− cos(θ)− α sin(θ)z) α(1− z2)


with

σσT =

(1 + α2)/1− z2 0

0 (1 + α2)(1− z2)


Compute Itô correction. Here we convert the system into Itô form. The Itô

correction term for θ is given by

αε

1 + α2
(
∂σ1,1

∂θ
σ1,1 +

∂σ1,1

∂z
σ2,1 +

∂σ1,2

∂θ
σ1,2 +

∂σ1,2

∂z
σ2,2) (19)

= 0

The itô correction term for z is given by

αε

1 + α2
(
∂σ2,1

∂θ
σ1,1 +

∂σ2,1

∂z
σ2,1 +

∂σ2,2

∂θ
σ1,2 +

∂σ2,2

∂z
σ2,2 +

∂σ3,2

∂θ
σ1,3 +

∂σ3,2

∂z
σ2,3) (20)

= − αε

1 + α2
2(α2 + 1)z = −2αεz.

We also want to reduce the three-dimensional noise into two-dimensional noise.

Observing that σσT is a diagonal matrix, we redefine

σ =
√

1 + α2

1/
√

1− z2 0

0
√

1− z2


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Putting everything together, we can see that equation (5) can be written as the Itô

stochastic differential differential equation

θ̇ =− ∂E

∂z
− α

1− z2

∂E

∂θ
+

√
2εα√

1− z2
Ẇ1 (21)

+ (aJ + αbJ)
sin(θ)√
1− z2

+ (bJ − αaJ)
z cos(θ)√

1− z2
,

ż =
∂E

∂θ
− α(1− z2)

∂E

∂z
− 2εαz +

√
2εα
√

1− z2Ẇ2

+ (aJ + αbJ)(z cos(θ)
√

1− z2)− (bJ − αaJ)sin(θ)
√

1− z2, (22)

where

∂E

∂z
= z −Q sin(θ)2z, (23)

∂E

∂θ
= Q sin(θ) cos(θ)(1− z2). (24)

Limit equation for θ. We derive a reduced model for the macrospin dynamics

of the in-plane magnetization component in the regime of equation (4.26), which is

done in the spirit of [44–46]. Our starting point is equation (1) for a macrospin m, in

which h satisfies equation (4.25). Introducing cylindrical coordinates, we can write

m =
(√

1− z2 cos θ,
√

1− z2 sin θ, z
)
. (25)
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Then, changing the unit of time to τQ we arrive, after some algebra and a change

from Stratonovich to Itô formulation, to the following Itô SDEs for θ(t) and z(t):

Q(1 + α2)

α
θ̇ = −∂E

∂z
− α

1− z2

∂E

∂θ
+ (aJ + αbJ)

sin θ√
1− z2

+ (bJ − αaJ)
z cos θ√
1− z2

+Q

√
1 + α2

∆(1− z2)
Ẇ1, (26)

Q(1 + α2)

α
ż =

∂E

∂θ
− α(1− z2)

∂E

∂z
− Qαz

∆

+ (aJ + αbJ)z
√

1− z2 cos θ

− (bJ − αaJ)
√

1− z2 sin θ

+Q
√

∆−1(1 + α2)(1− z2) Ẇ2, (27)

where W1 and W2 are two uncorrelated Brownian motions and

∂E

∂z
= z −Qz sin2 θ,

∂E

∂θ
= Q(1− z2) sin θ cos θ. (28)

We now assume that Q� 1, while aJ = β−1IJQ, bJ = IJQ and ε = Q/(2∆),

with IJ , β and ∆ of order unity. In this case any deviations of z from zero are

strongly suppressed. Therefore, linearizing the above equations in z and introducing

ζ = Q−1z, we obtain

Q(1 + α2)

α
θ̇ = −∂E

∂z
− α∂E

∂θ
+QIJ(β−1 + α) sin θ

+Q2IJ(1− αβ−1)ζ cos θ

+Q
√

∆−1(1 + α2) Ẇ1, (29)

Q2(1 + α2)

α
ζ̇ =

∂E

∂θ
− α∂E

∂z
− Q2αζ

∆

+Q2IJ(β−1 + α)ζ cos θ

−QIJ(1− αβ−1) sin θ

+Q
√

∆−1(1 + α2) Ẇ2, (30)
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where

∂E

∂z
= Qζ,

∂E

∂θ
= Q sin θ cos θ. (31)

Substituting equation (31) into equations (29) and (30), to the leading order in Q� 1

we then arrive at

(1 + α2)

α
θ̇ = −ζ − α sin θ cos θ + IJ(β−1 + α) sin θ

+
√

∆−1(1 + α2) Ẇ1, (32)

0 = sin θ cos θ − αζ − IJ(1− αβ−1) sin θ

+
√

∆−1(1 + α2) Ẇ2, (33)

Finally, solving for ζ in equation (33) and substituting it back into equation (32),

with the help of the fact that αW1−W2 =
√

1 + α2W , where W is another Brownian

motion, we obtain equation (4.27). It is interesting to note that only the contribution

of the field-like spin torque appears in the reduced equation, while the contribution

of the Slonczewski torque cancels out to the leading order.

Let us consider N coupled spins with identical volumes that are coupled via

Heisenberg hamiltonians

Eex = −
∑
i,j

aijmi ·mj, (34)

with a total energy that is given by

E = −
∑
i,j

aijmi ·mj +
∑
i

Si(
Q

2
m2
i,y +

1

2
m2
i,3), (35)

where aij is the exchange parameter between moments mi and mj.
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The dynamics of the two spins are governed by a system of standard stochastic

Landau-Lifshitz equation with the spin-transfer torque:

∂mi

∂t
= −mi × hi − αmi × (mi × hi) + αmi × τ iSTT + τ iSTT (36)

The effective fields are given by

hi = − δE

δmi

+

√
2αεi

1 + α2
W i(t). (37)

where i = 1, 2. Let us denote

mi = (cos(θi)
√

1− z2
i , sin(θi)

√
1− z2

i , zi), i = 1, 2,

and the dynamic for spin m1 is given by

θ̇1 =− ∂E

∂z1

− α

1− z2
1

∂E

∂θ1

+

√
εiα√

1− z2
1

Ẇ1 (38)

+ (aJ + αbJ)
sin(θ1)√

1− z2
1

+ (bJ − αaJ)
z1 cos(θ1)√

1− z2
1

,

ż1 =
∂E

∂θ1

− α(1− z2
1)
∂E

∂z1

− 2εαz1 +
√
εiα
√

1− z2
1Ẇ2

+ (aJ + αbJ)z1 cos(θ1)
√

1− z2
1

− (bJ − αaJ)sin(θ1)
√

1− z2
1 ,

where

∂E

∂z1

= z1 −Q sin(θ1)2z1

+ a12
mz

m2
x +m2

y

(m2,xm1,x +m1,ym2,y −m2,z)

= z1 −Q sin(θ1)2z1 + a12z1

√
1− z2

2√
1− z2

1

cos(θ1 − θ2)− a12z2,

∂E

∂θ1

= Q sin(θ1) cos(θ1)(1− z2
1) + a12(m2,xm1,y −m1,xm2,y)

= Q sin(θ1) cos(θ1)(1− z2
1) + a12 sin(θ1 − θ2)

√
(1− z2

1)(1− z2
2).
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We now assume that Q � 1, while a12 = cQ, aJ = β−1IJQ, bJ = IJQ and

εi = Q/(2∆i), with c, IJ , β and ∆ of order unity. In this case any deviations of zi

from zero are strongly suppressed. Therefore, linearizing the above equations in zi,

introducing ζi = Q−1zi, and rescaling time by (α + 1
α

), we obtain

Q(1 + α2)

α
θ̇1 = −∂E

∂z1

− α∂E
∂θ1

+QIJ(β−1 + α) sin θ1

+Q2IJ(1− αβ−1)ζ1 cos θ1

+Q
√

∆−1(1 + α2) Ẇ1, (39)

Q2(1 + α2)

α
ζ̇1 =

∂E

∂θ1

− α∂E
∂z1

− Q2αζ1

∆1

+Q2IJ(β−1 + α)ζ1 cos θ1

−QIJ(1− αβ−1) sin θ1

+Q

√
∆−1

1 (1 + α2) Ẇ2, (40)

where

∂E

∂z1

= Qζ1,
∂E

∂θ1

= Q sin θ1 cos θ1 + cQ sin(θ1 − θ2). (41)

Substituting equation (31) into equations (39) and (40), to the leading order

in Q� 1 we then arrive at

(1 + α2)

α
θ̇1 = −ζ1 − α(sin θ1 cos θ1 + c sin(θ1 − θ2))

+ IJ(β−1 + α) sin θ1

+
√

∆−1
1 (1 + α2) Ẇ1, (42)

0 = sin θ1 cos θ1 + c sin(θ1 − θ2)− αζ1

− IJ(1− αβ−1) sin θ1

+
√

∆−1
1 (1 + α2) Ẇ2, (43)
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Now again, solving for ζ1 in equation (43) and substituting it back into equation (42),

we obtain

θ̇1 = c sin(θ2 − θ1) + (IJ − cos(θ1)) sin(θ1) +

√
1

∆1

Ẇ1, (44)

The derivation of the dynamics for m2 or θ2 is the same for θ1. The coupled system

is given by

θ̇1 = c sin(θ2 − θ1) + (IJ − cos(θ1)) sin(θ1) +

√
1

∆1

Ẇ1 (45)

θ̇2 = c sin(θ1 − θ2) + (IJ − cos(θ2)) sin(θ2) +

√
1

∆2

Ẇ2. (46)

This can be generalized to N coupled spin system [50–52]

θ̇i = b(θi) +
N∑
j=1

aijS
−1
i sin(θj − θi) +

1√
∆i

Ẇi, (47)

using Heisenberg exchange with dimensionless strengths aij = aji ≥ 0 for the

interactions between the grains, with Wi being N uncorrelated Brownian motions.
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